
Hierarchical Partitioning Algorithm for
Scientific Computing on Highly Heterogeneous

CPU + GPU Clusters

David Clarke1, Aleksandar Ilic2, Alexey Lastovetsky1, and Leonel Sousa2

1 School of Computer Science and Informatics, University College Dublin,
Belfield, Dublin 4, Ireland

2 INESC-ID, IST/Technical University of Lisbon, Rua Alves Redol, 9, 1000-029
Lisbon, Portugal

Abstract. Hierarchical level of heterogeneity exists in many modern
high performance clusters in the form of heterogeneity between comput-
ing nodes, and within a node with the addition of specialized accelerators,
such as GPUs. To achieve high performance of scientific applications on
these platforms it is necessary to perform load balancing. In this paper
we present a hierarchical matrix partitioning algorithm based on realistic
performance models at each level of hierarchy. To minimise the total ex-
ecution time of the application it iteratively partitions a matrix between
nodes and partitions these sub-matrices between the devices in a node.
This is a self-adaptive algorithm that dynamically builds the performance
models at run-time and it employs an algorithm to minimise the total
volume of communication. This algorithm allows scientific applications
to perform load balanced matrix operations with nested parallelism on
hierarchical heterogeneous platforms. To show the effectiveness of the
algorithm we applied it to a fundamental operation in scientific parallel
computing, matrix multiplication. Large scale experiments on a hetero-
geneous multi-cluster site incorporating multicore CPUs and GPU nodes
show that the presented algorithm outperforms current state of the art
approaches and successfully load balance very large problems.

Keywords: parallel applications; heterogeneous platforms; GPU; data parti-
tioning algorithms; functional performance models; matrix multiplication

1 Introduction

In this paper we present a matrix partitioning algorithm for load balancing par-
allel applications running on highly heterogeneous hierarchical platforms. The
target platform is a dedicated heterogeneous distributed memory platform with
multi level hierarchy. More specifically, we focus on a platform with two lev-
els of hierarchy. At the top level is a distributed memory cluster of heteroge-
neous nodes, and at the lower level, each node consists of a number of devices
which may be a combination of multicore CPUs and specialized accelerators/co-
processors (GPUs). We refer to both nodes and devices collectively as processing



elements. The applications we target perform matrix operations and are charac-
terised by discretely divisible computational workloads where the computations
can be split into independent units, such that each computational unit requires
the same amount of computational work. In addition, computational workload
is directly proportional to the size of data and dependent on data locality. High
performance of these applications can be achieved on heterogeneous platforms
by performing load balancing at each level of hierarchy. Load balancing ensures
that all processors complete their work within the same time. This requirement
is satisfied by partitioning the computational workload unevenly between pro-
cessing elements, at each level of hierarchy, with respect to the performance of
that element.

In order to achieve load balancing on our target platform, the partitioning
algorithm must be designed to take into account both the hierarchy and the high
level of heterogeneity of the platform. In contrast to the traditional, CPU-only
distributed memory systems, highly heterogeneous environments employ devices
which have fundamental architectural differences. The ratio of performance dif-
ferences between devices may be orders of magnitude more than the ratio be-
tween traditional heterogeneous platforms; moreover this ratio can vary greatly
with a change in problem size. For example, accelerators need to physically load
and offload portions of data on which computations are performed in order to
ensure high performance and full execution control, and the executable problem
size is limited by the available device memory. Finally, architectural differences
impose new collaborative programming challenges, where it becomes necessary
to use different programming models, vendor-specific tools and libraries in order
to approach the per-device peak performance. However, even if some of the al-
ready existing collaborative execution environments are used (such as OpenCL,
StarPU [1] or CHPS [11]), the problem of efficient cross-device problem parti-
tioning and load balancing still remains.

The work proposed herein takes into account this complex heterogeneity
by using realistic performance models of the employed devices and nodes. The
model of each device or node is constructed by measuring the real performance
of the application when it runs on that device or node. Thus, they are capable
of intrinsically encapsulating all the above-mentioned architectural and perfor-
mance diversities. Traditional partitioning algorithms define the performance of
each processor by a single number. We refer to this simplistic model of processor
performance as a constant performance model (CPM). The functional perfor-
mance model (FPM), proposed in [16], is a more realistic model of processor
performance, where processor speed is a function of problem size. Partitioning
algorithms which use these FPMs always achieve better load balancing than
traditional CPM-based algorithms.

The main contribution of this work is a new hierarchical matrix partitioning
algorithm, based on functional performance models, which performs load bal-
ancing at both the node and device levels. This algorithm performs a one to
one mapping of computational workload and data to nodes and a one to one
mapping of workload to devices. The device level partitioning is performed on



each node by sub-partitioning workload assigned to that node. In contrast to the
some state of the art approaches, this algorithm does not require any a priori
information about the platform, instead all required performance information
is found by performing real benchmarks of the core computational kernel of an
application.

To the best of our knowledge this is the first work that targets large scale
partitioning problems for hierarchical and highly heterogeneous distributed sys-
tems. To show the effectiveness of the proposed algorithm we applied it to paral-
lel matrix multiplication, which is representative of the class of computationally
intensive parallel scientific applications that we target. Experiments on 3 in-
terconnected computing clusters, using a total of 90 CPU+GPU heterogeneous
nodes, showed that, for a wide range of problem sizes, the application based on
FPM-based partitioning outperformed applications based on CPM algorithms.

The rest of the paper is organized as follows. In Section 2, we discuss related
work. In Section 3, we propose hierarchical partitioning algorithm for highly
heterogeneous CPU+GPU clusters. The experimental results are presented in
Section 4. Finally, concluding remarks are given in Section 5.

2 Related work

Divisible load theory(DLT), surveyed in [21], defines a class of applications char-
acterised by workload that can be divided into discrete parts for parallel com-
putation. The applications we target belong to this class. Scheduling and work
stealing algorithms [7, 3, 20], often used in DLT, move workload between pro-
cessing elements, during execution of the application, to achieve load balancing.
However, on distributed memory platforms, such an approach can incur a high
cost of data migration with applications where data locality is important. More-
over we are not aware of any dynamic-scheduling/work-stealing matrix multipli-
cation application for highly heterogeneous distributed memory platforms.

A different class of load balancing algorithms are partitioning algorithms,
also known as predicting-the-future; so called because they rely on performance
models as input to predict the future execution characteristics of the application.
The global workload is partitioned between the available processing elements.
Traditional partitioning algorithms [2, 8, 10, 14, 18, 19] model processor perfor-
mance by a single positive number and partition workload proportionally. We
refer to these simplistic models as constant performance models (CPM).

The partitioning algorithm proposed in this paper predicts future perfor-
mance by using more realistic functional performance models (FPM) [16]. This
algorithm is designed to be self-adaptable [17], making it suitable for applica-
tions for which each run is considered to be unique because of a change of input
parameters or execution on a unique subset of hardware. This is achieved by dy-
namically building partial estimates of the full speed functions to the required
degree of accuracy. It has been shown in [5] that applications using partition-
ing based on FPMs can outperform applications based on CPMs. In [12], we
investigated the potentials of hierarchical divisible load scheduling on our tar-



get platform using the master-worker paradigm. Experiments on a network of
off-the-shelf heterogeneous desktops (CPU + GPU), shows the benefit of using
realistic performance models to load balance and efficiently overlap computations
and communications at the GPU device level. In this paper, we focus on load
balancing with respect to computational performance of processing elements,
and to this end, we do not measure the interconnect speed between each pair of
processing elements; instead we arrange elements such that the communication
volume is minimised [2].

Several scientific studies have already dealt with the problems investigated
herein, but only partially. For example, MAGMA [9] is a library for matrix al-
gebra for GPU and multicore which uses scheduling for load balancing, but only
on a single node. In terms of the target platform, [15, 13] consider homogeneous
multi-GPU cluster systems without CPUs, whereas [6] is designed for a homo-
geneous hierarchical platform.

3 Hierarchical Matrix Partitioning Algorithm

A typical computationally intensive parallel scientific application performs the
same iterative core computation on a set of data. The general scheme of such
an application can be summarised as follows: (i) all data is partitioned over pro-
cessing elements, (ii) some independent calculations are carried out in parallel,
and (iii) some synchronisation takes place. High performance on a distributed
memory, hierarchical heterogeneous platform, for such an application, is achieved
by partitioning workload in proportion to the speed of the processing elements.
The speed of a processing element is best represented by a continuous function
of problem size [5]. These FPMs are built empirically for each application on
each processing element.

Building these speed functions for the full range of potential problem sizes
can be expensive. To reduce this cost and allow the parallel application to be self
adaptable to new platforms we make two optimisations: (i) many computation-
ally intensive scientific applications repeat the same core computational kernel
many times on different data; to find the performance of this application for a
given problem size it is only necessary to benchmark one representative iteration
of the kernel; (ii) partial estimates of the speed functions may be built at appli-
cation run-time to a sufficient level of accuracy to achieve load balancing [17].

Our target platform is a two level hierarchical distributed platform with q
nodes, Q1, . . . , Qq, where a node Qi has pi devices, Pi1, . . . , Pipi . The problem
to be solved by this algorithm is to partition a matrix between these nodes and
devices with respect to the performance of each of these processing elements. The
proposed partitioning algorithm is iterative and converges towards an optimum
distribution which balances the workload. It consists of two iterative algorithms,
inter-node partitioning algorithm (INPA) and inter-device partitioning algorithm
(IDPA). The IDPA algorithm is nested inside the INPA algorithm.

Without loss of generality we will work with square N × N matrices. We
introduce a blocking factor b to allow optimised libraries to achieve their peak



performance as well as reducing the number of communications. For simplicity
we assume N to be a multiple of b, hence there is a total of W computational
units to be distributed, where W = (N/b)× (N/b).

The INPA partitions the total matrix into q sub-matrices to be processed on
each heterogeneous computing node. The sub-matrix owned by node Qi has an
area equal to wi × b× b, where w1 + . . . + wq = W. The Geometric partitioning
algorithm (GPA) uses experimentally built speed functions to calculate a load
balanced distribution w1, . . . , wq. The shape and ordering of these sub-matrices
is calculated by the communication minimising algorithm (CMA). The CMA
uses column-based 2D arrangement of nodes and outputs the heights bmi and
widths bni for each of the q nodes, such that mi × ni = wi, bm = b × m and
bn = b × n (Fig. 1(a)). This two dimensional partitioning algorithm uses a
column-based arrangement of processors. The values of mi and ni are chosen so
that the column widths sum up to N and heights of sub-matrices in a column
sum to N .

The IDPA iteratively measures, on each device, the time of execution of the
application specific core computational kernel with a given size while converging
to a load balanced inter-device partitioning. It returns the kernel execution time
of the last iteration to the INPA. IDPA calls the GPA to partition the sub-matrix
owned by Qi into vertical slices of width dij , such that di1 + . . . + dip = bni

(Fig. 1(b)) to be processed on each device within a Qi node. Device Pij will be
responsible for doing matrix operations on bmi × dij matrix elements.

… …

N

N

b
b

Qi

bni

bmi

M

Pij

dij

Mi

Mi
bni

bmi

(a) (b)

Fig. 1. Two level matrix partitioning scheme: (a) two dimensional partitioning between
the nodes; (b) one dimensional partitioning between devices in a node

We now present an outline of a parallel application using the proposed hier-
archical partitioning algorithm. The partitioning is executed immediately before
execution of the parallel algorithm. The outline is followed by a detailed descrip-
tion of the individual algorithms.



INPA
(
IN: N, b, q, p1, . . . , pq OUT: {mi, ni, di1, . . . , dip}qi=1

)
{

WHILE inter-node imbalance

CMA
(

IN: w1, . . . , wq OUT: (m1, n1), . . . , (mq, nq)
)

;

On each node i (IDPA):

WHILE inter-device imbalance
On each device j: kernel

(
IN: bmi, bni, dij OUT: tij

)
;

GPA
(

IN: pi, bni, piFPMs OUT: di1, . . . , diq)
)

;

END WHILE

GPA
(

IN: q,W , qFPMs OUT: w1, . . . , wq

)
;

END WHILE

}
Parallel application

(
IN: {mi, ni, di1, . . . , dip}qi=1, . . .

)

Inter-Node Partitioning Algorithm (INPA)
Run in parallel on all nodes with distributed memory. Inputs: square matrix size
N , number of nodes q, number devices in each node p1, . . . , pq and block size b.

1. To add initial small point to the model, each node, in parallel, invokes the
IDPA with an input (pi, bmi = 1, bni = 1). This algorithm returns a time
which is sent to the head node.

2. The head node calculates speeds from these times as si(1) = 1/ti(1) and
adds the first point, (1, s(1)), to the model of each node.

3. The head node then computes the initial homogeneous distribution by di-
viding the total number of blocks, W , between processors wi = W/q.

4. The CMA is passed w1, . . . , wq and returns the inter-node distributions
(m1, n1), . . . , (mq, nq) which are scattered to all nodes.

5. On each node, the IDPA is invoked with the input (pi, bmi, bni) and the
returned time ti is sent to the head node.

6. IF max
1≤i,j≤q

∣∣∣ ti(wi)−tj(wi)
ti(wi)

∣∣∣ ≤ ε1 THEN the current inter-node distribution

solves the problem. All inter-device and inter-node distributions are saved
and the algorithm stops;
ELSE the head node calculates the speeds of the nodes as si(wi) = wi/ti(wi)
and adds the point (wi, si(wi)) to each node-FPM.

7. On the head node, the GPA is given the node-FPMs as input and returns a
new distribution w1, . . . , wq

8. GOTO 4

Inter-Device Partitioning Algorithm (IDPA)
This algorithm is run on a node with p devices. The input parameters are p and
the sub-matrix sizes bm, bn. It computes the device distribution d1, · · · , dp and
returns the time of last benchmark.



1. To add an initial small point to each device model, the kernel with param-
eters (bm, bn, 1) is run in parallel on each device and its execution time is
measured. The speed is computed as sj(1) = 1/tj(1) and the point (1, sj(1))
is added to each device model.

2. The initial homogeneous distribution dj = bn/p, for all 1 ≤ j ≤ p is set.
3. In parallel on each device, the time tj(dj) to execute the kernel with param-

eters (bm, bn, dj) is measured.

4. IF max
1≤i,j≤p

∣∣∣ ti(di)−tj(dj)
ti(di)

∣∣∣ ≤ ε2 THEN the current distribution of computations

over devices solves the problem. This distribution d1, · · · , dp is saved and
max
1≤j≤p

tj(dj) is returned;

ELSE the speeds sj(dj) = dj/tj(dj) are computed and the point (dj , sj(dj))
is added to each device-FPM.

5. The GPA takes bn and device-FPMs as input and returns a new distribution
d1, . . . , dp.

6. GOTO 3

Geometric Partitioning Algorithm (GPA)
The geometric partitioning algorithm presented in [16] can be summarised as
follows. To distribute n computational units between p processing elements, load
balancing is achieved when all elements execute their work within the same time:
t1(x1) ≈ t2(x2) ≈ . . . ≈ tp(xp). This can be expressed as:{ x1

s1(x1)
≈ x2

s2(x2)
≈ . . . ≈ xp

sp(xp)

x1 + x2 + . . . + xp = n
(1)

The solution of these equations, x1, . . . , xp, can be represented geometrically
by intersection of the speed functions with a line passing through the origin of
the coordinate system. Any such line represents an optimum distribution for
a particular problem size. Therefore, the space of solutions of the partitioning
problem consists of all such lines. The two outer bounds of the solution space
are selected as the starting point of algorithm. The upper line represents the
optimal distribution for some problem size nu < n, while the lower line gives
the solution for nl > n. The region between two lines is iteratively bisected.
The bisection line gives the optimum distribution for the problem size nm. If
nm < n, then bisection line becomes the new upper bound, else it becomes the
new lower bound. The algorithm iteratively progresses until converging to an
integer solution to the problem.

Communication Minimising Algorithm (CMA)
This algorithm is specific to communication pattern of application and the topol-
ogy of the communication network. It takes as input the number of computa-
tional units, wi, to assign to each processing element and arranges them in such
away, (mi, ni), as to minimise the communication cost. For example, for matrix
multiplication, A×B = C, the total volume of data exchange is minimised by
minimising the sum of the half perimeters H =

∑q
i=1(mi +ni). A column-based

restriction of this problem is solved by an algorithm presented in [2].



4 Experimental Results

To demonstrate the effectiveness of the proposed algorithm we used parallel ma-
trix multiplication as the application. This application is hierarchical and uses
nested parallelism. At the inter-node level it uses a heterogeneous modification of
the two-dimensional blocked matrix multiplication [4], upon which ScaLAPACK
is based. At the inter-device level it uses one-dimensional sliced matrix multi-
plication. It can be summarised as follows: to perform the matrix multiplication
C = A×B, square dense matrices A, B and C are partitioned into sub-matrices
A′, B′, C ′ (Fig. 2(a)), according to the output of the INPA. The algorithm has
N/b iterations, within each iteration, nodes with sub-matrix A′ that forms part
of the pivot column will send their part horizontally and nodes with sub-matrix
B′ that forms part of the pivot blocks from the pivot row will broadcast their
part vertically. All nodes will receive into a buffer A(b) of size bmi × b and B(b)

of size b × bni. Then on each node Qi with devices Pij , for 0 ≤ j < pi, de-
vice Pij will do the matrix operation C ′j = C ′j + A(b) × B(b)j where sub-matrix
C ′j is of size bmi × dij and sub-matrix B′j is of size b × dij (Fig. 2(b)). There-
fore the kernel that is benchmarked for this application is the dgemm operation
C ′j = C ′j + A(b) ×B(b)j .

The Grid’5000 experimental testbed proved to be an ideal platform to test
our application. We used 90 dedicated nodes from 3 clusters from the Grenoble
site. 12 of these nodes from the Adonis cluster included NVIDIA Tesla GPUs.
The remaining nodes where approximately homogeneous. In order to increase
the impact of our experiments we chose to utilise only some of the CPU cores on
some machines (Table 1). Such an approach is not unrealistic since it is possible
to book individual CPU cores on this platform. For the local dgemm routine
we used high performance vendor-provided BLAS libraries, namely Intel MKL
for CPU and CUBLAS for GPU devices. Open MPI was used for inter-node
communication and OpenMP for inter-device parallelism. The GPU execution
time includes the time to transfer data to the GPU. For these experiments,
an out of core algorithm is not used when the GPU memory is exhausted. All
nodes are interconnected by a high speed InfiniBand network which reduces the

Q1

Q2

Q3

...

Qi-1

Qi+1

…

…

...

Qq

Qi

Q1

Q2

Q3

...

Qi+1

…

…

...

Qq

Qi

Q1

Q3

...

Qi-1

Qi+1

…

…

...

Qq

Qi

A B C ...

A(b)

Pij

... ...Pij

B(b)

C'A' B' C'A(b)

B(b)

(a) (b)

...

Fig. 2. Parallel matrix multiplication algorithm: (a) two-dimensional blocked matrix
multiplication between the nodes; (b) one-dimensional matrix multiplication within a
node



Table 1. Experimental hardware setup using 90 nodes from three clusters of the Greno-
ble site from Grid’5000. All nodes have 8 CPU cores, however, to increase heterogeneity
only some of the CPU cores are utilised as tabulated below. One GPU was used with
each node from the Adonis cluster, 10 nodes have Tesla T10 GPU and 2 nodes have
Tesla C2050 GPU, and an CPU core was devoted to control execution on the GPU.
As an example, we can read from the table that two Adonis nodes used only 1 GPU
and 6 Edel nodes used just 1 CPU core. All nodes are connected with InfiniBand 20G
& 40G.

Cores: 0 1 2 3 4 5 6 7 8 Nodes CPU Cores GPUs Hardware

Adonis 2 1 1 1 1 1 2 3 0 12 48 12 2.27/2.4GHz Xeon, 24GB
Edel 0 6 4 4 4 8 8 8 8 50 250 0 2.27GHz Xeon, 24GB
Genepi 0 3 3 3 3 4 4 4 4 28 134 0 2.5GHz Xeon, 8GB

Total 90 432 12

 0

 20

 40

 60

 80

 100

 120

 140

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000

S
p

e
e

d
 (

G
F

L
O

P
S

)

Problem Size wi (b × b blocks updated)

adonis 7CPU + 1GPU
adonis 1CPU + 1GPU
adonis 0CPU + 1GPU

genepi 8CPU
genepi 4CPU
genepi 1CPU

edel 8CPU
edel 4CPU
edel 1CPU

Fig. 3. Full functional performance models for a number of nodes from Grid’5000
Grenoble site. Problem size is in number of b × b blocks of matrix C updated by a
node. For each data point in the node model it was necessary to build device models,
find the optimum inter-device distribution and then measure the execution time of the
kernel with this distribution.

impact of communication on the total execution time, for N = 1.5 × 105 all
communications (including wait time due to any load imbalance) took 6% of
total execution time. The full functional performance models of nodes, Fig. 3,
illustrate the range of heterogeneity of our platform.

Before commencing full scale experiments it was necessary to find an ap-
propriate block size b. A large value of b allows the optimised BLAS libraries
to achieve their peak performance as well as reducing the number of commu-
nications, while a small value of b allows fine grained load balancing between
nodes. We conducted a serious of experiments, using one Adonis node with 7
CPU cores + 1GPU, for a range of problem sizes and a range of values of b.
The IDPA was used to find the optimum distribution between CPU cores and
GPU. As shown in Fig. 4, a value of b = 128 achieves near-peak performance,



 0

 20

 40

 60

 80

 100

 120

 1  2  4  8  16  32  64  128
 256

 512
 1024

 2048
 4096

S
p

e
e

d
 (

G
F

L
O

P
S

)

Block size b

b = 128

N =  1024
N =  2048
N =  5120
N = 12288

Fig. 4. Overall node performance obtained for different ranges of block and problem
sizes when running optimal distribution between 7 CPU cores and a GPU

especially as N increases, while still allowing reasonably fine grained inter-node
load balancing. For all subsequent experiments we used b = 128.

In order to demonstrate the effectiveness of the proposed FPM-based parti-
tioning algorithm we compare it against 3 other partitioning algorithms. All four
algorithms invoke the communication minimisation algorithm and are applied to
an identical parallel matrix multiplication application. They differ on how load
balancing decisions are made.

– Multiple-CPM Partitioning uses the same algorithm as proposed above,
with step 7 of the INPA and step 5 of the IDPA replaced with wi = W× si∑

q
si

and dj = bn × sj∑
p
sj

respectively, where si and sj are constants. This is

equivalent to the approach used in [8, 19, 18].
– Single-CPM Partitioning does one iteration of the above multiple-CPM

partitioning algorithm. This is equivalent to the approach used in [10, 2].
– Homogeneous Partitioning uses an even distribution between all nodes:

w1 = w2 = · · · = wq and between devices in a node: di1 = di2 = · · · = dipi
.

Fig. 5 shows the speed achieved by the parallel matrix multiplication appli-
cation when the four different algorithms are applied. It is worth emphasizeing
that the performance results related to the execution on GPU devices take into
account the time to transfer the workload to/from the GPU. The speed of the
application with the homogeneous distribution is governed by the speed of the
slowest processor (a node from Edel cluster with 1CPU core). The Single-CPM
and multiple-CPM partitioning algorithms are able to load balance for N up to
60000 and 75000 respectivly, however this is only because the speed functions
in these regions are horozontal. In general, for a full range of problem sizes, the
simplistic algorithms are unable to converge to a balanced solution. By chance,
for N = 124032, the multiple-CPM algorithm found a reasonably good parti-
tioning after many iterations, but in general this is not the case. Meanwhile the
FPM-based partitioning algorithm reliably found good partitioning for matrix
multiplication involving in excess of 0.5TB of data.



 0

 1

 2

 3

 4

 5

 0  20  40  60  80  100  120  140  160

S
p

e
e

d
 (

T
e

ra
 F

L
O

P
S

)

Matrix size N  ( × 10
3
)

FPM Partitioning
Multiple-CPM Partitioning

Single-CPM Partitioning
Homogeneous Partitioning

Fig. 5. Absolute speed for a parallel matrix multiplication application based on four
partitioning algorithms. Using 90 heterogeneous nodes consisting of 432 CPU cores and
12 GPUs from 3 dedicated clusters.

5 Conclusions

In this paper a novel hierarchical partitioning algorithm for highly heterogeneous
(CPU+GPU) clusters was presented. The algorithm load balances an application
run on a hierarchical platform by optimally partitioning the workloads at both
levels of hierarchy, i.e. nodes and processing devices. The presented approach is
based on realistic functional performance models of processing elements which
are obtained empirically in order to capture the high level of platform’s hetero-
geneity. The efficiency of the proposed algorithm was tested in a real system
consisting of 90 highly heterogeneous nodes in 3 computing clusters and com-
pared to similar approaches for a parallel matrix multiplication case. The results
show that the presented algorithm was not only capable of minimising the overall
communication volume in such a complex environment, but it was also capable
of providing efficient load balancing decisions for very large problem sizes where
similar approaches were not able to find the adequate balancing solutions. Fu-
ture work will include an out of core device kernel for when the memory limit
of a device is reached; a communication efficient inter-device partitioning and
multi-GPU experimental results.

Acknowledgments. This publication has emanated from research conducted with
the financial support of Science Foundation Ireland under Grant Number 08/IN.1/I2054.
This work was supported by FCT through the PIDDAC Program funds (INESC-ID
multiannual funding) and a fellowship SFRH/BD/44568/2008. Experiments were car-
ried out on Grid’5000 developed under the INRIA ALADDIN development action with
support from CNRS, RENATER and several Universities as well as other funding bod-
ies (see https://www.grid5000.fr). This work was also partially supported by the STSM
COST Action IC0805.

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.: Starpu: A unified plat-
form for task scheduling on heterogeneous multicore architectures. Euro-Par 2009



Parallel Processing pp. 863–874 (2009)
2. Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix Multiplication on Het-

erogeneous Platforms. IEEE Trans. Parallel Distrib. Syst. 12(10), 1033–1051 (2001)
3. Blumofe, R., Leiserson, C.: Scheduling multithreaded computations by work steal-

ing. JACM 46(5), 720–748 (1999)
4. Choi, J.: A new parallel matrix multiplication algorithm on distributed-memory

concurrent computers. Concurrency: Practice and Experience 10(8), 655–670
(1998)

5. Clarke, D., Lastovetsky, A., Rychkov, V.: Column-based matrix partitioning for
parallel matrix multiplication on heterogeneous processors based on functional per-
formance models. In: Euro-Par/HeteroPar 2011. Bordeaux, France (August 2011)

6. Dongarra, J., Faverge, M., Herault, T., Langou, J., Robert, Y.: Hierarchi-
cal qr factorization algorithms for multi-core cluster systems. Arxiv preprint
arXiv:1110.1553 (2011)

7. Drozdowski, M., Lawenda, M.: On optimum multi-installment divisible load pro-
cessing in heterogeneous distributed systems. In: Euro-Par. pp. 231–240 (2005)

8. Galindo, I., Almeida, F., Bada-Contelles, J.: Dynamic Load Balancing on Dedi-
cated Heterogeneous Systems. In: EuroPVM/MPI 2008. pp. 64–74. Springer (2008)

9. Horton, M., Tomov, S., Dongarra, J.: A class of hybrid lapack algorithms for mul-
ticore and gpu architectures. In: SAAHPC. pp. 150–158 (2011)

10. Hummel, S., Schmidt, J., Uma, R.N., Wein, J.: Load-sharing in heterogeneous
systems via weighted factoring. In: SPAA96. pp. 318–328. ACM (1996)

11. Ilic, A., Sousa, L.: Collaborative execution environment for heterogeneous parallel
systems. In: IPDPS Workshops and Phd Forum (IPDPSW). pp. 1 –8 (2010)

12. Ilic, A., Sousa, L.: On realistic divisible load scheduling in highly heterogeneous
distributed systems. In: PDP 2012. Garching, Germany (2012)

13. Jacobsen, D.A., Thibault, J.C., Senocak, I.: An MPI-CUDA Implementation for
Massively Parallel Incompressible Flow Computations on Multi-GPU Clusters. In:
AIAA Aerospace Sciences Meeting proceedings (2010)

14. Kalinov, A., Lastovetsky, A.: Heterogeneous distribution of computations while
solving linear algebra problems on networks of heterogeneous computers. In: HPCN
Europe 1999, LNCS 1593. pp. 191–200. Springer Verlag (1999)

15. Kindratenko, V.V., otheres: GPU clusters for high-performance computing. In:
CLUSTER. pp. 1–8 (2009)

16. Lastovetsky, A., Reddy, R.: Data Partitioning with a Functional Performance
Model of Heterogeneous Processors. Int. J. High Perform. Comput. Appl. 21(1),
76–90 (2007)

17. Lastovetsky, A., Reddy, R., Rychkov, V., Clarke, D.: Design and implementation of
self-adaptable parallel algorithms for scientific computing on highly heterogeneous
HPC platforms. Arxiv preprint arXiv:1109.3074 (2011)

18. Legrand, A., Renard, H., Robert, Y., Vivien, F.: Mapping and load-balancing itera-
tive computations. Parallel and Distributed Systems, IEEE Transactions on 15(6),
546–558 (2004)

19. Mart́ınez, J., Garzón, E., Plaza, A., Garćıa, I.: Automatic tuning of iterative com-
putation on heterogeneous multiprocessors with ADITHE. J. Supercomput. (2009)

20. Quintin, J., Wagner, F.: Hierarchical work-stealing. Euro-Par 2010-Parallel Pro-
cessing pp. 217–229 (2010)

21. Veeravalli, B., Ghose, D., Robertazzi, T.G.: Divisible load theory: A new paradigm
for load scheduling in distributed systems. Cluster Computing 6, 7–17 (2003)


