J Supercomput
DOI 10.1007/s11227-014-1133-x

Hierarchical approach to optimization of parallel
matrix multiplication on large-scale platforms

Khalid Hasanov - Jean-Noél Quintin - Alexey Lastovetsky

© Springer Science+Business Media New York 2014

Abstract Many state-of-the-art parallel algorithms, which are widely used in sci-
entific applications executed on high-end computing systems, were designed in the
twentieth century with relatively small-scale parallelism in mind. Indeed, while in
1990s a system with few hundred cores was considered a powerful supercomputer,
modern top supercomputers have millions of cores. In this paper, we present a hierar-
chical approach to optimization of message-passing parallel algorithms for execution
on large-scale distributed-memory systems. The idea is to reduce the communica-
tion cost by introducing hierarchy and hence more parallelism in the communication
scheme. We apply this approach to SUMMA, the state-of-the-art parallel algorithm for
matrix—matrix multiplication, and demonstrate both theoretically and experimentally
that the modified Hierarchical SUMMA significantly improves the communication
cost and the overall performance on large-scale platforms.

Keywords Matrix Multiplication - Parallel Computing - Exascale Computing -
Communication Cost - Grid5000 - BlueGene - Hierarchy

1 Introduction

A significant proportion of scientific applications developed for execution on high-
end computing systems are based on parallel algorithms proposed between the 1970s

K. Hasanov (X)) - A. Lastovetsky
University College Dublin, Belfield, Dublin 4, Ireland
e-mail: khalid.hasanov @ucdconnect.ie

A. Lastovetsky
e-mail: Alexey.Lastovetsky @ucd.ie

J.-N. Quintin
Extreme Computing R&D, Bull, France
e-mail: jean-noel.quintin@bull.net

Published online: 04 March 2014 &\ Springer

K. Hasanov et al.

and 1990s. These algorithms were designed with relatively small computing systems
in mind and tested on such systems. Indeed, in 1995, the number of cores in the
top 10 supercomputers ranged from 42 to 3,680 [1]. Nowadays, in June 2013, this
number ranges from 147,456 to 3,120,000. Thus, over past two decades the number of
processors in HPC systems has increased by three orders of magnitude. This drastic
increase in scale significantly increases the cost of coordination and interaction of
processes in traditional message-passing data-parallel applications. In other words, it
increases their communication cost. In these applications, all processes are peers and
the number of directly interacting processes grows quickly with the increase of their
total number.

In this paper, we address the problem of reduction of the communication cost of
such traditional message-passing data-parallel applications on large-scale distributed-
memory computing systems. The approach we propose is a traditional methodology
widely used for dealing with the complexity of coordination and management of a
large number of actors, namely the hierarchical approach. According to this technique,
thousands or millions of actors are structured, and instead of interacting with a large
number of peers, they coordinate their activities with one superior and a small number
of peers and inferiors. This way the overhead of interaction is significantly reduced. In
the presented work, we demonstrate how this approach can be applied to optimization
of the execution of parallel matrix—matrix multiplication on large-scale HPC platforms.
We choose matrix multiplication for two reasons. First of all, it is important in its
own right as a computational kernel of many scientific applications. Second, it is a
popular representative for other scientific applications. It is widely accepted that if an
optimization method works well for matrix multiplication, it will also work well for
many other scientific applications.

The contributions of this paper are as follows:

e Weintroduce a new design to parallel matrix multiplication algorithm by introducing
a two-level virtual hierarchy into the two-dimensional arrangement of processors.
We apply our approach to the SUMMA algorithm [2], which is a state-of-the-art
algorithm.

e We theoretically prove that hierarchical SUMMA (HSUMMA) reduces the com-
munication cost of SUMMA and then provide experimental results on a cluster
of Grid’5000 (a popular research infrastructure consisting of 20 clusters distrib-
uted over nine sites in France and one in Luxembourg) and BlueGene/P, which are
reasonably representative and span a good spectrum of loosely and tightly cou-
pled platforms. We compare HSUMMA only with SUMMA because it is the most
general and scalable parallel matrix multiplication algorithm, which decreases its
per-processor memory footprint with the increase of the number of processors for a
given problem size, and is widely used in modern parallel numerical linear algebra
packages such as ScaLAPACK. In addition, because of its practicality SUMMA
is used as a starting point for implementation of parallel matrix multiplication on
specific platforms. As a matter of fact, the most used parallel matrix multiplication
algorithms for heterogeneous platforms [3,4] are based on SUMMA as well. There-
fore, despite being introduced in the mid-1990s, SUMMA is still a state-of-the-art
algorithm.

@ Springer

Hierarchical parallel matrix multiplication

e Despite the study presented in this paper has been conducted in the context of parallel
matrix multiplication, the proposed optimization technique is not application-bound
and can be applied to other parallel applications intensively using broadcasts.

2 Previous work

In this section, we first outline existing optimizations of dense serial matrix multiplica-
tion algorithms and introduce parallel matrix multiplication algorithms on distributed-
memory platforms. Then we detail the SUMMA algorithm, which is the algorithm of
choice for our optimization. Finally, we briefly overview and discuss the existing
broadcast algorithms, which can be used in parallel matrix multiplication algorithms
to reduce their communication cost.

2.1 Serial matrix multiplication optimization

Matrix multiplication is a very important kernel in many numerical linear algebra
algorithms and is one of the most studied problems in high-performance computing.
Different approaches have been proposed to optimize matrix multiplication through the
improvement of spatial and temporal locality. Blocking (or tiling) [5] is one such basic
technique. Despite its generality, blocking is architecture-dependent. Cache-oblivious
algorithms [6], on the other hand, offer an architecture-independent alternative to the
blocked algorithms by using the divide-and-conquer paradigm. However, a recent
study [7] shows that even highly optimized cache-oblivious programs perform con-
siderably slower than their cache-conscious (i.e. based on blocking) counterparts. A
related idea to the cache-oblivious methods is to use a recursive structure for the matri-
ces [8]. However, traditional implementations of the Basic Linear Algebra Subroutines
(BLAS) library [9] are mainly based on the blocking approach and thus need optimiza-
tion on a specific hardware platform. Therefore, automatic optimization of matrix mul-
tiplication on a range of platforms has been an active research area. One such example
is ATLAS [10] which provides C and Fortran77 interfaces to a portably efficient BLAS
implementation and automatically generates optimized numerical software for a given
processor architecture as a part of the software installation process. The GotoBLAS
[11] library offers another high-performance implementation of matrix multiplication
for a variety of architectures.

2.2 Parallel matrix multiplication optimization

Parallel matrix multiplication has also been thoroughly investigated over the past three
decades. As a result, many parallel matrix multiplication algorithms have been devel-
oped for distributed memory, shared memory and hybrid platforms. In this section,
we only outline the algorithms designed for distributed memory platforms.

Cannon’s algorithm [12], which was introduced in 1967, was the first efficient
algorithm for parallel matrix multiplication providing theoretically optimal commu-
nication cost. However, this algorithm requires a square number of processors which

@ Springer

K. Hasanov et al.

makes it impossible to be used in a general purpose library. Fox’s algorithm [13],
which was introduced later, has the same restriction. PUMMA [14] and BiMMeR
[15] extend Fox’s algorithm for a general 2-D processor grid by using block-cyclic
data distribution and torus-wrap data layout, respectively.

The 3D algorithm [16], which dates back to the 1990s, organizes the p processors

1 1 1 1 . .
as p3 x p3 xp3 3D mesh and achieves a factor of ps less communication cost than
2D parallel matrix multiplication algorithms. However, to get this improvement the

3D algorithm requires p% extra copies of the matrices. That means that on one million
cores the 3D algorithm will require 100 extra copies of the matrices which would be a
significant problem on some platforms. Therefore, the 3D algorithm is only practical
for relatively small matrices.

Another method to improve the performance of parallel matrix multiplication is
overlapping communication and computation. That approach was introduced by Agar-
wal et al. [17] in 1994 and according to the authors this optimization hides almost all
of the communication cost with the computation for larger matrices.

In the mid-1990s, SUMMA [2] was introduced for a general P x Q processor grid.
Like PUMMA and BiMMeR, SUMMA also solves the difficulty of Cannon’s and Fox’s
algorithms and perfectly balances the computation load. However, SUMMA is simpler,
more general and more efficient than the previous algorithms. For these reasons, it is
used in ScaLAPACK [18], the most popular parallel numerical linear algebra package.
The implementation of SUMMA in ScaLAPACK uses block-cyclic distribution and a
modified communication scheme to overlap the communication and computation. The
version of SUMMA modified this way was introduced as DIMMA [19]. Depending
on the shape of the processor grid and matrix size, the performance of DIMMA can be
better or worse than that of SUMMA. In its best case, the performance improvement
of DIMMA over SUMMA was 10 % on Intel Paragon [19].

A more recent algorithm, SRUMMA [20], was proposed in 2004 and has algo-
rithmic efficiency equivalent to that of Cannon’s algorithm on clusters and shared
memory systems. This algorithm uses block-checkerboard distribution of the matri-
ces and overlaps communication with computations by using remote memory access
(RMA) communication rather than message passing.

A recently introduced 2.5D algorithm [21] generalizes the 3D algorithm by parame-

1 1

terizing the extent of the third dimension of the processor arrangement: 57 X g 2xc,

cell, p%]. While reducing the memory footprint compared with the 3D algorithm,
it will still be efficient only if there is free amount of extra memory to store ¢ copies
of the matrices. At the same time, it is expected that exascale systems will have a
dramatically shrinking memory space per core [22]. Therefore, the 2.5D algorithm
cannot be scalable on future exascale systems.

2.3 SUMMA algorithm

SUMMA [2] implements the matrix multiplication C = A x B over a two-dimensional
p = s x t processor grid. For simplicity, we assume that the matrices are square n X n

@ Springer

Hierarchical parallel matrix multiplication

’POOHP(H"P03HP04HP05‘ ﬁPOOHP(nHP02HP03HP04HP05k
’PNHPHHhH’PlgHPMHPw‘){Pl()UPHUP12UP13UP14UP15!K
[Poo] [P [P [Pos] [P][P]| B~ pLEE0] PR LR (P P][P}
’PgoHPgl‘W’ngHPMHP%‘ %P30HP31HP32HP33HP34HP35}K
(Poo|[Par || Pt | [Pao] [Paa | s | 2 | Y | M| Y,
’P5OHP,§1H@H\P$@M@ X«Pso ’P:,l ’P52 ’Pss ’P54 ’Pssk

Fig.1 Horizontal communications of matrix A and vertical communications of matrix B in SUMMA. The
pivot column Al.7 i of # xb blocks of matrix A is broadcast horizontally. The pivot row Bf. of bx -

JP

blocks of matrix B is broadcast vertically

matrices. These matrices are distributed over the processor grid by block-checkerboard
distribution.

We can see the size of the matrices as 7 x 7 by introducing a block of size . Then
each element in A, B and C is a square bxb block, and the algorithm operates on
blocks rather than on scalar elements. For simplicity, we assume that n is a multiple
of b. SUMMA can be formulated as follows: The algorithm consists of 7 steps. At
each step,

e cach processor holding part of the pivot column of the matrix A horizontally broad-
casts its part of the pivot column along the processor row.

e Each processor holding part of the pivot row of the matrix B vertically broadcasts
its part of the pivot row along the processor column.

e Each processor updates each block in its C rectangle with one block from the pivot
column and one block from the pivot row, so that each block ¢;;, (i, j) € (1, R %)
of matrix C will be updated as ¢;; = ¢;j + ajx xXby;j.

e After 7 steps of the algorithm, each block c;; of matrix C will be equal to > | ,f: | @ik X
by;.

Figure 1 shows the communication patterns in SUMMA on 6 x 6 processors grid.

2.4 MPI broadcast algorithms

Collective communications are key operations in parallel matrix multiplication algo-
rithms. We have already seen that the communication pattern of SUMMA is based
on broadcast and any improvement in the broadcast algorithm will improve the com-
munication cost of SUMMA as well. Therefore, in this subsection we briefly outline
existing broadcast algorithms.

A significant amount of research has been done in MPI [23] collective commu-
nications, and especially in MPI broadcast algorithms [24]. Early implementations
of broadcast algorithms assumed homogeneous and fully connected networks. These
implementations were based on simple binary or binomial trees and a couple of algo-

@ Springer

K. Hasanov et al.

rithms have been introduced to be more effective for large message sizes and use the
benefits of hierarchical networks by using pipelined trees [25] or recursive halving
algorithms [26]. Some MPI broadcast algorithms are designed for specific topologies,
such as mesh or hypercube [27], or for hierarchical communication networks [28].
The hierarchical implementation [28] splits an MPI broadcast over multiple hierar-
chies and uses different broadcast algorithms for different hirerarchies. Most of the
recent MPI broadcast algorithms are developed for specific architectures, such as Blue
Gene [29,30] and Infiniband [31,32].

The optimization technique developed in our study is not architecture or topology
specific. It is a result of the holistic analysis of the communication cost of a parallel
matrix multiplication algorithm. During its execution, the matrix multiplication algo-
rithm performs a large number of broadcast operations, some of which are executed
in parallel. In our design, we aimed to minimize the total communication cost of this
application rather than the cost of the individual broadcasts. However, it has become
clear that despite being developed in the context of a particular application, the result-
ing technique is not application-bound. Eventually, it improves the performance of the
application by transforming the broadcast algorithms used in the application into a two-
level hierarchy. As such, this optimization can be applied to any standalone broadcast
algorithm or to any application using broadcast operations. Itis worth noting that many
existing broadcast algorithms are tree-based and hence hierarchical themselves. How-
ever, their communication trees have a uniform regular structure, for example, binomial
or binary and transformation of these algorithms into a two-level hierarchy using our
technique will break the regular structure of the resulting communication trees.

3 Hierarchical SUMMA

Let p = s x t processors be distributed over the same two-dimensional virtual proces-
sor grid as in SUMMA, the matrices be square n x n matrices, b be the block size.
Let the distribution of the matrices be the same as in SUMMA. HSUMMA partitions
the virtual s x ¢ processor grid into a higher level I x J arrangement of rectangular
groups of processors, so that inside each group there will be a two-dimensional § x 5
grid of processors. Figure 2 compares the arrangement of processors in SUMMA with
HSUMMA. In this example a 6 x 6 grid of processors is arranged into two-level 3 x 3
grids of groups and 2 x 2 grid of processors inside a group. Let Py y)(;, j) denote the
processor (i, j) inside the group (x, y). HSUMMA splits the communication phase of
the SUMMA algorithm into two phases and consists of 7 steps. The pseudocode for
HSUMMA is Algorithm 1 and it can be summarized as follows:

e Horizontal broadcast of the pivot column of the matrix A is performed as follows:

1. First, each processor P y)i,j),k € (1,..., 1) holding part of the pivot col-
umn of the matrix A horizontally broadcasts its part of the pivot column to the
processors P 2, jy» 27y, z € (1, ..., I) in the other groups. (Line 6-9)

2. Now, inside each group (x, y) processor Py y)(, j) has the required part of the
pivot column of the matrix A and it further horizontally broadcasts it to the
processors Py yyi,c), c#j,c € (1,..., %) inside the group. (Line 15-17)

@ Springer

Hierarchical parallel matrix multiplication

| Poo || Por || || Poz][Pos|| |[Poa]] Pos
[Pol[Pu]] |[Pe][Pis]| |[Pu][Pss]

[Poo | [P |[Poz || Pos || Poa] [Pos |
[Pro][Pua|[o][Pas] [Pra | Pis |
’PZOHPHHPQZHPZBHP24HP25

’P20HP21‘ ’P22HP23‘ ’P24HP25
’PSOHPMHP32HP33HP34HP35‘ ’P30HP31‘ ’PSZHPSS‘ ’P34HP35
[Pao | [Paa][Pra || Pas || Pua][Pas |

’P50HP51 ’P52HP53HP54HP55 ’P40HP41‘ ’P42HP43‘ ’P44HP45‘
’P50 ’P51 ’P52 ’P53 ’P54 ’Pr;s
SUMMA
HSUMMA

Fig.2 SUMMA and HSUMMA. HSUMMA groups 6 x 6 processors into 3 x 3 groups, 2 X 2 processors per
group

e Vertical broadcast of the pivot row of the matrix B is performed as follows:

1. First, each processor Py i), j). k € (1, ..., 1) holding part of the pivot row
of the matrix B vertically broadcasts its part of the pivot row to the processors
P kG, j)» 27k, z € (1, ..., I) in the other groups. (Line 10-13)

2. Now, inside each group (x, y) processor P(y y)(, j) has the required part of the
pivot row of the matrix B and it further vertically broadcast it to the processors
Po oy, jys r#J,r € (1, ..., %) inside the group. (Line 18-20)

e Each processor inside a group updates each block in its C rectangle with one
block from the pivot column and one block from the pivot row, so that each block
cij, (i, j) € (1,..., 3) of matrix C will be updated as c;; = c;j+a;r xby;. (Line 21)

o After steps (Line 21) of the algorithm, each block ¢;; of matrix C will be equal

to zlf:l ajx X bkj.

It is assumed that only one broadcast algorithm is used in all the steps of the
algorithm and there is no barrier between the communications at the hierarchies. The
communication phases described above are illustrated in Figs. 3 and 4. In general the
block size between groups, M, and the block size inside a group, b, are different. In
this case the size of sent data between the groups is at least the same as the size of data
sent inside a group. Apparently, b<M. Then, the number of steps at the higher level
will be equal to the number of blocks between groups: 7. In each iteration between the
groups, the number of steps inside a group will be %, so the total number of steps of
HSUMMA, ’Ml X %, will be the same as the number of steps of SUMMA. The amount
of data sent will be also the same as in SUMMA.

In addition, SUMMA is a special case of HSUMMA. Indeed, when the number
of groups, G, is equal to one or to the total number of processors, p, HSUMMA and
SUMMA become equivalent. This means that even if there appears a highly efficient
broadcast algorithm, the use of which makes SUMMA outperform HSUMMA for any
G € (1, p), we should just use HSUMMA with G = 1.

@ Springer

K. Hasanov et al.

Algorithm 1: Hierarchical SUMMA algorithm.

/*The A,B,C matrices are distributed on a virtual 2-D grid of p = sxt
processors.

Here are the instructions executed by the processor P(x y)(i,j (this is the
processor (i,j) inside the group (x,y)).*/

Data: NBpjock_Group: Number of steps in the higher level

Data: NBpjock_tnside: Number of steps in the lower level

Data: (M, L, N): Matrix dimensions

Data: A, B: two input sub-matrices of size (% X %, % X %)
Result: C: result sub-matrix of size % X %
begin
/* Broadcast A and B x/
1 MPI_Comm group-col_.comm /* communicator between P(*,y)(i’j) processors */
2 MPI_Comm group-row_comm /* communicator between P(, .)(;) processors */
3 MPI_Comm col_comm /* communicator between P(; ,)(«) Processors */
4 MPI_Comm row_comm /* communicator between P(, ,)(;«) Processors */
5 for itergroup = 0; ttergroup < NBBluck,Group; 1teTgroup + + do
6 if i == Pivot_inside_group_col(itergroup) then
7 if © == Piwot_group_col(itergroup) then
/* Get direct access to the iter‘é}r‘mlp group block of A */
Copy_Block_group(Blockgroup_as A, itergroup)
MPI_Bcast (Blockgroup_a, TypeBiock_group-A, Pivot_group_col(itergroup),
group_row_comm)
10 if j == Pivot_inside_group_row(itergroup) then
11 if y == Pivot_group_row(itergroup) then
/* Get direct access to the iterg;oup group block of B */
12 Copy_Block_group(Blockgroup_B, B, itergroup)
13 MPI_Bcast (Blockgroup_B, TYPeBiock_group-B> Pivot_group_row(itergroup),
group_col_comm,)
14 for iter = 0; iter < NBpjock_Inside; tter + + do
15 if i == Pivot_inside_group-_col(iter) then
/* Get access to the iter™ block of Blockgroup.a On this
processor */
16 Copy-Block A(Blocky, Blockgyroup_a, iter)
17 MPI Bcast (Blocka, Typepiock_a, Pivot_col(iter), row_comm)
18 if j == Piwot_inside_group_row(iter) then
/* Get access to the iter™ block of Blockgroup.s on this
processor */
19 Copy-Block B(Blockg, Blockgroup_B, iter)
20 MPI Bcast (Blockp, Typepiock B, Pivot_row(iter), col_comm)
21 DGemm (Blocky, Blockp, C)

@ Springer

Hierarchical parallel matrix multiplication

Ak Al A Ak
I e e R 9 o S o B
(Po][Pul| |[Pd][Ps]] [[Pa][Ps]] |Lfol[Pu]| |[Hel[Ps]] |[Hal[P]
(Peo [P]| |[PA][Ps]| [Pes][Ps]] (Lfhol[Por]| ([[Pes]| | Fea]| Poo]

[Puo][Pa]| |[[Pd][Pa]| |[][P

o [Pa]| | (Lo [P]| | L[][]
(Puo][Pu]| |[Pd][Pas]| |[Pu][Pis]] |Lfhol[Pu]| |[He][Pis]| |[Hu]|Pso]

’ Pso ’P51 ‘ FJ ’ Ps3 ’ Py ’ Pss ‘ H)() ’P51 ‘ ‘ HQ ’ Ps3 ‘ ‘ HA ’ Pss ‘
2 2 Pl
Communication between groups Communications inside groups

Fig. 3 Horizontal communications of matrix A in HSUMMA. The pivot column A% of LP x M blocks

of matrix A is broadcast horizontally between groups. Upon receipt of the pivot column data from the other

groups, the local pivot column Afk, (b<M) of ﬁ x b blocks of matrix A is broadcast horizontally inside

each group

(e e M e o | o e
Pia

M]
BT (] P o]
[Pao][Po]

P P

Communication between groups Communications inside groups

o
=20] ke

Bl

Fig.4 Vertical communications of matrix Bin HSUMMA. The pivot row B]iv.’ of M x # blocks of matrix

B is broadcast vertically between groups. Upon receipt of the pivot row data from the other groups, the
local pivot row B,{,’. of bx #, (b<M) blocks of matrix B is broadcast vertically inside each group

4 Theoretical analysis

In this section SUMMA and HSUMMA are theoretically analyzed and compared.
First of all, for simplicity we assume that the matrices are n X n square matrices.
Let b be block size inside one group and M be block size between groups. As a
communication model we use Hockney’s model [33] which represents the time of
sending of a message of size m between two processors as o + mf. Here, « is the
latency, and B is the reciprocal of the network bandwidth. In addition, let us assume that
a combined floating point computation (for one addition and multiplication) time is
y . First, we analyze the cost of SUMMA and HSUMMA using two popular broadcast
algorithms which are implemented in Open MPI and MPICH: the pipelined linear tree
algorithm and the scatter-allgather algorithm. It is known that the costs of broadcasting
a message of size m to p processors using these algorithm are as follows:

@ Springer

K. Hasanov et al.

e Pipelined linear tree [25]: (X + p — 1) x (a + % x f)
Here, the height of the broadcast tree is equal to the number of processors, and the
maximum nodal degree of the tree is one. According to the algorithm, a broadcast
message of size m is split into X segments of size %, and X pipelined broadcasts
of these segments will implement the operation.

e Scatter-allgather algorithm [24] : (log,(p) + p — Do + ZPT_lmﬂ
Here, scatter uses a binomial tree and allgather uses a ring algorithm in which the
data from each processor are sent around a virtual ring of processors in p — 1 steps.
MPICH broadcast implementation uses this algorithm for large messages and the
number of processors greater than seven [24].

In addition, we use a generic broadcast model for general performance analysis of
HSUMMA independent of the particular broadcast algorithm.

4.1 Analysis of SUMMA

Let the n x n matrices be distributed over a two-dimensional ,/p x ,/p grid of proces-
sors and let the block size be b. After distributing the matrices over the processors
grid each processor will have a \/Lﬁ X JLF part of the matrices. This algorithm has 7
steps. In each step, the processors broadcast a pivot row of matrix B and a pivot col-
umn of matrix A. In our analysis, we assume that these two communication steps

are serialized. The computation cost of one step is O (2 x % xb). Hence, the overall
computation cost will be O (%).

For this analysis the network congestion is neglected. Broadcasting a pivot row
(column) is broken down into a set of parallel broadcasts along the processor columns
(rows). The size of data transferred by each such individual broadcast is % x b. The
total communication cost of SUMMA can be computed by multiplying the communi-

cation cost of each step by the number of steps depending on the broadcast algorithm.

e The communication cost of broadcasting a pivot row or a pivot column with the
pipelined linear tree broadcast in one step will be as follows:
n
N .
e The communication cost of broadcasting a pivot row or a pivot column with the
scatter-algather broadcast in one step will be as follows:

(log, (\/P) + /P — 1)xa+2(1 — ﬁ)ﬂx\/Lﬁxb

If we sum the costs of the vertical and horizontal communications, and take into
account that there are % steps in total, then the overall communication costs will be as
follows:

e Communication cost of SUMMA with the pipelined linear tree broadcast:

2(X+ﬁ—1)x(axg+ﬁxgx)

@ Springer

Hierarchical parallel matrix multiplication

o Communication cost of SUMMA with the scatter-allgather broadcast:

1 2
(log (1) +2(J/7 =) ax s +4(1 - ﬁ)ﬁx%_

4.2 Analysis of HSUMMA

To simplify the analysis, let us assume that there are G groups arranged as a /G x /G
grid of processors groups. Let M denote the block size between groups (we also call
such a block an outer block), b be the block size inside a group, and n xn be the size
of the matrices.

HSUMMA has two communication phases: communication between groups (i.e.
outer communication) and inside groups (i.e. inner communication). The outer com-
munication phase has §; steps which are called outer steps. Each outer block belongs
to /p processors. Thus, in one outer step each processor, which owns a part of the

pivot column, horizontally broadcasts this part (of size ”jg) to /G processors. Sim-

ilarly, each processor, owning a part of the pivot row, will vertically broadcast its part

(of size ”j’ﬁ”) to /G processors.

Inside one group, processors are arranged in a grid of size

NN
: .) VG VG
receipt of the outer block, in the same way horizontal and vertical broadcasts are
performed inside each group. The communications inside different groups happen in
parallel as they are completely independent of each other. Inside a group there will be
% steps which we call inner steps. In each inner step, a data block of matrix A of size

nxb JP

nxb : . _[7 . .
Jp 1S broadcast horizontally to /G processors, and a data block of matrix B of size

% is broadcast vertically to % processors. Upon the receipt of the required data,
each processor updates its result by using a dgemm routine.

The total number of steps is 7, and the overall computation cost again will be

. Upon the

0(%) as the computation cost in one inner step is O (2 x % xb).

The overall communication cost inside a group will be the sum of the horizontal and
vertical communication costs inside the group, multiplied by the number of inner steps.
In the same way, the overall communication cost between the groups will be equal to the
sum of the horizontal and vertical communication costs between the groups, multiplied
by the number of outer steps. The total communication cost of HSUMMA will be the
sum of the overall inner and outer communication costs. If we put the corresponding
amount of communicated data and the number of communicating processors in the
formulas for the costs of the pipelined linear tree algorithm and the scatter-allgather
algorithm, the resulting communication costs will be as follows:

e Inner communication cost (inside groups):
e Pipelined linear tree:

2(x \/7 1 n n’
(+ 5—)x(axz—i—ﬂxﬁx)

@ Springer

K. Hasanov et al.

e Scatter-allgather broadcast:

(1o (2) +2 (L2 - 1)) s, +4(1 _ %)ﬁﬂ

e Outer communication cost (between groups):
e Pipelined linear tree:

2(X+«/5—1)x(ot><%+,3><\/r;_jx)

e Scatter-allgather broadcast:

I’l2

(1og2 (G)+2(\/5— 1)) xax% +4(1 - %) xﬁﬁ.

4.3 Theoretical prediction

One of the goals of this section is to demonstrate that independent of the broadcast
algorithm employed by SUMMA, HSUMMA will either outperform SUMMA, or be at
least equally fast. This section introduces a general model for broadcast algorithms and
theoretically predicts SUMMA and HSUMMA. In the model we assume no contention
and assume all the links are homogeneous. We show that even this simple model can
predict the extremums of the communication cost function.

Again, we assume that the time taken to send a message of size m between any
two processors is modeled as 7' (m) = o + mx 8, where « is the latency and B is the
reciprocal bandwidth.

We model a broadcast time for a message of size m among p processors by formula
(1). This model generalizes all homogeneous broadcast algorithms, such as flat, binary,
binomial, linear and scatter/allgather broadcast algorithms [25,34], which are used in
state of the art broadcast implementations like MPICH [35] and Open MPI [36].

Thcast(m, p) = L(p)xa +mxW(p)xp ()

In (1) we assume that L(1) = 0 and W(1) = 0. It is also assumed that L(p) and
W (p) are monotonic and differentiable functions in the interval (1, p) and their first
derivatives are constants or monotonic in the interval (1, p).

By using this general broadcast model the communication cost of HSUMMA can
be expressed as a sum of the latency cost and the bandwidth cost:

Tus(n, p, G) = Tys,(n, p, G) + Tys,(n, p, G) (2)

@ Springer

Hierarchical parallel matrix multiplication

Here G € [1, p] and b<M. The latency cost Ty, (n, p, G) and the bandwidth cost
Tys,(n, p, G) will be given by the following formulas:

1 1
Tys,(n, p, G) = 2n (MXL(«/G)—i—EXL (%))a 3)
n? JP
Ths,(n, p, G) =2—=Xx (W(V G)+WwW (——)> B (4)
b ﬁ G
If we take b = M the latency cost Ty, (n, p, G) changes and becomes as follows:
1 1
Tys,(n,p,G) =2n (M xL(VG) + MXL (%)) o (@)

However, the bandwidth cost will not change as it does not depend on the block sizes.

The comparison of Formula 3 and Formula 5 suggests that with decrease of b the
latency cost will increase. This means that b = M will be the optimal value for b.
We will validate this prediction in the experimental part. Therefore, in the following
analysis we take M = b.

It is clear that Ts(n, p) (i.e. SUMMA) is a special case of Tys(n, p, G) (i.e.
HSUMMA) when G =1 or G = p.

Let us investigate extremums of Txg as a function of G for fixed p and n. Then,
for M = b we can get the following derivatives:

0ns _n ; (p, G)a + n’ xWi(p, G)B (6)
= - 9 o p— b
3G b NP N

Here, L1(p, G) and W (p, G) are defined as follows:

8L(«/—) 1 3L(¢—J§) JP
P

Li(p,G) = — X @)
i
VG VG 8L GVG
' I
Wip.G) = [YYD L—BW(VS)X VP ®)
' /G VG aig GVG

It can be easily shown that if G = /pthen Li(p, G) = 0and Wi (p, G) =0, thus,
0Tys
G

= 0. In addition, 2 a &% changes the sign in the interval (1, p) depending on the
value of G. That means that Tus(n, p, G) has extremum at G = ,/p for fixed n and

can be either mlmmum or maximum in the interval (1, p). If G = ,/p is the minimum
point it means that with G = ,/p HSUMMA will outperform SUMMA,; otherwise,
HSUMMA with G = 1 or G = p will have the same performance as SUMMA.
Now let us apply this analysis to the HSUMMA communication cost function
obtained for scatter-allgather broadcast algorithm (see Sect. 4.2) again assuming

@ Springer

K. Hasanov et al.

b = M for simplicity. We will have

0Tus _ G =P n?
G~ GJG (_ szﬂ) ®

It is clear that if G = ,/p then 86%5 = 0. Depending on the ratio of « and B, the
communication cost as a function of G has either minimum or maximum in the interval

(1, p).
o If

o b (10)
B p

then "T”S < Oin the interval (1, ,/p) and "T”S > 0in (/p, p). Thus Ty has the
minlmum in the interval (1, p) and the mlnlmum pointis G = ,/p.
o If

o nb

B p
then Ty s has the maximumin the interval (1, p) and the maximum pointis G = ,/p.
The function gets its minimum at either G = 1 or G = p.

, Y

If we take G = ,/p in the HSUMMA communication cost function (see Sect. 4.2)
and assume the above conditions, the optimal communication cost function will be as
follows: »
1 n
log, (p) +4(¥Yp—1)) x=— xa+8(1——)x—x,3 (12)
(Wr= SN

We will use the scatter-allgather model to predict the performance on future exascale
platforms.

Now, let us take the communication cost function of HSUMMA with the pipelined-
linear tree broadcast(see Sect. 4.2) and find the extremum of the function in (1, p).

0Tys G — f n?
3G~ GVG (a+ﬁxx’3) (1)

In the same way it can be proved that with the pipelined linear tree broadcast, inde-
pendent of @ and B, G = ,/p is the minimum point of the communication function in
(1, p). A theoretical analysis of HSUMMA with the binomial tree broadcast can be
found in [37].

4.4 Prediction on Exascale

We use parameters obtained from a recent report on exascale architecture roadmap
[38] to predict performance of HSUMMA on exascale platforms. Figure 5 shows that,
theoretically, HSUMMA with any number of groups outperforms SUMMA. Itis worth
mentioning that if the number of groups is equal to 1 or p, then HSUMMA will be
equivalent to SUMMA, as in that case there is no hierarchy. Thus, theoretically, the

@ Springer

Hierarchical parallel matrix multiplication

— Total flop rate (v): 1E18 flops
— Latency: 500 ns,

Bandwidth: 100 GB/s
Problem size: n = 222,
Number of processors: p = 220
— Block size: b= M = 256

10 | 1

Execution Time(Sec)

1 1 1 1 1
272 22 26 210 214 218 222

Number of Groups

—e— HSUMMA —— SUMMA

Fig. 5 Prediction of SUMMA and HSUMMA on Exascale. p = 1,048,576

communication cost function of HSUMMA has a parabola-like shape. In the following
sections we will see that experimental results validate this theoretical prediction.

5 Experiments

Our experiments were carried out on a cluster of Grid’5000 [39] and a BlueGene/P
(BG/P) platform which are fairly representative and span a good spectrum of loosely
and tightly coupled platforms. The details of the platforms are given in the appropriate
sections. The times in our experimental results are the mean time of 30 experiments.

5.1 Experiments on Grid’5000

Some of our experiments were carried out on the Grid’5000 infrastructure in France.
The platform consists of 20 clusters distributed over 9 sites in France and one in Lux-
embourg. All sites are interconnected by 10 Gb/s high-speed network, except Reims,
which is connected through a 1-Gb/s link. Each site consists of different technologies
and clusters. Our experiments were performed on the Nancy site which is composed
of three clusters: Graphene, Griffon and Graphite. We used the Graphene cluster for
the experiments. The cluster is equipped with 144 nodes and each node has a disk of
320 GB storage, 16 GB of memory and 4-cores of CPU Intel Xeon X3440. The nodes
in the Graphene cluster have one 20GB Infiniband and are interconnected via Giga-
byte Ethernet. The Grid’5000 web site [39] provides more detailed information about
the platform. We used multi-threaded dgemm from the GotoBlas2 library [11] for the
sequential operations, MPICH 3.0.1 [35] and OpenMPI 1.4.5 [36] for MPI implemen-
tation and our implementations of the matrix multiplication algorithms. The size of
the matrices in our experiments on Grid’5000 was 8, 192x 8, 192. The experiments
with OpenMPI have been done with both Ethernet and Infiniband networks.

@ Springer

K. Hasanov et al.

Execution Time(Sec)

O | | | | | | | |
1 2 4 8 16 32 64 128

Number of Groups

—eo— HSUMMA execution time —+— SUMMA execution time

Fig. 6 Experiments with OpenMPI on G5000 with Ethernet. b = M = 256, n = 8,192 and p = 128

0.4 1

0.2 |- |

Execution Time(Sec)

| | | | | | | |
0 1 2 4 8 16 32 64 128

Number of Groups

—e— HSUMMA execution time —— SUMMA execution time

Fig. 7 Experiments with OpenMPI on G5000 with Infiniband. » = M = 256, n = 8,192 and p = 128

Here, we are not trying to compare different MPI implementations. Instead, we
show that the benefit of HSUMMA over SUMMA does not depend on the MPI imple-
mentation.

Figure 6 shows that HSUMMA reduces the execution time of SUMMA by 16.8
percent on 128 nodes with an Ethernet network. The improvement with an Infiniband
network is 24 percent (see Fig. 7). On the other hand, the improvement with MPICH
is 7.75 times with block size 64 (see Fig. 8) and 2.96 times with block size 256
(see Fig. 9). This big difference comes from the MPI broadcast algorithm selection in
MPICH depending on the message size and the number of processes. We did not fix the

@ Springer

Hierarchical parallel matrix multiplication

30

10 - 1

Execution Time(Sec)

0 L L L L L L L L
4 8 16 32 64 128

Number of Groups

—
[\

—eo— HSUMMA execution time —+— SUMMA execution time

Fig. 8 Experiments with MPICH on G5000 with Ethernet. b = M = 64, n = 8,192 and p = 128

10 F R

Execution Time(Sec)

0 L L L L L L L L
1 2 4 8 16 32 64 128

Number of Groups

—e— HSUMMA execution time —— SUMMA execution time

Fig. 9 Experiments with MPICH on G5000 with Ethernet. b = M = 256, n = 8,192 and p = 128

broadcast algorithm and allowed MPICH to decide which one to use. In these experi-
ments, the default values of MPICH parameters (e.g. BCAST_SHORT_MSG_SIZE,
BCAST_MIN_PROCS) [26] were used. We have also conducted experiments with
a fixed broadcast algorithm (binomial tree, binary tree, flat tree, etc.). In all these
experiments, we observed similar speedups.

We do not have the optimal number of groups exactly at G = ,/p. However, this
does not downgrade our theoretical predictions as the shape of the cost function is
similar to the theoretical shape.

@ Springer

K. Hasanov et al.

5.2 Experiments on BlueGene/P

Some of our experiments were carried out on the Shaheen BlueGene/P at the Super-
computing Laboratory at King Abdullah University of Science&Technology (KAUST)
in Thuwal, Saudi Arabia. Shaheen is a 16-rack BlueGene/P. Each node is equipped
with four 32-bit, 850 Mhz PowerPC 450 cores and 4GB DDR memory. VN (Virtual
Node) mode with torus connection was used for the experiments. The Blue Gene/P
architecture provides a three-dimensional point-to-point Blue Gene/P torus network
which interconnects all compute nodes and global networks for collective and interrupt
operations. Use of this network is integrated into the BlueGene/P MPI implementation.

All the sequential computations in our experiments were performed by using the
DGEMM routine from the IBM ESSL library. We have implemented SUMMA with
block-checkerboard and block-cyclic distributions for comparison with HSUMMA.
However, the data distribution in SUMMA does not change its performance on the
BG/P. It may improve its performance if a modified communication pattern is used, as
proposed in the DIMMA [19] algorithm. DIMMA was implemented in ScaLAPACK
as a slight optimization of SUMMA; therefore, we also use ScaLAPACK (version
1.8.0) for the comparison with HSUMMA.

The benefit of HSUMMA comes from the optimal number of groups. Therefore, it
is interesting to see how different numbers of groups affect the communication cost of
HSUMMA on a large platform. Figure 10 shows HSUMMA on 16384 cores. In order
to have a fair comparison again we use the same block size inside a group and between
the groups. The figure shows that the execution time of SUMMA is 50.2 seconds. On
the other hand, the minimum execution time of HSUMMA is 21.26 when G = 512.
Thus, the execution time of HSUMMA is 2.36 times less than that of SUMMA on
16,384 cores. It is worth noting that different number of groups in HSUMMA does
not affect the computation time, so all these reductions in the execution time come
solely from the reduction of the communication time. In addition, according to our
experiments, the improvement is 1.2 times on 2,048 cores and the performance of
HSUMMA and SUMMA is almost the same on BlueGene/P cores smaller than 2,048.

The zigzags in Fig. 10 can be explained by the fact that mapping communication lay-
outs to network hardware on BlueGene/P impacts the communication performance,
and which was observed by Balaji et al. [40] as well. When we group processors
we do not take into account the network topology. However, according to our pre-
liminary observations these zigzags can be eliminated by taking the topology into
account while grouping. Figure 11 represents scalability comparison of HSUMMA
with SUMMA from communication point of view. Here, we use SUMMA both with
block-checkerboard and block-cyclic distributions. It can be seen that HSUMMA is
more scalable than both block-checkerboard and block-cyclic SUMMA, and this pat-
tern suggests that the communication performance of HSUMMA rapidly improves
compared to that of SUMMA as the number of cores increases.

According to the theoretical predictions, with some application/platform settings
HSUMMA may not reduce the communication cost of SUMMA. We experimentally
observed these phenomena on a smaller number of cores on the BG/P. Figure 12 illus-
trates one such experiment on 1,024 cores, where the best performance of HSUMMA
was achieved with G = 1 and G = p. In this experiment, the interconnect type used

@ Springer

Hierarchical parallel matrix multiplication

Fig. 10 Execution time of T
SUMMA and HSUMMA on 50 | -
16,384 cores on BG/P. .
b =M =256 and n = 65,536 3
1523 40 - *
)
|
= 30 *
=
9
= 20 | *
3]
o)
=
M 10 b B
0 | | | | | |
2—1 22 25 28 211 214
Number of Groups
—o— HSUMMA —— SUMMA
Fig. 11 Communication time of 40
SUMMA, block-cyclic SUMMA .
and HSUMMA on BG/P. 8
b =M =256,n = 65,536 n
o 30 *
i
[
=i
S 2 |
+~
<
g
=
2
10 *
g
o
@)
| | | |
211 212 213 214

Number of Cores

e HSUMMA —— SUMMA
—=— Block-cyclic SUMMA

between base partitions of the BG/P was a mesh as the minimum number of cores to
use a torus interconnect is 2,048.
5.3 Effect of different block sizes

In Sect. 4.3, it has been theoretically proven that the increase of the block size inside
the groups will decrease the communication cost of HSUMMA. This section presents
experimental results validating this prediction.

@ Springer

K. Hasanov et al.

Fig. 12 Execution time of
HSUMMA and SUMMA on 81
1,024 cores on BG/P. g
b=M =256,n = 16,384 8
L 6r .
<]
£
H
g 4 N
S
e
=
]
2 ool .
cal
0 | | | | |
2—1 21 23 25 27 29 211
Number of Groups
—o— HSUMMA —— SUMMA
Fig. 13 HSUMMA on BG/P. 10 T T T T
M =256,G =4, p=16,384 Py
and n = 65,536 g
n 3 .
]
g
H 6 |
o
3
2
P
S 4 7
=
3
g
g 2 .
5
@)
0 1 1 1 1

32 64 128 256

Block size inside groups

—eo— HSUMMA communication time.

Figure 13 shows experimental results of HSUMMA with different block sizes inside
the groups for the block size between the groups fixed to 256 and the number of groups
fixed to 4. It can be seen that the communication time slightly decreases as the block
size increases. Another interesting result is that, according to Fig. 14, the relative
performance of HSUMMA for different numbers of groups does not depend on the
block size inside the groups. In particular, this means that the optimal value of G does
not depend on the block size inside the groups, and, therefore, any block size can be
used in the procedure searching for the optimal value of G.

@ Springer

Hierarchical parallel matrix multiplication

Fig. 14 HSUMMA on 16,384
cores on BG/P. M = 256 and 50 I N
n = 65,536 —
)
o)
240 1
9]
=
= 30 | .
=}
2
B 2 .
3]
o)
"
Lﬂ 10 [.
O | |
2—1 22 25 28 211 214

Number of Groups

—o— HSUMMA b=64 —-— HSUMMA b=256

Fig. 15 Speedup of HSUMMA T T T T

over ScaLAPACK on BG/P. L5 ¢ T
b =M =256 and n = 65,536 '\'\/*

Speedup

0.5 | a

211 212 214 216

Number of Cores

5.4 Comparison with ScaLAPACK

This section compares HSUMMA with the PDGEMM routine from the ScaLAPACK
(ver. 1.8.0) library. The results of the corresponding experiments are shown in Fig. 15.
Unfortunately, IBM PESSL is not available on the BG/P and, therefore, we cannot
provide experimental results with PDGEMM from the PESSL library. However, it is
known [41] that, unlike LU decomposition, PDGEMM from PESSL does not have any
improvement over PDGEMM from ScaLAPACK. Moreover, the ScaLAPACK library
on the BG/P uses a DGEMM from the IBM ESSL library which is optimized for Blue
Gene.

@ Springer

K. Hasanov et al.

6 Conclusions

We can conclude that our two-level hierarchical approach to parallel matrix multi-
plication significantly reduces the communication cost on large platforms such as
BlueGene/P. The experiments show that HSUMMA achieves 2.08 times and 5.89
times less communication time than SUMMA on 2, 048 cores and on 16, 384 cores,
respectively. Moreover, the overall execution time of HSUMMA is 1.2 times less than
the overall execution time of SUMMA on 2, 048 cores and 2.36 times less on 16, 384
cores. This trend suggests that, while the number of processors increases, HSUMMA
will be more scalable than SUMMA. In addition, our experiments on Grid’5000 show
that HSUMMA can be effective on small platforms as well.

We select the optimal number of groups sampling over valid values. However, it
can be easily automated and incorporated into the implementation by using a few
iterations of HSUMMA.

HSUMMA is an extension of SUMMA, becoming SUMMA if G = 1 or G = p.
Therefore, SUMMA cannot outperform HSUMMA. In the worst case scenario, they
will have the same performance.

Despite our optimization has been developed in the context of parallel matrix mul-
tiplication, it can be applied to any standalone broadcast algorithm and any application
intensively using broadcasts.

Acknowledgments The research in this paper was supported by IRCSET (Irish Research Council for
Science, Engineering and Technology) and IBM, grant numbers EPSG/2011/188 and EPSPD/2011/207.
Some of the experiments presented in this paper were carried out using the Grid’5000 experimental testbed,
being developed under the INRIA ALADDIN development action with support from CNRS, RENATER
and several Universities as well as other funding bodies (see https://www.grid5000.fr) Another part of
the experiments was carried out using the resources of the Supercomputing Laboratory at King Abdullah
University of Science & Technology (KAUST) in Thuwal, Saudi Arabia. The authors would like to thank
Ashley DeFlumere for her useful comments and corrections.

References

Top 500 supercomputer sites. http://www.top500.org/
. van de Geijn RA, Jerrell W (1997) SUMMA: scalable universal matrix multiplication algorithm.
Concurr Pract Exp 9(4):255-274

3. Beaumont O, Boudet V, Rastello F, Robert Y (2001) Matrix multiplication on heterogeneous platforms.
IEEE Trans Parallel Distrib Syst 12(10):1033-1051

4. Lastovetsky A, Dongarra J (2009) High performance heterogeneous computing. Wiley, New York

5. Gustavson FG (2012) Cache blocking for linear algebra algorithms. Parallel processing and applied
mathematics. In: Lecture Notes in Computer Science, vol 7203. Springer, Berlin, pp 122-132

6. Frigo M, Leiserson CE, Prokop H, Ramachandran S (1999) Cache-oblivious algorithms. In: Proceed-
ings of the 40th annual symposium on foundations of computer science, FOCS *99. IEEE Computer
Society, Washington, DC, USA, p 285

7. Yotov K, Roeder T, Pingali K, Gunnels J, Gustavson F (2007) An experimental comparison of cache-
oblivious and cache-conscious programs. In: Proceedings of the nineteenth annual ACM symposium
on parallel algorithms and srchitectures., SPAA *07ACM, New York, NY, USA, pp 93-104

8. Chatterjee S, Lebeck AR, Patnala PK, Mithuna T (2002) Recursive array layouts and fast matrix
multiplication. IEEE Trans Parallel Distrib Syst 13(11):1105-1123

9. Basic Linear Algebra Routines (BLAS). http://www.netlib.org/blas/

o —

@ Springer

https://www.grid5000.fr
http://www.top500.org/
http://www.netlib.org/blas/

Hierarchical parallel matrix multiplication

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Clint WR, Dongarra JJ (1998) Automatically tuned linear algebra software. Proceedings of the 1998
ACM/IEEE conference on supercomputing. Supercomputing *98IEEE Computer Society, Washington,
DC, USA, pp 1-27

Goto K, van De Geijn RA (2008) Anatomy of high-performance matrix multiplication. ACM Trans
Math Softw 34(3):1-25

Cannon LE (1969) A cellular computer to implement the Kalman filter algorithm. Ph.D. thesis, Boze-
man, MT, USA

Fox GC, Otto SW, Hey AJG (1987) Matrix algorithms on a hypercube I: matrix multiplication. Parallel
Comput 4(1):17-31

Jaeyoung C, Walker DW, Dongarra J (1994) PUMMA: parallel universal matrix multiplication algo-
rithms on distributed memory concurrent computers. Concurr Pract Exp 6(7):543-570
Huss-Lederman S, Jacobson E, Tsao A, Zhang G (1994) Matrix multiplication on the Intel Touchstone
Delta. Concurr Pract Exp 6(7):571-594

Agarwal RC, Balle SM, Gustavson FG, Joshi M, Palkar P (1995) A three-dimensional approach to
parallel matrix multiplication. IBM J Res Dev 39(5):575-582

Agarwal RC, Gustavson FG, Zubair M (1994) A High-performance matrix-multiplication algorithm on
a distributed-memory parallel computer, using overlapped communication. IBM J Res Dev 38(6):673—
681

Blackford LS, Choi J, Cleary A, D’ Azeuedo E, Demmel J, Dhillon I, Hammarling S, Henry G, Petitet
A, Stanley K, Walker D, Whaley RC (1997) ScaLAPACK user’s guide. Society for industrial and
applied mathematics, Philadelphia

. Jaeyoung C (1997) A new parallel matrix multiplication algorithm on distributed-memory concurrent

computers. In: High Performance Computing on the Information Superhighway, 1997. HPC, Asia *97,
pp 224-229

Krishnan M, Nieplocha J (2004) SRUMMA: a matrix multiplication algorithm suitable for clusters and
scalable shared memory systems. In: Proceedings of parallel and distributed processing symposium
Solomonik E, Demmel J (2011)Communication-optimal parallel 2.5D matrix multiplication and LU
factorization algorithms. In: Euro-Par (2), Lecture Notes in Computer Science, vol 6853. Springer,
Berlin, pp 90-109

U.S.Department of Energy: Exascale Programming Challenges. ASCR Exascale Programming Chal-
lenges Workshop (2011)

Message passing interface forum. http://www.mpi-forum.org/

Barnett M, Gupta S, Payne DG, Shuler L, Robert A, van de Geijn, Watts J (1994) Interprocessor collec-
tive communication library (InterCom). In: Proceedings of the scalable high performance computing
conference. IEEE Computer Society Press, New York, pp 357-364

Patarasuk P, Yuan X, Faraj A (2008) Techniques for pipelined broadcast on ethernet switched clusters.
J Parallel Distrib Comput 68(6):809-824

Thakur R, Rabenseifner R, Gropp W (2005) Optimization of collective communication operations in
MPICH. Int J High Perform Comput Appl 19(1):49-66

Scott DS (1991) Efficient all-to-all communication patterns in hypercube and mesh topologies. In:
Proceedings of the sixth conference distributed memory computing, pp 398—403

Graham RL, Venkata MG, Ladd J, Shamis P, Rabinovitz I, Filipov V, Shainer G (2011) Cheetah: a
framework for scalable hierarchical collective operations. CCGRID, pp 73-83

Almadsi G, Heidelberger P, Archer CJ, Martorell X, Erway CC, Moreira JE, Steinmacher-Burow B,
Zheng Y (2005) Optimization of MPI collective communication on BlueGene/L systems. In: Proceed-
ings of the 19th annual international conference on supercomputing., ICS "05ACM, New York, NY,
USA, pp 253-262

Kumar S, Dozsa G, Almasi G, Heidelberger P, Chen D, Giampapa ME, Blocksome M, Faraj A, Parker
J, Ratterman J, Smith B, Archer CJ (2008) The deep computing messaging framework: generalized
scalable message passing on the Blue Gene/P supercomputer. In: Proceedings of the 22nd annual
international conference on supercomputing., ICS 08 ACM, New York, NY, USA, pp 94-103
Hoefler T, Siebert C, Rehm W (2007) A practically constant-time MPI broadcast algorithm for large-
scale InfiniBand clusters with multicast. In: IPDPS, IEEE, New York, pp 1-8

Liu J, Wu J, Panda DK (2004) High performance RDMA-based MPI implementation over InfiniBand.
Int J Parallel Progr 32(3):167-198

Hockney RW (1994) The communication challenge for MPP: Intel Paragon and Meiko CS-2. Parallel
Comput 20(3):389-398

@ Springer

http://www.mpi-forum.org/

K. Hasanov et al.

34.

35.
36.

37.

38.
39.
40.

41.

Pjesivac-Grbovic J (2007) Towards Automatic and Adaptive Optimizations of MPI Collective Opera-
tions. Ph.D. thesis, University of Tennessee, Knoxville

MPICH-A Portable Implementation of MPL. http://www.mpich.org/

Gabriel E, Fagg G, Bosilca G, Angskun T, Dongarra J, Squyres J, Sahay V, Kambadur P, Barrett B,
Lumsdaine A, Castain R, Daniel D, Graham R, Woodall T (2004) Open MPI: goals, concept, and
design of a next generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting, pp 97-104

Quintin J., Hasanov K, Lastovetsky A (2013) Hierarchical parallel matrix multiplication on large-scale
distributed memory platforms. In: 42nd International conference on parallel processing (ICPP 2013).
IEEE, New York, pp 754-762

Kondo M (2012) Report on Exascale Architecture. In: IESP Meeting, Japan

Grid5000. http://www.grid5000.fr

Balaji P, Gupta R, Vishnu A, Beckman P (2011) Mapping communication layouts to network hardware
characteristics on massive-scale blue gene systems. Comput Sci R D 26(3-4):247-256

Blackford LS, Whaley RC (1998) ScaLAPACK Evaluation and Performance at the DoD MSRCs. Tech.
Rep. LAPACK Working Note No. 136, Technical Report UT CS-98-388, University of Tennessee,
Knoxville, TN (1998)

@ Springer

http://www.mpich.org/
http://www.grid5000.fr

	Hierarchical approach to optimization of parallel matrix multiplication on large-scale platforms
	Abstract
	1 Introduction
	2 Previous work
	2.1 Serial matrix multiplication optimization
	2.2 Parallel matrix multiplication optimization
	2.3 SUMMA algorithm
	2.4 MPI broadcast algorithms

	3 Hierarchical SUMMA
	4 Theoretical analysis
	4.1 Analysis of SUMMA
	4.2 Analysis of HSUMMA
	4.3 Theoretical prediction
	4.4 Prediction on Exascale

	5 Experiments
	5.1 Experiments on Grid'5000
	5.2 Experiments on BlueGene/P
	5.3 Effect of different block sizes
	5.4 Comparison with ScaLAPACK

	6 Conclusions
	Acknowledgments
	References

