
Experiments with SmartGridSolve: Achieving Higher Performance
by Improving the GridRPC Model

Thomas Brady, Michele Guidolin, Alexey Lastovetsky
School of Computer Science and Informatics

University College Dublin,
Belfield, Dublin 4, Ireland

 { thomasbrady, michele.guidolin, alexey.lastovetsky }@ucd.ie

Abstract

 The paper presents SmartGridSolve, an extension
of GridSolve, the programming system for high
performance computing. The extension is aimed at
higher performance of Grid applications by providing
the functionality for collective mapping of a group of
tasks on to a network topology that is fully connected.
This functionality was achieved with only a minor
addition to the GridRPC API. The key to the
implementation of collective mapping was to separate
the mapping of tasks from their execution which is one
atomic operation in the GridRPC model of GridSolve.
 This paper demonstrates the performance gained by
collective mapping with a real-life astrophysical
experiment. The presented results show a significant
speedup of 2.17 executing this application on a small
network of two servers.

1. Introduction

 The remote procedure call (RPC) paradigm [1] is
widely used in distributed computing. It provides a
straightforward procedure for executing parts of an
application on a remote computer. To execute a RPC,
the application programmer does not need to learn a
new programming language but merely use the RPC
API. Using the API the application programmer
specifies the remote task to be performed, the server to
execute the task, the location of the input data on the
user’s computer required by the task and the location
on the user’s computer where the results will be stored.
The execution of the remote call involves transferring
input data from the user’s computer to the remote
computer, executing the task on the remote server and
delivering output data from the remote computer to the
user’s one.

 GridRPC [2] is an emerging standard promoted by
the Global Grid Forum which extends the traditional
RPC. GridRPC differs from the traditional RPC in that
the programmer does not need to specify the server to
execute the task. When the programmer does not
specify the server, the middleware system which
implements the GridRPC API is responsible for
finding the remote executing server. When the
program runs, each GridRPC call results in the
middleware mapping the call to a remote server and
then the middleware is responsible for the execution of
that task on the mapped server. A number of grid
middleware systems have recently become GridRPC
compliant including GridSolve [3], Ninf-G [4] and
DIET [5].
 This simple extension to the RPC however has
some limitations affecting the performance of Grid
applications. When using the traditional GridRPC to
execute tasks remotely, the mapping and execution of
the task is one atomic operation which cannot be
separated. As a result, each task is mapped separately
and independently of other tasks of the application.
This model supports minimization of the execution
time of each individual task of the application rather
than the minimization of the execution time of the
whole application. Mapping tasks individually results
in mapping solutions which are far from optimal. If
tasks are mapped as they are called, the mapping
heuristic is unable to take into account any of the tasks
that follow the task being mapped. Consequently, the
mapping heuristic does not have the ability to
optimally balance the load of computation and
communication. Another consequence of mapping
tasks in this way is that dependencies between tasks
are not known at the time of mapping. Therefore this
approach to mapping forces bridge communication.
Bridge communication occurs when the output of one
task is required as an input to another task. In this
case, using the traditional GridRPC, the output of the

first task must be sent back to the client and the client
then subsequently sends it to the server executing the
second task when it is called. Eliminating bridge
communication can significantly decrease the overall
communication time of an application and hence
improve the overall performance of the application.
 In this paper we propose an extension of the
traditional GridRPC which would allow a group of
tasks to be mapped collectively. Namely, in the
execution model of GridRPC we propose to separate
the mapping of tasks from their execution.
SmartGridSolve, which is an extension to GridSolve is
an implementation of this extended model.
SmartNetSolve [6], which extended NetSolve [7] was
previously implemented to allow for collective
mapping of tasks but has since been re-implemented
for GridSolve to support the emerging GridRPC
model.
 There are a number of advantages of mapping tasks
collectively. When a group of tasks is mapped
collectively the mapping heuristic can improve the
performance of that group by

• more effectively balancing the load of
computation of the group of tasks

• more effectively balancing the load of
communication of the group of tasks

• reducing the overall volume of
communication of the group by eliminating
bridge communication either by caching or
direct data transfers between servers

 SmartGridSolve has extended GridSolve to support
collective mapping of a group of tasks by separating
the execution from the mapping of tasks in
GridSolve’s execution model.
 In addition the traditional client-server model of
GridRPC has been extended so that the group of tasks
can be collectively mapped on to a network topology
which is fully connected. This is a network topology
where all servers can communicate directly or server
can cache their outputs locally.
 The mapping of a group of tasks on a fully
connected network not only involves the mapping of
tasks to servers but also the mapping of virtual links
between tasks (i.e. links representing data
dependencies) on to the communication paths of the
network. This increases the mapping solution space
and allows for further optimization to be achieved by
choosing the optimal paths to traverse between servers.
 The SmartGridSolve extension is incremental and
interoperable with the current version of GridSolve. If
SmartGridSolve is installed only on the client side, the
system will be extended to allow for collective
mapping. If SmartGridSolve is installed on the client

side and on any of the servers in the network, the
system will be extended to allow for collective
mapping on a partially connected network or if it’s
installed on all servers, the network will be fully
connected.
 [8][9][10] have extended the GridRPC model to
enable direct communication to elimate bridge
communication. However, these proposed extensions
do not exploit the full potential for minimizing the
execution time of a group of tasks on a fully connected
network. While they eliminate bridge communication
by enabling direct communication between servers
they have not changed the fundamental approach to
mapping of GridRPC, which is to map each task
individually and independently. As a result, they have
not fully exploited the potential for performance
increase of executing a group of tasks on a fully
connected network.
 This paper demonstrates with a real-life experiment
how SmartGridSolve is better able to exploit the
potential of executing tasks on a fully connected
topology by collectively mapping a group of related
tasks. The real-life experiment that was used for
testing and evaluation was an astrophysical application
that simulates the evolution of clusters of galaxies in
the universe. The paper does not pursue the area of
research of mapping heuristics as there has been
extensive research already done in this area [11].
However, the SmartGridSolve framework is designed
so that these mapping heuristics can be plugged-in
within the extended GridRPC model, providing a
framework for testing and evaluating these heuristics.
 The paper is outlined as follows. Section 2 gives an
overview of SmartGridSolve’s design. Section 3
describes the astrophysical application and how it is
implemented in SmartGridSolve. Experimental results
of executing both the GridRPC and the
SmartGridSolve implementation of the astrophysical
application are given in section 4. And finally, section
5 will conclude the paper.

2. SmartGridSolve design

 An important design goal of SmartGridSolve is to
provide functionality for collective mapping of a group
of tasks on a fully connected network, which is both
practical and easy to use for the application
programmer. In addition, the aim is to achieve this
functionality with only a minor change to the API of
GridRPC. Therefore an application programmer can
gain from the improved performance of collective
mapping by only making minor changes to any
application that is already GridRPC enabled. Another

Mapping

Performance Model of
Fully Connected Network

Task Graph

.
..

....

..

Mapping Heuristic N

……

Mapping Heuristic 2

Mapping Heuristic 1

Mapping Heuristics

Client

Mapping

caching

server
comm

essential design goal is to give the application
programmer the authority and flexibility to decide
which parts of an application should be collectively
mapped. The application programmer does this by
using parenthesis to specify the scope of the tasks that
should be mapped collectively in the application.
Indeed, if specified, the entire application can be
mapped collectively. The design also supports the
mapping of groups of tasks which contain conditional
statements (i.e. if, while, for etc.). Moreover, the
application programmer can specify the frequency in
which a group of tasks are mapped. For example, if a
segment of an application is iterated through a number
of times, the application programmer can decide
whether to map the group on each iteration or to map
all iterations at the same time. Both approaches to
mapping are beneficial under different circumstances.
Using their knowledge of the environment and the
application itself the application programmer can
decide which tasks get mapped and the optimal
frequency of mappings for their circumstance. This
will be described in more detail in section 3.2.

2.1. Design overview

 An overview of the SmartGridSolve framework is
illustrated in Figure 1 and 2. In Figure 1 a mapping
heuristic generates a mapping solution for a group of
tasks based on its task graph and the network
performance model. The network performance model
in SmartGridSolve is a representation of the
performance of the servers and communication links of
the fully connected network. This performance model
is similar to that previously implemented for
SmartNetSolve, which was outlined in [6]. Figure 2
illustrates how a mapping solution generated by a
mapping heuristic is used during the execution of the
group of tasks. The mapping solution not only
outlines the task-to-server mapping but also the
communication between the tasks in the group,
specifying both direct communication and caching.
 The key to the implementation of this framework is
separating the mapping of a group of tasks from their
execution. This requires that all the tasks of the group
are discovered and a task graph is generated before any
members of the group are called for execution. The
GridRPC execution model does not support this
framework as tasks are discovered and mapped when
they are called for execution.
 SmartGridSolve solves this problem by iterating
two times through the calls that have been specified for
collective mapping. On the first iteration, each call is
discovered but not executed. When the last call in the
scope of the group of tasks has been discovered, a task

graph is generated based on the discovery of these
tasks.
 At the beginning of the second iteration, the group
of tasks is mapped by a mapping heuristic (Figure 1).
Then as each task is called for the second time, it is
executed according to the mapping solution (Figure 2).

 Figure 1. Mapping a group of tasks

Figure 2. Executing a group of tasks

3. SmartGridSolve test application: The
evolution of cluster of galaxies

 In this section we introduce Hydropad, which is an
astrophysical application written by Claudio Gheller
[12], that simulates the evolution of clusters of galaxies
in the universe and we show how it was implemented
in both GridRPC (section 3.1) and SmartGridSolve
(section 3.2) .
 The cosmological model, that this application is
based on, has the assumption that the universe is
composed of two different kinds of matter. The first is
baryonic matter, which is directly observed and forms
all bright objects, and the second is dark matter, which
accounts for most of the gravitational mass in the
Universe. The interaction between the two
components is regulated by a gravitational component,
which together calculates the movement of clusters of
galaxies in the universe.
 Figure 3 outlines the work-flow of the Hydropad
application. The evolution part of the application
consists of three tasks, the gravitational task, the dark

nb_evolutions=2;
for(i=0;i<nb_evolutions;i++) {
 ...
 grpc_call(grav_hndl,phiold,...);
 grpc_call_async(dark_hndl,&sid_dark,x3dm,...);
 grpc_call_async(bary_hndl,&sid_bary,v3bm,...);

 /* wait for non blocking calls to finish */
 grpc_wait(sid_dark);
 grpc_wait(sid_bary);
 ...
}

matter task and the baryonic matter task. For every
time step in the evolution of the universe, the
gravitation task first calculates the gravitational force
and subsequently, the dark matter and the baryonic
matter task are executed in parallel, calculating the
new position and velocity of their respective types of
matter. This evolution step is iterated through a
specified number of times, with the output of the
previous evolution step being the input to the next.

Figure 3. Overview of the Hydropad
application

 The computational load of the baryonic matter task
(compbm) is far greater than the computation load of
dark matter task (compdm), where compbm>>compdm
and in terms of communication, the communication
load for the dark matter task is far greater than for the
baryonic matter, where commdm>commbm.

3.1. GridRPC implementation of Hydropad

 Figure 4 outlines the GridRPC implementation of
an evolutionary step of Hydropad. In the main
evolution loop, the gravitational task is executed
sequentially with the blocking call “grpc_call”, while
the dark matter and baryonic matter tasks are executed
in parallel using the GridPRC call “grpc_call_async”.
The first argument of each call specifies the handle of
the remote task to be performed. Each of the
subsequent arguments specifies the input and output
parameters of the task. When the program runs, each
grpc_call and grpc_call_async function results in the
middleware mapping the call to a remote server and
then the middleware executing the task on the mapped
server.

Figure 4. Hydropad implemented in GridRPC

 On each iteration of the loop, the first grpc_call
results in the gravitational task first being mapped to a
server. The inputs are then sent to the server and the
task is executed. The client then waits until the task is
finished executing and all the outputs have been
returned as it is a blocking task. At this point it
proceeds to the next call, which is the dark matter non-
blocking call. When this is called, the task is mapped
and the execution is initiated. As it is a non-blocking
call the client does not wait for the task to finish and
proceeds immediately to the next call. When the
baryonic matter task is called, it is mapped and again
the client initiates the execution but does not wait for
the execution to finish. Therefore the baryonic and
dark matter tasks are executed in parallel. After this
the client waits for the outputs of both these parallel
tasks using the grpc_wait calls.
 It is evident from the aforementioned description of
the execution of these tasks that the tasks are mapped
individually, whether they are executed in sequence or
parallel and that all outputs of tasks are sent back to
the client, whether dependencies exist or not. Where
dependencies do exist, which is the case when the
output of one task is the input to another, the output is
sent back to the client and then it is sent from the client
to the subsequent dependent remote task when it is
called.

3.1. SmartGridSolve implementation of
Hydropad

 Figure In this section we present implementations
of the Hydropad application in SmartGridSolve. The
first is shown in Figure 5. This shows the
SmartGridSolve implementation of the code fragment
shown in Figure 4. One can see that it differs from the
GridRPC code by one extra call to gs_smart_map,
which is part of the SmartGridSolve API.

nb_evolutions=2;
gs_smart_map(“ex_map”){
 for(i=0;i<nb_evolutions;i++) {
 ...
 grpc_call(grav_hndl,phiold,...);
 grpc_call_async(dark_hndl,&sid_dark,x3dm,...);
 grpc_call_async(bary_hndl,&sid_bary,v3bm,...);

 /* wait for non blocking calls to finish */
 grpc_wait(sid_dark);
 grpc_wait(sid_bary);
 ...
 }
}

Figure 5. Hydropad implemented in

SmartGridSolve

 In this example, two evolutions steps are mapped at
the same time using the mapping heuristic specified by
the application programmer, which in this case is the
exhaustive mapping heuristic.
 When the gs_smart_map function is executed each
call within its parenthesis will be iterated through
twice. On the first iteration, each grpc_call and
grpc_call_async is discovered but not executed. At
the beginning of the second iteration, when all the
tasks within the scope have been discovered, a task
graph is generated that is based on the discovery of this
group of tasks. The task graph generated for the code
fragment in Figure 5 is illustrated in Figure 6.
 The rectangles in the graph represent remote tasks,
the diamonds represent the client and the circles
represent the input/outputs of the remote tasks. The
incoming arrows of these circles indicate their source,
whether it’s the client or another remote task and the
outgoing arrows indicate their destination.
 The task graph highlights the order of tasks, their
synchronisation (whether they are executed in
sequence or parallel), the dependencies between tasks,
the load of computation and communication of each
task in the group. It is evident from this task graph
that there are numerous dependencies between remote
tasks in the same evolution step but also between
remote tasks in subsequent evolution steps. Using this
graph and the performance model of the fully
connected network, the mapping heuristics can
generate a mapping solution for the group. This
mapping solution eliminates bridge communication,
either by caching or direct communication and more
effectively balances the load of computation and
communication of the group over the fully connected
network.
 This mapping solution is subsequently implemented
on the second iteration through the tasks. When each
task is called on the second iteration, the task is
executed on the server specified in the task-to-server
mapping of the mapping solution. The inputs to each

task are received from the location specified by the
communication scheme of the mapping solution, which
is either another remote server or the client. When the
task has finished its execution, the output is then sent
to the location specified in the communication scheme
of the mapping solution. Again, this location may be
another server or the client.

Figure 6. Task graph for two evolution steps

 Figure 6 is a task graph generated for only two
cycles of the evolution step. It is also possible to map
a significantly larger number of evolution steps, by
increasing the value of the nb_evolutions variable in
Figure 5. This type of coarse mapping would be more
favourable on a distributed environment which is
highly stable, for example a distributed environment
that consisted of dedicated servers or servers that are
idle. However if the environment is highly
changeable, which would be the case if the distributed
environment consisted of workstations currently being
used, then it might be more advantageous to have a
higher frequency of mappings. It may also be
necessary to increase the frequency of mappings, if the
task graph is altered as a result of the execution of one
of the remote tasks in the task graph. For example,
this may be the case if there is a conditional statement
in the group of tasks that is based on an output of a
remote task in the group (task A). If this conditional
statement determines whether another remote task
(task B) gets executed then the shape of the task graph
depends on the output of task A. When the shape of a
task graph is determined by the outputs of a remote
task in the group then it is important to increase the
frequency of mappings and perform mappings
whenever the task graph is altered. To ensure the
shape of the task graph is accurate in the

 nb_evolutions=1000;
 for(i=0;i<nb_evolutions;i++) {
 gs_smart_map(“ex_map”){
 nb_steps=func(...); //assign dynamically
 for(j=0;j<nb_steps;j++,i++){
 ...
 grpc_call(grav_hndl, phiold, ...);
 grpc_call_async(dark_hndl,&sid_dark,x3dm,.);
 grpc_call_async(bary_hndl,&sid_bary,v3bm,.);
 grpc_wait(sid_dark);
 grpc_wait(sid_bary);
 ...
 }
 }

aforementioned case, the task graph should be
generated and mapped every time task A is executed.
 It is also possible to make this mapping frequency
more dynamically adaptive. In Figure 7, the value
assigned to the variable nb_steps indicates how many
evolution steps should be mapped collectively at the
next point of execution of the application. This value
can be fine-tuned during the execution of the
application to determine the optimal number of
evolutions to map as a group. In this example, the
value for nb_steps is updated and fine-tuned using an
evaluation function func(). This may be a function
that changes the value of the variable nb_steps based
on an evaluation of the performances of previous
executions of collective mappings.

Figure 7. Dynamically determining the optimal

group size to map

 This approach can be used to find the optimal
mapping for an application on any given distributed
environment. Once determined, this optimal number
can then be assigned statically for each subsequent
execution of the application on this environment
without the need for an evaluation function.
 However, in the case were the environment is
highly changeable this optimal number of evolutions
may vary throughout the execution of the application
and therefore it may be more beneficial to maintain
this dynamic update of nb_steps variable at run-time.

5. Experimental Results

 In this section we compare execution times of the
GridSolve and SmartGridSolve implementations of the
Hydropad application. The underlying network
consisted of three machines: a client and two remote
servers, S1 and S2. In terms of performance S1, which
performed 140Mflop/s, was slower than S2, which
performed 523Mflop/s. The bandwidth from the client
to S1 was 1Gb/s while the bandwidth from the client to
S2 was 100Mb/s. The bandwidth between both servers
was 100Mb/s. This configuration represented a

realistic representation of a grid environment in which
a client is connected to two remote servers, one that is
slow but in close proximity and one which is fast but is
at a further distance from the client.
 Figure 8 shows a comparison of the performance of
the GridSolve and the SmartGridSolve implementation
of Hydropad performing six iterations of the evolution
step. In this experiment, tasks were mapped in the
standard way for GridSolve (i.e. individually) and all
six iterations were mapped collectively in
SmartGridSolve. Figure 8a shows the difference in
execution times for increasing input data sizes. The
input data size proportionally increased both the
computation and communication load of each remote
task. Figure 8b shows the speedup SmartGridSolve
achieved over GridSolve for increasing input data
sizes. The speedup was consistently above 2 and
reached 2.17 when the input data size was above
500MB.

Figure 8. a) Execution times of SmartGridsolve
and GridSolve implementations of Hydropad.
b) Speedup obtained by SmartGridSolve over

GridSolve.

 GridSolve based its mapping on each individual
task and the performance model of a star network. As
a result, it mapped each task on each iteration to the
fastest server S2 as this yielded the lowest execution
for each individual task. For each task executed,
every input was sent to S2 from the client and every
output was sent back from S2 to the client, despite
there being dependencies between tasks. In addition,
this mapping resulted in dark matter and baryonic
matter both executing on S2, despite being executed in
parallel. That meant that server S2 was heavily load
with computation and its client-server link was heavily
loaded with communication, which increased the
overall execution time of both parallel tasks.
 However, SmartGridSolve evaluated the task graph
and the performance model of the fully connected
network when mapping. Therefore it could eliminate
bridge communication by exploiting the dependencies
between the tasks and proportionally distribute the

computational load and communication load of parallel
tasks over the fully connected network.
 As a result, on every iteration it mapped the larger
task (baryonic matter) to the faster server (S2) and the
smaller task (dark matter) to the slower server (S1).
Since the computational load was proportionally
distributed over the network, the overall computation
time of executing both parallel tasks was decreased. In
addition, as a result of this mapping there was
improved load balancing of client-server
communication, which was distributed over two
communication links as opposed to heavily loading a
single link. This decreased the overall communication
time of both parallel tasks.
 To reduce the overall volume of communication,
SmartGridSolve eliminated bridge communication by
exploiting both the dependencies between tasks in the
same evolution step and between tasks of subsequent
evolution steps. Figure 9 shows the communication
scheme that SmartGridSolve implemented for two
evolution steps.

Figure 9. Caching and direct
communication between servers for two

evolution steps.

 The solid line indicates direct communication
between servers and the broken line with the ellipses
indicates caching. For simplicity the diagram has
omitted any communication with the client. On each
evolution step, outputs of the gravitational task that
were required by the dark matter task were sent
directly from S2 to S1. Outputs of the gravitational
task that were required by the baryonic matter task
were cached locally on S2.
 It is evident from Figure 6 that there are also
dependencies that existed between subsequent
evolutions. Outputs of baryonic matter and dark
matter of one evolution step were required by the
gravitation task of the next evolution step. Also the
outputs of dark matter and baryonic matter of one
evolution step were required by the same tasks on the
next evolution step. These dependencies between

subsequent evolution steps were also exploited, either
by direct communication or caching as shown in
Figure 9.

Figure 10 illustrates the speedup of
SmartGridSolve over GridSolve for mapping
increasing number of evolutions collectively when the
input data size was 150MB. It is apparent from this
graph that the speedup increased sharply from 1 to 2
iterations then there was moderate increase from 2 to 6
and a minimal increase thereafter.

Figure 10. Speedup of SmartGridSolve over
GridSolve for increasing number of evolution

steps mapped collectively.

 The shape of this curve can be explained as follows.
When only one evolution was mapped collectively,
dependencies between subsequent evolutions could not
be exploited. That meant that bridge communication
between evolutions was forced and this dependent data
was sent between the servers via the client. However,
when two evolution steps were mapped collectively
then all the dependencies between two evolution steps
could be exploited, either through direct
communication or caching. Therefore bridge
communication between evolution steps occurred after
every 2nd evolution step and therefore occurred ½ as
often than when one evolution step was mapped
collectively. Therefore the speedup of the application
increased sharply. When three evolution steps were
mapped collectively then all the dependencies between
three evolution steps could be exploited. Therefore
bridge communication between evolution steps
occurred after every 3rd evolution step and therefore
occurred 1/3 as often as when one evolution step was
mapped collectively but only a 1/6 as often as when
two evolution steps were mapped collectively.
Therefore there was only a moderate increase in the
speedup over GridSolve by increasing the number of
evolutions mapped from 2 to 3. This continued until

the speedup from increasing the number of evolutions
steps mapped collectively became insignificant.
 In Figure 7, we demonstrated the possibility of
having a function which could dynamically determine
the optimal number of tasks to be mapped collectively
for a given application on a given environment. An
example for a basic implementation of this function
could be a function that dynamically generates a graph
of the performance of mappings similar to the one
shown in Figure 10. The function could then
determine the optimal number of tasks to map by
evaluating this graph at any given point in an
application’s execution.

5. Conclusion

 SmartGridSolve’s simple and easy to use API
provides the functionality for collective mapping of
groups of tasks in GridRPC enabled applications on to
fully connected networks. The key to the
implementation of collective mapping was to separate
the mapping of tasks from their execution which is one
atomic operation in the GridRPC model of GridSolve.
This functionality was achieved with only a minor
addition to the GridRPC API. Therefore an
application programmer can gain from the improved
performance of collective mapping by only making
minor changes to any application that is already
GridRPC enabled. With the API the application
programmer can indicate which tasks get mapped
collectively and determine the frequency in which
iterative sections of an application get mapped. This
gives them the means to use their knowledge of the
application and the executing environment to further
increase the performance of the application. An
approach was also presented that gave the application
programmer the flexibility to dynamically update and
fine tuned this frequency.
 The experimental results presented in this paper
show that SmartGridSolve significantly improved the
performance of Grid enabled applications. Through
collective mapping, the astrophysical application
achieved a speedup of approximately 2.17 over
GridSolve.

6. References

[1] A. D. Birrell, B. J. Nelson, “Implementing remote
procedure calls”, ACM Trans. Comput. Syst., ACM, New
York, NY, USA, 1984, 2(1) pp 39-59

[2] K. Seymour et al, “An Overview of GridRPC: A Remote
Procedure Call API for Grid Computing”, Third
International Workshop on Grid Computing, Springer-
Verlag, London UK, 2002, pp. 274-278.

[3] A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and J.
Dongarra. “Recent Developments in GridSolve”,
International Journal of High Performance Computing
Applications, Sage Science Press, 2006, pp 131-141.

[4] Y. Tanaka, H. Nakada, S. Sekiguchi et al: “Ninf-G: A
Reference Implementation of RPC-based Programming
Middleware for Grid Computing”, Journal of Grid
Computing, 2003, pp 41-51.

[5] E. Caron, F. Desprez, “DIET: A Scalable Toolbox to
Build Network Enabled Servers on the Grid”, International
Journal of High Performance Computing Applications, Sage
Science Press, 2006, pp 335-352.

[6] Brady T., Konstantinov E., and Lastovetsky A.,
"SmartNetSolve: High Level Programming System for High
Performance Grid Computing", IPDPS, IEEE Computing
Society, 2006, pp 8-18.

[7] H. Casanova, J. Dongarra, “NetSolve: A Network Server
for Solving Computational Science Problems”, The
International Journal of Supercomputer Applications and
High Performance Computing, Sage Science Press, 1997, pp.
212-223.

[8] F. Desprez, E. Jeannot. “Improving the GridRPC Model
with Data Persistence and Redistribution”, ISPDC, IEEE
Computing Society, 2004, pp. 193-200.

[9] Y. Tanimura, H. Nakada, Y. Tanaka, S. Sekiguchi.
“Design and implementation of distributed task sequencing
on gridrpc”, International Conference on Computer and
Information Technology, IEEE Computing Society, 2006, pp.
67.

[10] X. Zuo, A. Lastovetsky, “Experiments with a Software
Component Enabling NetSolve with Direct Communications
in a Non-Intrusive and Incremental Way”, IPDPS, IEEE
Computing Society, 2007, pp 1-8.

[11] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, et al.,
“A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed
computing systems”, J. Parallel Distrib. Comput., Academic
Press, Inc., 2001, pp 810-837.

[12] C. Gheller, O. Pantano, L. “A cosmological
hydrodynamic code based on the piecewise parabolic
method”, Monthly Notices of the Royal Astronomical
Society, Blackwell Science, 1998, pp. 519–533

