Hierarchical Partitioning Algorithm for Scientific Computing on Highly Heterogeneous CPU + GPU Clusters

David Clarke¹ Aleksandar Ilic² Alexey Lastovetsky¹ Leonel Sousa²

¹ CSI, University College Dublin, Ireland

² INESC-ID, IST/TULisbon, Lisbon, Portugal

Euro-Par 2012

Problem Statement

Target Hierarchical Heterogeneous Platform

- Heterogeneity between devices within a node
- Heterogeneity between nodes
- eg. Grid'5000 Grenoble site.

Problem Statement: Matrix Partitioning

Want to perform matrix algebra in parallel on hierarchical platform. For example:

- Matrix multiplication
- LU decomposition
- Jacobi iterative method
- ...

How to optimally partition matrix?

- Partition matrix between nodes
- Sub-partition between devices within a node
- To achieve load balancing, partition with respect to device and node speed.
- Minimise total volume of communication.

Traditional load Balancing

Background

- Traditionally, processor performance is defined by a constant number.
- Computational units are partitioned as $d_i = N \times \frac{s_i}{\sum p}$.

$$= I\mathbf{v} \times \frac{1}{\sum_{j=1}^{p} s_j}$$

• Speed is computed from clock speed, number of cores or by performing a benchmark.

Traditional load Balancing

- Traditionally, processor performance is defined by a constant number.
- Computational units are partitioned as $d_i = N \times \frac{s_i}{\sum_{j=1}^{p} s_j}$.
- Speed is computed from clock speed, number of cores or by performing a benchmark.

- In reality, speed is a function of problem size.
- Algorithms based on constant performance models are only applicable for limited problem sizes.

Background

- Want all devices to compute assigned workload *d_i* within same time.
- Points $(d_i, s_i(d_i))$ lie on a line passing through the origin when $\frac{d_i}{s_i(d_i)} = constant$.
- Total problem size determines the slope.
- Algorithm iteratively bisects solution space to find values *d_i*.

- Want all devices to compute assigned workload *d_i* within same time.
- Points $(d_i, s_i(d_i))$ lie on a line passing through the origin when $\frac{d_i}{s_i(d_i)} = constant$.
- Total problem size determines the slope.
- Algorithm iteratively bisects solution space to find values *d_i*.

Size of the problem

D. Clarke, A. Ilic, A. Lastovetsky, L. Sousa

Hierarchical Partitioning Algorithm

- Want all devices to compute assigned workload *d_i* within same time.
- Points $(d_i, s_i(d_i))$ lie on a line passing through the origin when $\frac{d_i}{s_i(d_i)} = constant$.
- Total problem size determines the slope.
- Algorithm iteratively bisects solution space to find values *d_i*.

- Want all devices to compute assigned workload *d_i* within same time.
- Points $(d_i, s_i(d_i))$ lie on a line passing through the origin when $\frac{d_i}{s_i(d_i)} = constant.$
- Total problem size determines the slope.
- Algorithm iteratively bisects solution space to find values *d_i*.

- Want all devices to compute assigned workload *d_i* within same time.
- Points $(d_i, s_i(d_i))$ lie on a line passing through the origin when $\frac{d_i}{s_i(d_i)} = constant$.
- Total problem size determines the slope.
- Algorithm iteratively bisects solution space to find values *d_i*.

Matrix Partitioning

Simple Partitioning

Background

2D Partitioning

2D matrix partitioning from 1D partitioning algorithm

- Height m_i and width n_i combined into one parameter, area $w_i = m_i \times n_i$.
- Square areas are benchmarked $m = n = \sqrt{w}$.
- 1D partitioning algorithm finds area rectangles.
- Communication minimising algorithm computes ordering and shape of these rectangles.

Minimising Total Communication Volume

- Application specific
- For example: Matrix multiplication communication minimised by minimising $\sum_{i}^{p} (m_i + n_i)$

Background

- Call communication minimising algorithm* (CMA) to compute:
 - Optimum number of columns
 - Optimum number of processors in each column

* Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix Multiplication on Heterogeneous Platforms. IEEE Trans. Parallel Distrib. Syst. 12(10), 1033–1051 (2001)

- Dynamic algorithm no a priori information about performance required.
- Inputs:
 - Problem size
 - Number of nodes
 - Number of devices per node
 - Device type (eg. cpu, gpu, ...).
- Link computational kernel to be benchmarked for each device.
- Initially distribution is partitioned evenly between nodes and between devices within a node
- Algorithm converges towards optimum solution

- q nodes, Q_1, \ldots, Q_q .
- node Q_i has p_i devices, P_{i1}, \ldots, P_{ip_i}
- $\bullet\,$ Hierarchy in platform \rightarrow hierarchy in partitioning
 - Nested parallelism
 - inter-node partitioning algorithm (INPA)
 - inter-device partitioning algorithm (IDPA)
 - IDPA is nested inside INPA

Hierarchical Partitioning Algorithm

- *W* computational units to partition between nodes
- inter-node partitioning algorithm (INPA) creates node-FPM's and computes w₁,..., w_q so that w₁ + ... + w_q = W.

Hierarchical Partitioning Algorithm

q nodes

• Communication minimising algorithm has input: w_1, \ldots, w_q and output: $(m_1, n_1), \ldots, (m_q, n_q)$ such that $m_i \times n_i = w_i$ and matrix is completely tiled.

Hierarchical Partitioning Algorithm

inter-device partitioning algorithm (IDPA) creates device-FPM's and computes d_{i1},..., d_{ip}, such that d_{i1} + ... + d_{ip} = bn_i

Hierarchical Partitioning Algorithm

inter-device partitioning algorithm (IDPA) creates device-FPM's and computes d_{i1},..., d_{ip}, such that d_{i1} + ... + d_{ip} = bn_i

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i = m_i \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$\sum_{j=1}^{p} d_{ij} = b \times n_i$$

$$w_i - m_i \times n_i$$
$$\sum_{j=1}^p d_{ij} = b \times n_i$$

Parallel Matrix Multiplication

(b)

Experimental Setup

90 Nodes from Grid'5000 Grenoble site

Cores:	0	1	2	3	4	5	6	7	8	Nodes	Cores	GPUs	Hardware
Adonis	2	1	1	1	1	1	2	3	0	12	48	12	2.27/2.4GHz Xeon, 24GB
Edel	0	6	4	4	4	8	8	8	8	50	250	0	2.27GHz Xeon, 24GB
Genepi	0	3	3	3	3	4	4	4	4	28	134	0	2.5GHz Xeon, 8GB
Total										90	432	12	

- All nodes connected with InfiniBand communication network.
- High performance BLAS libraries: Intel MKL for CPU, CUBLAS for GPU devices.
- Open MPI for inter node communication.
- OpenMP for inter-device parallelism.

Experimental Results

Find good block size (adonis node, 7CPU + 1GPU)

Experimental Results

Experimental Results

Total Matrix Multiplication Speed

- Functional performance model (FPM): the proposed algorithm
- Multiple constant performance models (CPM): Redistribute based on previous benchmark.
- Single-CPM: One benchmark is preformed.
- Homogeneous distribution: Partitioned evenly between nodes, then evenly between devices within each node.