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Abstract 

 
     The paper presents SmartGridSolve, an extension 
of GridSolve, the programming system for high 
performance computing.  The extension is aimed at 
higher performance of Grid applications by providing 
the functionality for collective mapping of a group of 
tasks on to a network topology that is fully connected. 
This functionality was achieved with only a minor 
addition to the GridRPC API.  The key to the 
implementation of collective mapping was to separate 
the mapping of tasks from their execution which is one 
atomic operation in the GridRPC model of GridSolve. 
     This paper demonstrates the performance gained by 
collective mapping with a real-life astrophysical 
experiment.  The presented results show a significant 
speedup of 2.17 executing this application on a small 
network of two servers. 
 
1. Introduction 
 
     The remote procedure call (RPC) paradigm [1] is 
widely used in distributed computing.  It provides a   
straightforward procedure for executing parts of an 
application on a remote computer.  To execute a RPC, 
the application programmer does not need to learn a 
new programming language but merely use the RPC 
API.  Using the API the application programmer 
specifies the remote task to be performed, the server to 
execute the task, the location of the input data on the 
user’s computer required by the task and the location 
on the user’s computer where the results will be stored. 
The execution of the remote call involves transferring 
input data from the user’s computer to the remote 
computer, executing the task on the remote server and 
delivering output data from the remote computer to the 
user’s one. 

     GridRPC [2] is an emerging standard promoted by 
the Global Grid Forum which extends the traditional 
RPC.  GridRPC differs from the traditional RPC in that 
the programmer does not need to specify the server to 
execute the task.  When the programmer does not 
specify the server, the middleware system which 
implements the GridRPC API is responsible for 
finding the remote executing server.  When the 
program runs, each GridRPC call results in the 
middleware mapping the call to a remote server and 
then the middleware is responsible for the execution of 
that task on the mapped server.  A number of grid 
middleware systems have recently become GridRPC 
compliant including GridSolve [3], Ninf-G [4] and 
DIET [5]. 
     This simple extension to the RPC however has 
some limitations affecting the performance of Grid 
applications.  When using the traditional GridRPC to 
execute tasks remotely, the mapping and execution of 
the task is one atomic operation which cannot be 
separated.  As a result, each task is mapped separately 
and independently of other tasks of the application. 
This model supports minimization of the execution 
time of each individual task of the application rather 
than the minimization of the execution time of the 
whole application.   Mapping tasks individually results 
in mapping solutions which are far from optimal.  If 
tasks are mapped as they are called, the mapping 
heuristic is unable to take into account any of the tasks 
that follow the task being mapped.  Consequently, the 
mapping heuristic does not have the ability to 
optimally balance the load of computation and 
communication.  Another consequence of mapping 
tasks in this way is that dependencies between tasks 
are not known at the time of mapping.  Therefore this 
approach to mapping forces bridge communication. 
Bridge communication occurs when the output of one 
task is required as an input to another task.  In this 
case, using the traditional GridRPC, the output of the 



first task must be sent back to the client and the client 
then subsequently sends it to the server executing the 
second task when it is called.  Eliminating bridge 
communication can significantly decrease the overall 
communication time of an application and hence 
improve the overall performance of the application. 
     In this paper we propose an extension of the 
traditional GridRPC which would allow a group of 
tasks to be mapped collectively.  Namely, in the 
execution model of GridRPC we propose to separate 
the mapping of tasks from their execution. 
SmartGridSolve, which is an extension to GridSolve is 
an implementation of this extended model. 
SmartNetSolve [6], which extended NetSolve [7] was 
previously implemented to allow for collective 
mapping of tasks but has since been re-implemented 
for GridSolve to support the emerging GridRPC 
model.  
     There are a number of advantages of mapping tasks 
collectively.  When a group of tasks is mapped 
collectively the mapping heuristic can improve the 
performance of that group by 

• more effectively balancing the load of 
computation of the group of tasks 

• more effectively balancing the load of 
communication of the group of tasks 

• reducing the overall volume of 
communication of the group by eliminating 
bridge communication either by caching or 
direct data transfers between servers  

     SmartGridSolve has extended GridSolve to support 
collective mapping of a group of tasks by separating 
the execution from the mapping of tasks in 
GridSolve’s execution model.   
     In addition the traditional client-server model of 
GridRPC has been extended so that the group of tasks 
can be collectively mapped on to a network topology 
which is fully connected.  This is a network topology 
where all servers can communicate directly or server 
can cache their outputs locally.  
     The mapping of a group of tasks on a fully 
connected network not only involves the mapping of 
tasks to servers but also the mapping of virtual links 
between tasks (i.e. links representing data 
dependencies) on to the communication paths of the 
network.  This increases the mapping solution space 
and allows for further optimization to be achieved by 
choosing the optimal paths to traverse between servers. 
     The SmartGridSolve extension is incremental and 
interoperable with the current version of GridSolve.  If 
SmartGridSolve is installed only on the client side, the 
system will be extended to allow for collective 
mapping.  If SmartGridSolve is installed on the client 

side and on any of the servers in the network, the 
system will be extended to allow for collective 
mapping on a partially connected network or if it’s 
installed on all servers, the network will be fully 
connected. 
     [8][9][10] have extended the GridRPC model to 
enable direct communication to elimate bridge 
communication.  However, these proposed extensions 
do not exploit the full potential for minimizing the 
execution time of a group of tasks on a fully connected 
network.  While they eliminate bridge communication 
by enabling direct communication between servers 
they have not changed the fundamental approach to 
mapping of GridRPC, which is to map each task 
individually and independently.  As a result, they have 
not fully exploited the potential for performance 
increase of executing a group of tasks on a fully 
connected network. 
     This paper demonstrates with a real-life experiment 
how SmartGridSolve is better able to exploit the 
potential of executing tasks on a fully connected 
topology by collectively mapping a group of related 
tasks.  The real-life experiment that was used for 
testing and evaluation was an astrophysical application 
that simulates the evolution of clusters of galaxies in 
the universe.  The paper does not pursue the area of 
research of mapping heuristics as there has been 
extensive research already done in this area [11]. 
However, the SmartGridSolve framework is designed 
so that these mapping heuristics can be plugged-in 
within the extended GridRPC model, providing a 
framework for testing and evaluating these heuristics.  
     The paper is outlined as follows.  Section 2 gives an 
overview of SmartGridSolve’s design.  Section 3 
describes the astrophysical application and how it is 
implemented in SmartGridSolve.  Experimental results 
of executing both the GridRPC and the 
SmartGridSolve implementation of the astrophysical 
application are given in section 4.  And finally, section 
5 will conclude the paper. 
 
2. SmartGridSolve design  
 
     An important design goal of SmartGridSolve is to 
provide functionality for collective mapping of a group 
of tasks on a fully connected network, which is both 
practical and easy to use for the application 
programmer.  In addition, the aim is to achieve this 
functionality with only a minor change to the API of 
GridRPC.  Therefore an application programmer can 
gain from the improved performance of collective 
mapping by only making minor changes to any 
application that is already GridRPC enabled.  Another 
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essential design goal is to give the application 
programmer the authority and flexibility to decide 
which parts of an application should be collectively 
mapped.  The application programmer does this by 
using parenthesis to specify the scope of the tasks that 
should be mapped collectively in the application. 
Indeed, if specified, the entire application can be 
mapped collectively.  The design also supports the 
mapping of groups of tasks which contain conditional 
statements (i.e. if, while, for etc.).  Moreover, the 
application programmer can specify the frequency in 
which a group of tasks are mapped.  For example, if a 
segment of an application is iterated through a number 
of times, the application programmer can decide 
whether to map the group on each iteration or to map 
all iterations at the same time.  Both approaches to 
mapping are beneficial under different circumstances. 
Using their knowledge of the environment and the 
application itself the application programmer can 
decide which tasks get mapped and the optimal 
frequency of mappings for their circumstance.  This 
will be described in more detail in section 3.2. 

 
2.1. Design overview 
 
     An overview of the SmartGridSolve framework is 
illustrated in Figure 1 and 2. In Figure 1 a mapping 
heuristic generates a mapping solution for a group of 
tasks based on its task graph and the network 
performance model.  The network performance model 
in SmartGridSolve is a representation of the 
performance of the servers and communication links of 
the fully connected network.  This performance model 
is similar to that previously implemented for 
SmartNetSolve, which was outlined in [6].  Figure 2 
illustrates how a mapping solution generated by a 
mapping heuristic is used during the execution of the 
group of tasks.  The mapping solution not only 
outlines the task-to-server mapping but also the 
communication between the tasks in the group, 
specifying both direct communication and caching. 
     The key to the implementation of this framework is 
separating the mapping of a group of tasks from their 
execution.  This requires that all the tasks of the group 
are discovered and a task graph is generated before any 
members of the group are called for execution.  The 
GridRPC execution model does not support this 
framework as tasks are discovered and mapped when 
they are called for execution. 
     SmartGridSolve solves this problem by iterating 
two times through the calls that have been specified for 
collective mapping.  On the first iteration, each call is 
discovered but not executed.  When the last call in the 
scope of the group of tasks has been discovered, a task 

graph is generated based on the discovery of these 
tasks.  
    At the beginning of the second iteration, the group 
of tasks is mapped by a mapping heuristic (Figure 1). 
Then as each task is called for the second time, it is 
executed according to the mapping solution (Figure 2).  

 

 

 

 

 

 
 
 
          Figure 1. Mapping a group of tasks 
 
 
 

 
 
 

 
 
 
 
 

Figure 2. Executing a group of tasks 
 
 
3. SmartGridSolve test application: The 
evolution of cluster of galaxies  
 
     In this section we introduce Hydropad, which is an 
astrophysical application written by Claudio Gheller 
[12], that simulates the evolution of clusters of galaxies 
in the universe and we show how it was implemented  
in both GridRPC (section 3.1) and SmartGridSolve 
(section 3.2) .  
     The cosmological model, that this application is 
based on, has the assumption that the universe is 
composed of two different kinds of matter.  The first is 
baryonic matter, which is directly observed and forms 
all bright objects, and the second is dark matter, which 
accounts for most of the gravitational mass in the 
Universe.  The interaction between the two 
components is regulated by a gravitational component, 
which together calculates the movement of clusters of 
galaxies in the universe. 
     Figure 3 outlines the work-flow of the Hydropad 
application.  The evolution part of the application 
consists of three tasks, the gravitational task, the dark 



nb_evolutions=2; 
for(i=0;i<nb_evolutions;i++) { 
   ...                                                 
   grpc_call(grav_hndl,phiold,...); 
   grpc_call_async(dark_hndl,&sid_dark,x3dm,...); 
   grpc_call_async(bary_hndl,&sid_bary,v3bm,...); 
   
   /* wait for non blocking calls to finish */ 
   grpc_wait(sid_dark); 
   grpc_wait(sid_bary); 
   ... 
} 

matter task and the baryonic matter task.  For every 
time step in the evolution of the universe, the 
gravitation task first calculates the gravitational force 
and subsequently, the dark matter and the baryonic 
matter task are executed in parallel, calculating the 
new position and velocity of their respective types of 
matter.  This evolution step is iterated through a 
specified number of times, with the output of the 
previous evolution step being the input to the next. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 3. Overview of the Hydropad 
application 

 
     The computational load of the baryonic matter task 
(compbm) is far greater than the computation load of 
dark matter task (compdm), where compbm>>compdm 
and in terms of communication, the communication 
load for the dark matter task is far greater than for the 
baryonic matter, where commdm>commbm. 

 
3.1. GridRPC implementation of Hydropad  
 
     Figure 4 outlines the GridRPC implementation of 
an evolutionary step of Hydropad.  In the main 
evolution loop, the gravitational task is executed 
sequentially with the blocking call “grpc_call”, while 
the dark matter and baryonic matter tasks are executed 
in parallel using the GridPRC call “grpc_call_async”.  
The first argument of each call specifies the handle of 
the remote task to be performed.  Each of the 
subsequent arguments specifies the input and output 
parameters of the task.  When the program runs, each 
grpc_call  and grpc_call_async  function results in the 
middleware mapping the call to a remote server and 
then the middleware executing the task on the mapped 
server. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Hydropad implemented in GridRPC 

 
     On each iteration of the loop, the first grpc_call 
results in the gravitational task first being mapped to a 
server.  The inputs are then sent to the server and the 
task is executed.  The client then waits until the task is 
finished executing and all the outputs have been 
returned as it is a blocking task.  At this point it 
proceeds to the next call, which is the dark matter non-
blocking call.  When this is called, the task is mapped 
and the execution is initiated.  As it is a non-blocking 
call the client does not wait for the task to finish and 
proceeds immediately to the next call.  When the 
baryonic matter task is called, it is mapped and again 
the client initiates the execution but does not wait for 
the execution to finish.  Therefore the baryonic and 
dark matter tasks are executed in parallel.  After this 
the client waits for the outputs of both these parallel 
tasks using the grpc_wait calls.   
     It is evident from the aforementioned description of 
the execution of these tasks that the tasks are mapped 
individually, whether they are executed in sequence or 
parallel and that all outputs of tasks are sent back to 
the client, whether dependencies exist or not.  Where 
dependencies do exist, which is the case when the 
output of one task is the input to another, the output is 
sent back to the client and then it is sent from the client 
to the subsequent dependent remote task when it is 
called.  

 
3.1. SmartGridSolve implementation of 
Hydropad  
 
      Figure In this section we present implementations 
of the Hydropad application in SmartGridSolve.  The 
first is shown in Figure 5.  This shows the 
SmartGridSolve implementation of the code fragment 
shown in Figure 4.  One can see that it differs from the 
GridRPC code by one extra call to gs_smart_map, 
which is part of the SmartGridSolve API. 
 
 
 
 



nb_evolutions=2; 
gs_smart_map(“ex_map”){ 
   for(i=0;i<nb_evolutions;i++) { 
      ...                                                                   
      grpc_call(grav_hndl,phiold,...); 
      grpc_call_async(dark_hndl,&sid_dark,x3dm,...); 
      grpc_call_async(bary_hndl,&sid_bary,v3bm,...); 
   
      /* wait for non blocking calls to finish */ 
      grpc_wait(sid_dark); 
      grpc_wait(sid_bary); 
      ... 
   } 
} 

 
 
 
 
 
 
 
 
 
 

 
Figure 5. Hydropad implemented in 

SmartGridSolve 
 

     In this example, two evolutions steps are mapped at 
the same time using the mapping heuristic specified by 
the application programmer, which in this case is the 
exhaustive mapping heuristic.  
     When the gs_smart_map function is executed each 
call within its parenthesis will be iterated through 
twice.  On the first iteration, each grpc_call and 
grpc_call_async is discovered but not executed.  At 
the beginning of the second iteration, when all the 
tasks within the scope have been discovered, a task 
graph is generated that is based on the discovery of this 
group of tasks.  The task graph generated for the code 
fragment in Figure 5 is illustrated in Figure 6. 
     The rectangles in the graph represent remote tasks, 
the diamonds represent the client and the circles 
represent the input/outputs of the remote tasks.  The 
incoming arrows of these circles indicate their source, 
whether it’s the client or another remote task and the 
outgoing arrows indicate their destination.  
     The task graph highlights the order of tasks, their 
synchronisation (whether they are executed in 
sequence or parallel), the dependencies between tasks, 
the load of computation and communication of each 
task in the group.  It is evident from this task graph 
that there are numerous dependencies between remote 
tasks in the same evolution step but also between 
remote tasks in subsequent evolution steps.  Using this 
graph and the performance model of the fully 
connected network, the mapping heuristics can 
generate a mapping solution for the group.  This 
mapping solution eliminates bridge communication, 
either by caching or direct communication and more 
effectively balances the load of computation and 
communication of the group over the fully connected 
network. 
     This mapping solution is subsequently implemented 
on the second iteration through the tasks.  When each 
task is called on the second iteration, the task is 
executed on the server specified in the task-to-server 
mapping of the mapping solution.  The inputs to each 

task are received from the location specified by the 
communication scheme of the mapping solution, which 
is either another remote server or the client.  When the 
task has finished its execution, the output is then sent 
to the location specified in the communication scheme 
of the mapping solution.  Again, this location may be 
another server or the client.   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Task graph for two evolution steps 

 
     Figure 6 is a task graph generated for only two 
cycles of the evolution step.  It is also possible to map 
a significantly larger number of evolution steps, by 
increasing the value of the nb_evolutions variable in 
Figure 5.  This type of coarse mapping would be more 
favourable on a distributed environment which is 
highly stable, for example a distributed environment 
that consisted of dedicated servers or servers that are 
idle.  However if the environment is highly 
changeable, which would be the case if the distributed 
environment consisted of workstations currently being 
used, then it might be more advantageous to have a 
higher frequency of mappings.  It may also be 
necessary to increase the frequency of mappings, if the 
task graph is altered as a result of the execution of one 
of the remote tasks in the task graph.  For example, 
this may be the case if there is a conditional statement 
in the group of tasks that is based on an output of a 
remote task in the group (task A).  If this conditional 
statement determines whether another remote task 
(task B) gets executed then the shape of the task graph 
depends on the output of task A.  When the shape of a 
task graph is determined by the outputs of a remote 
task in the group then it is important to increase the 
frequency of mappings and perform mappings 
whenever the task graph is altered.  To ensure the 
shape of the task graph is accurate in the 



 nb_evolutions=1000; 
 for(i=0;i<nb_evolutions;i++) { 
     gs_smart_map(“ex_map”){ 
       nb_steps=func(...);     //assign dynamically 
       for(j=0;j<nb_steps;j++,i++){ 
          ... 
          grpc_call(grav_hndl, phiold, ...); 
          grpc_call_async(dark_hndl,&sid_dark,x3dm,.); 
          grpc_call_async(bary_hndl,&sid_bary,v3bm,.); 
          grpc_wait(sid_dark); 
          grpc_wait(sid_bary); 
          ... 
       } 
    } 

aforementioned case, the task graph should be 
generated and mapped every time task A is executed. 
     It is also possible to make this mapping frequency 
more dynamically adaptive.  In Figure 7, the value 
assigned to the variable nb_steps indicates how many 
evolution steps should be mapped collectively at the 
next point of execution of the application.   This value 
can be fine-tuned during the execution of the 
application to determine the optimal number of 
evolutions to map as a group.  In this example, the 
value for nb_steps is updated and fine-tuned using an 
evaluation function func().   This may be a function 
that changes the value of the variable nb_steps based 
on an evaluation of the performances of previous 
executions of collective mappings. 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Dynamically determining the optimal 

group size to map 
 

     This approach can be used to find the optimal 
mapping for an application on any given distributed 
environment.  Once determined, this optimal number 
can then be assigned statically for each subsequent 
execution of the application on this environment 
without the need for an evaluation function.   
     However, in the case were the environment is 
highly changeable this optimal number of evolutions 
may vary throughout the execution of the application 
and therefore it may be more beneficial to maintain 
this dynamic update of nb_steps variable at run-time. 
 
5. Experimental Results 
 
     In this section we compare execution times of the 
GridSolve and SmartGridSolve implementations of the 
Hydropad application.  The underlying network 
consisted of three machines: a client and two remote 
servers, S1 and S2.  In terms of performance S1, which 
performed 140Mflop/s, was slower than S2, which 
performed 523Mflop/s.  The bandwidth from the client 
to S1 was 1Gb/s while the bandwidth from the client to 
S2 was 100Mb/s.  The bandwidth between both servers 
was 100Mb/s.  This configuration represented a 

realistic representation of a grid environment in which 
a client is connected to two remote servers, one that is 
slow but in close proximity and one which is fast but is 
at a further distance from the client.   
     Figure 8 shows a comparison of the performance of 
the GridSolve and the SmartGridSolve implementation 
of Hydropad performing six iterations of the evolution 
step.  In this experiment, tasks were mapped in the 
standard way for GridSolve (i.e. individually) and all 
six iterations were mapped collectively in 
SmartGridSolve.  Figure 8a shows the difference in 
execution times for increasing input data sizes.  The 
input data size proportionally increased both the 
computation and communication load of each remote 
task.  Figure 8b shows the speedup SmartGridSolve 
achieved over GridSolve for increasing input data 
sizes.  The speedup was consistently above 2 and 
reached 2.17 when the input data size was above 
500MB. 

 
 
 
 
 
 
 
 

 
 
Figure 8. a) Execution times of SmartGridsolve 
and GridSolve implementations of Hydropad. 
b) Speedup obtained by SmartGridSolve over 

GridSolve. 
 
     GridSolve based its mapping on each individual 
task and the performance model of a star network.  As 
a result, it mapped each task on each iteration to the 
fastest server S2 as this yielded the lowest execution 
for each individual task.   For each task executed, 
every input was sent to S2 from the client and every 
output was sent back from S2 to the client, despite 
there being dependencies between tasks.  In addition, 
this mapping resulted in dark matter and baryonic 
matter both executing on S2, despite being executed in 
parallel.  That meant that server S2 was heavily load 
with computation and its client-server link was heavily 
loaded with communication, which increased the 
overall execution time of both parallel tasks. 
     However, SmartGridSolve evaluated the task graph 
and the performance model of the fully connected 
network when mapping.  Therefore it could eliminate 
bridge communication by exploiting the dependencies 
between the tasks and proportionally distribute the 



computational load and communication load of parallel 
tasks over the fully connected network.   
     As a result, on every iteration it mapped the larger 
task (baryonic matter) to the faster server (S2) and the 
smaller task (dark matter) to the slower server (S1). 
Since the computational load was proportionally 
distributed over the network, the overall computation 
time of executing both parallel tasks was decreased.  In 
addition, as a result of this mapping there was 
improved load balancing of client-server 
communication, which was distributed over two 
communication links as opposed to heavily loading a 
single link.  This decreased the overall communication 
time of both parallel tasks. 
     To reduce the overall volume of communication, 
SmartGridSolve eliminated bridge communication by  
exploiting both the dependencies between tasks in the 
same evolution step and between tasks of subsequent 
evolution steps.  Figure 9 shows the communication 
scheme that SmartGridSolve implemented for two 
evolution steps.  
 

 
 
 
 
 
 
 
 
 
 
 

Figure 9. Caching and direct 
communication between servers for two 

evolution steps. 
 
     The solid line indicates direct communication 
between servers and the broken line with the ellipses 
indicates caching.  For simplicity the diagram has 
omitted any communication with the client.  On each 
evolution step, outputs of the gravitational task that 
were required by the dark matter task were sent 
directly from S2 to S1.  Outputs of the gravitational 
task that were required by the baryonic matter task 
were cached locally on S2.   
     It is evident from Figure 6 that there are also 
dependencies that existed between subsequent 
evolutions.  Outputs of baryonic matter and dark 
matter of one evolution step were required by the 
gravitation task of the next evolution step.  Also the 
outputs of dark matter and baryonic matter of one 
evolution step were required by the same tasks on the 
next evolution step.  These dependencies between 

subsequent evolution steps were also exploited, either 
by direct communication or caching as shown in 
Figure 9. 

Figure 10 illustrates the speedup of 
SmartGridSolve over GridSolve for mapping 
increasing number of evolutions collectively when the 
input data size was 150MB.  It is apparent from this 
graph that the speedup increased sharply from 1 to 2 
iterations then there was moderate increase from 2 to 6 
and a minimal increase thereafter.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Speedup of SmartGridSolve over 
GridSolve for increasing number of evolution 

steps mapped collectively. 
 
    The shape of this curve can be explained as follows. 
When only one evolution was mapped collectively, 
dependencies between subsequent evolutions could not 
be exploited.  That meant that bridge communication 
between evolutions was forced and this dependent data 
was sent between the servers via the client.  However, 
when two evolution steps were mapped collectively 
then all the dependencies between two evolution steps 
could be exploited, either through direct 
communication or caching.  Therefore bridge 
communication between evolution steps occurred after 
every 2nd evolution step and therefore occurred ½ as 
often than when one evolution step was mapped 
collectively.  Therefore the speedup of the application 
increased sharply.  When three evolution steps were 
mapped collectively then all the dependencies between 
three evolution steps could be exploited.  Therefore 
bridge communication between evolution steps 
occurred after every 3rd evolution step and therefore 
occurred 1/3 as often as when one evolution step was 
mapped collectively but only a 1/6 as often as when 
two evolution steps were mapped collectively.  
Therefore there was only a moderate increase in the 
speedup over GridSolve by increasing the number of 
evolutions mapped from 2 to 3.  This continued until 



the speedup from increasing the number of evolutions 
steps mapped collectively became insignificant.  
     In Figure 7, we demonstrated the possibility of 
having a function which could dynamically determine 
the optimal number of tasks to be mapped collectively 
for a given application on a given environment.  An 
example for a basic implementation of this function 
could be a function that dynamically generates a graph 
of the performance of mappings similar to the one 
shown in Figure 10.  The function could then 
determine the optimal number of tasks to map by 
evaluating this graph at any given point in an 
application’s execution. 
 
5. Conclusion 
 
     SmartGridSolve’s simple and easy to use API 
provides the functionality for collective mapping of 
groups of tasks in GridRPC enabled applications on to 
fully connected networks.  The key to the 
implementation of collective mapping was to separate 
the mapping of tasks from their execution which is one 
atomic operation in the GridRPC model of GridSolve. 
This functionality was achieved with only a minor 
addition to the GridRPC API.  Therefore an 
application programmer can gain from the improved 
performance of collective mapping by only making 
minor changes to any application that is already 
GridRPC enabled.  With the API the application 
programmer can indicate which tasks get mapped 
collectively and determine the frequency in which 
iterative sections of an application get mapped.  This 
gives them the means to use their knowledge of the 
application and the executing environment to further 
increase the performance of the application.  An 
approach was also presented that gave the application 
programmer the flexibility to dynamically update and 
fine tuned this frequency.   
     The experimental results presented in this paper 
show that SmartGridSolve significantly improved the 
performance of Grid enabled applications.  Through 
collective mapping, the astrophysical application 
achieved a speedup of approximately 2.17 over 
GridSolve. 
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