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Abstract. Energy is one of the most important objectives for optimiza-
tion on modern heterogeneous high performance computing (HPC) plat-
forms. The tight integration of multicore CPUs with accelerators in these
platforms present several challenges to optimization of multithreaded
data-parallel applications for dynamic energy.

In this work, we formulate the optimization problem of data-parallel
applications on heterogeneous HPC platforms for dynamic energy
through workload distribution. We propose a solution method to solve
the problem. It consists of a data-partitioning algorithm that employs
load imbalancing technique to determine the workload distribution min-
imizing the dynamic energy consumption of the parallel execution of an
application. The inputs to the algorithm are discrete dynamic energy
profiles of individual computing devices.

We experimentally analyse the proposed algorithm using two multi-
threaded data-parallel applications, matrix multiplication and 2D fast
Fourier transform. The load-imbalanced solutions provided by the algo-
rithm achieve significant dynamic energy reductions (on the average
130% and 44%) compared to the load-balanced ones for the applications.

Keywords: High performance computing · Heterogeneous platforms ·
Energy of computation · Multicore CPU · GPU · Xeon Phi

1 Introduction

Energy consumption is one of the main challenges hindering high performance
computing (HPC) community from breaking the exascale barrier [9].
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Energy optimization in HPC context is studied briefly in connection with
bi-objective optimization for performance and energy. State-of-the-art solution
methods for bi-objective optimization problem can be broadly classified into
system-level and application-level categories. System-level solution methods aim
to optimize performance and energy of the environment where the applications
are executed. The methods employ application-agnostic models and hardware
parameters as decision variables. The dominant decision variable in this cate-
gory is Dynamic Voltage and Frequency Scaling (DVFS). Majority of the works
in this category optimize for performance with energy budget as a constraint.
Application-level solution methods proposed in [2,12–14] use application-level
parameters as decision variables and application-level models for predicting
the performance and energy consumption of applications. The application-level
parameters include the number of threads, number of processors, loop tile size,
workload distribution, etc. Chakraborti et al. [2] consider the effect of hetero-
geneous workload distribution on bi-objective optimization of data analytics
applications by simulating heterogeneity on homogeneous clusters. The perfor-
mance is represented by a linear function of problem size and the total energy
is predicted using historical data tables. Research works [13,14] demonstrate
by executing real-life data-parallel applications on modern multicore CPUs that
the functional relationships between performance and workload distribution and
between energy and workload distribution have complex (non-linear) properties.
They target homogeneous HPC platforms.

Modern heterogeneous HPC platforms feature tight integration of multicore
CPUs with accelerators such as graphical processing units (GPUs) and Xeon Phi
coprocessors to provide cutting-edge computational power and increased energy
efficiency. This has resulted in inherent complexities such as severe resource
contention for shared on-chip resources (Last Level Cache, Interconnect) and
Non-Uniform Memory Access (NUMA). One visible manifestation of these com-
plexities is a complex functional relationship between energy consumption and
workload size of applications executing on these platforms where the shape of
energy profiles may be highly non-linear and non-convex with drastic variations.
This, however, provides an opportunity for application-level energy optimization
through workload distribution as a decision variable.

Consider the dynamic energy profiles of multithreaded matrix-matrix mul-
tiplication (DGEMM) and 2D fast Fourier transform (2D-FFT) application
executed on two connected heterogeneous multi-accelerator NUMA nodes,
HCLServer1 (Table 1) and HCLServer2 (Table 2). The multicore CPU in
HCLServer1 is integrated with one Nvidia K40c GPU and one Intel Xeon Phi
3120P. The multicore CPU in HCLServer2 is integrated with one Nvidia P100
GPU. DGEMM computes the matrix product, C = α × A × B + β × C, where
A, B, and C are respectively dense matrices of size m × n, n × n, and m × n
and α and β are constant floating-point numbers. 2D-FFT computes the Fourier
transform of a complex matrix of size m × n.

A data-parallel application executing on this heterogeneous platform, consists
of a number of kernels (generally speaking, multithreaded), running in parallel on
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Table 1. HCLServer1 specifications.

Intel Haswell E5-2670V3 Nvidia K40c Intel Xeon Phi 3120P

Socket(s), Cores per socket 2, 12 No. of processor
cores

2880 No. of processor
cores

57

Main memory 64GB Total board
memory

12 GB Total main
memory

6GB

Idle Power (W) 60 Idle Power (W) 68 Idle Power (W) 91

Table 2. HCLServer2 specifications.

Intel Xeon Gold 6152 Nvidia P100 PCIe

Socket(s), Cores per socket 1, 22 No. of processor cores 3584

Main memory 96 GB Total board memory 12 GB

Idle Power (W) 60 Idle Power (W) 30

Fig. 1. Dynamic energy functions for the five abstract processors on HCLServer1 and
HCLServer2. (a) DGEMM, and (b) 2D-FFT.

different computing devices of the platform. In order to apply our optimization
algorithms, each group of cores executing an individual kernel of the applica-
tion is modelled as an abstract processor [21] so that the executing platform is
represented as a set of abstract processors. HCLServer1 is modelled by three
abstract processors, CPU 1, GPU 1, and PHI 1. CPU 1 represents 22 (out of
total 24) CPU cores. GPU 1 involves the Nvidia K40c GPU and a host CPU
core connected to this GPU via a dedicated PCI-E link. PHI 1 is made up of one
Xeon Phi 3120P and its host CPU core connected via a dedicated PCI-E link. In
the same manner, HCLServer2 is modelled by two abstract processors, CPU 2
and GPU 2. Since there should be a one-to-one mapping between the abstract
processors and computational kernels, any hybrid application executing on the
servers should consist of five kernels, one kernel per computational device.

The dynamic energy profiles for the applications are shown in the Fig. 1. Each
profile presents the dynamic energy consumption of a given processor versus
workload size executed on the processor. In the figure for 2D-FFT, the dynamic
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energy profile for Phi 1 is ignored since it consumes 10 times more energy and
dominates the other profiles. The dynamic energy consumptions are measured
using Watts Up Pro power meter. We will elaborate the practical methodology
to construct the discrete dynamic energy profiles in a following section.

Consider the execution of DGEMM for the workload size 2496 × 10112
employing all the five abstract processors, {CPU 1,CPU 2,GPU 1,GPU 2,
PHI 1}. The solution determined by load-balanced algorithm is {64,320,64,
2048,0} and its dynamic energy consumption is 84 J. The optimal workload
distribution assigns the whole workload to GPU 2 resulting in dynamic energy
consumption of 24 J and thereby providing 150% reduction in energy. Con-
sider the execution of 2D-FFT for the workload size 9120 × 51200 (2D sig-
nal) employing all the five abstract processors. The solution (workload dis-
tribution) determined by load-balanced algorithm is {1200,5376,1024,1472,0}
and its dynamic energy consumption is 82 J. The load-balancing algorithm
employs horizontal decomposition of the rows of the 2D signal. The opti-
mal workload distribution assigns the whole workload to CPU 2 result-
ing in dynamic energy consumption of 40 J and thereby providing 105%
reduction in energy. Our proposed solution finds these optimal workload
distributions.

In this work, we propose a novel data-partitioning algorithm, HEOPTA, that
determines optimal workload distribution minimizing the dynamic energy con-
sumption of data-parallel applications executing on heterogeneous platforms for
the most general shapes of dynamic energy profiles of the participating pro-
cessors. To model the performance of a parallel application and build its speed
functions, the execution time of any computational kernel can be measured accu-
rately using high precision processor clocks. There is however no such effective
equivalent for measuring the energy consumption. Physical measurements using
power meters are accurate but they do not provide a fine-grained decomposition
of the energy consumption during the application run in a hybrid platform. We
propose a practical methodology to determine this decomposition, which employs
only system-level energy measurements using power meters. The methodology
allows us to build discrete dynamic energy functions of abstract processors with
sufficient accuracy for the application of HEOPTA.

We experimentally analyse the accuracy of our energy modelling method-
ology and the performance of HEOPTA using two data-parallel applications,
DGEMM and 2D-FFT, on a cluster of two heterogeneous nodes. We show
that the load-imbalanced solutions provided by the algorithm achieve signifi-
cant dynamic energy reductions compared to the load balanced solutions.

Our main contribution of this work is a novel data-partitioning algorithm
that determines optimal workload distribution minimizing the dynamic energy
consumption of data-parallel applications executing on heterogeneous platforms
for the most general shapes of dynamic energy profiles of the processors.

The paper is organized as follows. Section 2 presents related work. Section 3
presents the formulation of the heterogeneous dynamic energy optimization
problem. Section 4 describes our algorithm solving the problem. In Sect. 5, the
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device-level approach for dynamic energy modelling is illustrated. Section 6
presents the experimental results. Finally, Sect. 7 concludes the paper.

2 Related Work

In this section, we will cover research works on bi-objective optimization for
performance and energy and notable works model the energy of computation.

Analytical studies of bi-objective optimization for performance and energy
are presented in [3,5,15]. Choi et al. [3] extend the energy roofline model
by adding an extra parameter, power cap, to their execution time model.
Drozdowski et al. [5] use iso-energy map, which are points of equal energy con-
sumption in a multi-dimensional space of system and application parameters,
to study performance-energy trade-offs. Marszalkowski et al. [15] analyze the
impact of memory hierarchies on time-energy trade-off in parallel computations,
which are represented as divisible loads. The works reviewed do not consider
workload distribution as a decision variable.

Basmadjian et al. [1] constructs a power model of a server using the summa-
tion of power models of its components: the processor (CPU), memory (RAM),
fans, and disk (HDD). A model representing the energy consumption of a multi-
core CPU by a non-linear function of workload size is developed in [13]. Nagasaka
et al. [16] propose PMC-based statistical power consumption modelling tech-
nique for GPUs that run CUDA applications. Song et al. [20] present power and
energy prediction models based on machine learning algorithms such as back-
propagation in artificial neural networks (ANNs). Shao et al. [19] develop an
instruction-level energy consumption model for a Xeon Phi processor.

3 Formulation of Heterogeneous Dynamic Energy
Optimization Problem

Consider a workload size n executing on p processors with dynamic energy func-
tions, E = {e0(x), ..., ep−1(x)} where ei(x), i ∈ {0, 1, · · · , p − 1}, is a discrete
dynamic energy function of processor Pi with a cardinality of m. The heteroge-
neous dynamic energy optimization problem can be formulated as follows:

Heterogeneous Dynamic Energy Optimization Problem, HEOPT(n,
p, m, E, Xopt, eopt): The problem is to find a workload distribution, Xopt =
{x0, ..., xp−1}, for the workload n executing on p heterogeneous processors so
that the solution minimizes dynamic energy consumption during the parallel
execution of n. The parameters (n, p, m, E) are the inputs to the problem. The
outputs are Xopt, which is the optimal solution (workload distribution), and eopt,
which represents the dynamic energy consumption of the optimal solution. The
formulation below is a integer non-linear programming (INLP) problem.

eopt = min
X

p−1∑

i=0

ei(xi) Subject to
p−1∑

i=0

xi = n,

where p,m, n ∈ Z>0 and xi ∈ Z≥0 and ei(x) ∈ R>0

(1)
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The objective function in Eq. 1 is a function of workload distribution X,
X = {x0, ..., xp−1}, for a given workload n executing on the p processors. The
number of active processors (processors that are assigned non-zero workload size)
in the optimal solution (Xopt) may be less than p.

4 HEOPTA: Algorithm Solving HEOPT Problem

In this section, we will introduce HEOPTA, a branch-and-bound algorithm solv-
ing HEOPT. The bounding criteria in HEOPTA are energy threshold and size
threshold, which are explained below.

Fig. 2. (a) Dynamic energy functions of a sample application executing on four het-
erogeneous processors. (b) The same functions stored in arrays.

First, the algorithm is informally explained using a simple example. Consider
a workload n = 12 executing on a given platform consisting of four heteroge-
neous processors (p = 4). Figure 2 (a) shows the discrete dynamic energy func-
tions, E = {e0(x), · · · , e3(x)}, with a cardinality of 14 (m = 14), as inputs to
HEOPTA. Figure 2 (b) shows the discrete dynamic energy functions which are
stored as arrays in non-decreasing order of energy consumption.

To solve the HEOPT problem and find the optimal workload distribution, a
straightforward approach is to explore a full solution tree in order to build all
combinations and finally select a workload distribution that its dynamic energy
consumption is minimum. The tree explored by such a naive approach is shown
in Fig. 3 which contains all the combinations for n = 12 and p = 4. Due to the
lack of space, the tree is shown partially.

The naive algorithm starts tree exploration from the root at the level L0 of
the tree. The root node is labelled by 12 which represents the whole workload
to be distributed between 4 processors {P0, P1, P2, P3}. Then, fifteen (= m + 1)
problem sizes, including a zero problem size along with all problem sizes in the
dynamic energy function e0(x), are assigned to the processor P0 one at a time.
Therefore, the root is expanded into 15 children. The value, which labels an
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Fig. 3. Applying naive approach to examine all combinations and select a workload
distribution with the minimum dynamic energy consumption.

internal node at level L1 (root’s children), determines the remaining workload
to be distributed between processors {P1, P2, P3}.

Similarly, each child of the root in the next level L1 turns into a root of a
sub-tree, which is a solution tree to solve HEOPT for the remaining workload
between three processors {P1, P2, P3}. Each edge, which connects the root and its
child, is labelled by the problem size assigned to P0 and its energy consumption.

In Fig. 3, the leaf node at level L1 labelled by 0 represents a solution leaf.
Generally, any leaf node labelled by 0 illustrates one of the possible solutions,
where its dynamic energy consumption is calculated as the summation of the
consumed energies labelling the edges in the path connecting the root and the
solution leaf. No-solution leaves are labelled by �.

In this example, the distribution {(0, 0), (7, 4), (5, 1), (0, 0)}, highlighted in
blue, with the consumed dynamic energy of 5, represents the optimal solution.

The cost of this naive algorithm is exponential. HEOPTA utilizes two bound-
ing criteria, energy threshold and size threshold, and saving the intermediate
solutions to find optimal solutions in a polynomial complexity of O(m3 × p3).

The energy threshold, represented by ε, is the dynamic energy consumption
of load-equal distribution, allocating each processor the same workload of size n

p

(assuming n is divisible by p). HEOPTA will not examine data points with the
dynamic energy consumption greater than or equal to the energy threshold.

The size threshold assigns each level of the tree a threshold, σi, i ∈ {0, . . . , p−
1}, which represents the maximum workload that can be executed in parallel on
processors {Pi, · · · , Pp−1} so that the dynamic energy consumption by every
processor {Pi, · · · , Pp−1} is less than ε.

HEOPTA explores solution trees in the left-to-right depth-first order as
shown in Fig. 3. Before exploring a branch, the branch is checked against two
upper estimated bounds, energy threshold and size threshold, and is discarded if
it cannot result in a better solution than the best one found so far. All subtrees,
not explored by applying the bounding criteria, are highlighted in red in Fig. 3.
We call this key optimization operation Cut.
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When a solution is found, the following operations are performed: (i) The
energy threshold ε is updated, (ii) If ε decreases, the vector σ of size thresholds
is updated, and (iii) The solution is saved in the memory. Green nodes in the
tree highlight ones whose solutions are saved. We call this key operation, Save.
Before exploring a node, HEOPTA read the memory to retrieve its solution (if
it have already been saved). This key operation is called ReadMemory. The
solution of the orange node in the tree is retrieved from the memory.

In summary, HEOPTA uses three key operations, Cut, Save, and ReadMem-
ory, to find the optimal solutions. In supplemental available online in [11], we
elucidate using an example how these key operations reduce the search space of
solutions. The pseudocode of HEOPTA, its correctness and complexity proofs
are also presented in the supplemental in [11].

5 Device-Level Dynamic Energy Decomposition
in Heterogeneous Hybrid Platforms

We describe our practical approach here to construct the discrete dynamic energy
profiles of the abstract processors in a hybrid heterogeneous server. The method
is based purely on system level measurements. The approach comprises of two
main steps. The first step is the identification or grouping of the computing
elements satisfying properties that allow measurement of their energy consump-
tions to sufficient accuracy. We call these groups as abstract processors. The
second step is the construction of the dynamic energy models of the abstract
processors where the principal goal apart from minimizing the time taken for
model construction is to maximize the accuracy of measurements.

5.1 Grouping of Computing Elements

We group individual computing elements executing an application together in
such a way that we can accurately measure the energy consumption of the group.
We call these groups abstract processors. We consider two properties essential to
composing the groups:

– Completeness: An abstract processor must contain only those computing ele-
ments which execute the given application kernel.

– Loose coupling: Abstract processors do not interfere with each other during
the application. That is, the dynamic energy consumption of one abstract
processor is not affected by the activities of other abstract processor.

Based on this grouping approach, we hypothesize that the total dynamic
energy consumption during an application execution will equal the sum of
energies consumed by all the abstract processors. So, if ET is the total
dynamic energy consumption of the system incorporating p abstract processors
{AP1, · · · , APp}, then ET =

∑p
i=1 ET (APi), where ET (APi) is the dynamic

energy consumption of the abstract processor APi. We call this our additive
hypothesis.
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5.2 Energy Models of Abstract Processors

We describe here the second main step of our approach, which is to build the
dynamic energy models of the p abstract processors. We represent the dynamic
energy model of an abstract processor by a discrete function composed of a
set of points of cardinality m. The total number of experiments available to
build the dynamic energy models is (2p − 1) × m. Consider, for example, three
abstract processors {A,B,C}. {A,B,C, {AB,C}, {A,BC}, {AC,B}, ABC}. The
category {AB,C} represents parallel execution of application kernels on A and B
followed by application kernel execution on C. For each workload size, the total
dynamic energy consumption is obtained from the system-level measurement
for this combined execution of kernels. The categories {AB,C} and {BA,C} are
considered indistinguishable. There are m experiments in each category. The
goal is to construct the dynamic energy models of the three abstract processors
{A,B,C} from the experimental points to sufficient accuracy. We reduce the
number of experiments to p × m by employing our additive hypothesis.

6 Experimental Results

We employ two connected heterogeneous multi-accelerator NUMA nodes,
HCLServer1 (Table 1) and HCLServer2 (Table 2). HCLServer1 is modelled by
three abstract processors, CPU 1, GPU 1 and PHI 1, as described earlier.
HCLServer2 is modelled by two abstract processors, CPU 2 and GPU 2.

We employ two popular data-parallel applications, matrix-matrix multipli-
cation (DGEMM) and 2D fast Fourier transform (2D-FFT). Each application
executing on the servers in parallel consists of five kernels, one kernel per com-
putational device. Figure 1 shows discrete dynamic energy functions for the five
abstract processors for DGEMM and 2D-FFT. For the DGEMM application,
workload sizes range from 64 × 10112 to 28800 × 10112 with a step size of 64 for
the first dimension m. For the 2D-FFT application, workload sizes range from
1024 × 51200 to 10000 × 51200 with a step size of 16 for the first dimension m.

For measuring dynamic energy consumption, each node is facilitated with
one WattsUp Pro power meter which sits between the wall A/C outlets and the
input power sockets of the node. Each power meter captures the total power con-
sumption of one node. We use HCLWattsUp API [8], which gathers the readings
from the power meter to determine the dynamic energy consumption during the
execution of an application. HCLWattsUp has no extra overhead and therefore
does not influence the energy consumption of the application execution. Fans
are significant contributors to energy consumption. To rule out the contribution
of fans in dynamic energy consumption, we set the fans at full speed before
executing an application.

For each data point in the functions, the experiments are repeated until
sample means of all the five kernels executing on the abstract processors fall in
the confidence interval of 95%, and a precision of 0.1 (10%) is achieved.

Our approach on how to instrument computational kernels in a hybrid appli-
cation and measure their execution times and dynamic energies is explained
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in detail in [11]. We also present our analysis of the accuracy of the additive
approach to constructing discrete dynamic energy profiles in [11].

While the proposed method is rather expensive and requires significant time
to build the energy profiles, the alternative approaches, namely, on-chip power
sensors, such as Intel RAPL [7], Nvidia NVML [17], or AMD APM [4], and
software models using performance counters as predictor variables, are still too
inaccurate for the use in application-level optimization for energy [6,18].

6.1 Analysing HEOPTA

HEOPTA is analysed using two sets of experiments. For the first set, we com-
pare the dynamic energy consumption of solutions determined by HEOPTA
with the dynamic energy of load-balanced solutions. Load-balanced solutions
are workload distributions with equal execution times for each abstract pro-
cessor. The number of active processors in a solution (those assigned non-zero
workload size) may be less than the total number of available processors. The
dynamic energy saving against load-balancing algorithm is obtained as follows:
Energy Savingbalance(%) = ebalance−eheopta

eheopta
×100, where ebalance and eheopta are

the dynamic energy consumptions of solutions determined by load-balancing and
HEOPTA algorithms.

For the second set, we examine the interplay between dynamic energy opti-
mization and performance optimization using the workload distribution deter-
mined by HPOPTA. HPOPTA [10] is a data-partitioning algorithm for opti-
mization of data-parallel applications on heterogeneous HPC platforms for per-
formance. The energy saving of HEOPTA against HPOPTA is obtained as fol-
lows: Energy Savinghpopta(%) = ehpopta−eheopta

eheopta
× 100, where ehpopta represents

the dynamic energy consumption of the solution determined by HPOPTA. The
inputs to HPOPTA are discrete speed (or performance) functions.

The experimental dataset for DGEMM contains the workload sizes, {64 ×
10112, 128 × 10112, · · · , 57600 × 10112}. The minimum, average, and maxi-
mum reductions in the dynamic energy consumption of HEOPTA against load-
balancing algorithm, Energy Savingbalance, are 0%, 130%, and 257%. Zero per-
centage improvement represents the same workload distribution is determined by
HEOPTA and load-balancing algorithm. These values for Energy Savinghpopta
are 0%, 145%, and 314%. Figure 4 compares HEOPTA against the dynamic
energy consumption of solutions determined by load-balancing and HPOPTA.
Performance optimization increases dynamic energy consumption by an average
of 145%.

The experimental data set for 2D-FFT includes workload sizes, {1024 ×
51200, 1040 × 51200, · · · , 20000 × 51200}. The minimum, average, and maxi-
mum dynamic energy reductions of HEOPTA against load-balancing algorithm,
Energy Savingbalance, are 0%, 44%, and 105%. The minimum, average, and
maximum of Energy SavingHPOPTA are 0%, 32%, and 77%. Figure 5 compares
HEOPTA against the dynamic energy consumption of solutions determined by
load-balancing and HPOPTA. Optimization for performance increases dynamic
energy consumption by an average of 32%.
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Fig. 4. Dynamic energy consumption of DGEMM executed using HEOPTA in com-
parison with (a) Load-balanced solutions (b) HPOPTA.

Fig. 5. Dynamic energy consumption of the 2D-FFT application executed using
HEOPTA in comparison with (a) Load-balanced solutions, (b) HPOPTA.

We conclude that HEOPTA demonstrates considerable improvements in
average and maximum dynamic energy consumptions for the two applications
in comparison with the load-balancing and HPOPTA algorithms. Performance
optimization also increases dynamic energy consumption for both applications.

7 Conclusion

Modern heterogeneous HPC platforms feature tight integration of multicore
CPUs with accelerators, which resulted in inherent complexities. One visible
manifestation of these complexities is a complex functional relationship between
energy consumption and workload size of applications executing on these plat-
forms thereby providing an opportunity for application-level energy optimization
through workload distribution as a decision variable.

We proposed HEOPTA that determines optimal workload distributions min-
imizing the dynamic energy consumption of data-parallel applications running
on heterogeneous HPC platforms. We showed that the load-imbalanced solutions
provided by the algorithm achieve significant dynamic energy reductions com-
pared to the load balanced solutions. As future work, we will study the impact
of dynamic energy optimization on performance.

The software implementation for HEOPTA is available at [11].



Dynamic Energy Optimization Through Workload Distribution 331

References

1. Basmadjian, R., Ali, N., Niedermeier, F., de Meer, H., Giuliani, G.: A methodology
to predict the power consumption of servers in data centres. In: 2nd International
Conference on Energy-Efficient Computing and Networking. ACM (2011)

2. Chakrabarti, A., Parthasarathy, S., Stewart, C.: A pareto framework for data ana-
lytics on heterogeneous systems: implications for green energy usage and perfor-
mance. In: 46th International Conference on Parallel Processing (ICPP), pp. 533–
542. IEEE (2017)

3. Choi, J., Dukhan, M., Liu, X., Vuduc, R.: Algorithmic time, energy, and power on
candidate HPC compute building blocks. In: IEEE 28th International Parallel and
Distributed Processing Symposium, pp. 447–457. IEEE (2014)

4. Devices, A.M.: Bios and kernel developer’s guide (BKDG) for AMD fam-
ily 15h models 00h–0Fh processors (2012). https://www.amd.com/system/files/
TechDocs/42301 15h Mod 00h-0Fh BKDG.pdf

5. Drozdowski, M., Marszalkowski, J.M., Marszalkowski, J.: Energy trade-offs analy-
sis using equal-energy maps. Future Gener. Comput. Syst. 36, 311–321 (2014)

6. Fahad, M., Shahid, A., Manumachu, R.R., Lastovetsky, A.: A comparative study
of methods for measurement of energy of computing. Energies 12(11), 2204 (2019)

7. Gough, C., Steiner, I., Saunders, W.: Energy Efficient Servers: Blueprints for Data
Center Optimization. Apress, New York (2015)

8. HCL: HCLWattsUp: API for power and energy measurements using WattsUp Pro
Meter (2016). https://csgitlab.ucd.ie/ucd-hcl/hclwattsup

9. Hsu, J.: Three paths to exascale supercomputing. IEEE Spectr. 53(1), 14–15 (2016)
10. Khaleghzadeh, H., Manumachu, R.R., Lastovetsky, A.: A novel data-partitioning

algorithm for performance optimization of data-parallel applications on hetero-
geneous HPC platforms. IEEE Trans. Parallel Distrib. Syst. 29(10), 2176–2190
(2018)

11. Khaleghzadeh, H., Reddy, R., Lastovetsky, A.: HEOPTA: heterogeneous model-
based data partitioning algorithm for optimization of data-parallel applications
for dynamic energy (2019). https://csgitlab.ucd.ie/HKhaleghzadeh/heopt
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