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ABSTRACT Optimal partitioning of a square computational domain over several heterogeneous processors,
balancing the load of the processors and minimizing the inter-processor communication cost, is crucial for
data parallel dense linear algebra and other applications having similar communication pattern on modern
hybrid servers. Although a solution has been found for two processors, the cases of three andmore processors
are still open. The state of-the-art solution for three processors uses an approximation communication cost
function which fails to accurately account for the total amount of data moved between processors, leaving
thus the question of its global optimality unanswered. In this work, we formulate and solve a mathematical
problem of optimal partitioning a real-valued square over three heterogeneous processors using a new
cost function, which accurately accounts for the total amount of data communicated between processors.
We also develop an original method for accurate experimental evaluation of the communication time of data
movement between memories of the compute devices in the hybrid platform during the execution of data
parallel applications. We successfully use this method in the experimental validation of our mathematical
results. Finally, we propose a communication energy model predicting the dynamic energy consumption of
data movement between processors and experimentally validate its accuracy. This model predicts, and the
experiments confirm, that the performance-optimal partition is not necessarily energy optimal.

INDEX TERMS Data partitioning, communication optimization, non-rectangular partitioning, matrix
multiplication, heterogeneous computing, performance model, data parallelism, energy model, energy of
communication.

I. INTRODUCTION
The problem of matrix partitioning over heterogeneous pro-
cessors originates in dense linear algebra on heterogeneous
platforms. Its solution is also applicable in other applica-
tion domains dealing with rectilinear computational regions,
e.g., in stencil computations. The growing popularity of
hybrid high-performance computing platforms, integrating
CPUs and various accelerators, motivated the increased atten-
tion to this problem in the last decade.

The problem of optimal partitioning a matrix into rectan-
gular submatrices is originally introduced by Kalinov and
Lastovetsky [1], [2], with the objective to minimize the
computation time through balancing the load of the heteroge-
neous processors. The communication cost is not considered
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in this original optimization problem and is first included
in the problem by Beaumont et al. [3], aiming to minimize
not only the computation time but also the communication
cost. The latter is formalized as the sum of half-perimeters of
rectangular submatrices [3], which is motivated by the com-
munication cost of 2D parallel matrix-matrix multiplications
algorithms [4]. The introduction of the communication cost
made the problemNP-complete [3].Many approximate algo-
rithms solving the communication-aware matrix partitioning
problem are proposed.

Although the communication-aware problem [3] is
NP-complete when the number of processors, p, is arbitrary,
it has simple exact solutions for p = 2 and p = 3. Optimal
solutions of the communication-aware matrix partitioning
problem for small numbers of heterogeneous processors are
practically very important as they help minimize the execu-
tion time of parallel applications on hybrid servers typically
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integrating few compute devices. It is discovered however
that these exact solutions are not globally optimal [5], [6].

Matrix partitioning for parallel matrix-matrix multiplica-
tion on two heterogeneous processors is studied by Becker
and Lastovetsky [5]. The authors construct a non-rectangular
partition with a smaller communication cost than the rect-
angular partition, when the ratio of speeds of the proces-
sors is less than 1 : 3. They also study the case of three
heterogeneous processors and propose a non-rectangular
partition, whose communication cost will be less than the
communication cost of any rectangular partition for some
particular ratios of the processors’ speeds [6]. These results
prove that the globally optimal matrix partition does not
have to be rectangular, and all possible partitions should
be considered as potentially optimal. This inspired research
in communication-optimal load-balanced matrix partitioning
over several heterogeneous processors assuming that the opti-
mal partition can be of any shape.

The unrestricted problem of communication-optimal
load-balanced matrix partitioning between two heteroge-
neous processors has been comprehensively studied by
DeFlumere et al. [7], where the authors prove that for any
given ratio of the speeds of the processors either the rect-
angular partition or the non-rectangular partition [5] will
be superior to any other, arbitrary, partition. The extension
of this result to the case of three processors proved hard.
Application of the mathematical technique [7], developed to
solve the 2-processor problem, to the case of 3 processors
helped identify six candidates for optimal shapes but failed
to prove their optimality [8].

The unrestricted 3-processor problem is recently revisited
by Beaumont et al [9]. The authors manage to mathematically
prove that three potentially optimal partition shapes from the
list proposed by DeFlumere and Lastovetsky [8] are superior
to any other arbitrary shape. However, the definition of the
communication cost used in the mathematical formulation of
the problem does not represent the total number of matrix
elements moved between the processors during the execution
of the motivating parallel applications. Instead, a cost func-
tion, which approximates the total amount of moved data,
is introduced. This approximate function is calculated as the
sum of half-perimeters of minimal rectangular submatrices,
each containing all matrix elements allocated to the same
processor. The use of this approximate communication cost
function results in exclusion from consideration of many par-
titions during the proof of the optimality of the three identi-
fied shapes. Therefore, while the result of Beaumont et al. [9]
represents an important step towards finding the globally
optimal partitions over three heterogeneous processors, it still
leaves the problem open. In this article, we propose a solution
of this problem using a communication cost function, which
accurately represents the total amount of data moved between
the processors, and therefore proves the global optimality of
the identified optimal partitions.

This article is an extended version of our conference
paper [10]. In addition to the performance-related results,

it presents a theoretical and experimental study of the com-
munication energy cost of the performance-optimal parti-
tions. While there is a good understanding of performance
of communication and how to design sufficiently accurate
performance communication models [11], very little is done
in energy of communication, and very little is known about
the impact of the energy cost of communication on perfor-
mance/energy optimal configurations of applications. In this
work, we propose an analytical model of the energy of com-
munication for data-parallel matrix computations on three
heterogeneous processors interconnected via three heteroge-
neous communication links.We also propose an experimental
methodology for accurate measurement of the energy of data
movement between the main memories of heterogeneous
devices during the execution of parallel applications. We use
this methodology to experimentally validate the accuracy of
the proposed analytical energy model and to experimentally
study the correlation between the performance optimality and
energy optimality of the partitions.

The main contributions of the presented work include:
1) We propose an integer-valued cost function of an arbi-

trary partition of a square matrix over three heteroge-
neous processors, which returns the exact number of
matrix elements moved between the processors dur-
ing the execution of the parallel matrix-matrix mul-
tiplication algorithm. We then construct a continuous
extension of this function for estimation of the commu-
nication cost of an arbitrary partition of a real-valued
square over three heterogeneous processors.

2) We use the proposed accurate cost function to introduce
a mathematical problem of globally optimal partition-
ing of a real-valued square. We then solve this problem
and prove the correctness of the solution.

3) We develop an original method for accurate experimen-
tal evaluation of the time and energy of data move-
ment between memories of the compute devices of the
hybrid platform during the execution of data parallel
applications. We successfully use this method in the
experimental validation of our mathematical results.

4) We propose an energy model of communication,
predicting the dynamic energy consumption for a par-
tition, and design and perform experiments to vali-
date the model. We find out that this model predicts,
and the experiments confirm this prediction, that the
performance-optimal partition does not have to be
energy optimal.

The rest of the paper is structured as follows. Section II
presents related work. Section III analyses the state of
the art in optimal matrix partitioning over three proces-
sors. In Section IV, we mathematically define the exact
cost communication function. In Section V, the partitioning
optimization problem is formulated and solved. Section VI
experimental validates themathematical solution. SectionVII
proposes the energy model of communication and stud-
ies the energy cost of performance optimal partitions.
In section VIII, we discuss the performance and energy
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experiments results. Finally, Section IX concludes the paper
and outlines some future research.

II. RELATED WORK
For data parallel applications, optimal partitioning is perhaps
the utmost important challenge for their efficient execution
on hybrid heterogeneous platforms. Application performance
is mainly determined by how its computational domain is
partitioned among heterogeneous resources of the platform.
An optimal data partition would significantly reduce the
application execution time.

Matrices and other rectangular computational domains are
omnipresent in computational science. The problem of opti-
mal partitioning of a matrix into rectangular submatrices is
originally introduced by Kalinov and Lastovetsky [1], [2].
In this problem, heterogeneous resources were modeled
according to their constant relative speed aiming to minimize
the computation time through balancing the load of the het-
erogeneous resources. This problem has exact solutions and
efficient algorithms due to the simplicity of the performance
model of the heterogeneous platform.

Lastovetsky and Reddy [12] introduced the smooth func-
tional performance models of the heterogeneous platform
for optimal partitioning. A smooth functional performance
model represents the speed of each processor by a smooth
function of the problem size. That was a more realistic vari-
ation of the original partitioning problem, which had been
extensively studied since its introduction [12]–[17]. The
crucial artifact of all these optimization problems is that any
optimal solution will be load balanced.

With the emergence ofmulti-core processors, smooth func-
tional performance models of the heterogeneous platform
became less realistic [18], [19]. Therefore, Lastovetsky and
Manumachu [19] introduced a variant of the same opti-
mization problem and used arbitrary discrete speed func-
tions of the processors, which was further explored by
Khaleghzadeh et al. [20]. Contrary to previous optimization
problems, optimal solutions of this problem do not have to
balance the load of the processors.

The execution time of a data parallel application includes
both the communication time and computation time.
Beaumont et al. [3] appeared to be the first to introduce the
communication cost of the application as a deciding factor
and expended the initial problem [1], which did not take
into account the communication cost. They formally pro-
posed that the optimal matrix partitioning would not only
be load balanced but also minimize the overall communi-
cation volume of the application. They defined the commu-
nication cost as the sum of half-perimeters of rectangular
submatrices [3], which was motivated by the communication
cost of two-dimensional parallel matrix-matrixmultiplication
algorithms [4].

The introduction of the communication cost made
the optimization problem NP-complete [3]. The first
communication-aware approximation algorithm was pro-
posed by Beaumont et al. [3] and had a bound ratio

of 1.75. Many other approximate algorithms solving the
communication-aware matrix partitioning problem and its
variants have been proposed [21]–[26]. All these solutions
are based on different heuristics and use different perfor-
mance models (smooth or arbitrary discrete speed func-
tions). However, they mainly focus on finding the solution
that creates partitions with a rectangular shape where each
processor assigned a rectangular region for computation [1],
[2], [21]–[23], [27].

It was however discovered by Becker and Lastovetsky [5]
that non-rectangular partitions can outperform rectangular
ones. The authors relaxed the constraint of rectangular par-
titions for parallel multiplication of square matrices on two
heterogeneous processors and proposed one non-rectangular
optimal shape, which resulted in a lower number of matrix
elements moved between the processors for speed ratios less
than 1 : 3 in comparison with the traditional rectangular par-
titioning. This non-rectangular partitioning allocates a square
area in the top left corner of the matrix to the slower processor
and the balance is allocated to the faster one. The authors also
studied the case of three heterogeneous processors [6], where
they proposed an optimal non-rectangular shape, called the
square corner, which lowered the total volume of communica-
tion and appeared superior to any rectangular partitioning but
again subject to certain processor speed ratios and topology
requirements. In the square corner shape, for two slower
processors, squares are allocated in the opposite corners of
the matrix and the balance is allocated to the faster processor.

These results inspired researchers to work on the problem
of communication-aware optimal matrix partitioning over
heterogeneous processors with no assumptions about the
optimal partitioning shapes. A novel mathematical method,
referred to as the Push technique, was developed for the case
of two processors [7]. By using the Push technique, it was
proved [7] that either the rectangular or the non-rectangular
partition [5] would always outperform any other arbitrary
partition and remain optimal for any speed ratio between the
processors.

The Push technique was further extended for the case
of three heterogeneous processors and used to identify six
potentially optimal shapes [8], [28]. Out of these six
partitioning shapes, three were non-rectangular. However,
the optimality of these shapeswas notmathematically proven.
For matrix partitioning problem, Lambert et al. [29] also pro-
posed a recursive approximation algorithm for an arbitrary
number of processors by relaxing the rectangular partitioning
restriction. This algorithm reduced the approximation ratio to
2/
√
3, which is the best known approximation.

The unrestricted 3-processor matrix optimization problem
is recently revisited by Beaumont et al [9]. The authors man-
age to mathematically prove that three potentially optimal
partition shapes from the list proposed by Deflumere and
Lastovetsky [8] are superior to any other arbitrary shape.
However, the definition of the communication cost used in
the mathematical formulation of the problem does not rep-
resent the total number of matrix elements moved between
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the processors during the execution of the motivating parallel
applications. Instead, a cost function, which approximates
the total amount of moved data, is introduced. This approx-
imate function is calculated as the sum of half-perimeters of
minimal rectangular submatrices, each containing all matrix
elements allocated to the same processor. The use of this
approximate communication cost function results in exclu-
sion from consideration ofmany partitions during the proof of
the optimality of the three identified shapes. Therefore, while
the result of Beaumont et al. [9] represents an important step
towards finding the globally optimal partitions over three
heterogeneous processors, it still leaves the problem open.

For accurate measurement of the communication cost,
a cost function is required which accurately accounts
for all matrix elements moved between the processors.
DeFlumere et al. [7] proposed such a cost function, counting
the total number of matrix elements moved between the
processors. However, using this discrete metric to mathe-
matically prove the optimality of the identified partitioning
shapes is proved to be hard. In this work, we extend this
discrete metric into the continuous space to overcome this
difficulty. We propose a cost function of an arbitrary par-
tition of a real-valued square which accurately represents
the total amount of data moved between the processors. Our
cost function is also motivated by 2D data-parallel matrix
multiplication applications [3], [4], [24], similar to the cost
function of Beaumont et al. [9]. The matrix multiplication
applications calculate the product C = A×B of two matrices
A andB. The elements ofA,B andC are partitioned among the
processors in proportion to their relative speeds. Element cij
is calculated as the dot product of i-th row of matrix A, Ai, and
j-th column of matrix B, Bj. To calculate cij, all elements of
Ai and Bj, which do not belong to the processor that owns cij,
must be sent to this processor. Based on this observation, our
cost function will precisely and accurately reflect the overall
amount of data moving between processors.

III. OPTIMAL PARTITIONING A SQUARE BETWEEN THREE
HETEROGENEOUS PROCESSORS: STATE OF THE ART
This section revisits the optimal partitioning problem of a
square computational domain for three heterogeneous pro-
cessors, where the domain is partitioned among processors
in proportion to their speed to get both load balanced and
communication optimal a partitioning shape. Three partition-
ing shapes of Fig. 1 proved to be sufficient for optimally
partitioning a square in the state-of-the-art solution of this
problem [9].

However, the definition of the communication cost used in
the solution [9] does not represent the total number of matrix
elements moved between the processors. Instead, a cost func-
tion, which approximates the total amount of moved data,
is introduced. This approximate function is calculated as the
sum of half-perimeters (SHP) of minimal rectangular subma-
trices, each containing all data elements allocated to the same
processor. The partition which minimizes this cost function
is considered optimal. Motivated by the communication cost

FIGURE 1. Optimal partitioning shapes of three heterogeneous
processors for square computational domain. Processors Q and R have
square regions in Square Corner partition whereas processor R has a
square region in square rectangle partition.

FIGURE 2. The figure shows two partitions, T 1 and T 2, of a square n× n
matrix between three heterogeneous processors P , Q and R, with the
same SHP cost but different exact communication costs Cost(T 1) and
Cost(T 2). Since Q and R regions are assumed to be squares of the same
size n

3 ×
n
3 , we can derive that SHP(T 1) = SHP(T 2) = 4n+ 2

√
SR .

However, as shown in Section V-A (Lemma 4), Cost(T 1) = 2n2,

Cost(T 2) = 2n2 − 1
2

√
SR × n+

√
SQ × n, and hence Cost(T1) < Cost(T2).

of 2D parallel matrix-matrix multiplication algorithms [4],
the SHP function accurately represents the communication
cost of rectangularmatrix partitions but fails to distinguish the
cost of many non-rectangular partitions, for which the total
number of matrix elements, moved between processors, will
be different. This is illustrated in Fig. 2 where two partitions
with different amounts of communicated data have the same
SHP cost. At the same time, many non-rectangular partitions,
which are equivalent in terms of the total amount of com-
municated data, will have different SHP costs as illustrated
in Fig. 3.

In Figures 2 and 3, the exact communication cost, Cost ,
of a given partition is calculated as the total number of matrix
elements moved between processors P, Q, and R during
parallel matrix-matrix multiplication, C = A × B, given the
matrices are identically partitioned between the processors.
SX designates the total number of elements in a regionmarked
by X . The use of the approximate communication cost func-
tion, SHP, results in exclusion from consideration of many
partitions during the proof of optimality of the three identified
shapes. Therefore, while the result [9] represents an important
step towards finding the globally optimal partitions over three
heterogeneous processors, it still leaves the problem open.

In this work, we propose a solution of this problem using
a communication cost function, which accurately represents
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FIGURE 3. The figure shows two pairs of partitions, (T 3, T 4) and (T 5, T 6),
which are discriminated by the SHP cost but have the same exact
communication cost, Cost .

the total amount of data moved between the processors, and
therefore proves the global optimality of the identified opti-
mal partitions.

IV. COST FUNCTION
This sectionmathematically defines the exact communication
cost function of an arbitrary partition of a square n× n com-
putational domain. We assume that between different pairs of
processors, for one data unit, the communication cost is the
same. The exact communication cost function is first derived
in a discrete form for matrices and then, in a continuous form,
for real-valued squares. All notation with bar relates to the
discrete case (e.g. f c) and without a bar – to the continuous
case (e.g.fc).

A. DEFINITION OF DISCRETE COST FUNCTION
In this subsection, we derive a discrete cost function from the
communication cost of parallel matrix-matrix multiplication.
C = A × B, of two square matrices A and B, assuming that
the elements of matricesA,B andC are identically partitioned
between processors in proportion with relative speeds of the
processors. Element cij is calculated as the dot product of
i-th row of matrix A, Ai, and j-th column of matrix B, Bj.
To calculate cij, all elements ofAi andBj, which do not belong
to the processor that owns cij, must be sent to this processor.
Derived from this observation, we define the communication
cost of a partition of a square matrix to be equal to the total
number of elements of matrices A and B moved between the
processors.

Mathematically, each partition of an n× n matrix between
three processors P, Q, and R, is represented by a mapping

[0, 1, .., n]× [0, 1, .., n] 7→ {P,Q,R}, of the set of indices of
the matrix into the set of processors. The set of all possible
partitions is denoted as

M =
{
[1, .., n]× [1, .., n] 7→ {P,Q,R}

}
,

and for each partition M ∈ M our cost function f c : M 7→
Z≥0 returns the defined communication cost, f c(M ).
This mathematical definition makes no assumption about

partition shapes, including all possible partitions in consid-
eration and guarantees that for any partition each matrix
element is allocated to exactly one processor.

TABLE 1. Parameters of an arbitrary partition M ∈M of a square n× n
matrix used in the discrete cost function f c (M).

B. ANALYTICAL FORMULAS FOR DISCRETE COST
FUNCTION
In this subsection, we derive two analytical formulas for the
cost f c(M ) of an arbitrary partitionM ∈M, characterized by
the parameters summarized in Table 1. For anyX ∈ {P,Q,R},
parameter aX is the total number of rows, all elements of
which are allocated to processor X . Similarly, bX is the
total number of columns allocated to X as a whole. For any
X ,Y ∈ {P,Q,R}, parameter aXY is the total number of rows,
elements of which are allocated to processors X and Y only
(but not to any of them as a whole). Similarly, bXY is the
total number of columns, partitioned between X and Y only.
Parameter aPQR is the number of the remaining rows, that is,
those partitioned between all three processors, and bPQR is the
number of columns partitioned between the three processors.

Given X ∈ {P,Q,R}, let APQR,X be the total number of
elements allocated to processor X in the aPQR rows, elements
of which are distributed between all three processors P, Q,
and R. Similarly, let BPQR,X be the total number of elements
allocated to processor X in the bPQR columns, elements of
which are distributed between all three processors P, Q,
and R. Then, the total number of elements moved between
any pair of processors X ,Y ∈ {P,Q,R} can be calculated as
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follows:

CXY = (aXY × n)+ (n× bXY )+ (APQR,X + APQR,Y )

+(BPQR,X + BPQR,Y )

Note that

(APQR,P + APQR,Q + APQR,R) = aPQR × n,

and

(BPQR,P + BPQR,Q + BPQR,R) = bPQR × n.

Therefore,

f c(M ) = CPQ + CPR + CQR
= (aPQ + bPQ + aPR + bPR + aQR + bQR)× n

+APQR,P + APQR,Q + BPQR,P + BPQR,Q
+APQR,P + APQR,R + BPQR,P + BPQR,R
+APQR,Q + APQR,R + BPQR,Q + BPQR,R

= (aPQ + bPQ + aPR + bPR + aQR + bQR)× n

+2× (APQR,P + APQR,Q + APQR,R)

+2× (BPQR,P + BPQR,Q + BPQR,R)

= (aPQ + bPQ + aPR + bPR + aQR + bQR
+2× aPQR + 2× bPQR)× n (1)

As

(aP+aQ+aR+aPQ+aPR+aQR+aPQR)× n=n× n=n2,

(bP+bQ+bR+bPQ+bPR+bQR+bPQR)× n=n× n=n2,

the alternative formula will be

f c(M ) = 2× n2 − (aP + aQ + aR + bP + bQ + bR)× n

+(aPQR + bPQR)× n (2)

C. CONTINUOUS EXTENSION OF DISCRETE COST
FUNCTION
While motivated by the problem of optimal partitioning of a
square n×nmatrix between three heterogeneous processors,
in this work we aim to solve a more general problem, namely,
the problem of optimal partitioning of a real-valued [0, n] ×
[0, n] square. Each partition T of the [0, n] × [0, n] square
between three processors P, Q, and R, is defined as a mapping
T : [0, n] × [0, n] 7→ {P,Q,R} such that the inverse images
T−1(P),T−1(Q), and T−1(R), are all Lebesgue-Borel measur-
able sets; the measure of the Lebesgue-Borel measurable set
L is here denoted by µ(L). The set of all possible partitions
is denoted as

T =
{
[0, n]× [0, n] 7→ {P,Q,R}

}
,

and each partition T ∈ T is characterized by the parameters
summarized in Table 2. For any X ∈ {P,Q,R}, parameter
aX is defined as follows. Let AX be the set of all horizontal
lines mapped to X as a whole. Then, aX = µ(AX ). Similarly,
bX = µ(BX ), where BX is the set of all vertical lines mapped

TABLE 2. Parameters of an arbitrary partition T ∈ T of a real-valued n× n
square used in the continuous cost function fc (T ).

to X as a whole. For any X ,Y ∈ {P,Q,R}, parameter
aXY = µ(AXY ), where AXY is the set of all horizontal lines
partitioned between X and Y only. Similarly, bXY = µ(BXY ),
where BXY is the set of all vertical lines partitioned between X
and Y only. Finally, aPQR = µ(APQR) and bPQR = µ(BPQR),
where APQR and BPQR are the sets of all horizontal and
vertical lines correspondingly, partitioned between all three
processors.

Note that if we consider the [0, n] × [0, n] square as a
n × n set of unit squares, that is, squares of size 1 × 1,
then any partition T ∈ T, which is mapping each unit
square to a single processor, will represent a matrix partition,
M ∈M.

Now for each partition T ∈ T, we define the cost function
fc(T ) as follows

fc(T ) = (aPQ + bPQ + aPR + bPR + aQR + bQR
+2× aPQR + 2× bPQR)× n (3)

This definition guarantees that if T ∈ T represents the matrix
partition M ∈M, then fc(T ) = f c(M ).
Also, as

(aP+aQ+aR+aPQ+aPR+aQR+aPQR)×n = n×n = n2,
and
(bP+bQ+bR+bPQ+bPR+bQR+bPQR)×n = n×n = n2,
the alternative formula will be

fc(T ) = 2× n2 − (aP + aQ + aR + bP + bQ + bR)× n

+(aPQR + bPQR)× n (4)

V. OPTIMAL PARTITIONS OF SQUARE
Now we formulate the problem of optimal partitioning of a
square with the cost function fc(T ) defined in the previous
section and give its solution.
Problem: Given a real-valued square [0, n] × [0, n] and

three positive real numbers {SP, SQ, SR} such that SP +
SQ + SR = n2, find a partition T ∈ T of this square that
minimizes the cost function fc(T ) and SP = µ(T−1(P)),
SQ = µ(T−1(Q)), SR = µ(T−1(R)).
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A. OPTIMAL PARTITION SHAPES
Our primary result determines that the solution to this prob-
lem will always be of one of the three partitioning shapes
shown in Fig. 1. In the first step, we derive the cost of these
three partitions to mathematically formulate and prove this
result. We denote the Square Corner partition as TSC , Square
Rectangle partition as TSR and Block Rectangle partition
as TBR. Also, note that for these partitions, the measure of
each of the regions of the square mapped to a single processor
P, Q, or R, will be equivalent to the usual area of this region
and will be equal to SP, SQ, SR respectively. The formulas for
the cost of these partitions are given by the following three
lemmas.
Lemma 1: fc(TSC ) = 2× n× (

√
SR +

√
SQ).

Proof: Here, aPQR = bPQR = aQR = bQR = 0.
On the other hand, aPQ =

√
SQ, aPR =

√
SR and bPQ =

√
SQ

and bPR =
√
SR. Therefore, according to formula (3):

fc(TSC ) = 2× n× (
√
SR +

√
SQ) (5)

Lemma 2: fc(TSR) = n2 + 2× (
√
SR × n).

Proof: Here, aPQR =
√
SR, aQR = aPR = 0, aPQ =

(n−
√
SR), bPQR = bPQ = bQR = 0, and bPR =

√
SR. Thus,

according to formula (3):

fc(TSR) = n2 + 2× (
√
SR × n) (6)

Lemma 3: fc(TBR) = 2× n2 − SP.
Proof: Here, aPQR = aP = aQ = aR = 0, bPQR = bQ =

bR = 0 and bP = SP. Therefore, according to formula (4):

fc(TBR) = 2× n2 − bP × n = 2× n2 − SP (7)

The following two lemmas derive the communication cost of
partitions T1 – T6 shown in Figures 2 and 3 in Section III.
Lemma 4: fc(T1) = 2n2. fc(T2) = 2n2 − 1

2

√
SR × n +√

SQ × n.
Proof: For partition T1, we have aPQ+aPR = n, bPQ+

bPR = n and aQR = bQR = 0 whereas, aP = aQ = aR =
bP = bQ = bR = 0 and aPQR = bPQR = 0. Therefore,
according to formula (4), fc(T1) = 2× n2.
For partition T2, bP = 1

2

√
SR whereas, aP = aQ = aR =

bQ = bR = 0, aPQR = 0, bPQR =
√
SQ. Therefore, according

to formula (4), fc(T2) = 2n2 − 1
2

√
SR × n+

√
SQ × n.

Lemma 5: fc(T3) = fc(T4) = 2 × n2 and fc(T5) =
fc(T6) = 2× n2 − SP

Proof: For partition T3, we have aPQ+aPR = n, bPR+
bPQ = n and aQR = bQR = 0 whereas, aP = aQ = aR =
bP = bQ = bR = 0 and aPQR = bPQR = 0. Therefore,
according to formula (4), fc(T3) = 2× n2.
For partition T4, we have aPQ + aPR = n, bPQ + bPR = n

and aQR = bQR = 0 whereas, aP = aQ = aR = bP =
bQ = bR = 0 and aPQR = bPQR = 0. Therefore, according
to formula (4), fc(T4) = 2× n2.

For partition T5, we have bP =
SP
n and aP = aQ = aR =

bQ = bR = 0 and aPQR = bPQR = 0. Therefore, according
to formula (4), fc(T5) = 2× n2 − SP.
For partition T6, we have bP =

SP
n and aP = aQ = aR =

bQ = bR = 0 and aPQR = bPQR = 0. Therefore, according
to formula (4), fc(T6) = 2× n2 − SP.

The following theorem formulates our main result for the
formulated problem of optimal partitioning of a square.
Theorem 1: ∀T ∈ T : (fc(T ) ≥ fc(TSC )) ∨ (fc(T ) ≥

fc(TSR)) ∨ (fc(T ) ≥ fc(TBR)).
Proof: The proof is split into lemmas, depending on the

measure of the set of horizontal and vertical lines where all
points of a line are mapped to a single processor P, Q and R
for any partition T .
Lemma 1.1: If (aP = 0) ∧ (aQ = 0) ∧ (aR = 0) ∧ (bP =

0) ∧ (bQ = 0) ∧ (bR = 0), then fc(T ) ≥ fc(TBR).
Proof: According to formula (4):

fc(T ) = 2× n2 + (aPQR × n)+ (n× bPQR)

≥ 2× n2 > 2× n2 − SP = fc(TBR)

Lemma 1.2: If (aP > 0)⊕ (aQ > 0)⊕ (aR > 0)⊕ (bP >
0)⊕ (bQ > 0)⊕ (bR > 0), then fc(T ) ≥ fc(TBR).

Proof: Let there exist exactly one X ∈ {P,Q,R} such
that aX > 0 and bP = bQ = bR = 0. Then, according to
formula (4), fc(T ) = 2×n2−(aX×n)+(aPQR×n)+(n×bPQR),
where aX × n ≤ SX , so that fc(T ) ≥ 2× n2 − SX .
As SP ≥ SQ ≥ SR, SX ≤ max{SP, SQ, SR} = SP.

Therefore, fc(T ) ≥ 2× n2 − SX ≥ 2× n2 − SP = fc(TBR).
Similarly, fc(T ) ≥ fc(TBR) when there exists exactly one

X ∈ {P,Q,R} such that bX > 0 and aP = aQ = aR = 0.
Lemma 1.3: If [(aP > 0)∧ (bP > 0)]⊕ [(aQ > 0)∧ (bQ >

0)]⊕ [(aR > 0) ∧ (bR > 0)], then fc(T ) ≥ fc(TSC ).
Proof: In this case, we assume that there is exactly one

processor X ∈ {P,Q,R} such that aX > 0 and bX > 0 and
for remaining processors Y and Z , aY = aZ = bY = bZ = 0.
Also, as any horizontal line and any vertical line contain a
point mapped to X , therefore, aYZ = bYZ = 0.
Then, according to formula (3), fc(T ) = (aXY + bXY +

aXZ + bXZ + 2× aXYZ + 2× bXYZ )× n.
The measure of the set of all horizontal and vertical lines

containing points mapped to Y will be equal to (aXY +aXYZ+
bXY + bXYZ ) and cannot be less than the half-perimeter of a
square with the area of SY . Therefore, aXY + aXYZ + bXY +
bXYZ ≥ 2 ×

√
SY . Similarly, aXZ + aXYZ + bXZ + bXYZ ≥

2×
√
SZ .

Thus, fc(T ) = (aXY + bXY + aXZ + bXZ + 2× aXYZ + 2×
bXYZ )× n =
((aXY+aXYZ+bXY+bXYZ )+ (aXZ+aXYZ+bXZ+bXYZ ))×n ≥
2× (
√
SY +
√
SZ )×n ≥ 2× (

√
SQ+
√
SR)×n = fc(TSC ).

Lemma 1.4: If [(aP > 0)∧ (aQ > 0)]⊕ [(aP > 0)∧ (aR >
0)]⊕[(aQ > 0)∧(aR > 0)]⊕[(bP > 0)∧(bQ > 0)]⊕[(bP >
0)∧ (bR > 0)]⊕ [(bQ > 0)∧ (bR > 0)], then fc(T ) ≥ fc(TSR)

Proof: Let X , Y ∈ {P,Q,R}, aX > 0 and aY > 0
while bX = bY = 0. Note that for the remaining processor
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Z ∈ {P,Q,R}, aZ = bZ = 0, Then, according to formula (3),
fc(T ) = (aXY + aXZ + aYZ + bXY + bXZ + bYZ + 2(aXYZ +
bXYZ ))× n.

The measure of the set of all horizontal and vertical lines
containing points mapped to Z will be equal to (aXZ + aYZ +
aXYZ + bXZ + bYZ + bXYZ ) and cannot be less than the
half-perimeter of a square with the area of SZ . Therefore,
aXZ + aYZ + aXYZ + bXZ + bYZ + bXYZ ≥ 2 ×

√
SZ .

Also, all vertical lines contain points from X and Y , therefore,
bXY + bXYZ = n. Thus,

fc(T ) = (aXY + aXZ + aYZ + bXY + bXZ + bYZ
+2(aXYZ + bXYZ ))× n

≥ (aXY + aXYZ + bXY + bXYZ )× n+ 2(
√
SZ × n)

≥ n× (bXY + bXYZ )+ 2(
√
SZ × n)

≥ n2 + 2(
√
SZ × n)

≥ n2 + 2(
√
SR × n) = fc(TSR).

Similarly, fc(T ) ≥ fc(TSR) when there exist X , Y ∈ {P,Q,R}
such that bX > 0 and bY > 0.
Lemma 1.5: If [(aP > 0)∧ (aQ > 0)∧ (aR > 0)]⊕ [(bP >

0) ∧ (bQ > 0) ∧ (bR > 0)], then fc(T ) ≥ fc(TBR)
Proof: Let (aP > 0) ∧ (aQ > 0) ∧ (aR > 0). Then,

bP = bQ = bR = 0 and bPQR = n. Therefore, according to
formula (4),

fc(T ) ≥ 2× n2 − ((aP + aQ + aR)× n)+ (aPQR × n)+ n2

≥ 2× n2

> 2× n2 − SP = fc(TBR).

Similarly, fc(T ) ≥ fc(TBR) when (bP > 0) ∧ (bQ > 0) ∧
(bR > 0).
Hence, it is proved that for any feasible combination of
the partition parameters from Table 2, one of the shape
of Fig. 1 will always be an optimal solution to Prob-
lem 1. The following last lemma of this section proves that
lemmas 1.1 – 1.5 covered all the possible combinations of
the partition parameters.
Lemma 1.6: For any partition T ∈ T, its parame-

ters from Table 2 will satisfy at least one of the cases of
lemmas 1.1 – 1.5.

Proof: Let us denote AP ≡ (aP > 0),AQ ≡ (aQ >

0),AR ≡ (aR > 0),BP ≡ (bP > 0),BQ ≡ (bQ > 0),BR ≡

(bR > 0).
Then, the case of lemma 1.1 can be expressed as follows,
(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR)
The case of lemma 1.2:

(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧BR)

⊕ (¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BR ∧BQ)

⊕ (¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BQ ∧ ¬BR ∧BP)

⊕ (¬BP ∧ ¬BQ ∧ ¬BR ∧ ¬AP ∧ ¬AQ ∧ AR)

⊕ (¬BP ∧ ¬BQ ∧ ¬BZ ∧ ¬AP ∧ ¬AR ∧ AQ)

⊕ (¬BP ∧ ¬BQ ∧ ¬BR ∧ ¬AQ ∧ ¬AR ∧ AP)

The case of lemma 1.3:

(¬AP ∧ ¬AQ ∧ ¬BP ∧ ¬BQ ∧ AR ∧BR)

⊕ (¬AP ∧ ¬AR ∧ ¬BP ∧ ¬BR ∧ AQ ∧BQ)

⊕ (¬AQ ∧ ¬AR ∧ ¬BQ ∧ ¬BR ∧ AP ∧BP)

The case of lemma 1.4:

(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧BQ ∧BR)

⊕ (¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BQ ∧BP ∧BR)

⊕ (¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BR ∧BP ∧BQ)

⊕ (¬AP ∧ ¬BP ∧ ¬BQ ∧ ¬BR ∧ AQ ∧ AR)

⊕ (¬AQ ∧ ¬BP ∧ ¬BQ ∧ ¬BR ∧ AP ∧ AR)

⊕ (¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR ∧ AP ∧ AQ)

The case of lemma 1.5:

(¬AP ∧ ¬AQ ∧ ¬AR ∧BP ∧BQ ∧BR)

⊕ (AP ∧ AQ ∧ AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR)

[(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR)]

∨[(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧BR)

⊕ (¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BR ∧BQ)

⊕ (¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BQ ∧ ¬BR ∧BP)

⊕ (¬BP ∧ ¬BQ ∧ ¬BR ∧ ¬AP ∧ ¬AQ ∧ AR)

⊕ (¬BP ∧ ¬BQ ∧ ¬BR ∧ ¬AP ∧ ¬AR ∧ AQ)

⊕ (¬BP ∧ ¬BQ ∧ ¬BR ∧ ¬AQ ∧ ¬AR ∧ AP)]

∨[(¬AP ∧ ¬AR ∧ ¬BP¬BQ ∧ AR ∧BR)

⊕ (¬AP ∧ ¬AR ∧ ¬BP ∧ ¬BR ∧ AQ ∧BQ)

⊕ (¬AQ ∧ ¬AR ∧ ¬BQ ∧ ¬BR ∧ AP ∧BP)]

∨[(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧BQ ∧BR)

⊕ (¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BQ ∧BP ∧BR)

⊕ (¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BR ∧BP ∧BQ)

⊕ (¬AP ∧ ¬BP ∧ ¬BQ ∧ ¬BR ∧ AQ ∧ AR)

⊕ (¬AQ ∧ ¬BP ∧ ¬BQ ∧ ¬BR ∧ AP ∧ AR)

⊕ (¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR ∧ AP ∧ AQ)]

∨[(¬AP ∧ ¬AQ ∧ ¬AR ∧BP ∧BQ ∧BR)

⊕(AP ∧ AQ ∧ AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR)],

and its disjunctive normal form will be

(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR)

∨(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧BR)

∨(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧BQ ∧ ¬BR)

∨(¬AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧BQ ∧BR)

∨(¬AP ∧ ¬AQ ∧ ¬AR ∧BP ∧ ¬BQ ∧ ¬BR)

∨(¬AP ∧ ¬AQ ∧ ¬AR ∧BP ∧ ¬BQ ∧BR)

∨(¬AP ∧ ¬AQ ∧ ¬AR ∧BP ∧BQ ∧ ¬BR)

∨(¬AP ∧ ¬AQ ∧ ¬AR ∧BP ∧BQ ∧BR)

∨(¬AP ∧ ¬AQ ∧ AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR)

∨(¬AP ∧ ¬AQ ∧ AR ∧ ¬BP ∧ ¬BQ ∧BR)
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∨(¬AP ∧ AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR)

∨(¬AP ∧ AQ ∧ ¬AR ∧ ¬BP ∧BQ ∧ ¬BR)

∨(¬AP ∧ AQ ∧ AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR)

∨(AP ∧ ¬AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR)

∨(AP ∧ ¬AQ ∧ ¬AR ∧BP ∧ ¬BQ ∧ ¬BR)

∨(AP ∧ ¬AQ ∧ AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR)

∨(AP ∧ AQ ∧ ¬AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR)

∨(AP ∧ AQ ∧ AR ∧ ¬BP ∧ ¬BQ ∧ ¬BR) = TRUE

Now, we are ready to propose the algorithm, solving the
problem of optimal partitioning of a square with the cost
function fc(T ), formulated in the beginning of this section.

B. SELECTION OF OPTIMAL PARTITION
In the previous section, we proved that to find the optimal
partition of a square of size n × n into three regions of
areas SP, SQ and SR, which minimizes the cost function fc(T ),
we only have to check the partitions of the three shapes shown
in Fig. 1. As there are three regions in a shape, the number
of different partitions of the shape in the given proportion
SP : SQ : SR will be equal to the total number of different
mappings of three processors P, Q and R to the three regions
of the shape, which is calculated as 3! = 6. Therefore,
the total number of candidate partitions to solve the problem
will be 6× 3 = 18.

We do not need however to calculate the cost of all these
18 partitions to find the optimal one. Indeed, according to
formula (5), in any feasible partition of the Square Corner
shape, the P region of the shape (as shown in Fig. 1) must be
the largest. Formula (6) indicates that out of 6 partitions of the
Square Rectangle shape, the minimal cost will be achieved
by any partition, which minimizes the area of the R region.
Finally, as formula (7) suggests, any partition maximizing
the area of the P region will have the minimal cost among
partitions of the Block Rectangle shape. Thus, in order to find
the optimal partition, we only need to compare the cost of 3
partitions, one for each shape, but not 18.

VI. EXPERIMENTAL VALIDATION
This section presents experiments for validation of our the-
oretical results. The challenging part was to design these
experiments in such a way which accurately measured the
contribution of inter-memory data movements between the
tightly coupled compute devices of our hybrid heterogeneous
server into the total execution time. To the best of our knowl-
edge, the methodology proposed in this paper for accurate
experimental evaluation is the first of its kind which success-
fully solves this challenging issue for hybrid data parallel
applications. The solutions we come across in the literature
have to a great extent underestimated the time of these data
movements and often have instability in results.

The purpose of these experiments is to validate the
predictive accuracy of our theoretical models and also to
demonstrate its usefulness in making practical decisions on
partitioning square computational domains between tightly
integrated compute devices in hybrid heterogeneous servers.

A. EXPERIMENTAL METHODOLOGY
Weperform our experiments onHCLServer01. HCLServer01
is a hybrid heterogeneous server which integrates multi-core
CPU (Intel Haswell E5 − 2670 V3) and two accelerators-
GPU (Nvidia K40c) and Xeon Phi ( Intel 3120P). The CPU
has 24 physical cores and 64GBmainmemory. Table.3 shows
the detailed specifications of HCLServer01.

TABLE 3. HCLServer1 specifications.

Adata-parallel application running onHCLServer01would
naturally consist of three kernels – one running on the
multi-core CPU, the other running on the GPU, and the third
running on the Xeon Phi. Each accelerator kernel is hosted
by one CPU core, which is not involved in the execution
of the CPU kernel. Thus, the resources used by the CPU
kernel include 22 CPU cores and DRAM. The resources
used by the GPU kernel include one CPU core and the GPU
together with its memory. The resources used by the Xeon
Phi kernel include one CPU core and the Intel Xeon Phi
accelerator together with its memory. In our model, such
a hybrid parallel application is modeled by three abstract
processors – one representing the CPU kernel (CPU abstract
processor), the second representing the GPU kernel (GPU
abstract processor), and the third representing the Xeon Phi
kernel (PHI abstract processor). In our platform, the GPU
kernel is the fastest, the CPU kernel is medium, and the
Xeon Phi kernel is slowest. In order to connect this notation
with the notation in the theoretical section, we will also
use P, Q and R to denote abstract processors GPU, CPU
and PHI respectively and SP, SQ and SR to denote their
respective speeds. We perform the experiments for differ-
ent computational speed ratios of P, Q and R where the
relative speed of a processor is represented by a number
between 1 to 0.01, with 1 representing the fastest processor.
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The ratio shows the portion of square domain area assigned
to respective processors as per their speed.

In our experimental study, we do not consider the com-
putation time of the application but only its communication
time. The main reason why we exclude the computation time
is because we want to experiment with different speed ratios
of the processors. However, in our platform, we only have
one ratio, and for experiments with other ratios, we assume
the balanced workload and distribute the data and perform
experiments accordingly. Theoretically, if the workload is
balanced then the computation time of all three processors
will be the same and its addition will not change the relative
optimality of the studied partitions.

To achieve this, we partition the computation domain
betweenGPU, CPU and PHI in proportionwith their assumed
relative speeds, which can be different in different experi-
mental sets. However, during the execution of the applica-
tion we do not execute its computation code but only the
code implementing data movements. This way we obtain
a load-balanced application for different assumed relative
speeds of the abstract processors GPU, CPU and PHI, which
representative of the original application and the execution
time of which will be equal to the time of data movements in
the original application.

Our experiments are carefully designed to make sure that
what we measure is the time of data transfer between the
main memories of the CPU, the GPU and the Intel Xeon Phi,
not the time of data transfer between virtual memories of the
processes.

We experiment with a parallel matrix multiplication appli-
cation. The matrix multiplication applications calculate the
product C = A × B of two dense square matrices A and B.
We exclude the computation time from its execution time
by commenting out the computation code of the applica-
tion. For each experimental set, matrices are partitioned in
proportion to their assumed relative speeds between CPU,
GPU and PHI in three optimal partitioning shapes, Square
Corner, Square Rectangle and Block Rectangle, as well as the
regular 1D partitioning shape called Straight Line. For each
partitioning shape, we then measure the execution time of the
application and also calculate the predicted communication
time by using the accurate communication cost function and
the average communication bandwidth between the compute
devices. The communication time of real experiments is then
compared with the predicted communication time to confirm
the accuracy of our communication cost function.

There are three communicating links in our experimen-
tal platform - between GPU and CPU, between GPU and
PHI and between CPU and PHI. Our communication model
considers these links as homogeneous. However, actually
these communicating links are heterogeneous in nature so we
measure the model-predicted communication time using the
average bandwidth.

Wemake sure that the server is fully reserved and dedicated
to our experiments only. We also monitor its load and check
for any abnormal event that results in drastic fluctuation.

To obtain a data point, we repeatedly execute the application
until the sample mean lies in the 95% confidence interval and
0.025 (2.5%) precision has been achieved. To determine the
sample mean, we used Student’s t-test which assumes that the
individual observations are independent and their population
follows the normal distribution, and we check that this is the
case for each population. We also allow sufficient time to
elapse between application successive runs to make sure that
cache effects and pipelining do not happen. We make sure
that the problem size of our experiments does not exceed the
main memory of the compute devices and no paging occurs.

B. PERFORMANCE EXPERIMENTS
Our communication cost function assumes synchronous
communications. However, to demonstrate its predictive
capability in the situation of asynchronous data transfer,
we additionally perform experiments with asynchronous
communications. We perform these experiments for three
different ratios of SP : SQ : SR while the problem sizeN×N is
set to 22528× 22528 for all the cases. The CPU −GPU link
has measured bandwidth of 9.7 GB/s whereas, the CPU −
PHI link has 6.3GB/s, and theGPU−PHI link has 3.6GB/s.
The average bandwidth is calculated as 6.6 GB/s.

The first set of experiments assumes a speed ratio of 1.0 :
0.5 : 0.25 between GPU, CPU and PHI respectively which
is the actual configuration of our platform. Our partitioning
solutions aim to balance the workload of the processors.
Therefore, the computation time is supposed to be same for all
devices independent of the configuration of the application,
and only the difference in communication time will make
their overall execution time different. This is confirmed by
our experiments with the actual speed ratios of the heteroge-
neous processors in our platform shown in Fig. 4. Therefore,
we can safely exclude the computation time and only consider
the communication time when experimentally comparing the
relative optimality of the partitions.

FIGURE 4. Total execution time (computation + communication) of 4
partition shapes for synchronous and asynchronous communication
experiments for the problem size of 22528× 22528 and speed ratio of
SP : SQ : SR = 1.0 : 0.5 : 0.25.

Our communication model predicts that optimal parti-
tion is the Block Rectangle (BR) for this configuration.
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Subsequently, experiments that incorporate the synchronous
and asynchronous communications also confirm that the opti-
mal partitioning with the least communication time is Block
Rectangle as shown in Fig. 5.

FIGURE 5. Communication time comparison of model-predicted and
measured synchronous and asynchronous communication experiments
for the problem size of 22528× 22528 and speed ratio of
SP : SQ : SR = 1.0 : 0.5 : 0.25.

FIGURE 6. Communication time comparison of model-predicted and
measured synchronous and asynchronous communication experiments
for the problem size of 22528× 22528 and speed ratio of
SP : SQ : SR = 1.0 : 0.15 : 0.10.

The second set of experiments assumes a speed ratio of
1.0 : 0.15 : 0.10 for SP : SQ : SR. The Square Corner (SC) is
predicted to be optimal by the communication model, which
is validated by the real measurements in both synchronous
and asynchronous communication experiments Fig. 6. Our
last set of experiments assumes a speed ratio of 1 : 0.7 : 0.10
for SP : SQ : SR. For this case, Square Rectangle (SR) is
identified as the optimal shape as shown in Fig. 7, both by
the communication model and the experiments. Addition-
ally, it is evident from the experiments that predictions of
the communication model are adequately close to the actual
measurements of synchronous communication. Hence, they
can be used for accurate pairwise comparison of different
partitions.

While the model also predicts that there is no case where
the Straight Line (SL) would outperform any optimal parti-
tioning shapes, its theoretical cost will be equal to the Square

FIGURE 7. Communication time comparison of model-predicted and
measured synchronous and asynchronous communication experiments
for the problem size of 22528× 22528 and speed ratio of
SP : SQ : SR = 1.0 : 0.7 : 0.10.

Corner (SC) cost when
√
SR+

√
SQ = n, as it is in Scenario 1.

We do see in our experiments that the measured time and the
model predicted communication time of these two shapes are
very close in the case of synchronous communication.

Altogether, the experimental results exhibit the accuracy
of the proposed communication cost function in the case of
synchronous communications. The slight difference between
the actual measurement and predicted communication time
is due to the use of the average bandwidth in the theoretical
calculations. We believe that if the communication links had
the same bandwidths, our model would very accurately pre-
dict the communication time. Unfortunately, we are unable to
verify this experimentally because of different bandwidths of
the communication links in our experimental platform. Our
dedicated platform is hybrid heterogeneous server compris-
ing CPU, GPU and Xeon Phi, and the execution of hybrid
applications on such platformwill involve the CPU host-core,
DRAM and PCIe’s to transfer the data between GPU, CPU
and Intel Xeon Phi. For example, data transfer will be slower
between the GPU and PHI because it passes through the CPU
DRAM and PCIe as compared to data transfer between GPU
and CPU.

VII. ENERGY OF COMMUNICATION OF PERFORMANCE
OPTIMAL SHAPES
In Section V, we solved the problem of performance optimal
partitioning and proved the optimality of the three partition
shapes, which minimize the total amount of data moved
between three heterogeneous processors. In this section,
we discuss the energy cost of communication which has
not been studied before. There are some recent results for
energy optimization through workload partition [30], [31].
However, they only address the energy cost of computa-
tion and do not address the energy cost of communication.
In this paper, we try to fill this gap and propose an energy
model of communication attributing the energy cost to any
partition, and derive energy formulas for the performance
optimal partitions. We then use these formulas to predict
the communication energy consumption for these partitions
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and discover that the performance optimal partition is not
necessarily the energy optimal. We perform experiments
accurately measuring the energy of data movement between
the main memories of three heterogeneous devices on our
hybrid server. These experiments validate the accuracy of the
proposed energy model and confirm the theoretical finding
that the performance optimality does not imply the energy
optimality.

A. ENERGY MODEL OF COMMUNICATION
In Section V, when defining the communication cost of a
partition of a squarematrix, we assumed that the cost (or time)
of sending a matrix element between any pair of processors
would be the same. However, for energy consumption on
a heterogeneous platform, a similar assumption would be
highly un-realistic. Therefore, we assume a direct commu-
nication link X ↔ Y between each pair of processors X ,
Y ∈ {P,Q,R}, and introduce a new, real-valued, parameter,
εXY , representing the energy consumption cost of moving one
matrix element through this link.

In this energy model of communication, for any partition
M ∈ M, we assume that all matrix elements, which must be
moved between processors X ,Y ∈ {P,Q,R}, will always be
sent through the direct link X ↔ Y . The energy consumption
of moving the elements between processors X and Y can be
calculated as:

EXY = εXY × [(aXY × n)+ (n× bXY )

+(APQR,X + APQR,Y )

+(BPQR,X + BPQR,Y )]

and the total energy consumption cost, EPQ + EPR + EQR, as

f Ec(M ) = εPQ × [(aPQ + bPQ)× n]

+εPR × [(aPR + bPR)× n]

+ εQR × [(aQR + bQR)× n]

+ (εPQ + εPR)× [(APQR,P)+ BPQR,P]

+ (εPQ + εQR)× [(APQR,Q + BPQR,Q)]

+ (εPR + εQR)× [(APQR,R + BPQR,R)], (8)

The continuous extension of this discrete energy model
of communication cost is defined as follows. Let εXY > 0
be the real-valued energy cost of moving a set of points of
measure 1 between processors X and Y (X ,Y ∈ {P,Q,R}),
and for any X ,Y ,Z ∈ {P,Q,R}, εXY ≤ εXZ + εYZ . Then, for
each partition T ∈ T of the [0, n] × [0, n] square, its energy
communication cost fEc(T ) is defined as follows

fEc(T ) = εPQ × [(aPQ + bPQ)× n]

+ εPR × [(aPR + bPR)× n]

+ εQR × [(aQR + bQR)× n]

+ (εPQ + εPR)× [(APQR,P)+ BPQR,P]

+ (εPQ + εQR)× [(APQR,Q + BPQR,Q)]

+ (εPR + εQR)× [(APQR,R + BPQR,R)], (9)

This definition guarantees that if T ∈ T represents the matrix
partition M ∈M, then fEc(T ) = f Ec(M ).

B. ENERGY COST OF OPTIMAL SHAPES
Now we use the general formula (9) to derive formulas cal-
culating the energy cost of communication for the Square
Corner, Square Rectangle, Block Rectangle and Straight Line
partitioning shapes.

1) Square Corner:

fEc(TSC ) = εPQ × [2× (
√
SQ × n)]

+ εPR × [2× (
√
SR × n)] (10)

2) Block Rectangle:

fEc(TBR) = εPQ × (aPQ × n)

+ εPR × (aPR × n)

+ εQR × (bQR × n) (11)

3) Square Rectangle:

fEc(TSR) = εPQ × [(n−
√
SR)× n]

+ εPR × (
√
SR × n)

+ (εPQ + εPR)× APQR,P
+ (εPQ + εQR)× APQR,Q
+ (εPR + εQR)× APQR,R (12)

4) Straight Line:

fEc(TSL) = (εPQ + εPR)× APQR,P
+ (εPQ + εQR)× APQR,Q
+ (εPR + εQR)× APQR,R (13)

The predictive accuracy of these formulas is experimentally
validated in the following sections. One interesting implica-
tion of this theoretical communication energy model is that
performance optimal partitions are not necessarily energy
optimal. This finding is also experimentally validated in the
following sections.

C. EXPERIMENTAL METHODOLOGY OF ENERGY
MEASUREMENT
We follow a detailed energy measurement methodology
[32]–[34] to ensure the reliability of experimental results.
A Watts Up Pro power meter is used to measure the
energy. The Watts Up Pro power meter is connected with
HCLServer01 through a data cable to one of the USB ports of
the server. The data is collected from power meter using the
USB interface by a script written in Perl. The script consumes
insignificant power and it execution is non-intrusive. The
Watts Up Pro power meter is periodically calibrated using
the ANSI C12.20 revenue-grade power meter, Yokogawa
WT310. The maximum sampling speed of Watts Up Pro
power meters is one sample every second. The accuracy spec-
ified in the data-sheets is ±3%. The minimum measurable
power is 0.5 watts. The accuracy at 0.5 watts is ±0.3 watts.
The power meter provides the total power consumption
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of the server. This total energy is the sum of static and
dynamic energy consumption. The static energy consump-
tion is calculated by multiplying the idle power of the plat-
form (without application execution) by the execution time
of the application. Whereas, dynamic energy consumption
is calculated by subtracting this static energy consumption
from the total energy consumption of the platform during the
given application execution. For our experiments, we focus
purely on dynamic energy consumption because static energy
consumption is a constant property of a platform and does
not depend on the application configuration whereas dynamic
energy consumption is the dominating energy dissipator in
the used application and platform.

We use an automated tool HCLWattsUp API [35] to gather
the readings from the power meter to determine the dynamic
energy consumption during the execution of application.
It follows a detailed statistical methodology to ensure the
reliability of experimental results. HCLWattsUp API has no
extra overhead and therefore does not influence the energy
consumption of the application execution.

We carefully design our experiments to accurately mea-
sure the energy consumed during the main-memory to
main-memory data transfer between the heterogeneous
processors, and consider this as communication energy cost.
There are three communication links in our experimental plat-
form. One is between GPU and CPU, the second is between
CPU and PHI, and the third is between GPU and PHI. In the
first step, we calculate the communication energy cost (Joules
per GB) of these three links and use this communication
energy cost of each link to calculate the model-predicted
energy consumption of the communication.

For energy experiments, we use the same application as
in the performance experiments and the same three scenar-
ios with different ratios of SP : SQ : SR for each case.
In all experiments, matrices are partitioned in proportion to
their assumed relative speed between GPU, CPU and PHI
into Square Corner, Square Rectangle, Block Rectangle and
Straight Line partitioning shapes, and the energy consumed
by the application for each partitioning shape is measured.
This measured energy consumption is then compared with
the predicted communication energy consumption, calculated
using the energy model of communication.

Wemake sure that the server is fully reserved and dedicated
to our experiments only. We also monitor its load and check
for any abnormal event that results in drastic fluctuation.
We followed a strict experimental methodology to eliminate
the potential contribution by other components such as SSD
(Solid State Drives), fans, etc. when measuring the communi-
cation energy consumption. We also set the fans at full speed
before executing the application to rule out the contribution
of fans in dynamic energy consumption. To obtain a data
point, we repeatedly execute the application until the sample
mean lies in the 95% confidence interval and 0.025 (2.5%)
precision has been achieved. To determine the sample mean,
we used Student’s t-test which assumes that the individual
observations are independent and their population follows the

normal distribution, and we check that this is the case for each
population. We also allow sufficient time to elapse between
application successive runs to make sure that cache effects
and pipelining do not happen.

D. ENERGY EXPERIMENTS
Same as in the performance experiments, although our
energy model of communication only assumes synchronous
communications, we perform energy experiments with both
synchronous and asynchronous communications. The prob-
lem size N × N is also set to same 22528 × 22528.
On HCLServer01, the actual measured energy cost of the
CPU-GPU link is 4.30 Joule/GB, the CPU-PHI link is
12.69 Joule/GB, and the GPU-PHI link is 62.60 Joule/GB.
We use this energy cost of each communicating link to predict
the communication energy cost by our energy model of com-
munication for the three optimal and 1D partitioning shapes.
We then compare the predicted communication energy cost
with real experimental results for these partitioning shapes.

The first set of experiments assumes a speed ratio of 1.0 :
0.5 : 0.25 between GPU, CPU and PHI respectively, which
is the actual configuration of our platform. Our partitioning
solutions aim to balance the workload distribution between
the processors during the execution of the application. There-
fore, the energy consumption by the computation, which is
the product of the aggregate power, consumed by the three
processors, and the computation time, is supposed to be same
for different partitions. Thus, the difference in the total energy
consumption for different partitions will only be due to the
difference in the communication energy consumption. This is
confirmed by our experiments with the actual speed ratios of
the heterogeneous processors in our platform shown in Fig. 8.
Therefore, we can safely exclude the computation energy and
only consider the communication energy when experimen-
tally comparing of the energy optimality of the partitions.

FIGURE 8. Total energy cost (computation + communication) of
4 partition shapes for synchronous and asynchronous communication
experiments for the problem size of 22528× 22528 and speed ratio of
SP : SQ : SR = 1.0 : 0.5 : 0.25.

Our energymodel predicts that the energy optimal partition
is the BlockRectangle (BR) for this speed ratio. Subsequently,
the experiments that incorporate the synchronous and asyn-
chronous communications also confirm that the optimal
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FIGURE 9. Model-predicted and measured energy cost of synchronous
and asynchronous communication experiments for the problem size of
22528× 22528 and speed ratio of SP : SQ : SR = 1.0 : 0.5 : 0.25.

partitioning with the least energy consumption is Block Rect-
angle as shown in Fig. 9. Note that for this scenario, BR has
been proved performance optimal as well.

The second set of experiments assumes a speed ratio of
1.0 : 0.15 : 0.10 for SP : SQ : SR. The Square Corner
(SC) is predicted to be optimal by the energy model, which is
validated by the real measurements in both synchronous and
asynchronous communication experiments Fig. 10. SC has
also been proved performance optimal for this scenario.

FIGURE 10. Model-predicted and measured energy cost of synchronous
and asynchronous communication experiments for the problem size of
22528× 22528 and speed ratio of SP : SQ : SR = 1.0 : 0.15 : 0.10.

Our last set of experiments assumes a speed ratio of 1 :
0.7 : 0.10 for SP : SQ : SR. For this case, Blocked Rectangle
(BR) is identified as the energy optimal shape as shown
in Fig. 11, both by the energy model and the experiments.
However, the performance model and performance experi-
ments have proved Square Rectangle (SR) to be performance
optimal, not BR.

Thus, the experiments demonstrate that our energy model
of communication is able to correctly predict the relative
energy efficiency of partitions. In terms of Joules, the pre-
dictive accuracy is good for synchronous communications,
which are assumed in the model, and satisfactory for asyn-
chronous. In scenario 3 of the performance and energy exper-
iments, Square Rectangle (SR) proves performance optimal

FIGURE 11. Model-predicted and measured energy cost of synchronous
and asynchronous communication experiments for the problem size of
22528× 22528 and speed ratio of SP : SQ : SR = 1.0 : 0.7 : 0.10.

but Block Rectangle (BR) – energy optimal. Hence, we can
conclude that performance optimal partitions are not neces-
sarily energy optimal too.

VIII. DISCUSSION
In this work, we solved the problem of optimal partitioning of
a square computational domain in a given proportion between
three processors, minimizing the total amount of commu-
nicated data. We proved that depending on the proportion,
the optimal partition will be one of the three described in
the paper. While motivated by optimization of data parallel
applications on modern heterogeneous hybrid servers, our
solution, however, does not take into account the intrinsic het-
erogeneity of data links between devices in such platforms.
Therefore, we conducted experiments on a modern hybrid
server, integrating three heterogeneous devices, to study the
applicability of our theoretical solutions in practice. The
experiments showed that in the case of moderately heteroge-
neous data links (9.7, 6.3 and 3.6 GB/s), the model-predicted
performance, calculated using the average bandwidth of the
data links of 6.6 GB/s, appeared accurate enough to correctly
select the partition minimizing the communication time.
Moreover, our preliminary experiments show that incorpora-
tion of the heterogeneity of data links in the communication
performance model will significantly improve its predictive
accuracy. This motivates us to study the extended partitioning
problem where the cost of moving data between processors
can be different for different pairs of processors.

It should be noted that our mathematical solution will
return the optimal partition, minimizing the communication
cost, for any given proportion, not necessarily load balanced.
This is important as the state-of-the-art methods of mini-
mization of the computation time of data parallel applications
on modern multicore platforms often return load-imbalanced
workload distributions [18]–[20], but our algorithm will be
able to minimize their communication cost as well.

Twomain results of our study of the energy cost of commu-
nication are as follows. First, our relatively straightforward
theoretical energy model of communication appeared accu-
rate enough to correctly select the energy optimal partition.
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Second, we found that the performance optimal partition is
not necessarily energy optimal. Indeed, for the ratio SP : SQ :
SR = 1 : 0.7 : 0.1, the Blocked Rectangle (BR) partition
was the energy optimal but the Square Rectangle (SR) one –
performance optimal. This is explained by a high level of
heterogeneity in energy efficiency of data links on our exper-
imental platform. While their performance heterogeneity of
9.7 : 6.3 : 3.6 is rather moderate, the energy hetero-
geneity of 4.30 : 12.69 : 62.9 is much higher. Therefore,
although the SR partition minimizes both the amount of data
moved between the processors and the communication time,
the amount of data moved through the most energy expensive
link will almost triple in comparison with the BR partition,
resulting in a surge of energy consumption. To the best of
our knowledge, this is the first work studying the impact of
data partitioning on the energy communication cost of the
application. While there have been some works on energy
optimization through workload partitioning [30], [31], they
only address the energy cost of computation and do not
consider the energy cost of communication.

IX. ONGOING WORK AND FUTURE DIRECTION
In this paper, we solved the problem of communication
optimal partitioning of a square computation domain over
three heterogeneous processors, We also proposed an energy
model of communication predicting the dynamic energy
consumption for a partition, and designed and performed
experiments to validate the model. We found out that this
energy model predicts, and the experiments confirm, that the
performance-optimal partition does not necessarily have to be
energy optimal.

The next step would be to solve the problem of com-
munication optimal partitioning of a square computational
domain over three heterogeneous processors when taking into
account the heterogeneity of the communicating links.We are
currently working on this extended problem of heterogeneous
communication links and in the process of formulating a solu-
tion by taking into account the bandwidth of communication
links between the heterogeneous processors.
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