




HIGH-PERFORMANCE
HETEROGENEOUS
COMPUTING



WILEY SERIES ON PARALLEL AND DISTRIBUTED COMPUTING

Series Editor: Albert Y. Zomaya 

Parallel and Distributed Simulation Systems / Richard Fujimoto

Mobile Processing in Distributed and Open Environments / Peter Sapaty 

Introduction to Parallel Algorithms / C. Xavier and S. S. Iyengar 

Solutions to Parallel and Distributed Computing Problems: Lessons from Biological 
Sciences / Albert Y. Zomaya, Fikret Ercal, and Stephan Olariu ( Editors)

Parallel and Distributed Computing: A Survey of Models, Paradigms, and Approaches / 
Claudia Leopold 

Fundamentals of Distributed Object Systems: A CORBA Perspective / Zahir Tari and 
Omran Bukhres 

Pipelined Processor Farms: Structured Design for Embedded Parallel Systems / 
Martin Fleury and Andrew Downton 

Handbook of Wireless Networks and Mobile Computing / Ivan Stojmenovi ć (Editor)

Internet-Based Workfl ow Management: Toward a Semantic Web / Dan C. Marinescu 

Parallel Computing on Heterogeneous Networks / Alexey L. Lastovetsky 

Performance Evaluation and Characteization of Parallel and Distributed Computing 
Tools / Salim Hariri and Manish Parashar 

Distributed Computing: Fundamentals, Simulations and Advanced Topics,
Second Edition / Hagit Attiya and Jennifer Welch 

Smart Environments: Technology, Protocols, and Applications / Diane Cook and Sajal Das 

Fundamentals of Computer Organization and Architecture / Mostafa Abd -El-Barr and 
Hesham El -Rewini

Advanced Computer Architecture and Parallel Processing / Hesham El -Rewini and 
Mostafa Abd -El-Barr

UPC: Distributed Shared Memory Programming / Tarek El -Ghazawi, William Carlson, 
Thomas Sterling, and Katherine Yelick 

Handbook of Sensor Networks: Algorithms and Architectures / 
Ivan Stojmenovi ć (Editor)

Parallel Metaheuristics: A New Class of Algorithms / Enrique Alba ( Editor)

Design and Analysis of Distributed Algorithms / Nicola Santoro 

Task Scheduling for Parallel Systems / Oliver Sinnen 

Computing for Numerical Methods Using Visual C++ / Shaharuddin Salleh, 
Albert Y. Zomaya, and Sakhinah A. Bakar

Architecture-Independent Programming for Wireless Sensor Networks / Amol B. Bakshi 
and Viktor K. Prasanna 

High-Performance Parallel Database Processing and Grid Databases / David Taniar, 
Clement Leung, Wenny Rahayu, and Sushant Goel 

Algorithms and Protocols for Wireless and Mobile Ad Hoc Networks / 
Azzedine Boukerche ( Editor)

Algorithms and Protocols for Wireless Sensor Networks / Azzedine Boukerche ( Editor)

Optimization Techniques for Solving Complex Problems / Enrique Alba, Christian Blum, 
Pedro Isasi, Coromoto Le ón, and Juan Antonio G ómez ( Editors)

Emerging Wireless LANs, Wireless PANs, and Wireless MANs: IEEE 802.11, IEEE 
802.15, IEEE 802.16 Wireless Standard Family / Yang Xiao and Yi Pan ( Editors)

High-Performance Heterogeneous Computing / Alexey L. Lastovetsky and Jack Dongarra 



HIGH-PERFORMANCE
HETEROGENEOUS
COMPUTING

Alexey L. Lastovetsky
University College Dublin

Jack J. Dongarra
University of Tennessee

A JOHN WILEY & SONS, INC., PUBLICATION



Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in 
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or 
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright 
Act, without either the prior written permission of the Publisher, or authorization through 
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at 
www.copyright.com. Requests to the Publisher for permission should be addressed to the 
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, 
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best 
efforts in preparing this book, they make no representations or warranties with respect to the 
accuracy or completeness of the contents of this book and specifi cally disclaim any implied 
warranties of merchantability or fi tness for a particular purpose. No warranty may be created 
or extended by sales representatives or written sales materials. The advice and strategies 
contained herein may not be suitable for your situation. You should consult with a professional 
where appropriate. Neither the publisher nor author shall be liable for any loss of profi t or any 
other commercial damages, including but not limited to special, incidental, consequential, or 
other damages.

For general information on our other products and services or for technical support, please 
contact our Customer Care Department within the United States at (800) 762-2974, outside the 
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in 
print may not be available in electronic formats. For more information about Wiley products, 
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Lastovetsky, Alexey, 1957–
 High performance heterogeneous computing / Alexey L. Lastovetsky, Jack Dongarra.
  p. cm.—(Wiley series in parallel and distributed computing)
 Includes bibliographical references and index.
 ISBN 978-0-470-04039-3 (cloth)
1. High performance computing. 2. Heterogeneous computing. 3. Computer networks. 
I. Dongarra, J. J. II. Title.
 QA76.88.L38 2009
 004.6–dc22

2009011754

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1



PREFACE x

ACKNOWLEDGMENTS xii

PART I HETEROGENEOUS PLATFORMS: TAXONOMY, 
TYPICAL USES, AND PROGRAMMING ISSUES 1

1. Heterogeneous Platforms and Their Uses 3

1.1 Taxonomy of Heterogeneous Platforms 3
1.2 Vendor-Designed Heterogeneous Systems 4
1.3 Heterogeneous Clusters 6
1.4 Local Network of Computers (LNC) 8
1.5 Global Network of Computers (GNC) 9
1.6 Grid-Based Systems 10
1.7 Other Heterogeneous Platforms 11
1.8 Typical Uses of Heterogeneous Platforms 11

1.8.1 Traditional Use 11
1.8.2 Parallel Computing 12
1.8.3 Distributed Computing 12

2. Programming Issues 13

2.1 Performance 14
2.2 Fault Tolerance 17
2.3 Arithmetic Heterogeneity 19

PART II PERFORMANCE MODELS OF 
HETEROGENEOUS PLATFORMS AND DESIGN 
OF HETEROGENEOUS ALGORITHMS 23

3. Distribution of Computations with 
Constant Performance Models of 
Heterogeneous Processors 25

CONTENTS

v



vi CONTENTS

3.1 Simplest Constant Performance Model of 
Heterogeneous Processors and Optimal 
Distribution of Independent Units of 
Computation with This Model 25

3.2 Data Distribution Problems with Constant 
Performance Models of Heterogeneous 
Processors 29

3.3 Partitioning Well-Ordered Sets with 
Constant Performance Models of 
Heterogeneous Processors 31

3.4 Partitioning Matrices with Constant 
Performance Models of Heterogeneous 
Processors 38

4. Distribution of Computations with 
Nonconstant Performance Models of 
Heterogeneous Processors 60

4.1 Functional Performance Model of 
Heterogeneous Processors 60

4.2 Data Partitioning with the Functional 
Performance Model of Heterogeneous 
Processors 64

4.3 Other Nonconstant Performance Models of 
Heterogeneous Processors 77
4.3.1 Stepwise Functional Model 77
4.3.2 Functional Model with Limits on 

Task Size 78
4.3.3 Band Model 80

5. Communication Performance Models for 
High-Performance Heterogeneous Platforms 81

5.1 Modeling the Communication Performance 
for Scientifi c Computing: The Scope of 
Interest 81

5.2 Communication Models for Parallel 
Computing on Heterogeneous Clusters 83

5.3 Communication Performance Models for 
Local and Global Networks of Computers 97

6. Performance Analysis of Heterogeneous Algorithms 99

6.1 Effi ciency Analysis of Heterogeneous 
Algorithms 99



CONTENTS vii

6.2 Scalability Analysis of Heterogeneous 
Algorithms 104

PART III PERFORMANCE: IMPLEMENTATION AND 
SOFTWARE 109

7. Implementation Issues 111

7.1 Portable Implementation of Heterogeneous 
Algorithms and Self-Adaptable Applications 111

7.2 Performance Models of Heterogeneous 
Platforms: Estimation of Parameters 115
7.2.1 Estimation of Constant Performance 

Models of Heterogeneous Processors 115
7.2.2 Estimation of Functional and 

Band Performance Models of 
Heterogeneous Processors 119

7.2.3 Benchmarking of Communication 
Operations 132

7.3 Performance Models of Heterogeneous 
Algorithms and Their Use in Applications 
and Programming Systems 139

7.4 Implementation of Homogeneous Algorithms 
for Heterogeneous Platforms 147

8. Programming Systems for High-
Performance Heterogeneous Computing 149

8.1 Parallel Programming Systems for 
Heterogeneous Platforms 149

8.2 Traditional Parallel Programming Systems 150
8.2.1 Message-Passing Programming 

Systems 151
8.2.2 Linda 156
8.2.3 HPF 157

8.3 Heterogeneous Parallel Programming 
Systems 158

8.4 Distributed Programming Systems 165
8.4.1 NetSolve 165
8.4.2 Nimrod 166
8.4.3 Java 166
8.4.4 GridRPC 166



viii CONTENTS

PART IV APPLICATIONS 169

9. Numerical Linear Algebra Software for 
Heterogeneous Clusters 171

9.1 HeteroPBLAS: Introduction and User 
Interface 171

9.2 HeteroPBLAS: Software Design 178
9.3 Experiments with HeteroPBLAS 184

10. Parallel Processing of Remotely Sensed 
Hyperspectral Images on Heterogeneous 
Clusters 188

10.1 Hyperspectral Imaging: Introduction and 
Parallel Techniques 188

10.2 A Parallel Algorithm for Analysis of 
Hyperspectral Images and Its Implementation 
for Heterogeneous Clusters 191

10.3 Experiments with the Heterogeneous 
Hyperspectral Imaging Application 201

10.4 Conclusion 207

11. Simulation of the Evolution of Clusters of Galaxies 
on Heterogeneous Computational Grids 209

11.1 Hydropad: A Simulator of Galaxies’ 
Evolution 210

11.2 Enabling Hydropad for Grid Computing 213
11.2.1 GridRPC Implementation of the 

Hydropad 215
11.2.2 Experiments with the 

GridSolve-Enabled Hydropad 217
11.3 SmartGridSolve and Hydropad 218

11.3.1 SmartGridSolve Implementation of 
the Hydropad 220

11.3.2 Experiments with the 
SmartGridSolve-Enabled Hydropad 221

11.4 Acknowledgment 225

PART V FUTURE TRENDS 227

12. Future Trends in Computing 229

12.1 Introduction 229



CONTENTS ix

12.2 Computational Resources 231
12.2.1 Complex and Heterogeneous 

Parallel Systems 231
12.2.2 Intel-ization of the Processor 

Landscape 232
12.2.3 New Architectures on the Horizon 232

12.3 Applications 233
12.4 Software 234
12.5 Some Important Concepts for the Future 235

12.5.1 Heterogeneous Hardware 
Environments 235

12.5.2 Software Architecture 235
12.5.3 Open Source 235
12.5.4 New Applications 235
12.5.5 Verifi cation and Validation 236
12.5.6 Data 236

12.6 2009 and Beyond 236

REFERENCES 239

APPENDICES 251

Appendix A Appendix to Chapter 3 253

A.1 Proof of Proposition 3.1 253
A.2 Proof of Proposition 3.5 253

Appendix B Appendix to Chapter 4 256

B.1 Proof of Proposition 4.1 256
B.2 Proof of Proposition 4.2 257
B.3 Proof of Proposition 4.3 257
B.4 Functional Optimization Problem with 

Optimal Solution, Locally Nonoptimal 261

INDEX 265



x

PREFACE

     In recent years, the evolution and growth of the techniques and platforms 
commonly used for high - performance computing (HPC) in the context of dif-
ferent application domains have been truly astonishing. While parallel com-
puting systems have now achieved certain maturity, thanks to high - level 
libraries (such as ScaLAPACK, the scalable linear algebra package  ) or runtime 
libraries (such as MPI, the message passing interface  ), recent advances in these 
technologies pose several challenging research issues. Indeed, current HPC -
 oriented environments are extremely complex and very diffi cult to manage, 
particularly for extreme - scale application problems. 

 At the very low level, latest - generation CPUs are made of multicore proces-
sors that can be general purpose or highly specialized in nature. On the other 
hand, several processors can be assembled into a so - called symmetrical mul-
tiprocessor (SMP), which can also have access to powerful specialized proces-
sors, namely graphics processing units (GPUs), which are now increasingly 
being used for programmable computing resulting from their advent in the 
video game industry, which signifi cantly reduced their cost and availability. 
Modern HPC - oriented parallel computers are typically composed of several 
SMP nodes interconnected by a network. This kind of infrastructure is hierar-
chical and represents a fi rst class of heterogeneous system in which the com-
munication time between two processing units is different, depending on 
whether the units are on the same chip, on the same node, or not. Moreover, 
current hardware trends anticipate a further increase in the number of cores 
(in a hierarchical way) inside the chip, thus increasing the overall heterogene-
ity even more toward building extreme - scale systems. 

 At a higher level, the emergence of heterogeneous computing now allows 
groups of users to benefi t from networks of processors that are already avail-
able in their research laboratories. This is a second type of infrastructure   where 
both the network and the processing units are heterogeneous in nature. Spe-
cifi cally, the goal here is to deal with networks that interconnect a large 
number of heterogeneous computers that can signifi cantly differ from one 
another in terms of their hardware and software architecture, including differ-
ent types of CPUs operating at different clock speeds and under different 
design paradigms, and with different memory sizes, caching strategies, and 
operating systems. 



PREFACE xi

 At the high end, computers are increasingly interconnected together 
throughout wide area networks to form large - scale distributed systems with 
high computing capacity. Furthermore, computers located in different labora-
tories can collaborate in the solution of a common problem. Therefore, the 
current trends of HPC are clearly oriented toward extreme - scale, complex 
infrastructures with a great deal of intrinsic heterogeneity and many different 
hierarchical levels. 

 It is important to note that all the heterogeneity levels mentioned above 
are tightly linked. First, some of the nodes in computational distributed envi-
ronments may be multicore SMP clusters. Second, multicore chips will soon 
be fully heterogeneous with special - purpose cores (e.g., multimedia, recogni-
tion, networking), and not only GPUs, mixed with general - purpose ones. Third, 
these different levels share many common problems such as effi cient program-
ming, scalability, and latency management. 

 The extreme scale of these environments comes from every level: (a) low 
level: number of CPUs, number of cores per processor; (b) medium level: 
number of nodes (e.g., with memory); (c) high level: distributed/large - scale 
(geographical dispersion, latency, etc.); and (d) application: extreme - scale 
problem size (e.g., calculation intensive and/or data intensive). 

 It is realistic to expect that large - scale infrastructures composed of dozens 
of sites, each composed of several heterogeneous computers, some having 
thousands of more than 16 - core processors, will be available for scientists and 
engineers. Therefore, the knowledge on how to effi ciently use, program, and 
scale applications on such future infrastructures is very important. While this 
area is wide open for research and development, it will be unfair to say that 
it has not been studied yet. In fact, some fundamental models and algorithms 
for these platforms have been proposed and analyzed. First programming tools 
and applications have been also designed and implemented. This book gives 
the state of the art in the fi eld. It analyzes the main challenges of high - perfor-
mance heterogeneous computing and presents how these challenges have 
been addressed so far. The ongoing academic research, development, and uses 
of heterogeneous parallel and distributed computing are placed in the context 
of scientifi c computing. While the book is primarily a reference for researchers 
and developers involved in scientifi c computing on heterogeneous platforms, 
it can also serve as a textbook for an advanced university course on high -
 performance heterogeneous computing.  

Alexey L. Lastovetsky
Jack J. Dongarra



xii

ACKNOWLEDGMENTS

  We are thankful to Albert Zomaya for his positive attitude to the idea of this 
book. We would like to thank the anonymous reviewers of the original book 
proposal for very useful comments and suggestions. We also express our 
sincere gratitude to the Science Foundation Ireland. Without their support of 
our collaboration over last fi ve years, this book could not be possible.      



PART I

HETEROGENEOUS PLATFORMS: 
TAXONOMY, TYPICAL USES, AND 
PROGRAMMING ISSUES 

     In this part, we outline the existing platforms used for high - performance het-
erogeneous computing and the typical ways these platforms are used by their 
end users  . We understand a platform as a hardware/software environment used 
to produce and execute application programs. We also outline programming 
issues encountered by scientifi c programmers when they write applications for 
heterogeneous platforms.        

1

High-Performance Heterogeneous Computing, by Alexey L. Lastovetsky and Jack J. Dongarra
Copyright © 2009 John Wiley & Sons, Inc.





3

CHAPTER 1

Heterogeneous Platforms and 
Their Uses 

1.1 TAXONOMY OF HETEROGENEOUS PLATFORMS 

 Heterogeneous platforms used for parallel and distributed computing always 
include

 •      multiple processors and  
 •      a communication network interconnecting the processors.    

 Distributed memory multiprocessor systems can be heterogeneous in many 
ways. At the same time, there is only one way for such a system to be homo-
geneous, namely: 

 •      All processors in the system have to be identical and interconnected via 
a homogeneous communication network, that is, a network providing 
communication links of the same latency and bandwidth between any pair 
of processors.  

 •      The same system software (operating system, compilers, libraries, etc.) 
should be used to generate and execute application programs.    

 This defi nition, however, is not complete. One more important restriction 
has to be satisfi ed: The system has to be dedicated; that is, at any time it can 
execute only one application, thus providing all its resources to this applica-
tion. We will later see how the violation of this restriction can make the system 
heterogeneous. In practice, the property of dedication can be implemented not 
only by providing the whole physical system to a single application but also 
by partitioning the system into logically independent subsystems and provid-
ing the nonintersecting partitions to different applications. 

High-Performance Heterogeneous Computing, by Alexey L. Lastovetsky and Jack J. Dongarra
Copyright © 2009 John Wiley & Sons, Inc.



4 HETEROGENEOUS PLATFORMS AND THEIR USES

 Homogeneous distributed memory multiprocessor systems are designed for 
high - performance parallel computing and are typically used to run a relatively 
small number of similar parallel applications. 

 The property of homogeneity is easy to break and may be quite expensive 
to keep. Any distributed memory multiprocessor system will become hetero-
geneous if it allows several independent users to simultaneously run their 
applications on the same set of processors. The point is that, in this case, dif-
ferent identical processors may have different workloads, and hence demon-
strate different performances for different runs of the same application 
depending on external computations and communications. 

 Clusters of commodity processors are seen as cheap alternatives to very 
expensive vendor homogeneous distributed memory multiprocessor systems. 
However, they have many hidden costs required to maintain their homogene-
ity. First, they cannot be used as multitasking computer systems, allowing 
several independent users to simultaneously run their applications on the 
same set of processors. Such a usage immediately makes them heterogeneous 
because of the dynamic change of the performance of each particular proces-
sor. Second, to maintain the homogeneity over time, a full replacement of the 
system would be required, which can be quite expensive  . 

 Thus, distributed memory multiprocessor systems are naturally heteroge-
neous, and the property of heterogeneity is an intrinsic property of the over-
whelming majority of such systems. 

 In addition to platforms, which are heterogeneous by nature, one interesting 
trend is heterogeneous hardware designed by vendors for high - performance 
computing. The said heterogeneous design is mainly motivated by applications 
and will be briefl y outlined in the next section. 

 Now we would like to classify the platforms in the increasing order of het-
erogeneity and complexity and briefl y characterize each heterogeneous system. 
The classes are 

 •      vendor - designed heterogeneous systems,  
 •      heterogeneous clusters,  
 •      local networks of computers (LNCs),  
 •      organizational global networks of computers, and  
 •      general - purpose global networks of computers  .     

1.2 VENDOR-DESIGNED HETEROGENEOUS SYSTEMS 

 Heterogeneous computing has seen renewed attention with such examples as 
the general programming of graphical processing units (GPUs), the Clear 
Speed   (ClearSpeed,  2008 , Bristol, UK) Single Instruction Multiple Data 
(SIMD)   attached accelerator, and the IBM (Armonk, NY)   Cell architecture 
(Gschwind et al. ,  2006 ). 

 There has been a marked increase in interest in heterogeneous computing 
for high performance. Spawned in part by the signifi cant performances 



VENDOR-DESIGNED HETEROGENEOUS SYSTEMS  5

demonstrated by special - purpose devices such as GPUs, the idea of fi nding 
ways to leverage these industry investments for more general - purpose techni-
cal computing has become enticing, with a number of projects mostly in the 
academia as well as some work in national laboratories. However, the move 
toward heterogeneous computing is driven by more than the perceived oppor-
tunity of  “ low - hanging fruit. ”  Cray Inc  . has described a strategy based on their 
XT3 system (Vetter  et al. ,  2006 ), derived from Sandia National Laboratories ’  
Red Storm  . Such future systems using an AMD   Opteron - based and mesh -
 interconnected Massively Parallel Processing (MPP)   structure will provide the 
means to support accelerators such as a possible future vector - based processor, 
or even possibly Field Programmable Gate Arrays (FPGA)   devices. The start -
 up company ClearSpeed has gained much interest in their attached array 
processor using a custom SIMD processing chip that plugs in to the PCI - X 
  slot of otherwise conventional motherboards. For compute - intensive applica-
tions, the possibilities of a one to two order of magnitude performance increase 
with as little as a 10 - W power consumption increase is very attractive. 

 Perhaps the most exciting advance has been the long - awaited Cell archi-
tecture from the partnership of IBM, Sony, and Toshiba   (Fig.  1.1 ). Cell com-
bines the attributes of both multicore and heterogeneous computing. Designed, 
at least in part, as the breakthrough component to revolutionize the gaming 
industry in the body of the Sony Playstation 3, both IBM and much of the 
community look to this part as a major leap in delivered performance. Cell 

MFC LS

SPE

L1

L2

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC LS

SPE

MFC

I/O
Interface

Coherent
Interface

XDR DRAM
Interface

EIB

PPE

SPE

LS

 Figure 1.1.     The IBM Cell, a heterogeneous multicore processor, incorporates one 
power processing element (PPE) and eight synergistic processing elements (SPEs). 
 (Figure courtesy of Mercury Computer Systems, Inc.  )  



6 HETEROGENEOUS PLATFORMS AND THEIR USES

incorporates nine cores, one general - purpose PowerPC   architecture and eight 
special - purpose  “ synergistic processing element (SPE) ”  processors that 
emphasize 32 - bit arithmetic, with a peak performance of 204   gigafl op/s in 32 -
 bit arithmetic per chip at 3.2   GHz.   

 Heterogeneous computing, like multicore structures, offer possible new 
opportunities in performance and power effi ciency but impose signifi cant, 
perhaps even daunting, challenges to application users and software designers. 
Partitioning the work among parallel processors has proven hard enough, but 
having to qualify such partitioning by the nature of the work performed and 
employing multi - instruction set architecture (ISA)   environments aggravates 
the problem substantially. While the promise may be great, so are the problems 
that have to be resolved. This year has seen initial efforts to address these 
obstacles and garner the possible performance wins. Teaming between Intel 
  and ClearSpeed is just one example of new and concerted efforts to accom-
plish this. Recent work at the University of Tennessee applying an iterative 
refi nement technique has demonstrated that 64 - bit accuracy can achieve eight 
times the performance of the normal 64 - bit mode of the Cell architecture by 
exploiting the 32 - bit SPEs (Buttari  et al. ,  2007 ). 

 Japan has undertaken an ambitious program: the  “ Kei - soku ”  project to 
deploy a 10 - petafl ops scale system for initial operation by 2011. While the 
planning for this initiative is still ongoing and the exact structure of the system 
is under study, key activities are being pursued with a new national High Per-
formance Computing (HPC) Institute   being established at RIKEN  (2008)   . 
Technology elements being studied include various aspects of interconnect 
technologies, both wire and optical, as well as low - power device technologies, 
some of which are targeted to a 0.045 -  μ m   feature size. NEC, Fujitsu, and 
Hitachi   are providing strong industrial support with academic partners  , includ-
ing University of Tokyo, Tokyo Institute of Technology, University of Tsukuba, 
and Keio University among others. The actual design is far from certain, but 
there are some indications that a heterogeneous system structure is receiving 
strong consideration, integrating both scalar and vector processing compo-
nents, possibly with the addition of special - purpose accelerators such as the 
MD - Grape     (Fukushige  et al. ,  1996 ). With a possible budget equivalent to over 
US$1 billion (just under 1 billion euros) and a power consumption of 36   MW 
(including cooling), this would be the most ambitious computing project yet 
pursued by the Asian community, and it is providing strong leadership toward 
inaugurating the Petafl ops Age (1 – 1000 petafl ops).  

1.3 HETEROGENEOUS CLUSTERS 

 A heterogeneous cluster (Fig.  1.2 ) is a dedicated system designed mainly for 
high - performance parallel computing, which is obtained from the classical 
homogeneous cluster architecture by relaxing one of its three key properties, 
thus leading to the situation wherein  : 



HETEROGENEOUS CLUSTERS  7

   •      Processors in the cluster may not be identical.  
   •      The communication network may have a regular but heterogeneous structure. 

For example, it can consist of a number of faster communication segments 
interconnected by relatively slow links. Such a structure can be obtained by 
connecting several homogeneous clusters in a single multicluster.  

   •      The cluster may be a multitasking computer system, allowing several 
independent users to simultaneously run their applications on the same 
set of processors (but still dedicated to high - performance parallel com-
puting). As we have discussed, this, in particular, makes the performance 
characteristics of the processors dynamic and nonidentical.      

 The heterogeneity of the processors can take different forms. The processors 
can be of different architectures. They may be of the same architecture but of 
different models. They may be of the same architecture and model but running 
different operating systems. They may be of the same architecture and model 
and running the same operating system but confi gured differently or using 

 Figure 1.2.     A heterogeneous switch - enabled computational cluster with processors of 
different architectures. 



8  HETEROGENEOUS PLATFORMS AND THEIR USES

different basic softwares to produce executables (compilers, runtime libraries, 
etc.). All the differences in the systems ’  hardware and software can have an 
impact on the performance and other characteristics of the processors. 

 In terms of parallel programming, the most demanding is a multitasking 
heterogeneous cluster made up of processors of different architectures inter-
connected via a heterogeneous communication network.  

  1.4    LOCAL NETWORK OF COMPUTERS (LNC)  

 In the general case, an LNC consists of diverse computers interconnected via 
mixed network equipment (Fig.  1.3 )  . By its nature, LNCs are multiuser and 
multitasking computer systems. Therefore, just like highly heterogeneous 
clusters, LNCs consist of processors of different architectures, which can 
dynamically change their performance characteristics, interconnected via a 
heterogeneous communication network.   

 Unlike heterogeneous clusters, which are parallel architectures designed 
mainly for high - performance computing, LNCs are general - purpose computer 
systems typically associated with individual organizations. This affects the 
heterogeneity of this platform in several ways. First, the communication 
network of a typical LNC is not regular and balanced as in heterogeneous 
clusters. The topology and structure of the communication network in such 
an LNC are determined by many different factors, among which high - 
performance computing is far from being a primary one if considered at 

Communication Network

 Figure 1.3.     A local network of computers. 



GLOBAL NETWORK OF COMPUTERS (GNC) 9

all. The primary factors include the structure of the organization, the tasks that 
are solved on the computers of the LNC, the security requirements, the con-
struction restrictions, the budget limitations, and the qualifi cation of technical 
personnel, etc. An additional important factor is that the communication 
network is constantly being developed rather than fi xed once and for all  . The 
development is normally occasional and incremental; therefore, the structure 
of the communication network refl ects the evolution of the organization rather 
than its current snapshot. All the factors make the communication network of 
the LNC extremely heterogeneous and irregular. Some communication links 
in this network may be of very low latency and/or low bandwidth. 

 Second, different computers may have different functions in the LNC. Some 
computers can be relatively isolated. Some computers may provide services to 
other computers of the LNC. Some computers provide services to both local and 
external computers. These result to different computers having different levels 
of integration into the network. The heavier the integration, the more dynamic 
and stochastic the workload of the computer is, and the less predictable its per-
formance characteristics are. Another aspect of this functional heterogeneity is 
that a heavy server is normally confi gured differently compared with ordinary 
computers. In particular, a server is typically confi gured to avoid paging, and 
hence to avoid any dramatic drop in performance with the growth of requests to 
be served. At the same time, this results in the abnormal termination of any 
application that tries to allocate more memory than what fi ts into the main 
memory of the computer, leading to the loss of continuity of its characteristics. 

 Third, in general - purpose LNCs, different components are not as strongly 
integrated and controlled as in heterogeneous clusters. LNCs are much less 
centralized computer systems than heterogeneous clusters. They consist of 
relatively autonomous computers, each of which may be used and adminis-
tered independently by its users. As a result, their confi guration is much more 
dynamic than that of heterogeneous clusters. Computers in the LNC can come 
and go just because their users switch them on and off or reboot them.  

1.5 GLOBAL NETWORK OF COMPUTERS ( GNC)

 Unlike an LNC, all components of which are situated locally, a GNC includes 
computers that are geographically distributed (Fig.  1.4 ). There are three main 
types of GNCs, which we briefl y present in the increasing order of their 
heterogeneity.   

 The fi rst type of GNC is a dedicated system for high - performance comput-
ing that consists of several interconnected homogeneous distributed memory 
multiprocessor systems or/and heterogeneous clusters. Apart from the geo-
graphical distribution of its components, such a computer system is similar to 
heterogeneous clusters. 

 The second type of GNC is an organizational network  . Such a network 
comprises geographically distributed computer resources of some individual 



10 HETEROGENEOUS PLATFORMS AND THEIR USES

organization. The organizational network can be seen as a geographically 
extended LNC. It is typically managed by a strong team of hardware and 
software experts. Its levels of integration, centralization, and uniformity are 
often even higher than that of LNCs. Therefore, apart from the geographical 
distribution of their components, organizational networks of computers are 
quite similar to LNCs. 

 Finally, the third type of GNC is a general - purpose GNC. Such a network 
consists of individual computers interconnected via the Internet. Each of the 
computers is managed independently. This is the most heterogeneous, irregu-
lar, loosely integrated, and dynamic type of heterogeneous network.  

1.6 GRID-BASED SYSTEMS 

 Grid computing received a lot of attention and funding over the last decade, 
while the concepts and ideas have been around for a while (Smarr and Catlett, 
 1992 ). The defi nitions of Grid computing are various and rather vague (Foster, 
 2002 ; GridToday,  2004 ). Grid computing is declared as a new computing model 
aimed at the better use of many separate computers connected by a network. 
Thus, the platform targeted by Grid computing is a heterogeneous network of 
computers. Therefore, it is important to formulate our vision of Grid - based 
heterogeneous platforms and their relation to traditional distributed hetero-
geneous platforms in the context of scientifi c computing on such platforms. 

 As they are now, Grid - based systems provide a mechanism for a single 
log - in to a group of resources. In Grid - based systems, the user does not need 
to separately log in at each session to each of the resources that the user wants 
to access. The Grid middleware will do it for the user. It will keep a list of 
available resources that the user have discovered and add them to a list in the 
past. Upon the user ’ s log - in to the Grid - based system, it will detect which of 
the resources are available now, and it will log in to all the available resources 

Figure 1.4.     A global network of computers. 



TYPICAL USES OF HETEROGENEOUS PLATFORMS 11

on behalf of the user. This is the main difference of Grid - based systems from 
traditional distributed systems, where individual access to the distributed 
resources is the full responsibility of the user. 

 A number of services can be build on top of this mechanism, thus forming 
a Grid operating environment. There are different models of the operating 
environment supported by different Grid middlewares such as Globus  (2008)    
and Unicore  (2008) . From the scientifi c computing point of view, it is important 
to note that as soon as the user has logged in to all distributed resources, then 
there is no difference between a traditional heterogeneous distributed system 
and a Grid - based heterogeneous distributed system  .  

1.7 OTHER HETEROGENEOUS PLATFORMS 

 Of course, our list of heterogeneous distributed memory multiprocessor 
systems is not comprehensive. We only outlined systems that are most relevant 
for scientifi c computing. Some other examples of heterogeneous sets of inter-
connected processing devices are 

 •      mobile telecommunication systems with different types of processors, 
from ones embedded into mobile phones to central computers processing 
calls, and  

 •      embedded control multiprocessor systems (cars, airplanes, spaceships, 
household, etc.).     

1.8 TYPICAL USES OF HETEROGENEOUS PLATFORMS 

 In this section, we outline how heterogeneous networks of computers are typi-
cally used by their end users. In general, heterogeneous networks are used 
traditionally, for parallel computing, or for distributed computing. 

1.8.1 Traditional Use 

 The traditional use means that the network of computers is used just as an 
extension of the user ’ s computer. This computer can be serial or parallel. The 
application to be run is a traditional application, that is, one that can be exe-
cuted on the user ’ s computer. The code of the application and input data are 
provided by the user. The only difference from the fully traditional execution 
of the application is that it can be executed not only on the user ’ s computer 
but also on any other relevant computer of the network. The decision where 
to execute one or other applications is made by the operating environment 
and is mainly aimed at the better utilization of available computing resources 
(e.g., at higher throughput of the network of computers as a whole multiuser 
computer system). Faster execution of each individual application is not the 



12 HETEROGENEOUS PLATFORMS AND THEIR USES

main goal of the operating environment, but it can be achieved for some 
applications as a side effect of its scheduling policy. This use of the heteroge-
neous network assumes that the application, and hence the software, is por-
table and can be run on another computing resource. This assumption may not 
be true for some applications.  

1.8.2 Parallel Computing 

 A heterogeneous network of computers can be used for parallel computing. 
The network is used as a parallel computer system in order to accelerate the 
solution of a single problem. In this case, the user provides a dedicated parallel 
application written to effi ciently solve the problem on the heterogeneous 
network of computers. High performance is the main goal of this type of use. 
As in the case of traditional use, the user provides both the (source) code of 
the application and input data. In the general case, when all computers of the 
network are of a different architecture, the source code is sent to the comput-
ers, where it is locally compiled. All the computers are supposed to provide 
all libraries necessary to produce local executables.  

1.8.3 Distributed Computing 

 A heterogeneous network of computers can be also used for distributed com-
puting. In the case of parallel computing, the application can be executed on 
the user ’ s computer or on any other single computer of the network. The only 
reason to involve more than one computer is to accelerate the execution of 
the application. Unlike parallel computing, distributed computing deals with 
situations wherein the application cannot be executed on the user ’ s computer 
because not all components of the application are available on this computer. 
One such situation is when some components of the code of the application 
cannot be provided by the user and are only available on remote computers. 
There are various reasons behind this: the user ’ s computer may not have the 
resources to execute such a code component; the efforts and amount of 
resources needed to install the code component on the user ’ s computer are 
too signifi cant compared with the frequency of its execution; this code may be 
not available for installation; or it may make sense to execute this code only 
on the remote processor (say, associated with an ATM   machine), etc. 

 Another situation is when some components of input data for this applica-
tion cannot be provided by the user and reside on remote storage devices. For 
example, the size of the data may be too big for the disk storage of the user ’ s 
computer, the data for the application are provided by some external party 
(remote scientifi c device, remote data base, remote application, and so on), or 
the executable fi le may not be compatible with the machine architecture. 

 The most complex is the situation when both some components of the code 
of the application and some components of its input data are not available on 
the user ’ s computer.     



13

CHAPTER 2

Programming Issues 

     Programming for heterogeneous networks of computers is a diffi cult task. 
Among others, performance, fault tolerance, and arithmetic heterogeneity are 
perhaps the most important and challenging issues of heterogeneous parallel 
and distributed programming. 

 Performance is one of the primary issues of parallel programming for any 
parallel architecture, but it becomes particularly challenging for programming 
for parallel heterogeneous networks. Performance is also one of the primary 
issues of high - performance distributed computing. 

 Fault tolerance has always been one of the primary issues of distributed 
computing. Interestingly, this has not been the case for parallel applications 
running on traditional homogeneous parallel architectures. The probability of 
unexpected resource failures in a centralized dedicated parallel computer 
system was quite small because the system had a relatively small number of 
processors. This only becomes an issue for modern large - scale parallel systems 
counting tens of thousands of processors with different interconnection 
schemes. At the same time, this probability reaches quite high fi gures for 
common networks of computers of even a relatively small size. First, any indi-
vidual computer in such a network may be switched off or rebooted unexpect-
edly for other users in the network. The same may happen with any other 
resource in the network. Second, not all elements of the common network of 
computers are equally reliable. These factors make fault tolerance a desirable 
feature for parallel applications intended to run on common networks of 
computers; and the longer the execution time of the application is, the more 
critical the feature becomes. 

 Arithmetic heterogeneity has never been an issue of parallel programming 
for traditional homogeneous parallel architectures. All arithmetic data types 
are uniformly represented in all processors of such a system, and their transfer 
between the processors does not change their value. In heterogeneous plat-
forms, the same arithmetic data type may have different representations in 
different processors. In addition, arithmetic values may change in the hetero-
geneous communication network during transfer even between processors 

High-Performance Heterogeneous Computing, by Alexey L. Lastovetsky and Jack J. Dongarra
Copyright © 2009 John Wiley & Sons, Inc.



14 PROGRAMMING ISSUES

with the same data representation. Thus, arithmetic heterogeneity is a new 
parallel programming issue specifi c to heterogeneous parallel computing. The 
fi ner the granularity of the parallel application is and the more communica-
tions its execution involves, the more frequently arithmetic values from differ-
ent processors are mixed in computations, and hence the more serious this 
issue becomes. At the same time, if the problem and the method of solution 
is not ill conditioned, then arithmetic heterogeneity is not a serious issue for 
distributed computing. 

 In this chapter, we analyze these three issues with respect to parallel and 
distributed programming for heterogeneous networks of computers.  

2.1 PERFORMANCE

 In this section, we outline the performance issues of scientifi c programming 
for heterogeneous platforms and discuss how different aspects of heterogene-
ity contribute their specifi c challenges to the problem of achieving top perfor-
mance on such platforms. We start with the very basic implications from the 
heterogeneity of processors. Then, we analyze how memory heterogeneity, 
memory constraints, heterogeneity of integration of the processors into the 
network, and unbalance between the performance of the processors and the 
performance of the communication network further complicate the perfor-
mance issue. Finally, we look at the performance - related challenges posed by 
the heterogeneity of communication networks. 

 An immediate implication from the heterogeneity of processors in a 
network of computers is that the processors run at different speeds. A good 
parallel application for a homogeneous distributed memory multiprocessor 
system tries to evenly distribute computations over available processors. This 
very distribution ensures the maximal speedup on the system consisting of 
identical processors. If the processors run at different speeds, faster processors 
will quickly perform their part of the computations and begin waiting for 
slower processors at points of synchronization and data transfer. Therefore, 
the total time of computations will be determined by the time elapsed on the 
slowest processor. In other words, when executing parallel applications, which 
evenly distribute computations among available processors, a set of heteroge-
neous processors will demonstrate the same performance as a set of identical 
processors equivalent to the slowest processor in the heterogeneous set. 

 Therefore, a good parallel application for the heterogeneous platform must 
distribute computations unevenly taking into account the difference in proces-
sor speed. The faster the processor is, the more computations it must perform. 
Ideally, in the case of independent parallel computations (that is, computations 
on parallel processors without synchronization or data transfer), the volume 
of computations performed by a processor should be proportional to its speed. 

 Distribution of computations over the processors in proportion to their 
speed assumes that the programmers know at least the relative speeds of the 



PERFORMANCE 15

processor in the form of positive constants. The performance of the corre-
sponding application will strongly depend on the accuracy of estimation of the 
relative speed. If this estimation is not accurate enough, the load of the proces-
sors will be unbalanced, resulting in poorer execution performance. Unfortu-
nately, the problem of accurate estimation of the relative speed of processors 
is not as easy as it may look. Of course, if we consider two processors, which 
only differ in clock rate, it is not a problem to accurately estimate their relative 
speed. We can use a single test code to measure their relative speed, and the 
relative speed will be the same for any application. This approach may also 
work if the processors used in computations have very similar architectural 
characteristics. 

 However, if we consider processors of very different architectures, the situ-
ation changes drastically. Everything in the processors may be different: the 
set of instructions, the number of instruction execution units, the number of 
registers, the structure of memory hierarchy, the size of each memory level, 
and so on. Therefore, the processors may demonstrate different relative speeds 
for different applications. Moreover, processors of the same architecture but 
of different models or confi gurations may also demonstrate different relative 
speeds on different applications. Even different applications of the same 
narrow class may be executed by two different processors at signifi cantly dif-
ferent relative speeds. 

 Thus, the relative speeds of heterogeneous processors are application spe-
cifi c, which makes the problem of their accurate estimation nontrivial. The test 
code used to measure the relative speed should be carefully designed for each 
particular application. 

 Another complication of the problem comes up if the heterogeneous plat-
form allows for multitasking, wherein several independent users can simulta-
neously run their applications on the same set of processors. In this case, the 
relative speed of the processors can dynamically change depending on the 
external load. 

 The accuracy of estimation of the relative speed of the processors not only 
depends on how representative is the test code used to obtain the relative 
speed or how frequently this estimation is performed during the execution of 
the application. Some objective factors do not allow us to estimate the speed 
of some processors accurately enough. One of these factors is the level of 
integration of the processor into the network. As we have discussed in Chapter 
 1 , in general - purpose local and global networks integrated into the Internet, 
most computers and their operating systems periodically run some routine 
processes interacting with the Internet, and some computers act as servers for 
other computers. This results in constant unpredictable fl uctuations in the 
workload of processors in such a network. This changing transient load will 
cause fl uctuations in the speed of processors, in that the speed of the processor 
will vary when measured at different times while executing the same task. We 
would like to stress that this additional challenge is specifi c to general - purpose 
local and global heterogeneous networks. Heterogeneous clusters dedicated 



16 PROGRAMMING ISSUES

to high - performance computing are much more regular and predictable in this 
respect. 

 So far, we implicitly assumed that the relative speed of processors being 
application specifi c does not depend on the size of the computational task 
solved by the processors. This assumption is quite realistic if the code executed 
by the processors fully fi ts into the main memory. However, as soon as the 
restriction is relaxed, it may not be realistic anymore. The point is that begin-
ning from some problem size, a task of the same size will still fi t into the main 
memory of some processors and will stop fi tting into the main memory of 
others, causing the paging and visible degradation of the speed of these proces-
sors  . This means that their relative speed will start signifi cantly changing in 
favor of nonpaging processors as soon as the problem size exceeds the critical 
value. Moreover, even if two processors of different architectures have almost 
the same size of main memory, they may employ different paging algorithms, 
resulting in different levels of speed degradation for a task of the same size, 
which again leads to the change of their relative speed as the problem size 
exceeds the threshold causing the paging. Thus, memory heterogeneity and 
paging effects signifi cantly complicate the problem of accurate estimation of 
the relative speed of heterogeneous processors. Estimations obtained in the 
absence of paging may be inaccurate when the paging occurs and vice versa. 

 Yet another additional challenge is also related to memory and specifi c to 
general - purpose networks of computers. It occurs when the network includes 
computers that are confi gured to avoid paging. This is typical of computers 
used as a main server. If the computational task allocated to such a computer 
does not fi t into the main memory, it will crash. In this case, the problem of 
optimal distribution of computations over the processors of the network 
becomes more diffi cult, having the additional restriction on the maximal size 
of tasks to be assigned to some processors. 

 One more factor that has a signifi cant impact on the optimal distribution 
of computations over heterogeneous processors has not been taken into 
account so far. This factor is the communication network interconnecting the 
processors, even if the network is homogeneous. This factor can only be 
neglected if the contribution of communication operations in the total execu-
tion time of the application is negligibly small compared with that of computa-
tions. Communication networks in heterogeneous platforms are typically not 
as well balanced with the number and speed of the processors as those in 
dedicated homogeneous high - performance multiprocessor systems. Therefore, 
it is much more likely that the cost of communication for some applications 
will not compensate the gains due to parallelization if all available processors 
are involved in its execution. In this case, the problem of optimal distribution 
of computations over the processors becomes much more complex as the 
space of possible solutions will signifi cantly increase, including distributions 
not only over all available processors but also over subsets of processors. 

 For distributed memory platforms with homogeneous communication 
networks providing parallel communication links of the same performance 
between each pair of processors, the problem of minimizing the 



FAULT TOLERANCE 17

communication cost of the application can typically be reduced to the problem 
of minimizing the total volume of communications  . The heterogeneity of the 
communication network changes the situation, making the problem of mini-
mizing the communication cost much more diffi cult. Indeed, a larger amount 
of data communicated through faster links only may lead to less overall com-
munication cost than a smaller amount of data communicated through all the 
links, both fast and slow  . Even if each communication link in such a heteroge-
neous platform is characterized just by one number, the corresponding opti-
mization problem will have to deal with up to p2  additional parameters, where 
p  is the number of processors. 

 The heterogeneity of the communication network also makes the optimal 
distribution of computations, minimizing the overall computation/communica-
tion cost, much more of a challenging task. For example, even in the case of 
homogeneous processors interconnected by a heterogeneous network  , such an 
optimal distribution can be uneven. Additional challenges are brought by pos-
sible dynamic changes of the performance characteristics of the communica-
tion links due to multitasking or integration into the Internet.  

2.2 FAULT TOLERANCE 

 In this section, we outline the fault tolerance issues of scientifi c programming 
for heterogeneous platforms and discuss how different aspects of heterogene-
ity add their specifi c challenges to the problem of tolerating failures on such 
platforms. The ideas that follow in this section can be applied to both hetero-
geneous and homogeneous processing. 

 The unquenchable desire of scientists to run ever larger simulations and 
analyze ever larger data sets is fueling a relentless escalation in the size of 
supercomputing clusters from hundreds to thousands, to even tens of thou-
sands of processors. Unfortunately, the struggle to design systems that can 
scale up in this way also exposes the current limits of our understanding of 
how to effi ciently translate such increases in computing resources into corre-
sponding increases in scientifi c productivity. One increasingly urgent part of 
this knowledge gap lies in the critical area of reliability and fault tolerance . 

 Even when making generous assumptions on the reliability of a single 
processor, it is clear that as the processor count in high - end clusters and 
heterogeneous systems grows into the tens of thousands, the mean time to 
failure (MTTF) will drop from hundreds of days to a few hours, or less. The 
type of 100,000 - processor machines projected in the next few years can expect 
to experience processor failure almost daily, perhaps hourly. Although today ’ s 
architectures are robust enough to incur process failures without suffering 
complete system failure, at this scale and failure rate, the only technique 
available to application developers for providing fault tolerance within the 
current parallel programming model — checkpoint/restart — has performance 
and conceptual limitations that make it inadequate for the future needs of the 
communities that will use these systems. 



18 PROGRAMMING ISSUES

 After a brief decline in popularity, distributed memory machines containing 
large numbers of processors have returned to fulfi ll the promise of delivering 
high performance to scientifi c applications. While it would be most convenient 
for application scientists to simply port their message passing interface (MPI) 
  codes to these machines, perhaps instrument them with a global checkpointing 
system, and then sit back and enjoy the performance improvements, there are 
several features of these machines and their typical operating environments 
that render this impossible: 

 •      Large Numbers of Processors Mean More Failures.     Builders of distrib-
uted machines are targeting them to have tens, or even hundreds, of 
thousands of processors (e.g., the Blue Gene [IBM] has 128,000 proces-
sors  ). While that represents a great potential of computing power, it also 
represents a great potential increase in the system failure rate. Given 
independent failures, if the failure rate of one processor is  X , then the 
rate of failure of the fi rst processor in an  N  processor system is  NX . Thus, 
if the single processor rate of failure is one per year, the rate of processor 
failure in a system of 128,000 processors is one per 6 hours! Clearly, fail-
ures must be accounted for in the programming system.  

 •      Message - Passing Systems Must Tolerate Single - Processor Failures.     As a 
by - product of the previous point, the programming environment of such 
systems must be able to identify and tolerate single - processor failures. 
Historically, MPI systems crash upon processor failures, requiring applica-
tions to utilize global checkpointing and restart to tolerate them. However, 
such high failure rates imply that global checkpointing approaches are 
too ineffi cient.  

 •      Limited Bandwidth to Shared, Stable Storage.     High - performance machines 
pay a great deal of attention to providing high - performance storage capa-
bilities. However, with so many processors and hierarchies of networks, 
access to shared storage will necessarily be a bottleneck. Although at peak 
input/output (I/O)   performance the needs of global checkpointing may 
be supported, such checkpointing will seriously confl ict with both messag-
ing and regular I/O of the application program.    

 Fault tolerance techniques can usually be divided into three big branches 
and some hybrid techniques. The fi rst branch is  messaging logging . In this 
branch, there are three subbranches:  pessimistic messaging logging ,  optimistic
messaging logging , and  casual messaging logging . The second branch is  check-
pointing and rollback recovery . There are also three subbranches in this branch: 
network disk - based checkpointing and rollback recovery ,  diskless checkpoint-
ing and rollback recovery , and  local disk - based checkpointing and rollback 
recovery . The third branch is  algorithm - based fault tolerance . 

 There has been much work on fault tolerance techniques for high - perfor-
mance computing. These efforts come in basically four categories and can be 
adapted to heterogeneous computing. 



ARITHMETIC HETEROGENEITY 19

  1.     System - Level Checkpoint/Message Logging:     Most fault tolerance 
schemes in the literature belong to this category. The idea of this approach 
is to incorporate fault tolerance into the system level so that the applica-
tion can be recovered automatically without any efforts from the applica-
tion programmer. The most important advantage of this approach is its 
transparency. However, due to lack of knowledge about the semantics of 
the application, the system typically backs up all the processes and logs 
all messages, thus often introducing a huge amount of fault tolerance 
overhead.  

  2.     Compiler - Based Fault Tolerance Approach:     The idea of this approach is 
to exploit the knowledge of the compiler to insert the checkpoint at the 
best place and to exclude irrelevant memory areas to reduce the size of 
the checkpoint. This approach is also transparent. However, due to the 
inability of the compiler to determine the state of the communication 
channels at the time of the checkpoint, this approach is diffi cult to use 
in parallel/distributed applications that communicate through message 
passing.  

  3.     User - Level Checkpoint Libraries:     The idea of this approach is to provide 
some checkpoint libraries to the programmer and let the programmer 
decide where, when, and what to checkpoint. The disadvantage of this 
approach is its nontransparency. However, due to the involvement of the 
programmer in the checkpoint, the size of the checkpoint can be reduced 
considerably, and hence the fault tolerance overhead can also be reduced 
considerably.  

  4.     Algorithmic Fault Tolerance Approach:     The idea of this approach is to 
leverage the knowledge of algorithms to reduce the fault tolerance over-
head to the minimum. In this approach, the programmer has to decide 
not only where, when, and what to checkpoint but also how to do the 
checkpoint, and hence the programmer must have deep knowledge 
about the application. However, if this approach can be incorporated 
into widely used application libraries such as ScaLAPACK and PETSc  , 
then it is possible to reduce both the involvement of the application 
programmer and the overhead of the fault tolerance to a minimum.     

2.3 ARITHMETIC HETEROGENEITY 

 There are special challenges associated with writing reliable numerical soft-
ware on systems containing heterogeneous platforms, that is, processors that 
may do fl oating - point arithmetic differently. This includes not just machines 
with completely different fl oating - point formats and semantics, such as Cray 
vector computers running Cray arithmetic  versus workstations running IEEE   -
 standard fl oating - point arithmetic, but even supposedly identical machines 
running with different compilers, or even just different compiler options or 
runtime environments. 



20 PROGRAMMING ISSUES

 The basic problem occurs when making  data dependent branches  on differ-
ent platforms. The fl ow of an algorithm is usually data dependent, and there-
fore slight variations in the data may lead to different processors executing 
completely different sections of code. 

 Now we attempt a defi nition of an arithmetically heterogeneous platform. 
The three main issues determining the classifi cation are the hardware, the 
communication layer, and the software (operating system, compiler, compiler 
options). Any differences in these areas can potentially affect the behavior of 
the application. Specifi cally, the following conditions must be satisfi ed before 
a platform can be considered arithmetically homogeneous   : 

  1.     The hardware of each processor guarantees the same storage representa-
tion and the same results for operations on fl oating - point numbers.  

  2.     If a fl oating - point number is communicated between processors, the 
communication layer guarantees the exact transmittal of the fl oating -
 point value.  

  3.     The software (operating system, compiler, compiler options) on each 
processor also guarantees the same storage representation and the same 
results for operations on fl oating - point numbers.    

 We regard an  arithmetically homogeneous machine  as one, which satisfi es 
condition 1. An  arithmetically homogeneous network  is a collection of homo-
geneous machines, which additionally satisfi es condition 2. Finally, an  arith-
metically homogeneous platform  is a homogeneous network, which satisfi es 
condition 3. We can then make the obvious defi nition that an  arithmetically
heterogeneous platform  is one that is not homogeneous. The requirements for 
an arithmetically homogeneous platform are quite stringent and are frequently 
not met in networks of workstations, or in PCs  , even when each computer in 
the network is the same model. 

 Some areas of distinction are obvious, such as a difference in the architec-
ture of two machines or the type of communication layer implemented. Some 
hardware and software issues, however, can potentially affect the behavior of 
the application and be diffi cult to diagnose. For example, the determination of 
machine parameters such as machine precision, overfl ow, and underfl ow, the 
implementation of complex arithmetic such as complex division, or the han-
dling of NaNs   and subnormal numbers could differ. Some of these subtleties 
may only become apparent when the arithmetic operations occur on the edge 
of the range of representable numbers. 

 The diffi cult question that remains unanswered for scientifi c programmers 
is: When can we  guarantee  that heterogeneous computing is safe? There is also 
the question of just how much additional programming effort should we 
expend to gain additional robustness. 

Machine parameters  such as the relative machine precision, the underfl ow 
and overfl ow thresholds, and the smallest value, which can be safely recipro-
cated, are frequently used in numerical linear algebra computations, as well 



ARITHMETIC HETEROGENEITY 21

as in many other numerical computations. Without due care, variations in these 
values between processors can cause problems, such as those mentioned above. 
Many such problems can be eliminated by using the largest  machine precision 
among all participating processors. 

 The IEEE standard for binary fl oating - point arithmetic (IEEE,  1985 ) speci-
fi es how machines conforming to the standard should represent fl oating - point 
values. We refer to machines conforming to this standard as  IEEE machines . 1

Thus, when we communicate fl oating - point numbers between IEEE machines, 
we might hope that each processor has the same value. This is a reasonable 
hope and will often be realized. For example, external data representation 
(XDR) (SunSoft,  1993 ), uses the IEEE representation for fl oating - point 
numbers, and therefore a message - passing system that uses XDR will com-
municate fl oating - point numbers without change. 2  Parallel Virtual Machine 
(PVM)   is an example of a system that uses XDR. MPI suggests the use of 
XDR but does not mandate its use (Snir et al. ,  1996 ). Unless we have addi-
tional information about the implementation, we cannot assume that fl oating -
 point numbers will be communicated without change on IEEE machines when 
using MPI. Note that there is also an IEEE standard concerned with standard-
izing data formats to aid data conversion between processors (IEEE,  1994 ). 

 Rigorous testing of the ScaLAPACK package, particularly for fl oating -
 point values close to the edge of representable numbers, exposed additional 
dangers that must be avoided in fl oating - point arithmetic (Demmel  et al. , 
 2007 ). For example, it is a sad refl ection that some compilers still do not imple-
ment complex arithmetic carefully. In particular, unscaled complex division 
still occurs on certain architectures, leading to unnecessary overfl ow. 3  To 
handle this diffi culty, ScaLAPACK, as LAPACK  , restricts the range of repre-
sentable numbers by a call to routine PDLABAD   (in double precision), the 
equivalent of the LAPACK routine DLABAD, which replaces the smallest 
and largest representable numbers by their respective square roots in order 
to give protection from underfl ow or overfl ow on machines that do not take 
the care to scale on operations such as complex division. PDLABAD calls 
DLABAD locally on each process and then communicates the minimum and 
maximum values, respectively. Arguably, there should be separate routines for 
real and complex arithmetic, but there is a hope that the need for DLABAD 
will eventually disappear. 

 This is particularly irritating if one machine in a network is causing us to 
impose unnecessary restrictions on all the machines in the network, but 
without such a restriction, catastrophic results can occur during computations 
near the overfl ow or underfl ow thresholds. 

 Another problem encountered during the testing is in the way that 
subnormal (denormalized) numbers are handled on certain (near) IEEE 

1     It should be noted that there is also a radix independent standard (IEEE,  1987 ).  
2   It is not clear whether or not this can be assumed for subnormal (denormalized) numbers.  
3   At the time of testing ScaLAPACK version 1.2, the HP9000 exhibited this behavior.  



22 PROGRAMMING ISSUES

architectures. By default, some architectures fl ush subnormal numbers to zero. 4

Thus, if the computation involves numbers near underfl ow and a subnormal 
number is communicated to such a machine, the computational results may be 
invalid and the subsequent behavior unpredictable. Often such machines have 
a compiler switch to allow the handling of subnormal numbers, but it can be 
nonobvious and we cannot guarantee that users will use such a switch. 

 This behavior occurred during the heterogeneous testing of the linear least 
squares routines when the input test matrix was a full - rank matrix scaled near 
underfl ow. During the course of the computation, a subnormal number was 
communicated, then this value was unrecognized on receipt, and a fl oating -
 point exception was fl agged. The execution on the processor was killed, sub-
sequently causing the execution on the other processors to hang. A solution 
would be to replace subnormal numbers either with zero, or with the nearest 
normal number, but we are somewhat reluctant to implement this solution as 
ScaLAPACK does not seem to be the correct software level at which to 
address the problem. 

 The suggestions made so far certainly do not solve all of the problems. We 
are still left with major concerns for problems associated with varying fl oating -
 point representations and arithmetic operations between different processors, 
different compilers, and different compiler options. 

 We tried to illustrate some of the potential diffi culties concerned with 
fl oating - point computations on heterogeneous platforms. Some of these dif-
fi culties are straightforward to address, while others require considerably more 
thought. All of them require some additional level of defensive programming 
to ensure the usual standards of reliability that users have come to expect from 
packages such as LAPACK and ScaLAPACK. 

 We have presented reasonably straightforward solutions to the problems 
associated with fl oating - point machine parameters and global values, and we 
have discussed the use of a controlling process to solve some of the diffi culties 
of algorithmic integrity. This can probably be used to solve most of these 
problems. Although in some cases, this might be at the expense of considerable 
additional overhead, usually in terms of additional communication, which is 
also imposed on an arithmetically homogeneous network unless we have sepa-
rate code for the homogeneous case  . Unless we can devise a satisfactory test 
for arithmetic homogeneity, and hence have separate paths within the code, a 
separate code would defeat the aim of portability. 

 A topic that we have not discussed is that of the additional testing necessary 
to give confi dence in heterogeneous platforms. The testing strategies that are 
needed are similar to those already employed in reputable software packages 
such as LAPACK, but it may be very hard to produce actual test examples 
that would detect incorrect implementations of the algorithms because, as we 
have seen, the failures are likely to be very sensitive to the computing environ-
ment and, in addition, may be nondeterministic.                

4   The DEC Alpha, at the time of writing, is an example  .  



PART II

PERFORMANCE MODELS OF 
HETEROGENEOUS PLATFORMS 
AND DESIGN OF 
HETEROGENEOUS ALGORITHMS 

  In this part, we present the state of the art in two related fi elds — modeling the 
performance of heterogeneous platforms for high - performance computing 
and design and analysis of heterogeneous algorithms with the models.        

23

High-Performance Heterogeneous Computing, by Alexey L. Lastovetsky and Jack J. Dongarra
Copyright © 2009 John Wiley & Sons, Inc.





25

CHAPTER 3

 Distribution of Computations with 
Constant Performance Models of 
Heterogeneous Processors     
 

  3.1   SIMPLEST CONSTANT PERFORMANCE MODEL OF 
HETEROGENEOUS PROCESSORS AND OPTIMAL DISTRIBUTION 
OF INDEPENDENT UNITS OF COMPUTATION WITH THIS MODEL 

 Heterogeneity of processors is one of the main sources of performance pro-
gramming issues. As we have seen in Chapter  2 , the immediate and most 
important performance - related implication from the heterogeneity of proces-
sors is that the processors run at different speeds. The simplest performance 
model, capturing this feature and abstracting from the others, sees a hetero-
geneous network of computers as a set of interconnected processors, each of 
which is characterized by a single positive constant representing its speed. Two 
important parameters of the model include 

   •       p , the number of the processors, and  
   •       S    =   { s  1 ,  s  2 ,  … ,  s p  }, the speeds of the processors.    

 The speed of the processors can be either  absolute  or  relative . The absolute 
speed of the processors is understood as the number of computational units 
performed by the processor per one time unit. The relative speed of the pro-
cessor can be obtained by the normalization of its absolute speed so that 
  Σ i

p
is= =1 1. Some researchers also use the reciprocal of the speed, which they 

call the execution time of the processor. For example, if  s i   is the absolute speed 

of processor  P i  , then   t
s

i
i

=
1

 will be the execution time of this processor giving 

the number   of time units needed to perform one unit of computation on pro-
cessor  P i  . 

High-Performance Heterogeneous Computing, by Alexey L. Lastovetsky and Jack J. Dongarra
Copyright © 2009 John Wiley & Sons, Inc.



26  DISTRIBUTION OF COMPUTATIONS WITH CONSTANT PERFORMANCE MODELS

 The performance model presented above does not have parameters describ-
ing the communication network. Nonetheless, as we will later see, even in the 
framework of such a simple model, the communication cost of parallel algo-
rithms can be taken into account. 

 Now we consider a simple but fundamental optimization problem with this 
model — the problem of optimal distribution of independent equal units of 
computation over a set of heterogeneous processors. The solution of this 
problem is used as a basic building block in solutions of more complicated 
optimization problems. 

 The problem can be formulated as follows. Given  n  independent units of 
computations, each of equal size (i.e., each requiring the same amount of 
work), how can we assign these units to  p  ( p     <     n ) physical processors  P  1 ,  P  2 , 
 … ,  P p   of respective speeds  s  1 ,  s  2 ,  … ,  s p   so that the workload is best balanced? 
Here, the speed  s i   of processor  P i   is understood as the number of units of 
computation performed by processor  P i   per one time unit. 

 Then, how do we distribute the computational units to processors? The 
intuition says that the load of  P i   should be proportional to  s i  . As the loads (i.e., 
the numbers of units of computation) on each processor must be integers, we 
use the following two - step algorithm to solve the problem. Let  n i   denote the 
number of units of computation allocated to processor  P i  . Then, the overall 

execution time obtained with allocation ( n  1 ,  n  2 ,  … ,  n p  ) is given by 
  
max i

i

i

n
s

. 

The optimal solution will minimize the overall execution time (without taking 
into account communication). 

    Algorithm 3.1   (Beaumont  et al. ,  2001a )  .      Optimal distribution for  n  indepen-
dent units of computation over  p  processors of speeds  s  1 ,  s  2 ,  … ,  s p  : 

   •       Step 1: Initialization.      Approximate the  n i   so that 
  

n
s

consti

i

≈  and 

 n  1    +    n  2    +    …    +    n p      ≤     n . Namely, we let 
  
n

s

s
ni

i

i
p

i

= ×⎢
⎣⎢

⎥
⎦⎥=Σ 1

 for 1    ≤     i     ≤     p .  

   •       Step 2: Refi ning.      Iteratively increment some  n  i  until  n  1    +    n  2    +    …    +    n p     =    n  
as follows:  

   while  ( n  1    +    n  2    +    …    +    n p      <     n ) {  

   fi nd  k     ∈    {1,  … ,  p } such that 
  

n
s

n
s

k

k
i
p+

=
+

=
1 1

1min i

i

;  

    n k     =    n k     +   1;  
  }       

   Proposition 3.1   (Beaumont  et al. ,  2001a ) .     Algorithm 3.1 gives the optimal 
distribution. 

 See Appendix  A  for proof.  



SIMPLEST CONSTANT PERFORMANCE MODEL OF HETEROGENEOUS PROCESSORS  27

   Proposition 3.2.      The complexity of Algorithm 3.1 is  O ( p  2 ).  

   Proof .     The complexity of the initialization step is  O ( p ). The complexity of 
one iteration of the refi ning is  O ( p ). After the initialization step, 
 n  1    +    n  2    +    …    +    n p      ≥     n     −     p . Therefore, there will be at most  p  iterations of the 
refi ning. Hence, the overall complexity of the algorithm will be  O ( p  2 ).  End of 
proof .  

   Proposition 3.3   (Beaumont  et al. ,  2001a ) .     The complexity of Algorithm 3.1 can 
be reduced down to  O ( p     ×    log    p ) using  ad hoc  data structures.   

 The algorithm is widely used as a basic building block in the design of many 
heterogeneous parallel and distributed algorithms. One simple example is the 
following parallel algorithm of multiplication of two dense square  n     ×     n  matri-
ces  ,  C    =    A     ×     B , on  p  heterogeneous processors: 

   •      First, we partition matrices  A  and  C  identically into  p  horizontal slices 
such that there will be one - to - one mapping between these slices and the 
processors. Each processor will store its slices of matrices  A  and  C  and 
the whole matrix  B  as shown in Figure  3.1  for  p    =   3.  

   •      All processors compute their  C  slices in parallel such that each element 

 c ij   in  C  is computed as 
  
c a bij ik kj

k

n

= ×
=

−

∑
0

1

.      

 The key step of this algorithm is the partitioning of matrices  A  and  C . An 
optimal partitioning will minimize the execution time of the algorithm. Let 
one unit of computation be the multiplication of one row of matrix  A  by matrix 
 B , producing one row of the resulting matrix  C . The size of this unit of com-
putation does not depend on which rows of matrices  A  and  C  are involved in 
the computation. The computational unit will always include  n  2  multiplications 

1

2

3

A B C = A × B

=

1

2

3

 Figure 3.1.     Matrix operation  C    =    A     ×     B  with  n     ×     n  matrices  A ,  B , and  C . Matrices  A  
and  C  are horizontally sliced such that the number of elements in the slice is propor-
tional to the speed of the processor. 



28  DISTRIBUTION OF COMPUTATIONS WITH CONSTANT PERFORMANCE MODELS

and  n     ×    ( n     −    1) additions. Processor  P i   will perform  n i   such computation units, 
where  n i   is the number of rows in the slice assigned to this processor,   Σ i

p
in n= =1 . 

Thus, the problem of optimal partitioning of matrices  A  and  C  is reduced to 
the problem of optimal distribution of  n  independent computational units of 
equal size over  p  heterogeneous processors of the respective speeds  s  1 ,  … ,  s p  , 
where  s i   is the number of rows of matrix  C  computed by processor  P i   per one 
time unit. Therefore, we can apply Algorithm 3.1 to solve the partitioning 
problem. 

  Note.    That straightforward application of Algorithm 3.1 has one disadvan-
tage. In the above example, the size of the computational unit is an increasing 
function of  n . Therefore, the absolute speed of the same processor, measured 
in computational units per one time unit, will be decreasing with the increase 
of  n , and the application programmer will have to obtain this speed for each 
particular  n  used in different runs of the application. At the same time, very 
often, the relative speed of the processors does not depend on  n  for quite a 
wide range of values. Hence, the application programmer could obtain the 
relative speeds once for some particular  n  and use the same speeds for other 
values of  n . Actually, nothing prevents us from using relative speeds in this 
case, in particular, and in Algorithm 3.1, in general. Indeed, minimization of 

  
n

s
i

i

+ 1
 at the refi ning step of this algorithm will also minimize 

  

n
s s

i

i i
p

i

+
=

1

1Σ
, as 

  Σ i
p

is=1  does not depend on  i . Therefore, Algorithm 3.1 will return an optimal 
distribution of computational units, independent on whether we use absolute 
or relative speeds. 

 If we refl ect on the above application of Algorithm 3.1, we can also make 
the following observation. If  n  is big enough and if  p     <<     n , then many straight-
forward algorithms of refi ning the distribution obtained after the initialization 
step will return an approximate solution, which is very close to optimal and 
satisfactory in practice. For example, the refi ning could be done by increment-
ing  n  i  in a round - robin fashion. Such algorithms return  asymptotically optimal  
solutions: The larger the matrix size, the closer the solutions to the optimal 
ones. One obvious advantage of using modifi cations of Algorithm 3.1 returning 
not the exact but the approximate, asymptotically optimal distributions is that 
the complexity of the distribution algorithms can be reduced to O( p ). 

 To be specifi c, we have to formalize somehow the notion of an approximate 
optimal distribution. For example, we can defi ne it as any distribution 

  n n ni i
p

iΣ = =( )1  that satisfi es the inequality 
  

s
s

n n
s

s
ni

i
p

i
i

i

i
p

iΣ Σ= =
×⎢

⎣⎢
⎥
⎦⎥

≤ ≤ ×⎢
⎣⎢

⎥
⎦⎥

+
1 1

1. 

This defi nition is not perfect because for some combinations of  p ,  n , and  s i  , the 
exact optimal distribution may not satisfy the inequality. Nevertheless, this 
defi nition allows us to mathematically formulate the problem of the approxi-
mate optimal distribution of independent equal units of computation over a 
set of heterogeneous processors as follows. Given  n  independent units of 



DATA DISTRIBUTION PROBLEMS WITH CONSTANT PERFORMANCE MODELS  29

computations, each of equal size, distribute these units of work over  p ( p     <<     n ) 
physical processors  P  1 ,  P  2 ,  … ,  P p   of respective speeds  s  1 ,  s  2 ,  … ,  s p   so that 

   •      The number of computational units  n i   assigned to processor  P i   
shall be approximately proportional to its speed, namely, 

  

s
s

n n
s

s
ni

i
p

i
i

i

i
p

iΣ Σ= =
×⎢

⎣⎢
⎥
⎦⎥

≤ ≤ ×⎢
⎣⎢

⎥
⎦⎥

+
1 1

1
  

   •        Σ i
p

in n= =1      

  3.2   DATA DISTRIBUTION PROBLEMS WITH CONSTANT 
PERFORMANCE MODELS OF HETEROGENEOUS PROCESSORS 

 In the previous section, the problem of distribution of units of computations 
in proportion to the speed of heterogeneous processors during multiplication 
of two dense square matrices was fi rst reduced to the problem of partitioning 
a matrix and, in the end, to the problem of partitioning a set. This is typical in 
the design of heterogeneous parallel algorithms when the problem of distribu-
tion of computations in proportion to the speed of processors is reduced to 
the problem of partitioning some mathematical objects such as sets, matrices, 
graphs, and so on. 

 In a generic form, a typical partitioning problem with a constant perfor-
mance model of heterogeneous processors can be formulated as follows: 

   •      Given a set of  p  processors  P  1 ,  P  2 ,  … ,  P p  , the speed of each of which is 
characterized by a positive constant,  s i    

   •      Partition a mathematical object of the size  n  (the number of elements in 
a set or matrix, or the number of nodes in a graph) into  p  subobjects of 
the same type (a set into subsets, a matrix into submatrices, a graph into 
subgraphs, etc.) so that  
   �      There is one - to - one mapping between the partitions and the 

processors  
   �      The size  n  i  of each partition is approximately proportional to the speed 

of the processor owing the partition, 
  

n
s

consti

i

≈  

    �      That is, it is assumed that the volume of computation is proportional 
to the size of the mathematical object  

   �      The notion of approximate proportionality is supposed to be defi ned 
for each particular problem; if it is not defi ned, it means that any par-
titioning consists of partitions, the sizes of which are approximately 
proportional to the speeds of the processors owing the partitions    



30  DISTRIBUTION OF COMPUTATIONS WITH CONSTANT PERFORMANCE MODELS

   �      The partitioning satisfi es some additional restrictions on the relationship 
between the partitions 
    �      For example, the submatrices of the matrix may be required to form 

a two - dimensional  r     ×     q  arrangement, where  r  and  q  may be either 
given constants or the parameters of the problem, the optimal value 
of which should be also found    

   �      The partitioning minimizes some functional(s), which is(are) used to 
estimate each partitioning 
    �      For example, it minimizes the sum of the perimeters of the rectangles 

representing the submatrices (intuitively, this functional estimates the 
volume of communications for some parallel algorithms)        

 The problem of optimal distribution of independent equal computational 
units presented in Section  3.1  can be formulated as the following instantiation 
of the generic partitioning problem: 

   •      Given a set of  p  processors  P  1 ,  P  2 ,  … ,  P p  , the speed of each of which is 
characterized by a positive constant,  s i    

   •      Partition a set of  n  elements into  p  subsets so that  
   �      There is one - to - one mapping between the partitions and the 

processors  
   �      The number of elements  n i   in each partition is approximately propor-

tional to  s i  , the speed of the processor owing the partition, so that 

  

s
s

n n
s

s
n pi

i
p

i
i

i

i
p

iΣ Σ= =
×⎢

⎣⎢
⎥
⎦⎥

≤ ≤ ×⎢
⎣⎢

⎥
⎦⎥

+
1 1   

   �      The partitioning minimizes 
  
max i

i

i

n
s

      

 Another important set partitioning problem is formulated as follows: 

   •      Given a set of  p  processors  P  1 ,  P  2 ,  … ,  P p  , the speed of each of which is 
characterized by a positive constant,  s i    

   •      Given a set of  n  unequal elements, the weight of each of which is charac-
terized by a positive constant  

   •      Partition the set into  p  subsets so that  
   �      There is one - to - one mapping between the partitions and the 

processors  
   �      The total weight of each partition,  w i  , is approximately proportional 

to  s  i , the speed of the processor owing the partition  

   �      The partitioning minimizes 
  
max i

i

i

w
s

      



              Achalakul   T   and   Taylor   S  . ( 2003 ).  A distributed spectral - screening PCT algorithm . 
Journal of Parallel and Distributed Computing   63 ( 3 ): 373  –  384 .  

    Alexandrov   A  ,   Ionescu   M  ,   Schauser   K  , and   Scheiman   C  . ( 1995 ).  LogGP: Incorporating 
long messages into the LogP model .  Proceedings of the 7th Annual ACM Symposium 
on Parallel Algorithms and Architectures , June 24 – 26, 1995, Santa Barbara, CA; 
ACM, New York, pp.  95  –  105   .  

    Barbosa   J  ,   Tavares   J  , and   Padilha   A  . ( 2000 ).  Linear algebra algorithms in a heteroge-
neous cluster of personal computers .  Proceedings of the 9th Heterogeneous Comput-
ing Workshop (HCW 2000) , May 1, 2000, Cancun, Mexico. IEEE Computer Society 
Press, pp.  147  –  159   .  

    Bazterra   V  ,   Cuma   M  ,   Ferraro   M  , and   Facelli   J  . ( 2005 ).  A general framework to under-
stand parallel performance in heterogeneous clusters: Analysis of a new adaptive 
parallel genetic algorithm .  Journal of Parallel and Distributed Computing
65 ( 1 ): 48  –  57 .  

    Beaumont   O  ,   Boudet   V  ,   Petitet   A  ,   Rastello   F  , and   Robert   Y  . ( 2001a ).  A proposal for a 
heterogeneous cluster ScaLAPACK (dense linear solvers) .  IEEE Transactions on 
Computers   50 ( 10 ): 1052  –  1070   .  

    Beaumont   O  ,   Boudet   V  ,   Rastello   F  , and   Robert   Y  . ( 2001b ).  Matrix multiplication on 
heterogeneous platforms .  IEEE Transactions on Parallel and Distributed Systems
12 ( 10 ): 1033  –  1051 .  

    Beaumont   O  ,   Boudet   V  ,   Rastello   F  , and   Robert   Y  . ( 2001c ).  Heterogeneous matrix -
 matrix multiplication or partitioning a square into rectangles: NP - completeness and 
approximation algorithms .  Proceedings of the 9th Euromicro Workshop on Parallel 
and Distributed Processing (PDP 2001) , February 7 – 9, 2001, Mantova, Italy, IEEE
Computer Society, pp.  298  –  302   .  

    Becker   B   and   Lastovetsky   A  . ( 2006 ).  Matrix multiplication on two interconnected 
processors .  Proceedings of the 8th IEEE International Conference on Cluster Com-
puting (Cluster 2006) , September 25 – 28, 2006, Barcelona, Spain; CD-ROM/
Abstracts Proceedings, IEEE Computer Society  .  

    Becker   B   and   Lastovetsky   A  . ( 2007 ).  Towards data partitioning for parallel computing 
on three interconnected clusters .  Proceedings of the 6th International Symposium 
on Parallel and Distributed Computing (ISPDC 2007) , July 5 – 8, 2007, Hagenberg, 
Austria, IEEE Computer Society, pp.  285  –  292   .  

REFERENCES

239

High-Performance Heterogeneous Computing, by Alexey L. Lastovetsky and Jack J. Dongarra
Copyright © 2009 John Wiley & Sons, Inc.



240 REFERENCES

    Bernaschi   M   and   Iannello   G  . ( 1998 ).  Collective communication operations: Experimen-
tal results vs. theory .  Concurrency: Practice and Experience   10 ( 5 ): 359  –  386 .  

    Bertschinger   E  . ( 1995 ).  COSMICS: Cosmological initial conditions and microwave 
anisotropy codes .  ArXiv Astrophysics e - prints   ,  http://arxiv.org/abs/astro-ph/9506070 .  

    Boulet   P  ,   Dongarra   J  ,   Rastello   F  ,   Robert   Y  , and   Vivien   F  . ( 1999 ).  Algorithmic issues on 
heterogeneous computing platforms .  Parallel Processing Letters   9 ( 2 ): 197  –  213 .  

    Brady   T  ,   Konstantinov   E  , and   Lastovetsky   A  . ( 2006 ).  SmartNetSolve: High level pro-
gramming system for high performance grid computing .  Proceedings of the 20th 
International Parallel and Distributed Processing Symposium (IPDPS 2006) , April 
25 – 29, 2006, Rhodes, Greece; CD - ROM/Abstracts Proceedings, IEEE Computer 
Society  .  

    Brady   T  ,   Guidolin   M  , and   Lastovetsky   A  . ( 2008 ).  Experiments with SmartGridSolve: 
Achieving higher performance by improving the GridRPC model .  Proceedings of 
the 9th IEEE/ACM International Conference on Grid Computing (Grid 2008) , Sep-
tember 29 – October 1, 2008, Tsukuba, Japan, IEEE Computer Society, pp.  49  –  56   .  

    Brightwell   R  ,   Fisk   L  ,   Greenberg   D  ,   Hudson   T  ,   Levenhagen   M  ,   Maccabe   A  , and   Riesen  
 R  . ( 2000 ).  Massively parallel computing using commodity components .  Parallel 
Computing   26 ( 2 – 3 ): 243  –  266 .  

    Buttari   A  ,   Dongarra   J  ,   Langou   J  ,   Langou   J  ,   Luszczek   P  , and   Kurzak   J  . ( 2007 ).  Mixed 
precision iterative refi nement techniques for the solution of dense linear systems 
International Journal of High Performance Computing Applications    21 ( 4 ): 457  –  466 .  

    Canon   L - C   and   Jeannot   E  . ( 2006 ).  Wrekavoc: A tool for emulating heterogeneity . 
Proceedings of the 20th International Parallel and Distributed Processing Symposium 
(IPDPS 2006) , April 25 – 29, 2006, Rhodes, Greece; CD - ROM/Abstracts Proceed-
ings,  IEEE Computer Society   .  

    Caron   E   and   Desprez   F  . ( 2006 ).  DIET: A scalable toolbox to build network enabled 
servers on the grid .  International Journal of High Performance Computing Applica-
tions   20 ( 3 ): 335  –  352 .  

    Carriero   N  ,   Gelernter   D  ,   Mattson   T  , and   Sherman   A  . ( 1994 ).  The Linda alternative to 
message- passing systems .  Parallel Computing   20 ( 4 ): 633  –  655 .  

    Casanova   H  . ( 2005 ).  Network modeling issues for grid application scheduling.  Interna-
tional Journal of Foundations of Computer    Science   16 ( 2 ): 145  –  162 .  

    Casanova   H   and   Dongarra   J  . ( 1996 ).  NetSolve: A network server for solving compu-
tational science problems .  Proceedings of the 1996 ACM/IEEE Conference on 
Supercomputing , November 17 – 22, 1996, Pittsburgh, PA; Washington, DC, 
CD - ROM/Abstracts Proceedings, IEEE Computer Society  .  

    Chamberlain   R  ,   Chace   D  , and   Patil   A  . ( 1998 ).  How are we doing? An effi ciency 
measure for shared, heterogeneous systems .  Proceedings of the ISCA 11th Interna-
tional Conference on Parallel and Distributed Computing Systems , September 2 – 4, 
1998, Chicago, IL, pp.  15  –  21   .  

    Chang   C - I  . ( 2003 ).  Hyperspectral Imaging: Techniques for Spectral Detection and Clas-
sifi cation .  New York :  Kluwer .  

    Chen   Y   and   Sun   X - H  . ( 2006 ).  STAS: A scalability testing and analysis system .  Proceed-
ings of the 2006 IEEE International Conference on Cluster Computing , September 
25 – 28, 2006, Barcelona, Spain; CD - ROM/Abstracts Proceedings, IEEE Computer 
Society  .  



REFERENCES 241

    Chetverushkin   B  ,   Churbanova   N  ,   Lastovetsky   A  , and   Trapeznikova   M  . ( 1998 ).  Parallel 
simulation of oil extraction on heterogeneous networks of computers .  Proceedings
of the 1998 Conference on Simulation Methods and Applications (CSMA ’ 98) , 
November 1 – 3, 1998, Orlando, FL,  Society for Computer Simulation , pp.  53  –  59   .  

    Choi   J  ,   Dongarra   J  ,   Ostrouchov   S  ,   Petitet   A  ,   Walker   D  , and   Whaley   R  . ( 1996a ).  The 
design and implementation of the ScaLAPACK LU, QR, and Cholesky factorization 
routines .  Scientifi c Programming   5 ( 3 ): 173  –  184 .  

    Choi   J  ,   Dongarra   J  ,   Ostrouchov   S  ,   Petitet   A  ,   Walker   D  , and   Whaley   R  . ( 1996b ).  A pro-
posal for a set of parallel basic linear algebra subprograms .  Proceedings of the 
Second International Workshop on Applied Parallel Computing, Computations in 
Physics, Chemistry and Engineering Science (PARA ’ 95) , August 21 – 24, 1995, Lyngby, 
Denmark; Berlin, Germany, Lecture Notes in Computer Science, vol. 1041, Springer, 
pp.  107  –  114   .  

   ClearSpeed . ( 2008 ).  http://www.clearspeed.com/ .  

    Colella   P   and   Woodward   P  . ( 1984 ).  The piecewise parabolic method (PPM) for gas -
 dynamical simulations .  Journal of Computational Physics   54 (  1  ): 174  –  201   .  

    Crandall   P   and   Quinn   M  . ( 1995 ).  Problem decomposition for non - uniformity and pro-
cessor heterogeneity.  Journal of the Brazilian Computer    Society   2 ( 1 ): 13  –  23 .  

    Cuenca   J  ,   Gim é nez   D  , and   Martinez   J - P  . ( 2005 ).  Heuristics for work distribution of a 
homogeneous parallel dynamic programming scheme on heterogeneous systems . 
Parallel Computing   31 ( 7 ): 711  –  730 .  

    Culler   D  ,   Karp   R  ,   Patterson   D  ,   Sahay   A  ,   Schauser   KE  ,   Santos   E  ,   Subramonian   R  ,   von
 Eicken   T  . ( 1993 ).  LogP: Towards a realistic model of parallel computation .  Proceed-
ings of the 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel 
Programming , May 19 – 22, 1993, San Diego, CA; ACM, New York, pp.  1  –  12   .  

    Demmel   J  ,   Dongarra   J  ,   Parlett   B  ,   Kahan   W  ,   Gu   M  ,   Bindel   D  ,   Hida   Y  ,   Li   X  ,   Marques  O  , 
  Riedy   E  ,   V ö mel   C  ,   Langou   J  ,   Luszczek   P  ,   Kurzak   J  ,   Buttari   A  ,   Langou   J  , and   Tomov 
 S  . ( 2007 ).  For Prospectus for the Next LAPACK and ScaLAPACK Libraries. Depart-
ment of Computer Science, University of Tennessee .  Tech. Rep. UT - CS - 07 - 592 .  

    Deshpande   A   and   Schultz   M  . ( 1992 ).  Effi cient parallel programming with Linda .  Pro-
ceedings of the 1992 ACM/IEEE Conference on Supercomputing , November 16 – 20, 
1992, Minneapolis, MN; Washington, DC, CD - ROM/Abstracts Proceedings,  IEEE 
Computer Society , pp.  238  –  244   .  

    Dhodhi   M  ,   Saghri   J  ,   Ahmad   I  , and   Ul - Mustafa   R  . ( 1999 ),  D - ISODATA: A distributed
algorithm for unsupervised classifi cation of remotely sensed data on network of 
workstations .  Journal of Parallel and Distributed Computing   59 ( 2 ): 280  –  301 .  

    Dongarra   J   and   Whaley   R  . ( 1995 ).  A User ’ s Guide to the BLACS v1.0. Department of 
Computer Science, University of Tennessee .  Tech. Rep. UT - CS - 95 - 281 .  

    Dongarra   J  ,   Croz   J  ,   Duff   I  , and   Hammarling   S  . ( 1990 ).  A set of level - 3 basic linear 
algebra subprograms .  ACM Transactions on Mathematical Software   16 ( 1 ): 1  –  17 .  

    Dongarra   J  ,   van de   Geijn   R  , and   Walker   D  . ( 1994 ).  Scalability issues affecting the design 
of a dense linear algebra library .  Journal of Parallel and Distributed Computing
22 ( 3 ): 523  –  537 .  

    Dongarra   J  ,   Prylli   L  ,   Randriamaro   C  , and   Tourancheau   B  . ( 1995 ).  Array Redistribution 
in ScaLAPACK Using PVM. Department of Computer Science, University of Ten-
nessee .  Tech. Rep. UT - CS - 95 - 310 .  



242 REFERENCES

    Dorband   J  ,   Palencia   J  , and   Ranawake   U  . ( 2003 ).  Commodity computing clusters at 
goddard space fl ight center .  Journal of Space Communication   1 ( 3 ): 23  –  35 .  

    Dovolnov   E  ,   Kalinov   A  , and   Klimov   S  . ( 2003 ).  Natural block data decomposition 
for heterogeneous clusters .  Proceedings of the 17th International Symposium on 
Parallel and Distributed Processing (IPDPS 2003) , April 22 – 26, 2003, Nice, France; 
CD - ROM/Abstracts Proceedings, IEEE Computer Society  .  

    Drozdowski   M   and   Wolniewicz   P  . ( 2003 ).  Out - of - core divisible load processing .  IEEE
Transactions on Parallel and Distributed Systems   14 ( 10 ): 1048  –  1056 .  

    Foster   I  . ( 2002 ).  What is the grid: A three point checklist .  GridToday , July 20, 2002  , 
 http://www.mcs.anl.gov/~itf/Articles/WhatIsTheGrid.pdf .  

    Foster   I  ,   Kesselman   C  ,   Nick   J  , and   Tuecke   S  . ( 2002 ).  The physiology of the grid: An open 
grid services architecture for distributed systems integration .  http://www.globus.org/
ogsa .  

    Fukushige   T  ,   Taiji   M  ,   Makino   J  ,   Ebisuzaki   T  , and   Sugimoto   D  . ( 1996 ).  A highly paral-
lelized special - purpose computer for many - body simulations with an arbitrary 
central force: MD - GRAPE .  Astrophysical Journal   468 :  51  –  61   .  

    Gabriel   E  ,   Fagg   G  ,   Bosilca   G  ,   Angskun   T  ,   Dongarra   J  ,   Squyres   J  ,   Sahay   V  ,   Kambadur
 P  ,   Barrett   B  ,   Lumsdaine   A  ,   Castain   R  ,   Daniel   D  ,   Graham   R  , and   Woodall   T  . ( 2004 ). 
 Open MPI: Goals, concept, and design of a next generation MPI implementation . 
In Recent Advances in Parallel Virtual Machine and Message Passing Interface (Pro-
ceedings of EuroPVM/MPI 2004) , Lecture Notes in Computer Science, vol. 3241, 
(eds.   D   Kranzlm ü ller ,  P   Kacsuk , and  J   Dongarra  )  Berlin, Germany : Springer, pp. 
 97  –  104   .  

    Garey   M   and   Johnson   D  . ( 1979 ).  Computers and Intractability: A Guide to the Theory 
of NP - Completeness .  San Francisco, CA :  Miller Freeman .  

    van de   Geijn   R   and   Watts   J  . ( 1997 ).  SUMMA: Scalable universal matrix multiplication 
algorithm .  Concurrency: Practice and Experience   9 ( 4 ): 255  –  274 .  

    Geist   A  ,   Beguelin   A  ,   Dongarra   J  ,   Jiang   W  ,   Manchek   R  , and   Sunderam   V  . ( 1994 ).  PVM: 
Parallel Virtual Machine. A Users ’  Guide and Tutorial for Networked Parallel Com-
puting .  Cambridge, MA :  MIT Press .  

    Gheller   C  ,   Pantano   O  , and   Moscardini   L  . ( 1998 ).  A cosmological hydrodynamic code 
based on the piecewise parabolic method .  Royal Astronomical Society, Monthly 
Notices   295 ( 3 ): 519  –  533 .  

   Globus . ( 2008 ).  http://www.globus.org/ .  

    Graham   R  ,   Shipman   G  ,   Barrett   B  ,   Castain   R  ,   Bosilca   G  , and   Lumsdaine   A  . 
( 2006 ).  Open MPI: A high - performance, heterogeneous MPI .  Proceedings of the 
8th IEEE International Conference on Cluster Computing (Cluster 2006) , September 
25 – 28, 2006, Barcelona, Spain; CD - ROM/Abstracts Proceedings, IEEE Computer 
Society  .  

    Grama   A  ,   Gupta   A  , and   Kumar   V  . ( 1993 ).  Isoeffi ciency: Measuring the scalability of 
parallel algorithms and architectures .  IEEE Parallel  &  Distributed Technology
1 ( 3 ): 12  –  21 .  

   GridToday . ( 2004 ).  http://www.on-demandenterprise.com/features/grid_computing_--_
hype_or_tripe__07-29-2008_08_06_35.html.

    Gropp   W  ,   Lusk   E  ,   Ashton   D  ,   Balaji   P  ,   Buntinas   D  ,   Butler   R  ,   Chan   A  ,   Krishna   J  ,
  Mercier   G  ,   Ross   R  ,   Thakur   R  , and   Toonen   B  . ( 2007 ).  MPICH2 User ’ s Guide. 



REFERENCES 243

Version 1.0.6 .  Argonne, IL .  Mathematics and Computer Science Division, Argonne 
National Laboratory   .  

    Grove   D   and   Coddington   P  . ( 2001 ).  Precise MPI performance measurement using 
MPIBench. Proceedings of HPC Asia , September 24 – 28, 2001, Gold Coast, 
Queensland, Australia, pp  .   24   –   28    

    Guidolin   M   and   Lastovetsky   A  . ( 2008 ).  Grid - Enabled Hydropad: A Scientifi c Applica-
tion for Benchmarking GridRPC - based Programming Systems. School of Computer 
Science and Informatics, University College Dublin .  Tech. Rep. UCD - CSI - 2008 - 10 . 

    Gupta   R   and   Vadhiyar   A  . ( 2007 ).  An effi cient MPI_Allgather algorithm for grids . 
Proceedings of the 16th International Symposium on High Performance Distributed 
Computing (HPDC - 16) , June 25 – 29, 2007, Monterey, CA, IEEE Computer Society  , 
pp.   169   –   178 .   

    Gustafson   J  ,   Montry   G  , and   Benner   R  . ( 1988 ).  Development of parallel methods for 
a 1024 - processor hypercube .  SIAM Journal on Scientifi c and Statistical Computing
9 ( 4 ): 609  –  638 .  

   HeteroScaLAPACK . ( 2008 ).  Heterogeneous ScaLAPACK software (HeteroScaLA-
PACK). School of Computer Science and Informatics, University College Dublin . 
 http://hcl.ucd.ie/project/HeteroScaLAPACK   .  

    Higgins   R   and   Lastovetsky   A  . ( 2005 ).  Scheduling for heterogeneous networks of com-
puters with persistent fl uctuation of load .  Proceedings of the 13th International 
Conference on Parallel Computing (ParCo 2005) , John von Neumann Institute for 
Computing Series, vol. 33, September 13 – 16, 2005, Malaga, Spain: Central Institute 
for Applied Mathematics, pp  .   171   –   178 .   

   High Performance Fortran Forum . ( 1997 ).  High Performance Fortran Language Speci-
fi cation (Version 2.0) .  Houston, TX :  High Performance Fortran Forum, Rice 
University .  

    Hockney   R  . ( 1994 ).  The communication challenge for MPP: Intel Paragon and Meiko 
CS - 2 .  Parallel Computing   20 ( 3 ): 389  –  398 .  

    Hockney   R   and   Eastwood   J  . ( 1981 ).  Computer Simulation Using Particles .  New York : 
 McGraw Hill .  

    Ibarra   O   and   Kim   C  . ( 1977 ).  Heuristic algorithms for scheduling independent tasks on 
nonidentical processors .  Journal of the ACM   24 ( 2 ): 280  –  289 .  

   Intel . ( 2004 ).  Intel MPI Benchmarks. User Guide and Methodology Description .  Bruhl, 
Germany :  Intel GmbH   .  

   IEEE . ( 1985 ).  ANSI/IEEE Standard for Binary Floating Point Arithmetic: Std 754 -
 1985 .  New York :  IEEE Press .  

   IEEE . ( 1987 ).  ANSI/IEEE Standard for Radix Independent Floating Point Arithmetic: 
Std 854 - 1987 .  New York :  IEEE Press .  

   IEEE . ( 1994 ).  IEEE Standard for Shared - Data Formats Optimized for Scalable Coher-
ent Interface (SCI) Processors: Std 1596.5 - 1993 .  New York :  IEEE Press .  

    Gschwind   M  ,   Hofstee   P  ,   Flachs   B  ,   Hopkins   M  ,   Watanabe   Y  ,   Yamazaki   T  . ( 2006 ). 
 Synergistic processing in Cell ’ s multicore architecture .  IEEE Micro     26 ( 2 ): 10  –  24 .  

    Kaddoura   M  ,   Ranka   S  , and   Wang   A  . ( 1996 ).  Array decompositions for nonuniform 
computational environments .  Journal of Parallel and Distributed Computing
36 ( 2 ): 91  –  105 .  



244 REFERENCES

    Kalinov   A  . ( 2006 ).  Scalability of heterogeneous parallel systems .  Programming and 
Computer Software   32 ( 1 ): 1  –  7 .  

    Kalinov   A   and   Klimov   S  . ( 2005 ).  Optimal mapping of a parallel application processes 
onto heterogeneous platform .  Proceedings of 19th International Parallel and Dis-
tributed Processing Symposium (IPDPS 2005) , April 4 – 8, 2005, Denver, CO; 
CD - ROM/Abstracts Proceedings, IEEE Computer Society  .  

    Kalinov   A   and   Lastovetsky   A  . ( 1999a ).  Heterogeneous distribution of computations 
while solving linear algebra problems on networks of heterogeneous computers . 
Proceedings of the 7th International Conference on High Performance Computing 
and Networking Europe (HPCN ’ 99) , Lecture Notes in Computer Science, vol. 1593, 
April 12 – 14, 1999, Amsterdam, The Netherlands; Berlin, Germany, Springer, pp. 
 191  –  200   .  

    Kalinov   A   and   Lastovetsky   A  . ( 1999b ).  mpC   +   ScaLAPACK   =   Effi cient solving linear 
algebra problems on heterogeneous networks .  Proceedings of the 5th International 
Euro - Par Conference (Euro - Par ’ 99) , Lecture Notes in Computer Science, vol. 1685, 
August 31 – September 3, 1999, Toulouse, France; Berlin, Germany, Springer, pp. 
 1024  –  1031   .  

    Kalinov   A   and   Lastovetsky   A  . ( 2001 ).  Heterogeneous distribution of computations 
solving linear algebra problems on networks of heterogeneous computers .  Journal 
of Parallel and Distributed Computing   61 ( 4 ): 520  –  535 .  

    Kalluri   S  ,   Zhang   Z  ,   JaJa   J  ,   Liang   S  , and   Townshend   J  . ( 2001 ).  Characterizing land surface 
anisotropy from AVHRR data at a global scale using high performance computing . 
International Journal of Remote Sensing   22 ( 11 ): 2171  –  2191 .  

    Karp   A   and   Platt   H  . ( 1990 ).  Measuring parallel processor performance .  Communica-
tions of the ACM   22 ( 5 ): 539  –  543 .  

    Kielmann   T  ,   Bal   H  , and   Verstoep   K  . ( 2000 ).  Fast measurement of LogP parameters for 
message passing platforms .  Proceedings of IPDPS 2000 Workshops , Lecture Notes 
in Computer Science, vol. 1800, May 1 – 5, 2000, Cancun, Mexico; Berlin, Germany, 
Springer, pp.  1176  –  1183   .  

    Kishimoto   Y   and   Ichikawa   S  . ( 2004 ).  An execution - time estimation model for heteroge-
neous clusters .  Proceedings of 18th International Parallel and Distributed Processing 
Symposium (IPDPS 2004) , April 26 – 30, 2004, Santa Fe, NM; CD - ROM/Abstracts 
Proceedings, IEEE Computer Society  . 

    Kumar   S  ,   Chao   H  ,   Alamasi   G  , and   Kale   L  . ( 2006 ).  Achieving strong scaling with 
NAMD on Blue Gene/L .  Proceedings of the 20th International Parallel and Distrib-
uted Processing Symposium (IPDPS 2006) , April 25 – 29, 2006, Rhodes, Greece; 
CD - ROM/Abstracts Proceedings, IEEE Computer Society  .  

    Kumar   V  ,   Grama   A  ,   Gupta   A  , and   Karypis   G  . ( 1994 ).  Introduction to Parallel Comput-
ing: Design and Analysis of Algorithms .  Redwood City, CA :  Benjamin - Cummings 
and Addison - Wesley .    

    Kwok   Y - K   and   Ahmad   I  . ( 1999 ).  Static scheduling algorithms for allocating directed 
task graphs to multiprocessors .  ACM Computing Surveys   31 ( 4 ): 406  –  471 .  

    Lastovetsky   A  . ( 2002 ).  Adaptive parallel computing on heterogeneous networks with 
mpC .  Parallel Computing   28 ( 10 ): 1369  –  1407 .  

    Lastovetsky   A  . ( 2003 ).  Parallel Computing on Heterogeneous Networks .  Hoboken, NJ : 
 Wiley - Interscience .  



REFERENCES 245

    Lastovetsky   A  . ( 2006 ).  Scientifi c programming for heterogeneous systems — Bridging 
the gap between algorithms and applications .  Proceedings of the 5th International 
Symposium on Parallel Computing in Electrical Engineering (PARELEC 2006) , 
September 13 – 17, 2006, Bialystok, Poland, IEEE Computer Society, pp.  3  –  8   .  

    Lastovetsky   A  . ( 2007 ).  On grid - based matrix partitioning for heterogeneous processors . 
Proceedings of the 6th International Symposium on Parallel and Distributed Com-
puting (ISPDC 2007) , July 5 – 8, 2007, Hagenberg, Austria, IEEE Computer Society, 
pp.  383  –  390   .  

    Lastovetsky   A   and   O ’ Flynn   M  . ( 2007 ).  A performance model of many - to - one collective 
communications for parallel computing .  Proceedings of the 21st International Paral-
lel and Distributed Processing Symposium (IPDPS 2007) , March 26 – 30, 2007, Long 
Beach, CA; CD - ROM/Abstracts Proceedings, IEEE Computer Society  .  

    Lastovetsky   A   and   Reddy   R   ( 2004a ).  Data partitioning with a realistic performance 
model of networks of heterogeneous computers .  Proceedings of the 18th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2004) , April 
26 – 30, 2004, Santa Fe, NM; CD - ROM/Abstracts Proceedings, IEEE Computer 
Society  .  

    Lastovetsky   A   and   Reddy   R  . ( 2004b ).  On performance analysis of heterogeneous 
parallel algorithms .  Parallel Computing   30 ( 11 ): 1195  –  1216 .  

    Lastovetsky   A   and   Reddy   R  . ( 2005 ).  Data partitioning for multiprocessors with memory 
heterogeneity and memory constraints .  Scientifi c Programming   13 ( 2 ): 93  –  112 .  

    Lastovetsky   A   and   Reddy   R  . ( 2006 ).  HeteroMPI: Towards a message - passing library 
for heterogeneous networks of computers .  Journal of Parallel and Distributed Com-
puting   66 ( 2 ): 197  –  220 .  

    Lastovetsky   A   and   Reddy   R  . ( 2007a ).  A novel algorithm of optimal matrix partitioning 
for parallel dense factorization on heterogeneous processors .  Proceedings of the 9th 
International Conference on Parallel Computing Technologies (PaCT - 2007) , Lecture 
Notes in Computer Science, vol. 4671, September 3 – 7, 2007, Pereslavl - Zalessky, 
Russia; Berlin, Germany, Springer, pp.  261  –  275   .  

    Lastovetsky   A   and   Reddy   R  . ( 2007b ).  Data partitioning with a functional performance 
model of heterogeneous processors .  International Journal of High Performance 
Computing Applications   21 ( 1 ): 76  –  90 .  

    Lastovetsky   A   and   Reddy   R  . ( 2007c ).  Data partitioning for dense factorization on 
computers with memory heterogeneity .  Parallel Computing   33 ( 12 ): 757  –  779 .  

    Lastovetsky   A   and   Rychkov   V  . ( 2007 ).  Building the communication performance 
model of heterogeneous clusters based on a switched network .  Proceedings of the 
2007 IEEE International Conference on Cluster Computing (Cluster 2007) , Septem-
ber 17 – 20, 2007, Austin, TX, IEEE Computer Society, pp.  568  –  575   .  

    Lastovetsky   A   and   Twamley   J  . ( 2005 ).  Towards a realistic performance model for 
networks of heterogeneous computers . In:  High Performance Computational 
Science and Engineering (Proceedings of IFIP TC5 Workshop, 2004 World Computer 
Congress)  (eds.   MK   Ng  ,   A   Doncescu  ,   LT   Yang  , and   T   Leng  ).  Berlin, Germany : 
 Springer , pp.  39  –  58   .  

    Lastovetsky   A  ,   Mkwawa   I  , and   O ’ Flynn   M  . ( 2006 ).  An accurate communication model 
of a heterogeneous cluster based on a switch - enabled Ethernet network .  Proceed-
ings of the 12th International Conference on Parallel and Distributed Systems 



246 REFERENCES

(ICPADS 2006) , July 12 – 15, 2006, Minneapolis, MN, IEEE Computer Society, pp  . 
 15  –  20 .  

    Lastovetsky   A  ,   Reddy   R  , and   Higgins   R  . ( 2006 ).  Building the functional performance 
model of a processor .  Proceedings of the 21st Annual ACM Symposium on Applied 
Computing (SAC ’ 06) , April 23 – 27, 2006, Dijon, France, ACM Press, pp.  746  –  753   .  

    Lastovetsky   A  ,   O ’ Flynn   M  , and   Rychkov   V  . ( 2007 ).  Optimization of collective com-
munications in heterompi . In  Recent Advances in Parallel Virtual Machine and 
Message Passing Interface (Proceedings of EuroPVM/MPI 2007) , Lecture Notes in 
Computer Science, vol.  4757 , (eds.   F   Cappello  ,   T   Herault  , and   J   Dongarra  ).  Berlin, 
Germany:  Springer , pp.  135  –  143   .  

    Lastovetsky   A  ,   O ’ Flynn   M  , and   Rychkov   V  . ( 2008 ).  MPIBlib: Benchmarking MPI com-
munications for parallel computing on homogeneous and heterogeneous clusters . 
In Recent Advances in Parallel Virtual Machine and Message Passing Interface (Pro-
ceedings of EuroPVM/MPI 2008) , Lecture Notes in Computer Science, vol.  5205 , 
(eds.   A   Lastovetsky ,  T   Kechadi  and  J   Dongarra  )  Berlin, Germany :  Springer , pp. 
 227  –  238   .  

    Le   Moigne   J  ,   Campbell   W  , and   Cromp   R  . ( 2002 ).  An automated parallel image registra-
tion technique based on the correlation of wavelet features .  IEEE Transactions on 
Geoscience and Remote Sensing   40 ( 8 ): 1849  –  1864 .  

    Lee   C  ,   Matsuoka   S  ,   Talia   De  ,   Sussman   A  ,   Mueller   M  ,   Allen   G  , and   Saltz   J  . ( 2001 ). A
Grid Programming Primer .  Global Grid Forum .  http://www.cct.lsu.edu/~gallen/
Reports/GridProgrammingPrimer.pdf   .  

    Mazzeo   A  ,   Mazzocca   N  , and   Villano   U  . ( 1998 ).  Effi ciency measurements in heteroge-
neous distributed computing systems: from theory to practice .  Concurrency: Practice 
and Experience   10 ( 4 ): 285  –  313 .  

   Message Passing Interface Forum . ( 1995 ).  MPI: A Message - passing Interface Standard, 
ver. 1.1   .  University of Tennessee :  Knoxville, TN .  

   MPI . ( 1994 ).  MPI: A message - passing interface standard .  International Journal of 
Supercomputer Applications   8 ( 3/4 ): 159  –  416 .  

    Nakada   H  ,   Sato   M  , and   Sekiguchi   S  . ( 1999 ).  Design and implementations of Ninf: 
Towards a global computing infrastructure .  Future Generation Computing Systems
15 ( 5 – 6 ): 649  –  658 .  

    Ohtaki   Y  ,   Takahashi   D  ,   Boku   T  , and   Sato   M  . ( 2004 ).  Parallel implementation of Stras-
sen ’ s matrix multiplication algorithm for heterogeneous clusters .  Proceedings of the 
18th International Parallel and Distributed Processing Symposium (IPDPS 2004) , 
April 26 – 30, 2004, Santa Fe, NM; CD - ROM/Abstracts Proceedings, IEEE Com-
puter Society  .  

    Pastor   L   and   Bosque   J  . ( 2001 ).  An effi ciency and scalability model for heterogeneous 
clusters .  Proceedings of the 2001 IEEE International Conference on Cluster Comput-
ing , October 8 – 11, 2001,  Newport Beach, CA : IEEE Computer Society, pp. 
 427  –  434   .  

    Pjesivac - Grbovic   J  ,   Angskun   T  ,   Bosilca   G  ,   Fagg   G  ,   Gabriel   E  , and   Dongarra   J  . ( 2007 ).  Per-
formance analysis of MPI collective operation .  Cluster Computing   10 ( 2 ): 127  –  143   . 

    Plaza   A  . ( 2007 ).  Parallel techniques for information extraction from hyperspectral 
imagery using heterogeneous networks of workstations .  Journal of Parallel and 
Distributed Computing   68 ( 1 ): 93  –  111 .  



REFERENCES 247

    Plaza   A   and   Chang   C - I  . (eds.) ( 2007 ).  High - Performance Computing in Remote Sensing . 
 Boca Raton, FL :  Chapman  &  Hall/CRC Press .  

    Plaza   A  ,   Martinez   P  ,   Plaza   J  , and   Perez   R  . ( 2002 ).  Spatial - spectral endmember extrac-
tion by multidimensional morphological operations .  IEEE Transactions on Geosci-
ence and Remote Sensing   40 ( 9 ): 2025  –  2041 .  

    Plaza   A  ,   Martinez   P  ,   Plaza   J  , and   Perez   R  . ( 2005 ).  Dimensionality reduction and classifi ca-
tion of hyperspectral image data using sequences of extended morphological 
transformations .  IEEE Transactions on Geoscience and Remote Sensing   43 ( 3 ):
 466  –  479 . 

    Plaza   A  ,   Plaza   J  , and   Valencia   D  . ( 2006 ).  AMEEPAR: Parallel morphological algorithm 
for hyperspectral image classifi cation on heterogeneous networks of workstations . 
Proceedings of the 6th International Conference on Computational Science (ICCS 
2006) , Lecture Notes in Computer Science, vol. 3993, May 28 – 31, 2006, Reading, UK; 
Berlin, Germany, Springer, pp.  24  –  31   .  

    Plaza   A  ,   Valencia   D  ,   Plaza   J  , and   Martinez   P  . ( 2006 ).  Commodity cluster - based parallel 
processing of hyperspectral imagery .  Journal of Parallel and Distributed Computing
66 ( 3 ): 345  –  358 .  

    Plaza   A  ,   Plaza   J  , and   Valencia   D  . ( 2007 ).  Impact of platform heterogeneity on the design 
of parallel algorithms for morphological processing of high - dimensional image data . 
The Journal of Supercomputing   40 ( 1 ): 81  –  107 .  

    Prylli   L   and   Tourancheau   B  . ( 1996 ).  Effi cient block cyclic data redistribution .  Proceed-
ings of the Second International Euro - Par Conference on Parallel Processing 
(EUROPAR ’ 96) , Lecture Notes in Computer Science, vol 1123, August 26 – 29, 1996, 
Lyon, France; Berlin, Germany, Springer, pp.  155  –  164   .  

    Rabenseifner   R  . ( 1999 ).  Automatic MPI counter profi ling of all users: First results on 
a CRAY T3E 900 - 512 .  Proceedings of the Message Passing Interface Developer ’ s and 
User ’ s Conference 1999 (MPIDC ’ 99) , September 26 – 29, 1999, Barcelona, Spain; 
Berlin, Germany, Springer, pp  77  –  85   .  

    Reddy   R   and   Lastovetsky   A  . ( 2006 ).  HeteroMPI   +   ScaLAPACK: Towards a dense 
ScaLAPACK on heterogeneous networks of computers .  Proceedings of the 13th IEEE 
International Conference on High Performance Computing (HiPC 2006) , Lecture 
Notes in Computer Science, vol. 4297, December 18 – 21, 2006, Bangalore, India, 
Springer, pp.  242  –  252   . 

    Reddy   R  ,   Lastovetsky   A  , and   Alonso   P  . ( 2008 ).  Heterogeneous PBLAS: A Set of Paral-
lel Basic Linear Algebra Subprograms for Heterogeneous Computational Clusters. 
School of Computer Science and Informatics, University College Dublin .  Tech. Rep. 
UCD - CSI - 2008 - 2 .  

    Richards   J   and   Jia   X  . ( 2005 ).  Remote Sensing Digital Image Analysis ,  4th ed.   Berlin, 
Germany:  Springer .  

   RIKEN . ( 2008 ).  http://www.riken.go.jp/engn/index.html .  

    Rosenberry   W  ,   Kenney   D  , and   Fisher   G  . ( 1992 ).  Understanding DCE .  Sebastopol, CA : 
 O ’ Reilly .  

   ScaLAPACK . ( 1997 ).  The ScaLAPACK project .  http://www.netlib.org/scalapack/   .  

    Seymour   K  ,   Nakada   H  ,   Matsuoka   S  ,   Dongarra   J  ,   Lee   C  , and   Casanova   H  . ( 2002 ). 
 Overview of GridRPC: A remote procedure call API for grid computing .  Proceed-
ings of the Third International Workshop on Grid Computing (Grid 2002) , Lecture 



248 REFERENCES

Notes in Computer Science, vol. 2536, November 18, 2002, Baltimore, MD; Berlin, 
Germany, Springer, pp.  274  –  278   .  

    Shirasuna   S  ,   Nakada   H  ,   Matsuoka   S  , and   Sekiguchi   S  . ( 2002 ).  Evaluating Web services 
based implementations of GridRPC .  Proceedings of the 11th IEEE International 
Symposium on High Performance Distributed Computing (HPDC - 11) , July 24 – 26, 
2002, Edinburgh, Scotland, IEEE Computer Society  .  

    Smarr   L   and   Catlett   CE  . ( 1992 ).  Metacomputing .  Communications of the ACM
35 ( 6 ): 44  –  52 .  

    Snir   M  ,   Otto   S  ,   Huss - Lederman   S  ,   Walker   D  , and   Dongarra   J  . ( 1996 ).  MPI: The Com-
plete Reference .  Cambridge, MA :  MIT Press .  

    Soille   P  . ( 2003 ).  Morphological Image Analysis: Principles and Applications ,  2nd ed.  
 Berlin, Germany :  Springer .  

    Spring   J  ,   Spring   N  , and   Wolski   R  . ( 2000 ).  Predicting the CPU availability of time - shared 
Unix systems on the computational grid .  Cluster Computing   3 ( 4 ): 293  –  301 .  

    Sterling   T  ,   Lusk   E  , and   Gropp   W  . ( 2003 ).  Beowulf Cluster Computing with Linux . 
 Cambridge, MA :  MIT Press .  

    Sulistio   A  ,   Yeo   C  , and   Buyya   R  . ( 2004 ).  A taxonomy of computer - based simulations 
and its mapping to parallel and distributed systems simulation tools .  Software: Prac-
tice and Experience   34 ( 7 ): 653  –  673 .  

    Sun   X - H   and   Rover   D  . ( 1994 ).  Scalability of parallel algorithm - machine combinations . 
IEEE Transactions on Parallel and Distributed Systems   5 ( 6 ): 599  –  613 .  

    Sun   X - H  ,   Chen   Y  , and   Wu   M  . ( 2005 ).  Scalability of heterogeneous computing .  Proceed-
ings of the 34th International Conference on Parallel Processing , June 14 – 17, 2005, 
Oslo, Norway, IEEE Computer Society, pp.  557  –  564   .  

   SunSoft . ( 1993 ).  The XDR Protocol Specifi cation. Appendix A of  “ Network 
Interfaces Programmer ’ s Guide. ”    SunSoft .  http://docs.sun.com/app/docs/doc/
801-6741/6i13kh8sg?a=view   .  

    de   Supinski   B   and   Karonis   N  . ( 1999 ).  Accurately measuring MPI broadcasts in a com-
putational grid .  Proceedings of the Eighth International Symposium on High Perfor-
mance Distributed Computing , August 3 – 6, 1999, Redondo Beach, CA, pp.  29  –  37   .  

    Tanaka   Y  ,   Nakada   H  ,   Sekiguchi   S  ,   Suzumura   T  , and   Matsuoka   S  . ( 2003 ).  Ninf - G: A 
reference implementation of RPC - based programming middleware for grid com-
puting .  Journal of Grid Computing   1 ( 1 ): 41  –  51 .  

    Thakur   R  ,   Rabenseifner   R  , and   Gropp   W  . ( 2005 ).  Optimization of collective commu-
nication operations in MPICH .  International Journal of High Performance Comput-
ing Applications   19 ( 1 ): 49  –  66 .  

    Tilton   J  . ( 2001 ).  Method for implementation of recursive hierarchical segmentation on 
parallel computers . US Patent Offi ce, Washington, DC. Pending published applica-
tion 09/839147.  

    Tilton   J  . ( 2007 ).  Parallel implementation of the recursive approximation of an unsu-
pervised hierarchical segmentation algorithm . In  High - Performance Computing in 
Remote Sensing  (eds.   AJ   Plaza  and  C - I    Chang  )  Boca Raton, FL :  Chapman  &  Hall/
CRC Press , pp.  97  –  107   .  

    Turcotte   L  . ( 1993 ).  A Survey of Software Environments for Exploiting Networked 
Computing Resources. Engineering Research Center, Mississippi State University . 
Tech. Rep. MSSU - EIRS - ERC - 93 - 2 .  



REFERENCES 249

   Unicore . ( 2008 ).  http://unicore.sourceforge.net/ .  

    Vadhiyar   S  ,   Fagg   G  , and   Dongarra   J  . ( 2000 ).  Automatically tuned collective commu-
nications .  Proceedings of the 2000 ACM/IEEE Conference on Supercomputing , 
November 4 – 10, 2000, Dallas, TX, IEEE Computer Society  .  

    Valencia   D  ,   Lastovetsky   A  ,   O ’ Flynn   M  ,   Plaza   A  , and   Plaza   J  . ( 2008 ).  Parallel processing 
of remotely sensed hyperspectral images on heterogeneous networks of worksta-
tions using HeteroMPI . International Journal of High Performance Computing 
Applications   22 ( 4 ): 386  –  407 .  

    Vetter   J  ,   Alam   S  ,   Dunigan   T  ,   Fahey   M  ,   Roth   P  , and   Worley   P  . ( 2006 ).  Early evaluation 
of the Cray XT3 .  Proceedings of the 20th IEEE International Parallel and Distributed 
Processing Symposium (IPDPS 2006) , April 25 – 29, 2006, Rhodes, Greece; 
CD - ROM/Abstracts Proceedings, IEEE Computer Society  .  

    Wang   P  ,   Liu   K  ,   Cwik   T  , and   Green   R  . ( 2002 ).  MODTRAN on supercomputers and 
parallel computers .  Parallel Computing   28 ( 1 ): 53  –  64 .  

    Whaley   R  ,   Petitet   A  , and   Dongarra   J  . ( 2001 ).  Automated empirical optimization of 
software and the ATLAS Project .  Parallel Computing   27 ( 1 – 2 ): 3  –  25 .  

    Worsch   T  ,   Reussner   R  , and   Augustin   W  . ( 2002 ).  On Benchmarking Collective MPI 
Operations . In  Recent Advances in Parallel Virtual Machine and Message Passing 
Interface (Proceedings of EuroPVM/MPI 2002) , Lecture Notes in Computer Science, 
vol.  2474 , (eds.   D   Kranzlm ü ller ,  P   Kacsuk  ,  J   Dongarra , and  J   Volkert )  Berlin : 
 Germany , pp.  271  –  279   .  

    YarKhan   A  ,   Seymour   K  ,   Sagi   K  ,   Shi   Z  , and   Dongarra   J  . ( 2006 ).  Recent developments 
in GridSolve .  International Journal of High Performance Computing Applications
20 ( 1 ): 131  –  142 .  

    Zhang   X   and   Yan   Y  . ( 1995 ).  Modeling and characterizing parallel computing perfor-
mance on heterogeneous networks of workstations .  Proceedings of the Seventh 
IEEE Symposium in Parallel and Distributed Processing (SPDPS ’ 95) , October 
25 – 28, 1995, San Antonio, TX, IEEE Computer Society, pp.  25  –  34   .  

    Zhang   X  ,   Yan   Y  , and   He   K  . ( 1994 ).  Latency metric: An experimental method for mea-
suring and evaluating program and architecture scalability .  Journal of Parallel and 
Distributed Computing   22 ( 3 ): 392  –  410 .  

    Zorbas   J  ,   Reble   D  , and   VanKooten   R  . ( 1989 ).  Measuring the scalability of parallel 
computer systems .  Proceedings of the Supercomputing  ’ 89 , November 14 – 18, 1988, 
Orlando, FL, ACM Press, pp.  832  –  841   .       





APPENDICES

251

High-Performance Heterogeneous Computing, by Alexey L. Lastovetsky and Jack J. Dongarra
Copyright © 2009 John Wiley & Sons, Inc.





APPENDIX A

 Appendix to Chapter 3      

  A.1   PROOF OF PROPOSITION 3.1 

 Consider an optimal allocation denoted by  o  1 ,  … ,  o p  . Let  j  be such that 

 ∀  i     ∈    {1,  … ,  p },   o
s

o
s

j

j

i

i

≥ . To prove the correctness of the algorithm, we prove the 

invariant (I):  ∀  i     ∈    {1,  … ,  p }, 

  

n
s

o

s
i

i

j

j

≤ . After the initialization, 
  
n

s
s

ni
i

k
p

k

≤ ×
=Σ 1

. 

We have   n o
o

s
sk

p
k

j

j
k
p

k= ≤ ×= =Σ Σ1 1 . Hence, 

  

n
s

n
s

o

s
i

i k
p

k

j

j

≤ ≤
=Σ 1

 and invariant 

(I) holds. We use an induction to prove that invariant (I) holds after each 
increment. Suppose that, at a given step, some  n k   will be incremented. Before 
that step,   Σ i

p
in n= <1 , hence, there exists  m     ∈    {1,  … ,  p } such that  n m      <     o k  . 

We have   
n

s
o
s

o

s
m

m

m

m

j

j

+ ≤ ≤1
, and the choice of  k  implies that 

  

n
s

n
s

k

k

m

m

+ ≤ +1 1 . 

Invariant (I) does hold after the increment. Finally, the time needed to compute 

the  n  chunks with the allocation ( n  1 ,  n  2 ,  … ,  n p  ) is   maxi
i

i

n
s

, and our allocation 

is optimal. This proves Proposition 3.1.  

  A.2   PROOF OF PROPOSITION 3.5 

 If the algorithm assigns element  a k   at each iteration, then the resulting alloca-
tion will be optimal by design. Indeed, in this case the distribution of elements 
over the processors will be produced by the heterogeneous set partitioning 
(HSP  ), and hence optimal for each subset  A (k)  . 

 Consider the situation when the algorithm assigns a group of  w  ( w     >    1) 
elements beginning from the element  a k  . In that case, the algorithm fi rst 

253

High-Performance Heterogeneous Computing, by Alexey L. Lastovetsky and Jack J. Dongarra
Copyright © 2009 John Wiley & Sons, Inc.



254  APPENDIX TO CHAPTER 3

produces a sequence of ( w    +   1) distributions   
n nk

p
k

1
( ) ( )( ), ,… ,   

n nk
p
k

1
1 1+( ) +( )( ), ,… , 

 … ,   n nk w
p
k w

1
+( ) +( )( ), ,…  such that 

     •      the distributions are optimal for subsets  A (k)  ,  A (k   +   1)  ,  … ,  A (k   +   w)  , respectively, 
and  

   •        n n n nk
p
k k i

p
k i

1 1
( ) ( ) +( ) +( )( ) > ( ), , , ,… …  is only true for  i    =    w  (by defi nition, 

( a  1 ,  … ,  a p  )    >    ( b  1 ,  … ,  b p  ) if and only if ( ∀  i )( a i      ≥     b i  )    ∧    ( ∃  i )( a i      >     b i  ).    

   Lemma 3.5.1.     Let ( n  1 ,  … ,  n p  ) and   ′ ′( )n np1, ,…  be optimal distributions such 

that   n n n ni
p

i i
p

i= > ′ = ′= =Σ Σ1 1 ,   ∃( ) < ′( )i n ni i  and   ∀( ) ≤
+⎛

⎝⎜
⎞
⎠⎟=j

n
s

n

si
p i

i

j

j

max 1
1

. Then, 

  
max maxi

p i

i
i
p i

i

n
s

n
s= == ′

1 1

.   

   Proof of Lemma 3.5.1.     As  n     ≥     n  ′  and ( n  1 ,  … ,  n p  ) and   ′ ′( )n np1, ,…  are both 

optimal distributions, then   max maxi
p i

i
i
p i

i

n
s

n
s= =≥ ′

1 1 . On the other hand, there 

exists  j     ∈    [1,  p ] such that   n nj j< ′ , which implies   n nj j+ ≤ ′1 . Therefore, 

  maxi
p i

i

j

j

j

j

n
s

n

s

n

s=
′ ≥

′
≥

+
1

1
. As we assumed that   ∀( ) ≤

+⎛
⎝⎜

⎞
⎠⎟=j

n
s

n

si
p i

i

j

j

max 1
1

, then 

  max maxi
p i

i

j

j

j

j
i
p i

i

n
s

n

s

n

s
n
s= =≤

+
≤

′
≤ ′

1 1
1

. Thus, from 
  
max maxi

p i

i
i
p i

i

n
s

n
s= =≥ ′

1 1  and 

  max maxi
p i

i
i
p i

i

n
s

n
s= =≤ ′

1 1 , we conclude that 
  
max maxi

p i

i
i
p i

i

n
s

n
s= == ′

1 1 .  End of proof of 

Lemma 3.5.1 .   

 We can apply Lemma 3.5.1 to the pair   n nk
p
k

1
( ) ( )( ), ,…  and   

n nk l
p
k l

1
+( ) +( )( ), ,…  

for any  l     ∈    [1,  w     −    1]. Indeed,   Σ Σi
p

i
k

i
p

i
k ln n=

( )
=

+( )>1 1  and   
∃( ) <( )( ) +( )i n ni

k
i
k l . 

Finally, the HSP guarantees that   ∀( ) ≤
+⎛

⎝⎜
⎞
⎠⎟=

( ) ( )

j
n
s

n

si
p i

k

i

j
k

j

max 1

1
 (see 

Boulet  et al. ,  1999 ; Beaumont  et al. , 2001a  ). Therefore, 

  max max maxi
p i

k

i
i
p i

k

i
i
p i

k w

i

n
s

n
s

n
s=

( )

=

+( )

=

+ −( )

= = =1 1

1

1

1

… . In particular, this means that 

for any ( m  1 ,  … ,  m p  ) such that   min maxj k
k w

i
j

i j k
k w

i
jn m n=

+ − ( )
=
+ − ( )≤ ≤1 1  ( i    =   1,  … ,  p ), we 

will have   max maxi
p i

i
i
p i

k

i

m
s

n
s= =

( )

=1 1 . The allocations made in the end by the 

Reverse algorithm for the elements  a k  ,  a k   +1 ,  … ,  a k   +   w    − 1  result in a new sequence 



PROOF OF PROPOSITION 3.5  255

of distributions for subsets  A (k)  ,  A (k   +1   )  ,  … ,  A (k   +   w    − 1   )   such that each next distribu-
tion differs from the previous one for exactly one processor. Each distribution 
 (m  1 ,  … ,  m p  ) in this new sequence satisfi es the inequality 
  min maxj k

k w
i

j
i j k

k w
i

jn m n=
+ − ( )

=
+ − ( )≤ ≤1 1  ( i    =   1,  … ,  p ). Therefore, they will all have the 

same cost   maxi
p i

k

i

n
s=

( )

1 , which is the cost of the optimal distribution for these 

subsets found by the HSP. Hence, each distribution in this sequence will be 
optimal for the corresponding subset. This proves Proposition 3.5.               



APPENDIX B

 Appendix to Chapter 4      

256

High-Performance Heterogeneous Computing, by Alexey L. Lastovetsky and Jack J. Dongarra
Copyright © 2009 John Wiley & Sons, Inc.

  B.1   PROOF OF PROPOSITION 4.1 

 First, we formulate a few obvious properties of the functions  s i  ( x ). 

   Lemma 4.1.     The functions  s i  ( x ) are bounded.   

   Lemma 4.2.     Any straight line coming through the origin of the coordinate 
system intersects the graph of the function  s i  ( x ) in no more than one point.   

   Lemma 4.3.     Let   xi
Mk( )  be the coordinate of the intersection point of  s i  ( x ) and 

a straight line  M k   coming through the origin of the coordinate system 
( k     ∈    {1,2}). Then   x xi

M
i
M1 2( ) ( )≥  if and only if  ∠ ( M  1 , X )    ≤     ∠ ( M  2 , X ), where  ∠ ( M k  , X ) 

denotes the angle between the line  M k   and the  x  - axis.   
 Since  s i  ( x ) are continuous and bounded, the initial lines  U  and  L  always 

exist. Since there is no more than one point of intersection of the line  L  with 
each of  s i  ( x ),  L  will make a positive angle with the  x  - axis. Thus, both  U  and  L  
will intersect each  s i  ( x ) exactly in one point. Let   xi

U( )  and   xi
L( )  be the coordi-

nates of the intersection points of the  U  and  L  with  s i  ( x ) (1    ≤     i     ≤     p ), respectively. 

Then, by design,   Σ Σi
p

i
U

i
p

i
Lx n x=

( )
=

( )≤ ≤1 1 . This invariant will hold after each 
iteration of the algorithm. Indeed, if line  M  bisects the angle between lines  U  

and  L , then  ∠ ( L , X )    ≤     ∠ ( M , X )    ≤     ∠ ( U , X ). Hence, 
  
Σ Σ Σi

p
i
U

i
p

i
M

i
p

i
Lx x x=

( )
=

( )
=

( )≤ ≤1 1 1 . 

If   Σ i
p

i
Mx n=

( ) ≤1 , then   Σ Σ Σi
p

i
U

i
p

i
M

i
p

i
Lx x n x=

( )
=

( )
=

( )≤ ≤ ≤1 1 1  and after Step 4 

of the algorithm, 
  
Σ Σi

p
i
U

i
p

i
Lx n x=

( )
=

( )≤ ≤1 1 . If  
 
Σ i

p
i
Mx n=

( ) ≥1 , then   

Σ Σ Σi
p

i
U

i
p

i
M

i
p

i
Lx n x x=

( )
=

( )
=

( )≤ ≤ ≤1 1 1  and after Step 4 of the algorithm,   

Σ Σi
p

i
U

i
p

i
Lx n x=

( )
=

( )≤ ≤1 1 . Thus, after each iteration of the algorithm, the  “ ideal ”  

optimal line  O  such that 
  
Σ i

p
i
Ox n=

( ) =1  will be lying between lines  U  and  L . When 
the algorithm reaches Step 5, we have   x xi

L
i
U( ) ( )− < 1  for all 1    ≤     i     ≤     p , 



PROOF OF PROPOSITION 4.3  257

which means that the interval   x xi
L

i
U( ) ( )[ ],  contains, at most, one integer value. 

Therefore, either   n x xi i
U

i
O= ⎢⎣ ⎥⎦ = ⎢⎣ ⎥⎦

( ) ( )  or   
n x xi i

U
i
O= ⎢⎣ ⎥⎦ = ⎢⎣ ⎥⎦ −( ) ( ) 1 . Proposition 4.1 

is proved.  

  B.2   PROOF OF PROPOSITION 4.2 

 The execution time obtained with allocation ( n  1 ,  n  2 ,  … ,  n  p ) is given by 

  maxi
i

i i

n
s n( )

. The geometrical interpretation of this formula is as follows. Let 

 M i   be the straight line connecting the points (0,0) and ( n i  ,  s i  ( n i  )). Then 

  n
s n

M Xi

i i
i( )

= ∠( )cot , . Therefore, minimization of 

  
maxi

i

i i

n
s n( )

 is equivalent to 

maximization of min  i      ∠    ( M i  , X ). Let { S  1 ,  S  2 ,  … } be the set of all straight lines 
such that 

   •       S k   connects (0,0) and ( m ,  s i  ( m )) for some  i     ∈    {1,  … ,  p } and some integer 
 m , and  

   •       S k   lies below  M i   for any  i     ∈    {1,  … ,  p }.    

 Let { S  1 ,  S  2 ,  … } be ordered in the decreasing order of  ∠ ( S k  ,  X ). The execution 
time of the allocation ( n  1 ,  n  2 ,  … ,  n  p ) is represented by line  M k   such that 
 ∠ ( M k  , X )   =   min  i      ∠    ( M i  , X ). Any increment of  n i     means moving one more line 
from the set { S  1 , S  2 ,  … } into the set of lines representing the allocation. At each 
step of the increment, Algorithm 4.3 moves the line making the largest angle 
with the  x  - axis. This means that after each increment, the algorithm gives the 
optimal allocation ( n  1 , n  2 ,  … , n p  ) under the assumption that the total number 
of chunks, which should be allocated, is equal to  n  1    +    n  2    +    …    +    n p   (any other 
increment gives a smaller angle, and hence, longer execution time). Therefore, 
after the last increment, the algorithm gives the optimal allocation ( n  1 , n  2 , … , n p  ) 
under the assumption that  n  1    +    n  2    +    …    +    n p     =    n . Proposition 4.1 is proved.  

  B.3   PROOF OF PROPOSITION 4.3 

 First, we estimate the complexity of one iteration of Algorithm 4.2. At each 
iteration, we need to fi nd the points of intersection of  p  graphs  y    =    s  1 ( x ), 
 y    =    s  2 ( x ),  … ,  y    =    s p  ( x ) and a straight line  y    =    a     ×     x . In other words, at each 
iteration, we need to solve  p  equations of the form  a     ×     x    =    s i  ( x ). As we need 
the same constant number of operations to solve each equation, the complex-
ity of this part of one iteration will be  O ( p ). The test for stopping (Step 2 of 
the algorithm) also takes a constant number of operations per function  s i  ( x ), 
making the complexity of this part of one iteration  O ( p ). Therefore, overall, 
the complexity of one iteration of Algorithm 4.2 will be  O ( p ). 



258  APPENDIX TO CHAPTER 4

 Next, we estimate the number of iterations of this algorithm. To do it, we 
use the following lemma that states one important property of the initial lines 
 U  and  L  obtained at the Step 1 of Algorithm 4.2. 

   Lemma 4.4.     Let the functions  s i  ( x ) (1    ≤     i     ≤     p ) satisfy the conditions of Proposi-
tion 4.1, and the heterogeneity of processors  P  1 ,  P  2 ,  … ,  P p   be bounded. Let  O  
be the point (0,0),  A i   be the point of intersection of the initial line  U  and  s i  ( x ), 
and  B i   be the point of intersection of the initial line  L  and  s i  ( x ). Then, there 
exist constants  c  1  and  c  2  such that 

  
c

OB
OA

ci

i
1 2≤ ≤  for any  i     ∈    {1,2,  … , p }.   

   Proof of Lemma 4.4.     The full proof of Lemma 4.4 is technical and very 
lengthy. Here, we give a relatively compact proof of the lemma under the 
additional assumption that the functions  s i  ( x ) (1    ≤     i     ≤     p ) are monotonically 
decreasing. First, we prove that there exist constants  c  1  and  c  2  such that 

  c
OB
OA

c1 2≤ ≤ , where  A  is the point of intersection of the initial line  U  and 

 s  max ( x )   =   max  i  s i  ( x ), and  B  is the point of intersection of the initial line  L  and 
 s  max ( x ) (see Fig.  B.1 ). Since the heterogeneity of the processors  P  1 ,  P  2 ,  … ,  P p   is 

bounded, there exists a constant  c  such that 
  
max max

min
x R

s x
s x

c∈ +

( )
( )

≤ . In particular, 

this means that   BD
FD

c≤  and   AC
EC

c≤ . Let us prove that   OB
OA

c≤ . We have 

  OB OD BD= +2 2 . Since   OD
OC

BD
EC

= , we have 
  
OD

BD
EC

OC= × . Since  s  min ( x ) 

A

U

Ai Hi

E

C
O x

Y

n
p

Bi
Fi

B

Smax(x)
Si(x)

L

F

D

Smin(x)

 Figure B.1.     The picture after of the initial step of Algorithm 4.2. Here,  s  max ( x )   =   max  i s i  ( x ) 
and  s  min ( x )   =   min  i s i  ( x ). 



PROOF OF PROPOSITION 4.3  259

monotonically decreases on the interval   
n
p

, ∞⎡
⎣⎢

⎤
⎦⎥

,  FD     ≤     EC , and hence, 

  BD
EC

BD
FD

c≤ ≤ . Thus,  OD     ≤     c     ×     OC  and  BD     ≤     c     ×     EC . Therefore, 

  OD BD c OC c EC c OC EC c OE2 2 2 2 2 2 2 2+ ≤ + + × = × + = × , and hence, 

  OB
OE

c≤ . Since  OA     ≤     OE , then   OB
OA

OB
OE

c≤ ≤ . Next, let us prove that 
  

OB
OA c

≥ 1 . 

We have  OB     ≥     OE  and  AC     ≤     c     ×     EC . Therefore, 

  
OB
OA

OE
OA

OC EC

OC AC

OC
EC
OC

OC c
EC
OC

c
≥ = +

+
=

× + ( )
× + × ( )

= ×
+2 2

2 2

2

2
2

1

1

1 1
EEC
OC

c
EC
OC

( )
+ ( )

2

2

21
. Since 

 c     ≥    1, then   
1

1
1

2

2

2

+ ( )
+ ( )

≥

EC
OC

c
EC
OC

, and hence, 
  

OB
OA c

≥ 1 .     

 Now we are ready to prove Lemma 4.4. We have 
  

OB
OA

OB
OA OA

OBi

i i i

≤ = ×1
. 

Since  s i  ( x ) is monotonically decreasing, then 
  

OA
OA

AC
CHi i

≤ . Since the 

heterogeneity of the processors is bounded by the constant  c , then 
  

AC
CH

c
i

≤ . 

Hence,   
1

OA
c

OAi

≤ . Therefore, 
  

OB
OA

c
OA

OB c
OB
OA

ci

i

≤ × = × ≤ 2 . Next, we have   

OB
OA

OB
OA

i

i

i≥ . Since  s i  ( x ) is monotonically decreasing, then 
  

BD
F D

OB
OBi i

≥ . Since 

the heterogeneity of the processors is bounded by the constant  c , then 
  

BD
F D

c
i

≤ . 

Therefore,   OB
OB

c
i ≥ . Thus, 

  

OB
OA

OB
OA

OB
c OA c

i

i

i≥ ≥
×

≥ 1
2

. 

 This proves Lemma 4.4. 
 Bisection of the angle  ∠  A i OB i   at the very fi rst iteration will divide the 

segment  A i B i   of the graph of the function  s i  ( x ) in the proportion 
  

Q B
AQ

OB
OA

i i

i i

i

i

≈  

(see Fig.  B.2 ). Correspondingly,   
x x
x x

OB
OA

i
L

i
M

i
M

i
U

i

i

( ) ( )

( ) ( )
−
−

≈ . Since ( b     −     a ) approximates 

the number of integers in the interval [ a ,  b ], 
  
Δ i

i
L

i
M

i
L

i
U

i
M

i
U

i
L

i
U

x x
x x

x x
x x

= −
−

−
−

⎧
⎨
⎩

⎫
⎬
⎭

( ) ( )

( ) ( )

( ) ( )

( ) ( )min ,  



260  APPENDIX TO CHAPTER 4

will approximate the lower bound on the fraction of the set 

  x x xi
U

i
U

i
L( ) ( ) ( )+ ⎢⎣ ⎥⎦{ }, , ,1…  of possible numbers of chunks to be allocated to 

the processor  P i  , which is excluded from consideration after this bisection. 

Since   c
OB
OA

ci

i
1 2≤ ≤ , then 

  
Δ Δi

c
c

≥
+

=1

2 1
. Indeed, let   q x xi i

L
i
M= −( ) ( )  and   

r x xi i
M

i
U= −( ) ( )

. We have   c
q
r

ci

i
1 2≤ ≤ . Therefore,  c  1     ×     r i      ≤     q i      ≤     c  2     ×     r i   and 

( c  1    +   1)    ×     r i      ≤     q i     +    r i      ≤    ( c  2    +   1)    ×     r i  . Hence, 
  

q
q r

c r
c r

c
c

i

i i

i

i+
≥ ×

+( ) ×
=

+
1

2

1

21 1
.   

   Δ Δi
c

c
≥

+
=1

2 1
 means that after this bisection, at least  Δ     ×    100% of the 

possible solutions will be excluded from consideration for each processor  P i  . 
The difference in length between  OB i   and  OA i   will be getting smaller and 
smaller with each next iteration. Therefore, no less than  Δ     ×    100% of the pos-
sible solutions will be excluded from consideration after each iteration of 
Algorithm 4.2. The number of possible solutions in the initial set for each 
processor  P i   is obviously less than  n . The constant  Δ  does not depend on  p  or 
 n  (actually, this parameter just characterizes the heterogeneity of the set of 
processors). Therefore, the number of iterations  k  needed to arrive at the fi nal 
solution can be found from the equation (1    −     Δ )  k      ×     n    =   1, and we have 

U

Ai

Qi

Bi L

M

Xi
(u) Xi

(M) Xi
(L)O x

Y

 Figure B.2.     Bisection of the angle  ∠  A i OB i   at the very fi rst iteration into two equal 
angles. The segment  A i B i   of the graph of the function s i (x) will be divided in the 

proportion 
  

Q B
AQ

OB
OA

i i

i i

i

i

≈ . 



FUNCTIONAL OPTIMIZATION PROBLEM WITH OPTIMAL SOLUTION  261

  k n=

−( ) ×1
1

1
2

2

log
log

Δ

. Thus, overall, the complexity   of Algorithm 4.2 will be 

  O p n×( )log2 . Proposition 4.3 is proved.  

  B.4   FUNCTIONAL OPTIMIZATION PROBLEM WITH OPTIMAL 
SOLUTION, LOCALLY NONOPTIMAL 

 Consider a simple example with three processors { P  1 ,  P  2 ,  P  3 } distributing nine 
columns. Table  B.1  shows the functional performance models of the processors 
 S    =   { s  1 ( x,y ),  s  2 ( x,y ),  s  3 ( x,y )}, where  s i  ( x,y ) is the speed of the update of a  x     ×     y  
matrix by processor  P i  .   

 Table  B.2  shows the distribution of these nine columns, demonstrating that 
there may be no globally optimal allocation of columns that minimizes the 
execution time of all steps of the LU   factorization.   

 The fi rst column of Table  B.2  represents the step  k  of the parallel LU fac-
torization. The second column shows the global allocation of columns minimiz-
ing the total execution time of LU factorization. The third column shows the 
execution time of the step  k  of the LU factorization resulting from this alloca-
tion. The execution time   ti

k( )  for processor  P i   needed to update a matrix of 

size   9 −( ) × ( )k ni
k  is calculated as 

  

V k n

s k n
k n

s k n
i
k

i i
k

i
k

i i
k

9
9

9
9

−( )
−( ) = −( ) ×

−( )
( )

( )

( )

( )

,
, ,

, where   ni
k( ) 

 TABLE B.1     Functional Model of Three Processors,  P  1 ,  P  2 ,  P  3    

   Problem sizes ( x,y )      s  1 ( x,y )      s  2 ( x,y )      S  3 ( x,y )  

  (1, 1), (1, 2), (1, 3), (1, 4), 
(1, 5), (1, 6), (1, 7), (1, 8)  

  6, 6, 6, 6, 6, 4, 
4, 4  

  18, 18, 18, 18, 18, 
18, 18, 2  

  18, 18, 18, 18, 18, 
18, 18, 2  

  (2, 1), (2, 2), (2, 3), (2, 4), 
(2, 5), (2, 6), (2, 7), (2, 8)  

  6, 6, 6, 6, 5, 4, 
3, 3  

  18, 18, 18, 18, 9, 
8, 8, 2  

  18, 18, 18, 18, 15, 
12, 8, 2  

  (3, 1), (3, 2), (3, 3), (3, 4), 
(3, 5), (3, 6), (3, 7), (3, 8)  

  6, 6, 6, 5, 4, 3, 
3, 3  

  18, 18, 18, 9, 8, 8, 
6, 2  

  18, 18, 18, 12, 8, 
8, 8, 2  

  (4, 1), (4, 2), (4, 3), (4, 4), 
(4, 5), (4, 6), (4, 7), (4, 8)  

  6, 6, 5, 4, 3, 3, 
3, 3  

  18, 18, 9, 9, 8, 6, 
5, 2  

  18, 18, 12, 9, 8, 6, 
6, 2  

  (5, 1), (5, 2), (5, 3), (5, 4), 
(5, 5), (5, 6), (5, 7), (5, 8)  

  6, 5, 4, 3, 3, 3, 
2, 2  

  18, 9, 8, 8, 6, 5, 3, 
1  

  18, 15, 8, 8, 6, 5, 
5, 1  

  (6, 1), (6, 2), (6, 3), (6, 4), 
(6, 5), (6, 6), (6, 7), (6, 8)  

  4, 4, 3, 3, 3, 2, 
1, 1  

  18, 8, 8, 6, 5, 3, 2, 
1  

  18, 12, 8, 6, 5, 3, 
3, 1  

  (7, 1), (7, 2), (7, 3), (7, 4), 
(7, 5), (7, 6), (7, 7), (7, 8)  

  4, 3, 3, 3, 2, 1, 
1, 1  

  18, 8, 8, 6, 5, 3, 2, 
1  

  18, 8, 8, 6, 5, 3, 2, 
1  

  (8, 1), (8, 2), (8, 3), (8, 4), 
(8, 5), (8, 6), (8, 7), (8, 8)  

  4, 3, 3, 3, 2, 1, 
1, 1  

  2, 2, 2, 2, 1, 1, 1, 
1  

  2, 2, 2, 2, 1, 1, 1, 
1  



262  APPENDIX TO CHAPTER 4

 TABLE B.2     Distribution of Nine Column Panels over Three Processors,  P  1 ,  P  2 ,  P  3  

   Step of LU 
factorization ( k )  

   Global allocation 
of columns 

minimizing the 
overall execution 

time  

   Execution 
time of LU 

at step  k   

   Local optimal 
distribution 

{  n k
1
( ) ,  n k

2
( ) ,  n k

3
( ) } 

for problem size 
(9    −     k , 9    −     k )  

   Minimum 
possible 

execution 
time for 

problem size 
(9    −     k , 9    −     k )  

  1     P  1  P  1  P  1  P  1  P  2  P  3  P  2  P  3     8    {4, 2, 2}    8  
   
2
      

P   1   P   1   P   1   P   2   P   3   P   2   P   3    
   
7   

   
{2, 3, 2}

   

    

14
3   

   3      P   1   P   1   P   2   P   3    P   2   P   3    
   3      {1, 2, 3}   

    

3
2   

  4     P  1  P  2  P  3  P  2  P  3   

    

10
9   

  {1, 2, 2}  

    

10
9   

  5     P  2  P  3  P  2  P  3   

    

4
9   

  {0, 2, 2}  
    

4
9   

  6     P  3  P  2  P  3   

    

1
3   

  {0, 1, 2}  

    

1
3   

  7     P  2  P  3   

    

1
9   

  {0, 1, 1}  
    

1
9   

  8     P  3   

    

1
18   

  {0, 0, 1}  
    

1
18   

  Total execution time of LU 
factorization  

   20   

denotes the number of columns updated by the processor  P i   (formula for the 
volume of computations explained below). The fourth column shows the dis-
tribution of columns, which results in the minimal execution time to solve the 
problem size (9    −     k ,9    −     k ) at step  k  of the LU factorization. This distribution 
is determined by considering all possible mappings and choosing the one that 
results in minimal execution time. The fi fth column shows these minimal exe-
cution times for the problem size (9    −     k ,9    −     k ). For example, consider the step 
 k    =   2, the local optimal distribution resulting in the minimal execution time 
for the problem size {7, 7} is { P  1   P  1   P  2   P  2   P  2   P  3   P  3 }, the speeds given by the 
speed functions  S  shown in Table  B.2    are {3, 8, 8}. So the number of columns 
assigned to processors { P  1 ,  P  2 ,  P  3 } are {2, 3, 2}, respectively. The execution times 

are 
  

7 2
3

7 3
8

7 2
8

14
3

21
8

14
8

× × ×{ } = { }, , , , . The execution time to solve the 

problem size {7, 7} is the maximum of these execution times, 
  

14
3

. 



FUNCTIONAL OPTIMIZATION PROBLEM WITH OPTIMAL SOLUTION  263

 Consider again the step  k    =   2 shown in bold in the Table  B.2 . It can be seen 
that the global optimal allocation shown in the second column does not result 
in the minimal execution time for the problem size at this step, which is {7, 7}. 
The execution time of the LU factorization at this step based on the global 
optimal allocation is 7, whereas the minimal execution time given by the local 

optimal distribution for the problem size {7, 7} at this step is 
  

14
3

.                           





INDEX

265

High-Performance Heterogeneous Computing, by Alexey L. Lastovetsky and Jack J. Dongarra
Copyright © 2009 John Wiley & Sons, Inc.

ATLAS, 63, 140, 184, 186

Basic Linear Algebra Communication 
Subprograms, see BLACS

Basic Linear Algebra Subprograms, see
BLAS

Benchmarking communication 
operation, see MPI, 
communication operation, 
benchmarking

BLACS, 174, 178, 184
BLAS, 140, 171, 172, 175, 178, 

184

Cell architecture, 5–6
Collective communication model, 

88–92
gather, 88–92
scatter, 90–92

Communication performance model, 
81–98

of collective operation, see Collective 
communication model

DIET, 209
Distributed programming systems for 

heterogeneous platforms, 
165–168

Distribution of computation units, see
Heterogeneous set partitioning

Effi ciency analysis
of heterogeneous algorithm, 99–104

Fault tolerance, 17–19

Globus Toolkit, 11
GNC, see Heterogeneous platforms, 

taxonomy, global network of 
computers

Grid computing, 10–11, 209
Grid-based system, 10–11

GridRPC, 166–168, 209, 210, 213–216, 
218–220

GridSolve, 209, 210, 215–225

Heterogeneity
arithmetic, 19–22
of communication network, 16–17
of processors, 14–16

Heterogeneous communication model, 
93

estimation, 93–97
Heterogeneous MPI, see HeteroMPI
Heterogeneous parallel algorithm

effi ciency, see Effi ciency analysis, of 
heterogeneous algorithm

design, 27–28, 31–34, 38–44, 70–72, 
111–112

implementation, 111–114, 142–147
self-adaptable, 113, 142–147

LU factorization, 31–34
matrix multiplication, 27–28, 38–44, 

70–72, 143–147
parameters, 111–112

algorithmic, 112, 140–144
platform, 112
problem, 112

performance model, see Performance 
model of heterogeneous 
algorithm



266 INDEX

scalability, see Scalability, of 
heterogeneous algorithm

Heterogeneous PBLAS, see
HeteroPBLAS

Heterogeneous platforms, 3–22
taxonomy, 3–10

global network of computers, 9–10
organizational network, 9–10
general-purpose network, 10

heterogeneous cluster, 6–8
local network of computers, 8–9
vendor designed, 4–6

programming issues, 13–22
arithmetic heterogeneity, 19–22
fault tolerance, 17–19
performance, 14–17

Heterogeneous ScaLAPACK, see
HeteroScaLAPACK

Heterogeneous set partitioning
with constant model of processors, 

26–28
algorithm, 26
complexity, 27

with functional model, 64–70
algorithm, 66–67, 251–253
complexity, 67–69, 254–259

with functional model with limit on 
task size, 78–80

algorithm, 78–79
complexity, 79–80

HeteroMPI, 119, 142, 148, 150, 158–164, 
169, 172, 174, 178, 183, 184, 
187, 191, 195, 199, 201, 
204–208

HeteroPBLAS, 171–187
HeteroScaLAPACK, 171, 175
High Performance Fortran, see HPF
Homogeneous parallel algorithm

implementation for heterogeneous 
platform, 114–115, 147–148, 
171–187

matrix multiplication, 173–178
HPF, see Parallel programming systems 

for heterogeneous platforms, 
traditional, HPF

HSP, see Heterogeneous set partitioning, 
with constant model of 
processors

HSPF, see Heterogeneous set 
partitioning, with functional 
model

Hydropad, 210–225
GridRPC enabled, see GridSolve 

implementation
GridSolve implementation, 215–218
SmartGridSolve implementation, 

218–225
Hyperspectral imaging, 188–190

parallel algorithm, 191–195
implementation for heterogeneous 

clusters, 195–207

Implementation
of heterogeneous algorithm, see

Heterogeneous parallel 
algorithm, implementation

of homogeneous algorithm, see
Homogeneous parallel 
algorithm

IMB, 135, 136

Java, 166

LAPACK, 21, 22
Linda, see Parallel programming systems 

for heterogeneous platforms, 
traditional, Linda

LNC, see Heterogeneous platforms, 
taxonomy, local network of 
computers

LogGP communication model, 84
estimation, 85–85

LogP communication model, 84
estimation, 85–86

LU factorization on heterogeneous 
processors, 31–38

Matrix multiplication, 27–28, 
38–44, 70–72, 143–147, 
173–178

1-D heterogeneous block distribution, 
27–28, 70–72, 143–147

with constant model of processors, 
27–28, 143–147

with functional model of processors, 
70–72

2-D heterogeneous, 38–44

Heterogeneous parallel algorithm (cont’d)



INDEX 267

2-D homogeneous on heterogeneous 
cluster, 173–178

Matrix distribution for LU factorization, 
see Partitioning of well-ordered 
set

Matrix distribution for matrix 
multiplication, see Matrix 
partitioning

Matrix partitioning, 38–59
with constant model of processors, 

38–59
Cartesian, 52–56
column-based, 46–49
grid-based, 49–52
nonrectangular, 56–59

Message Passing Interface, see MPI
mpC programming language, 101, 119, 

142, 147, 148, 150, 158–159
MPI, 21, 82, 87–92, 95, 132, 134, 135, 137, 

139, 149–156, 169, 171, 173, 174, 
183, 190, 191, 195, 201

communication operation
benchmarking, 132–139
modeling, see Communication 

performance model
collective operation

model-based optimization, 91–92
MPIBlib, 139

NetSolve, 165–166
Nimrod, 166
Ninf-G, 209

OpenMP, 149

Parallel programming systems for 
heterogeneous platforms, 
149–150

traditional, 150–158
HPF, 149, 150, 157–158
Linda, 149, 156–157
MPI, see MPI
PVM, see PVM

heterogeneous, 158–165
HeteroMPI, see HeteroMPI
mpC, see mpC programming 

language

Parallel effi ciency, 105–107
heterogeneous, 106–107

Partitioning of well-ordered set, 31–38,
with constant model of processors, 

31–38
DP algorithm, 35–36
Reverse algorithm, 36–38

with functional model, 72–78, 
259–261

FDP algorithm, 76–77
FR algorithm, 73–76

PBLAS, 148, 169, 171–180, 183–187
Performance model of heterogeneous 

algorithm, 142–147
Performance model of heterogeneous 

processors
band model, 80, 119–132

estimation, 119–132
constant model, 25–26, 115–119

estimation, 115–119
functional model, 60–64, 119–132

estimation, 119–132
functional model with limit on task 

size, 78–80
Parallel Virtual Machine, see PVM
PLogP communication model, 84–85

estimation, 85–86
Problem size, see Task size
PVM, 21, 149, 153–156, 171

Scalability, 104–107
of heterogeneous algorithm, 106–107
strong, 104,105
weak, 105–106

ScaLAPACK, 21, 22, 39, 147, 171, 175, 
178, 180, 184, 186

Simulation of galaxies’ evolution, see
Hydropad

SKaMPI, 134
SmartGridSolve, 210, 218–225
Speed of processor, 25

absolute, 25
relative, 25

Task size, 60–62

UNICORE, 11





×104
n2

×104

n1

(b)

600
500

A
bs

ol
ut

e 
sp

ee
d 

(m
eg

af
lo

ps
)

400
300
200
100

0
0

0.5
1

1.5
2

2.5
3

3.5 2.8
2.6

2.4
2.2

2
1.8

1.6
1.4

1.2
1

Reduce - Myrinet - 16 nodes

Linear
Binary
Binomial
Chain 8
Chain 4
Chain 2
Chain 1

100

10–1

10–2

M
in

im
um

 d
ur

at
io

n 
(s

ec
on

ds
)

10–3

10–4

10–5

100 102 104

Total message size (byte)

106

Figure 4.8. (b) Curves on the plane represent the absolute speeds of the processors 
against variable y, given parameter x is fi xed. (See text for full caption.)

Figure 8.1. Multiple implementations of the MPI reduce operation on 16 nodes.

BareSoil
Buildings
Concrete/Asphalt
Corn
Corn?
Corn-EW
Corn-NS
Corn-CleanTill
Corn-CleanTill-EW
Corn-CleanTill-NS
Corn-CleanTill-NS-Imigated
Corn-CleanTilled-NS?
Corn-MinTill
Corn-MinTill-EW
Corn-MinTill-NS
Corn-NoTill
Corn-NoTill-EW
Corn-NoTill-NS
Fescue
Grass
Grass/Trees
Grass/Pasture-mowed
Grass/Pasture
Grass-runway
Hay
Hay?
Hay-Alfalfa
Lake
NotCropped
Oats

(a) (b)

Figure 10.6. (a) Spectral band at 587 nm wavelength of an AVIRIS scene comprising 
agricultural and forest features at Indian Pines, Indiana. (b) Ground truth map with 30 
mutually exclusive classes.



500

Processor family share over time
1993–2008

400

300

200

Power
Intel IA-32
MIPS
Sparc
PA-RISC
Intel EM64T

Ju
ne

 1
99

3

Ju
ne

 1
99

4

Ju
ne

 1
99

5

Ju
ne

 1
99

6

Ju
ne

 1
99

7

Ju
ne

 1
99

8

Ju
ne

 1
99

9

Ju
ne

 2
00

0

Ju
ne

 2
00

1

Ju
ne

 2
00

2

Ju
ne

 2
00

3

Ju
ne

 2
00

4

Ju
ne

 2
00

5

Ju
ne

 2
00

6

Ju
ne

 2
00

7

Ju
ne

 2
00

8

Cray
Alpha
Fujitsu
AMD ×86_64
NEC
Intel IA-64
Intel i860
Others

S
ys

te
m

s

100

0

Figure 12.2.    Main processor families seen in the TOP500. 

Figure 11.1.     Example of a Hydropad output. 


