
Managing the Construction and Use of Functional Performance Models in a Grid
Environment

Robert Higgins, Alexey Lastovetsky
School of Computer Science
University College Dublin

Ireland
{robert.higgins, alexey.lastovetsky}@ucd.ie

Abstract— This paper presents a tool, the Performance Model
Manager, which addresses the complexity of the construction
and management of a set of Functional Performance Models
on a computing server in a Grid environment. The operation of
the tool and the features it implements to achieve this goal are
described. Integration of Functional Performance Models with
a GridRPC middleware, using the tool’s interfaces is
illustrated. Finally, an example application is used to
demonstrate the construction of the models and experiments
that show the benefit of using the detailed models are
presented.

Keywords-grid computing; heterogeneous computing;
performance modeling; benchmarking; processor performance;
memory heirarchy;

I. INTRODUCTION
Grid Computing often utilizes highly heterogeneous

networks of computers. Efficient high performance
computing on Grids can only be achieved when accurate
models of the performance of compute nodes are available to
the scheduling middleware. The performance of a processor
executing a problem is determined not only by the physical
characteristics of the processor, but also of the nature of the
problem’s core algorithm and the size of the problem’s input
parameters. When scheduling the execution of a remote
problem on a Grid, it is important to make an accurate
estimation of the problem’s execution time on the available
heterogeneous processors.

In GridRPC [1] systems, many scheduling decisions are
based on an estimation of execution time of the problem. The
Minimum Completion Time heuristic [2] as implemented in
NetSolve [3] or the Historical Trace Manager [4] heuristics
implemented in GridSolve [5] both rely on the accuracy of
this estimation. Presently, this is provided by the
combination of a simple LINPACK [6] style benchmark,
which measures operations per second of the processor, and
a measure of the complexity of a given problem. This kind of
estimation assumes that the core algorithm of the problem is
similar to the benchmark code used, which is not necessarily
the case. A problem may be more or less suited to a
particular processor as a result of the underlying architecture
of that processor. This difference may not be represented in
the benchmark. Further, the single benchmark does not
account for variance in processor speed as problem size

increases. It is assumed that the speed of all processors will
decrease at the same rate, which is never quite true,
especially where paging occurs on processors at different
sizes of problem.

The Functional Performance Model [7] (FPM) is a
excellent candidate for making a more accurate estimation of
a problem’s execution time. It is a problem specific, realistic,
experimentally obtained model of the actual execution speed
of a problem expressed as a piece-wise linear function of the
problem size. The problem size is given by its input
parameters. These properties of the FPM address both issues
with the current estimations used in GridSolve. However, the
tasks of construction, management and use of a set of
functional models are not trivial. This paper presents a tool
that addresses these issues: the Performance Model Manager
(PMM), and its integration with extended GridRPC system:
SmartGridSolve [8].

In Section 2 we describe the FPM construction method,
the installation of a problem into the manager, the
management of model construction and interfaces to access
constructed models. Section 3 describes the modification to
GridSolve enabling use of constructed FPMs. Section 4
describes a GridRPC application that we use to demonstrate
the construction and use of FPMS. Section 5 presents the
constructed models and experimental results describing
scheduling improvements as a result of using the tool.

II. PERFORMANCE MODEL MANAGER
PMM is a tool that has been developed to address issues

surrounding the construction, maintenance and use of
Functional Performance Models in a variety of parallel
computing environments. It consists of three main features.
Firstly it implements the Geometric Bisection Building
Procedure [9] for multi-parameter FPMs, optimizing the
construction of a problem’s performance model. It permits a
large number of problems to have their construction
managed by implementing a flexible benchmarking
scheduler, suitable for use where a queuing system does not
exist. Finally it provides access to the models in a variety of
ways, allowing feedback from actual executions and
providing tools to use the models in scheduling decisions.

A. Efficient Construction
Un-optimized construction of the FPM for a large set of

problems installed on a large number of servers is infeasible

due to the time and resources that would be consumed. A
novel algorithm that optimizes the construction has been
described in [9], titled Geometric Bisection Building
Procedure (GBBP).

Single parameter GBBP optimizations are made possible
by using the natural variation in performance (due to a
server’s external load fluctuations) and assumptions on the
shape of a FPM (that it may initially be increasing, but is
then decreasing and monotonic). Examples of the shape of
models that fit these assumptions are shown in Fig. 1.

1) Band of Performance
The performance of a server in a non-dedicated

environment is variable and a performance model for such a
server must not be static. A single FPM can be considered as
a possible level of performance that a server may return
under certain load conditions. When those load conditions
are variable, the FPM becomes a band of performance levels
rather than a single function.

GBBP finds a piecewise approximation of this band
(illustrated in Fig. 1). The approximation is constructed in
such a way that its intersection with the real-life performance
band forms a simply connected surface. I.e. the
approximation intersects the real-life band across the entire
problem size range leaving no gaps. This ensures the
accuracy of the model while allowing the formulation of
optimizations that do not violate the constraint.

A history of load fluctuations, which are external to any
Grid executions, is recorded. This history can be used to
predict the maximal and minimal expected loads a problem
of a particular size might encounter on execution.
Benchmarks made during the construction of the model are
adjusted by the loads they are predicted to encounter. The
result is a maximal and minimal speed for every problem
size and these form the band model.

The functional model is extracted from the midpoint
between the limits of the band. The band itself is not used in
scheduling as has been found to provide negligible benefit
while adding a great deal of overhead. It’s main purpose is in
enabling the optimization of construction.

2) Model Shape
The optimization of construction is based on assumptions

on the shape of the model. These are: that the performance
may initially increase, then it will be decreasing and
monotonic. The initial performance increase is discovered
through a series of short benchmarks for small problem
sizes. These are inexpensive.

Once non-increasing, the problem size range is
recursively bisected. The performance at each bisection point
is found through experimentation. At each point, an attempt
is made to determine if further construction is required or if
sufficient detail has been resolved in the model. Identifying
where benchmarks are no longer needed minimizes the
construction time.

For instance, in Fig. 2., when the model at benchmark
points (a) and (b) is examined, we find that the vertical
component of the band at (a) contains (b) entirely. As a result
of the assumptions on shape (that it is monotonic),
construction between these points can cease without

Figure 1. The typical profile of Functional Performance Model according

to their memory access efficiency

Figure 2. Functional Performance Models for the barmatter problem,

with points for GBBP and a naïve construction method shown.

violating the simply connected property of the real/model
intersection.

Further, in the case of benchmarks (c),(d) and (e) we can
see that (e) was previously approximated by the segment
joining (c) to (d) and, before that, by the segment joining (c)
to the endpoint. Again, no further benchmarks are required in
the intervals between these points, as it has been shown that
the model adequately approximates the real band in these
regions.

3) Multi Parameter
Multi parameter GBBP is a basic extension of the single

parameter algorithm. A single parameter model is
constructed for each problem argument with all other
arguments fixed at their minimum sizes. These single
parameter models form the boundaries of the full multi
parameter model. Once their construction is complete, their
points form a grid in the multi parameter model where
experimentation must be made.

Arguments that do not affect the execution speed of a
problem should not be included in the configuration of a
problem in PMM, so as to avoid unnecessary
experimentation. However, if they are included, the single
parameter boundary model for these arguments will have a

1 #include <pmm_util.h>
2 #include <”hydropad_bench.h">
3
4 int main(int argc, char **argv) {
5
6 /* declare variables */
7 global_data *gb;
8 int nx, np;
9 struct pmm_timer *t;
10
11 parse_args(argc, argv, nx, np);
12
13 if (nx < np)
14 return PMM_INVALID_PARAM;
15
16 /* allocate and initialise data */
17 allocate_gb(gb);
18 gb->nx = gb->ny = gb->nz = nx;
19 gb->np=np;
20 initialize_gb(gb);
21
22 t = pmm_timer_init(“dark", pow(nx,3)); /* init timer */
23
24 pmm_timer_start(t); /* start timer */
25
26 /* execute routine */
27 darkmatter(gb->nx, gb->ny, gb->nz, gb->np, ……);
28
29 pmm_timer_stop(t); /* stop timer */
30
31 pmm_timer_result(t); /* get timing result */
32 pmm_timer_destroy(t); /* destroy timer */
33
34 free(gb);
35 return EXIT_SUCCESS;
36 }

unique flat profile that may be detected. Those boundary
models with flat profiles can be excluded from the multi-
dimensional grid of the full model.

4) PMM / Problem Interface
PMM provides the developer of a problem with a

framework for using GBBP to construct the problem’s FPM.
An interface between a call to the problem and PMM must
exist so that benchmarks can be executed automatically at
points determined by GBBP.

To realize this interface, we have chosen to specify that
the problem developer must provide a benchmarking binary
that executes a call to the problem for us. This binary must
follow a set of rules regarding the input that it accepts and
the output it returns to PMM. In the specific environment of
GridSolve, we could conceivably execute problems
automatically without this requirement, as GridSolve already
provides wrapper binaries for executing problems as
GridRPC calls. However, there would be no facility to pass
intelligible data for the problem to process. This would
require a language additional to the Interface Description
Language (IDL), which at present facilitates executing
problems with data that has been passed to GridSolve. Such

a language is likely to be complex to use and limiting for the
problem developer. As a result, we believe the task of
writing a small benchmarking binary is a far simpler and
more flexible solution to the interfacing between the problem
and PMM.

In order to allow the PMM to execute benchmarks of a
problem at points as requested by GBBP, the benchmark
binary of the problem that the developer provides must:

• accept an ordered list of command line parameters

that define the size of the input parameters to the
problem

• dynamically allocate input and output data structures
according to the input arguments

• initialize input parameters with data that is
intelligible to the problem call, and permits normal
execution

• place calls to the PMM timer functions directly
before and after execution of the problem

• terminate and return normally on successful
execution

An example of a problem benchmark is shown in Fig. 3.

The calls to PMM timing code are highlighted on lines 24
and 29. Also shown are constructors and destructors and the
function that formats and prints the measured benchmarking
information (line 31), which is parsed by PMM.

The problem that is benchmarked by this example is an
N-Body simulation of dark matter. It comes from an
application that will be described in section 4. The
darkmatter problem acts on two large 3-dimensional
matrices. Both these matrices must be cubic and as a result
we only need to build the FPM in terms of two parameters,
the size of a single side of each matrix, Nx and Np. This is an

Figure 3. Example Benchmark Code

important optimization that the problem developer can
enable us to use, as greater numbers of parameters results in
far longer construction time. There is also a constraint that
Np is less than Nx. The benchmarking binary can identify
constrained parameters to PMM by returning a defined code
as on line 14.

In the configuration of PMM the problem developer
specifies the parameters to pass to the benchmarking binary,
the order that they appear in the function call, the range of
each parameter (over which the FPM is to be built) and a
path to the binary itself. An example configuration in XML
is shown in Fig. 4.

B. Flexible Construction
PMM can construct models in a number of modes. In a

GridRPC environment the construction behaviors that are
most relevant are those initiated by the administrator of a
computing node (rather than by an application, at runtime).
Invoked from the command line in an interactive mode,
PMM can construct all models it has been configured with at
that instant. This provides for accurate model construction
before a server is enabled on the Grid, but for a large number
of problems, it is a lengthy process that could occupy a
machine for an unacceptable amount of time.

For situations where a server cannot be removed from a
Grid for the model construction process, PMM can be started
as a daemon process. In this mode, the construction of FPMs
could be less intrusive. Time constraints, system conditions

Figure 4. Example configuration of darkmatter problem in PMM

and problem priorities can be applied to manage the building
process with a maximum level of flexibility provided to the
system administrator.

Time constraints limit the periods when models are
permitted to be constructed. Three constraints have been
implemented:

• now – construct a model as soon as possible with no
time limit on benchmark execution

• until – allow construction of a model up until a
certain time, at which point, end construction or
allow another time constraint to take over

• periodic – construct a model in specific time
intervals, which can be defined by the minute of an
hour, the hour of a day, day of week, etc.

Along with each time constraints are halting conditions.
These are monitored conditions that can prevent
benchmarking. We make a number of conditions available to
monitor as well as test for the existence of a halt-file. The
halt-file allows an administrator to add any halting condition
they wish via an external program that creates and removes
the file. The conditions implemented are:

• user login – halt construction if a user is logged into
the machine

• load threshold – halt construction when load is
above a threshold, this condition is not monitored
while a benchmark is being executed

• process detection – halt the construction if a
particular process is detected

• user process detection – halt the construction if any
process that does not belong to an exclusion list of
users is detected

• halt file – as described, a specific file is tested for
existence and construction is halted on that basis

Finally we allow each problem to have a construction
priority. Problems with a higher priority are constructed to
completion before the construction of other problems is
begun. Problems with the same priority are scheduled based
on their level of completion, always choosing to benchmark
a problem that is less complete first.

All constraints on construction can be applied system
wide, to all problems configured in PMM, but specific
problems can have specific constraints applied to them,
which override the system wide configuration. For example,
the general timing policy may be that benchmarks are only
executed on weekends, but some high priority problem may
have a less limiting constraint allowing it’s benchmarks to be
executed during weekdays provided there are no GridRPC-
user processes detected.

When halting conditions are encountered, no benchmarks
will start executing until the conditions have cleared.
However, if a benchmark is already executing a decision
must be made as to whether to allow it to complete or signal
it to halt. The action to take is a configurable option. If the
halting strategy is to interrupt executing benchmarks and the
time constraints / halting conditions are very limiting,
lengthy benchmarks may never be run to completion.
Consequently some models may never be completely
constructed. To mitigate this issue the scheduler takes a
number of actions:

1. Benchmarks of a large size are added to the rear of
a problem’s benchmark queue.

2. Interrupted benchmarks are moved to the rear of a
problem’s benchmark queue.

3. Repeatedly interrupted problems have their priority
reduced.

Though none of these actions prevent this issue entirely,
they do delay the point at which it would interfere with FPM
construction. Ultimately it is for the administrator to decide
how to un-constrain the construction so it may complete.

The design of benchmarking scheduler is trivial. As it has
a periodic duty to check the halting conditions, this fixed
loop can also be used to schedule new benchmarks. The
algorithm is as follows:

• while (1)
o update system condition data
o if a benchmark is currently executing

 if its execution-policy is no longer satisfied
• halt benchmark, if halt-able

o else
 if the global execution-policy is satisfied

• execute benchmark on top priority problem
 else

• for problems with specific execution-policy
o if the problem’s execution policy is

satisfied
• add problem to an executable list

• execute benchmark for the top priority
executable problem in the executable list

o sleep

<problem>
<name>darkmatter</name>
<exe_path>/usr/lib/pmm/darkmatter</exe_path>
<model_path>/var/pmm/darkmatter_model</model_path>

<parameters>

<param>
<name>nx</name>
<order>0</order>
<range>

<min>32</min>
<max>256</max>

</range>
</param>
<param>

<name>np</name>
<order>0</order>
<range>

<min>32</min>
<max>256</max>

</range>
</param>

</parameters>

<priority>30</priority>

<benchmarking_policies>

<policy>
 <time_constraint type=”now”></time_constraint>

<condition type=”user_login”>
</condition>
<condition type=”halt_file”>

<halt_path>/tmp/.pmm_halt</halt_path>
 </condition>

<policy>
</benchmarking_policies>

</problem>

C. Enabling Access and Use of FPM
PMM provides external programs with access to models

in two manners. First, direct access to the FPMs is available
via the file system. The PMM API provides methods to
locate and parse the FPMs stored on a system into data
structures. The API also provides accessor methods to look
up an execution time approximated by the model, given a
particular set of problem parameters. New points in the FPM
can be added to the model when using files, but only if the
models are not in the process of being constructed by a PMM
process.

When running as a daemon, the manager can service
requests for models via socket instead. It accepts the
submission of benchmark timing via socket also, which may
come from actual executions of a problem that have had
timing code inserted. If construction is ongoing when an
actual execution time is submitted, the submission can be
processed by the GBBP algorithm and can aid in further
minimizing construction time. A set of methods is provided
for conveniently opening a socket to PMM and sending or
receiving data, in the form of individual benchmarks or
whole models.

III. GRIDSOLVE AND PMM
The steps involved in a GridRPC call using GridSolve

are illustrated in Fig. 5. There are three actors: the client,
agent and server. Servers compute problems on behalf of the
client. The agent maintains a list of registered GridRPC
servers that it may offer to clients. Each server
communicates to the agent the problems it can solve and
periodically sends an up-to-date performance index for the
server. When the client makes GridRPC call it first
communicates with the agent, sending a description of the
problem it wishes to have solved and in return receives an
ordered list of servers ready to service the request. The client
then selects a server and sends a request to solve the problem
directly to that server.

The list of servers sent to a client is ordered using
GridSolve’s scheduler on the agent. Amongst other things,
the scheduler uses a servers ‘score’ to decide how to order
the server list. For a given problem request, the agent
calculates a score for each server that has the ability to
compute the problem. The score is a representation of the
time that a server would require to execute the problem. This
is calculated using two components, a measure of the
problem’s complexity and a measure of the server’s speed.

The problem’s complexity is set by the problem
developer during its configuration in GridSolve. It is a
function of the scalar arguments of the problem, which are
known to the agent when it is calculating a server’s score.
The speed of a server is measured in floating point
operations per second using a LINPACK type benchmark.
The problem complexity divided by the server’s FLOPS
gives the server’s score.

As previously mentioned, a single benchmark can be a
poor representation of a processors speed when the problem
being executed is not similar to the benchmarked problem or
when the processor uses a different memory hierarchy to the

Figure 5. Illustration of Scheduling Transactions in GridSolve

benchmark. Also, the complexity function is something that
must be estimated by the problem developer and there is no
guarantee that it is in any way accurate.

The Functional Performance Model overcomes both of
these issues. It models the performance of each specific
problem for a range of input sizes, not at only a single point
and not using a characteristic application, but the actual
problem itself. It is an experimental model, which can render
approximate execution times of a problem, without heavily
relying on the accuracy of any information that must be
provided by to it by the problem developer.

Integration of the FPM in GridSolve requires no
fundamental modifications to GridSolve’s design. Server
scores are a rough estimation of execution time of a problem
with a given set of arguments; the FPM provides exactly this,
so from the scheduler perspective, no changes are made. No
changes are required on the client side either.

The “Smart” extension to GridSolve (SmartGridSolve
[8]) uses the same mechanism to retrieve estimations of
problem execution time. It has the ability to schedule groups
of parallel problems in a single mapping. When scheduling a
group of problems the scores of the problems on all available
servers are input to a scheduling algorithm. Inaccuracy in the
estimation of execution times severely limits the ability of a
scheduler in its search for an optimal mapping.

Functionality is added on the server and agent via
compile flags set during the configuration of the GridSolve.
Where previously, the server would communicate to the
agent a list of installed problems at start up, it now must also
provide the agent with FPMs for those problems. The server
retrieves the FPMs either directly from the PMM daemon via
socket or from the file system. The server also submits
timing from actual executions to PMM.

Modification to the agent is only in networking code to
receive models from the server and in calculating a server’s
score using the FPM. Common socket code can be used in
the server to agent and server to PMM communications.
Apart from extending the networking protocol between the
agent and server, the majority of the required code permitting

the use of FPM in GridSolve and SmartGridSolve exists in
PMM’s shared library. No modification to the scheduler is
necessary.

IV. HYDROPAD AND PMM
Hydropad [10] is a simulation of the evolution of clusters

of galaxies in a universe that is comprised of baryonic matter
and dark matter. The core loop of this simulation models the
internal interactions of baryonic matter and dark matter,
separately and in parallel, while their mutual interaction is
modeled in a sequential gravitational calculation. The
structure of the application is illustrated in Fig. 6. A
GridRPC version ([11]) of this application has been
implemented to demonstrate the performance of the Smart
extension to GridSolve. Each task in the graph is
implemented as a remote procedure call. As a result of data
dependencies between time-steps it is not possible to unroll
the loop, which limits the level of task parallelism. Further,
the volumes of data that must be communicated by the tasks
are high. These properties make it particularly challenging
for a GridRPC middleware to achieve high performance
when running the application. It is for this reason that
Hydropad is a good application to examine the performance
of GridSolve and the benefit of using FPMs in GridSolve.

The data manipulated by the simulation are three-
dimensional cubic matrices that describe the particles in the
system (in terms of position, pressure, density, etc). The
number of particles in the system is defined by Np. The
accuracy of the overall simulation is determined by the
number of cells which the simulation space is divided into.
These cells are in a cubic grid structure, the size of which is
given by Nx.

The major computational problems in Hydropad are
those contained in the main loop. The dark matter problem,
darkmatter, is a Particle-Mesh N-Body algorithm with a
complexity of O(Np). The baryonic matter, barmatter,
problem is a Piecewise Parabolic Method with a complexity
of O(Nx).

Figure 6. Task Graph of Hydropad Application

In the context of Functional Performance Models, both of
these problems are interesting ones. The volumes of data
they operate on are different. darkmatter takes as input
parameters both the particles in the system, specified by Np
and the cells of the grid, specified by Nx. barmatter only
operates on the cells of the grid structure. Despite this,
barmatter is computationally more intensive. When
executing these tasks on a two of heterogeneous machines it
is important to note the volumes of data and the memory
available to each processor. A simple performance model
will map the computationally large barmatter problem to the
fastest server. However, if the slower server does not have
enough memory to compute the darkmatter problem without
paging, it may be that overall, the tasks would be executed
more quickly if barmatter is mapped to the slower server.
This is counterintuitive when the only performance
information available is a single benchmark.

FPMs for Hydropad problems have been built using
PMM. As can be seen in the task graph, there are a number
of problems that must be executed prior to execute barmatter
or darkmatter problems. These are associated with the
initialization of the data structures and the calculation of
gravitational fields. In the benchmarking binary for a
particular target problem, timing functions can be added
around any of the problems that the target is dependent on.
As such, only two benchmarking binaries were required in
building the models for Hydropad, as adequate data for the
FPMs of initialization and gravitational problems could be
retrieved from the benchmarks of darkmatter and barmatter.

V. MODELS AND EXPERIMENTS
This section presents the FPMs constructed using PMM

for the Hydropad application and experimental results in the
speed up achieved through using the FPMs in GridSolve,
with the Smart extension. As task parallelism is limited only
two servers were used in experiments, their configuration is
listed in Table 1. All timed results were remote
computations, totally independent of the client.

Experiments were carried out to illustrate the benefit of
using FPMs when scheduling a group of tasks. For simplicity
experiments are focused on a single iteration of the main
loop in Hydropad, the parallel problems: darkmatter and
barmatter. Fig. 7 shows FPMs for the darkmatter problem,
which are in terms of two parameters Np and Nx. The models
for both servers in the experimental setup are displayed. The
change in their relative performance as parameters increase
in size is illustrated at the base of the graph. It is clear that
paging begins on Hcl02 before Hcl10 and that while the
relative performance is fairly constant for smaller problem
sizes, it changes dramatically when paging starts. At the

TABLE I. SMARTGRIDSOLVE SERVER CONFIGURATION

Name Type MFLOPs Memory
Hcl10 1.8Ghz Opteron 693.85 1024MB
Hcl02 3.6Ghz Xeon 481.68 256MB

maximum problem parameters “allocate-able” by Hcl02, it is
computing at a rate that is twelve times slower than Hcl10,
when before it was just slightly slower. This is a property of
Hcl02’s performance that is not represented by a single
benchmark. Fig. 8 reveals greater detail in the region of
paging for the darkmatter task.

Fig. 9 shows the functional performance models for the
barmatter task. Again, the differing amounts of available

Figure 7. Graph of darkmatter Functional Performance Model with

relative performance highlighted.

Figure 8. Detail of problem parameters where paging contributes to

sudden performance decrease in darkmatter problem.

Figure 9. Functional Performance Models for the barmatter problem,

with points for GBBP and a naïve construction method shown.

memory on the servers results in performance degradation at
different values of Nx. Benchmarking points for a naïve
construction method are also displayed to illustrate the
reduction in the number of benchmarks that are required to
build the FPM using GBBP versus a naïve method.

The time spent executing GBBP and naïve benchmarks is
shown in Table 2. The speed up achieved by GBBP makes
the construction of FPMs a more practical task. In one case
GBBP did not achieve a large speed up, the barmatter task
on Hcl10. This is because an artificial limit was placed on
the range of the input value Nx. Had the model been
constructed across all “allocate-able” problem sizes, the
Geometric Bisection Building Procedure would have shown
a consistent speedup.

Finally, Table 3 shows the results of a set of experiments
on the scheduling accuracy of SmartGridSolve. A single
iteration of the main loop was timed for a set of input
parameters. First the scheduler was provided with the
standard LINPACK type single benchmark that is made
available by GridSolve. As barmatter is the most
computationally intensive problem, the scheduler assigned it
to Hcl10, the fastest server, in all tests. The darkmatter
problem was executed in parallel on Hcl02. However, when
the amount of data darkmatter operates on exceeds the
available physical memory on Hcl02, it begins to slow. At
this point it would be more efficient to assign the
computationally intensive barmatter to the slower server, as
it would be able to solve this problem without paging. The
scheduler is not able to make this decision when the
performance model of the processor does not represent the
change in speed at different levels of the memory hierarchy.

TABLE II. TIME SPENT CONSTRUCTING FUNCTIONAL PERFORMANCE
MODEL

Task /
Machine

Naïve
points

Naïve
time

GBBP
points

GBBP
time

Speed-
up factor

darkmatter
/ Hcl02

76 6854s 36 2292s 2.99

darkmatter
/ Hcl10

80 1704s 36 598s 2.85

barmatter
/ Hcl02

14 8792s 7 3687s 2.38

barmatter
/ Hcl10

15 8262s 6 7444s 1.11

TABLE III. SCHEDULING IMPROVEMENTS WITH FPMS

Np Nx Iteration time:
single benchmark

Iteration
time: FPM

FPM speed
up factor

96 96 26.33s 26.17s 1.01
128 96 25.10s 24.91s 1.01
160 96 25.45s 24.59s 1.03
192 96 41.48s 29.63s 1.40
216 96 123.78s 27.98s 4.42
256 96 n/a 39.02s n/a
288 96 n/a 51.98s n/a
320 96 n/a 362.57s n/a

When the scheduler uses FPMs in its decision-making
the results are much better. When no paging occurs, it
schedules in exactly the same way as before, but as Hcl02
begins to page it is assigned the problem with the smaller
memory footprint. This permits a more optimal scheduling
with much greater overall performance. It also allows larger
problem sizes to be executed. Previously, after the number of
particles, Np exceeded 256 the darkmatter problem failed to
execute on Hcl02 as it could not allocate enough virtual
memory.

VI. CONCLUSION
This paper has presented a tool, the Performance Model

Manager, which has been designed to enable the construction
and use of Functional Performance Models. Its goals are to
build the FPM in the most efficient manner possible and to
minimize the disruption to a running server. To these ends, it
implements the Geometric Bisection Building Procedure and
it allows the user to utilize a flexible set of constraints on the
benchmarking procedure.

The configuration of PMM and how it benchmarks a
problem in order to construct the problem’s FPM has been
described and models constructed for an example application
have been shown.

FPMs can enable more efficient parallel computing in
any heterogeneous network of computers. This paper
illustrates the use of them via the PMM tool in a Grid
environment. Hydropad and SmartGridSolve have been used
to demonstrate the application of FPMs in a GridRPC
system. The improvement in scheduling can been seen to be
significantly more optimal and to permit the execution of
much larger problem sizes that were possible with a basic
model of processor performance.

ACKNOWLEDGMENT
This research was supported by the Irish Research

Council for Science, Engineering and Technology (IRCSET)
and IBM under grant RS/2004/IBM/5.

REFERENCES
[1] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and H.

Casanova, “GridRPC: A Remote Procedure Call API for Grid
Computing”. Technical report, Univ. of Tennessee, June 2002. ICL-
UT-02-06.

[2] M. Maheswaran et al., “Dynamic Mapping of a Class of Independent
Tasks onto Heterogeneous Computing Systems,” Journal of Parallel
and Distributed Computing, vol. 59, 1999, pp. 107—131.

[3] J. Dongarra, “NetSolve: A network server for solving computational
science problems,” The International Journal of Supercomputer
Applications and High Performance Computing, vol. 11, 1997, pp.
212—223.

[4] Y. Caniou and E. Jeannot, “Multi-Criteria Scheduling Heuristics for
GridRPC Systems”, International Journal of High Performance
Computing Applications, vol. 20, 2005, pp. 61—76.

[5] A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and J. Dongarra. “Recent
Developments in GridSolve”, Y. Robert, editor, International
Journal of High Performance Computing Applications (Special Issue:
Scheduling for Large-Scale Heterogeneous Platforms), vol. 20. Sage
Science Press, spring 2006.

[6] J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK
Benchmark: Past, present, and future,” Concurrency and
Computation: Practice and Experience, vol. 15, 2003, p. 820.

[7] A. Lastovetsky and R. Reddy, “Data partitioning with a realistic
performance model of networks of heterogeneous computers,”,
International Parallel and Distributed Processing Symposium
IPDPS’2004. IEEE Computer, 2004, pp. 26—30.

[8] T. Brady, E. Konstantinov, and A. Lastovetsky, “SmartNetSolve:
High Level Programming System for High Performance Grid
Computing,”, Proceedings of the 20th International Parallel and
Distributed Processing Symposium, Rhodes Island, Greece: IEEE
Computer Society, 2006.

[9] A. Lastovetsky, R. Reddy, and R. Higgins, “Building the Functional
Performance Model of a Processor,” Proceedings of the 21st Annual
ACM Symposium on Applied Computing, Dijon, France: ACM, 2006.

[10] C. Gheller, O. Pantano, and L. Moscardini, “A cosmological
hydrodynamic code based on the piecewise parabolic method,”
Monthly Notices of the Royal Astronomical Society, vol. 295, Apr.
1998, p. 519.

[11] A. Lastovetsky, T. Brady, and M. Guidolin, “Experiments with
SmartGridSolve: Achieving Higher Performance by Improving the
GridRPC Model,” The 9th IEEE/ACM International Conference on
Grid Computing, Tsukuba, Japan: 2008.

