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Abstract

The importance of heterogeneity in high performance computing is increasing

with the advent of specialised accelerators and non-uniform memory access.

Most of the top supercomputers in the world are heterogeneous in some form

and they are expected to become more heterogeneous in the future with the

introduction of many-core processors and energy efficient system-on-chip plat-

forms. To achieve maximum performance on such platforms, parallel scientific

applications must adapt to this heterogeneity. Data parallel applications can

be load balanced by applying data partitioning with respect to the performance

of the platform’s individual devices. However, finding the optimal partitioning

is not trivial. Traditional load balancing algorithms parametrise processor per-

formance with a single positive number. This thesis shows that load balancing

algorithms based on this approach may fail.

We present in this thesis the functional performance model (FPM) as a

more accurate description of application performance. The FPM represents

device speed as a continuous function of problem size and is application and

hardware specific. It includes all contributions from clock cycles, memory op-

erations and hierarchy, and operating system overhead. We have developed

data partitioning algorithms which take FPMs as input and produce the opti-

mal load balanced partition. We present a dynamic FPM-based partitioning

algorithm, designed for use in situations where each run of the application has
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unique performance characteristics. It does not require a priori performance

models as input. Instead, it produces an approximation of the necessary parts

of the speed functions.

Some applications require more than one partitioning parameter for effi-

cient parallel execution, for example two-dimensional matrix partitioning for

matrix-matrix multiplication on a heterogeneous platform. Partitioning algo-

rithms based on 2D-FPMs can solve this problem, however they bring added

complexity. We present a novel matrix partitioning algorithm that produces

the balanced partition of matrix in two dimensions by using 1D-FPMs and a

communication minimising algorithm.

Modern heterogeneous HPC platforms are hierarchical and therefore can

be used efficiently only if the hierarchy is taken into account while computa-

tions are distributed between computing devices. Heterogeneous HPC plat-

forms have hierarchy in their parallelism. We present a hierarchical data parti-

tioning algorithm which is based on FPMs built dynamically at runtime for dif-

ferent levels of the hierarchy. Through this method we are able to achieve load

balancing with a coherent communication pattern while minimising the volume

of communication. We prove the effectiveness of this algorithm by applying it

to a large-scale parallel matrix multiplication application on a heterogeneous

cluster with heterogeneous CPU+GPU nodes.

The models, algorithms and applications presented in this thesis are avail-

able in FuPerMod, an open-source tool for data partitioning, developed by the

author.
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Chapter 1

Introduction

The main goal of high performance computing (HPC) is to increase the effi-

ciency with which scientific applications are executed on dedicated computing

platforms. With greater efficiency the total run-time of the application is re-

duced, larger problems can be tackled and the total energy consumed may

also be reduced. HPC platforms are composed of many computational de-

vices working in parallel.

In the past, designers of HPC hardware went to considerable effort to make

these platforms as homogeneous as possible. Now there is an industry-wide

change towards heterogeneous systems, with many of the top supercomput-

ers in the world being heterogeneous by design. This transition is the most

significant change since the move from single to multi-core systems.

The number of cores has very recently increased by an order of magnitude

with massively multicore co-processors being used in the top systems, and

soon it will be the norm for there to be hundreds of cores per compute node on

most HPC platforms. With many cores it is impossible to provide equal access

to memory, which results in non-uniform memory access (NUMA). Further-

more, as the number of cores increases, it is not beneficial for all these cores

to be identical. A better approach is to have different cores specialised for

different tasks, for example a node with both CPUs and GPU accelerators. In

future systems these will be combined on a single chip.

Heterogeneity in HPC can also arise from: hardware replacement and
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upgrade, complex network topology, software heterogeneity, and application

specific load imbalance. These current and future heterogeneous platforms

present significant challenges to computer scientists. To achieve optimum

performance, HPC applications must adapt to the heterogeneity of these plat-

forms.

In this thesis we present algorithms for optimising parallel scientific appli-

cations on heterogeneous platforms. The majority of parallel scientific applica-

tions can be described as iterative, and can be generalised as follows: within

each iteration some calculations take place in parallel, then some synchroni-

sation takes place. The subclass of these applications we target are charac-

terised by divisible computation workload, which can be broken into a large

number of equal independent computational units. Each processing device on

the parallel platform is responsible for the computations associated with these

units. Additionally, computational workload is proportional to the size of data

and dependent on data locality.

Our target architecture is a dedicated heterogeneous distributed-memory

HPC platform. We do not confine ourselves to one specific piece of hard-

ware, but instead develop general algorithms which are equally applicable to

to a range of hardware from a single CPU/GPU compute node to grid environ-

ments, incorporating many heterogeneous clusters. And since the algorithms

are general they will also be applicable to future yet to be released many-core

platforms.

High performance of applications on these platforms can be achieved when

all processing devices complete their work within the same time. This is

achieved by partitioning the computational workload and the associated data

unevenly across all devices. Workload should be distributed with respect to

the devices speed, memory hierarchy and communication network, however

this unconstrained problem is NP-complete [1, 2, 3].

In the literature many data partitioning algorithms perform load balancing

by distributing workload in proportion to device speed. How they compute this

speed varies. Some use processor clock speed while others perform synthetic

benchmarks, or measure the time to execute all or part of the application. What

they all have in common is that they model the speed of each device with a
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single positive number. We refer to this as the Constant Performance Model

(CPM), and refer to the algorithms as CPM-based partitioning algorithms.

For medium sized problems executed on general purpose CPUs, CPM-

based partitioning algorithms are able to converge to a balanced workload.

However, in general, speed is not constant, but instead is a function of problem

size (Fig. 1.1). We will demonstrate for a number of applications that, for the

full range of problem sizes that can be executed, CPMs are too simplistic and

in some situations partitioning algorithms based on them may completely fail

to converge.

We present the Functional Performance Model (FPM) to be a more realis-

tic model of processor performance than CPM. Under this model, the speed

of each processor is represented by a continuous function of the problem size.

The shape of each function is found empirically by benchmarking the applica-

tion as it is executed on the real hardware. FPMs are application- and platform-

specific and integrate many important performance features such as memory

hierarchy, cache misses, swapping and application specific characteristics.

Data partitioning algorithms based on accurate FPMs are able to achieve

better load balancing than the more simplistic CPM-based data partitioning

algorithms. We present two classes of FPM-based partition algorithms, static

partitioners, which take a model for each processing unit as input, and dy-

namic partitioners, which dynamically generate the necessary models at run-

time. The output of both partitioning classes is a vector of distributions which

optimally balances the computational workload.

In its simplest form, the problem to be solved by the partitioner can

be stated as follows. Given p processing devices with speed functions

s(d1), . . . , s(dp), how can D computational units be distributed such that all

processors complete their work within the same time? We present two main

FPM-based partitioning algorithms for solving this problem, namely the Geo-

metric Partitioning Algorithm and the Numerical Partitioning Algorithm.

The Geometric Partitioning Algorithm is based on the observation that a

line, which passes through the origin, marks out a balanced distribution at the

points where it intersects the speed functions. The problem is thus reduced to

finding the slope of the line which produces the desired total workload, d1 +

3
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Figure 1.1: Functional performance models. (a) Matrix update kernel from
a selection of the 75 nodes from Grid’5000 Grenoble. (b) Out-of-core matrix
multiplication on NVIDIA GeForce GTX680 GPU. (c) Matrix block update on a
hybrid node with multi-core and NVIDIA Tesla T10.
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1.1. CONTRIBUTIONS OF THIS RESEARCH

d2 + . . . + dp = D. This is achieved by joining the discrete data points with

piecewise linear approximations and iteratively bisecting the solution space in

order to converge to the solution. Convergence of this algorithm is guaranteed

provided there are some minor restrictions placed on the shape of each FPM.

Namely for some point x, the function is monotonically increasing and concave

in the interval [0, x] and monotonically decreasing in the interval [X,∞]. FPMs

not fitting this profile need to be modified before use with the GPA.

1.1 Contributions of this Research

The main contributions to knowledge that this doctoral research study pro-

duced are as follows:

1. Demonstration that, in some situations, existing state of the art CPM-

based partitioning algorithms can fail.

2. Proposal of the Numerical Partitioning Algorithm.

3. Development of the Dynamic Partitioning Algorithm and partial FPMs.

4. Proposal of the 1.5D Matrix Partitioning Algorithm.

5. Hierarchical Data Partitioning Algorithm.

6. Building independent FPMs for parallel applications

• from an equivalent serial computational kernel

• from instrumented tracefiles.

7. Development of the software framework FuPerMod.

In the following sections we introduce each of these contributions.

5



1.1. CONTRIBUTIONS OF THIS RESEARCH

1.1.1 Criticism of Traditional Data Partitioning Algorithms

Based on Constant Performance Models

We implemented a dynamic load balancing algorithm, typical of the state of

the art, that are aimed at our target application and platform. This algorithm

uses CPM-based partitioning and is designed for iterative applications, so we

chose to apply it to Jacobi method. When the application was executed with

medium sized problems, we achieved the same convergence towards a bal-

anced partitioning as the authors did. However, the load balancing algorithm

fails to converge to a balanced result, when we ran the application with a prob-

lem size that when partitioned, results in a memory requirement which is close

to a memory hierarchy boundary of at least one device. Furthermore, it can

enter a cycle of oscillation resulting in large amounts of data transfer with each

redistribution. We applied our FPM-based partitioning algorithm to the same

problem and it successfully converged to a balanced load [4].

1.1.2 New Algorithm Based on Functional Performance

Models and Numerical Solution of Data Partitioning

Problem

The GPA applies restrictions on the shape of the FPMs. The piecewise linear

approximations used by the GPA must be modified to fit within these restric-

tions. Often this modification is not a problem since the restrictions describe

the general shape of most FPMs. However, for some FPMs the modification

can result in reduced accuracy in the final result. A FPM is composed of a

series of empirically found data points. A smooth continuous function with

continuous derivatives of arbitrary shape can be fitted to these discrete points

using Akima splines interpolation.

We propose the Numerical Partitioning Algorithm (NPA) as alternative to

the GPA [5, 6]. The NPA uses these smooth mathematical curves and ex-

presses the load balancing problem as a system of nonlinear equations (1.1).

These equations form a multidimensional root finding problem and can be

solved for F (x) = 0 using Powell’s Hybrid method. Where F (x) is given as

6



1.1. CONTRIBUTIONS OF THIS RESEARCH

F (x) =


D −

p∑
i=1

xi

xi
si(xi)

− x1
s1(x1)

2 ≤ i ≤ p

(1.1)

The NPA takes one FPM per device and a total problem size as input. It

outputs a vector describing the partitioned workload to be assigned to each

device.

1.1.3 Dynamic Data Partitioning Algorithm and Partially

Built Functional Performance Models

If an application is to be run many times on a stable set of hardware a sig-

nificant speed-up can be achieved up by building detailed models. However,

if each run of the application is considered unique, for example in a grid or

cloud environment, when different resources are allocated with each job re-

quest, or when changing an application parameter necessitates rebuilding the

models, it becomes no longer practical to build full-FPMs as more time may

be spent benchmarking than the total runtime of the application. We present

the Dynamic Partitioning Algorithm (DPA) as a solution to this problem. The

DPA uses partial FPM to find a balanced distribution of workload [7]. With

the partial FPMs, only the necessary parts of the speed functions are built, to

sufficient detail, to allow the dynamic partitioner to find a balanced load. This

load balancing may be performed within the first few iterations of an applica-

tion, or alternatively immediately before runtime. With a well designed kernel

to benchmark, the time spent building the partial models may account for just

a small fraction of the total runtime of the application. The idea of building par-

tial FPMs was proposed before the commencement of this doctoral research

study. However, this research study has developed and expanded this idea to

the state as it is presented here.
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1.1. CONTRIBUTIONS OF THIS RESEARCH

1.1.4 1.5D Matrix Partitioning Algorithm

For many parallel applications the volume of communication is proportional

to the size of the boundary of the partitioned data. For example, in some

simulation applications, the volume of communication is proportional to the

surface area of the domain decomposition and with matrix multiplication the

total volume of communication is directly proportional to the sum of the half-

perimeters of the partitioned submatrices. It is better to partition a matrix into

a number of rectangles which are close to square rather than long horizontal

or vertical slices. This two dimensional partitioning requires two parameters

per device to describe it. Neither the GPA nor the NPA, in their standard form,

are able to produce such a partitioning.

This problem can be solved by building 2D-FPMs and using our 2D-FPM

partitioning algorithm [8]. 2D-FPMs are built by benchmarking the application

over a range of points (m,n), 0 < m ≤ M, 0 < n ≤ N . This produces

a surface in 3D space. Unfortunately, 2D-FPMs require the square of the

number of benchmarked points in a 1D FPM in order to achieve the same

accuracy. Furthermore, an application may have N degrees of freedom in

its partitioning scheme, and thus requiring N -dimensional-FPMs and an N -

dimensional partitioning algorithm.

We have come up with a novel solution to this problem which can produce a

two dimensional partitioning from 1D FPMs and we call it the 1.5D Matrix Par-

titioning Algorithm [9]. To partition a matrix into rectangles, we combine the

parameters height and width into a single parameter area. This area repre-

sents the volume of computations that a device must perform in each iteration

of the application. We benchmark a computational kernel for a range of areas

with square shape. This produces a model with speed as a function of area.

Either the GPA or NPA can now be used to produce a distribution vector repre-

senting the volume of computation to be assigned to each processor. Then a

Communication Minimising Algorithm (CMA) is used to arrange the rectangles

so that they: (i) exactly tile the matrix, (ii) each have the required area and

(iii) minimise the sum of the half-perimeters. A CMA is an application specific

algorithm, which arranges the partitioning to minimise communication while

8



1.1. CONTRIBUTIONS OF THIS RESEARCH

maintaining the same workload distribution.

We demonstrate how this approach can be successfully applied to matrix

multiplication. The same scheme can be extended to applications which em-

ploy a partitioning in 3D space, for example computational fluid dynamics, by

using one of the many domain decomposition algorithms as the CMA.

1.1.5 Hierarchical Data Partitioning Algorithm

All modern HPC platforms employ hierarchy in their parallelism, ranging from

instruction level parallelism to multi-core, multi-socket and multiple acceler-

ators, all the way up to many nodes in a cluster and grids of clusters. To

optimise performance data parallel applications can employ a data partition-

ing scheme which matches this hierarchy. We present the Hierarchical Parti-

tioning Algorithm [10, 11] for load balancing applications running on heteroge-

neous hierarchical HPC platforms. Applications utilising this algorithm become

self-adaptive to the heterogeneity of the platform by dynamically building the

performance models at run-time. The algorithm is iterative and alternately

partitions a matrix in two dimensions between heterogeneous compute nodes

and sub-partitions each of these sub-matrices between the heterogeneous

devices within each node. To do this, this algorithm draws on the contribu-

tions described in the preceding sections. The application achieves a perfor-

mance gain from nested parallelism and efficient communication patterns. We

present it for use with two levels of hierarchy applied to matrix multiplication,

however this scheme can easily be extended to more levels of hierarchy and

applied to different applications.

1.1.6 Benchmarking and Using Performance Analysis

Tools for Construction of Function Performance Mod-

els

A performance model is built by empirically measuring the execution time of

an application as it is run on the real hardware. For a model to be useful

the measured performance must be repeatable and independent of external

9



1.1. CONTRIBUTIONS OF THIS RESEARCH

influences. Therefore, contributions from communication overhead cannot be

included in the FPM except in the case of a master-worker pattern on a star-

shaped network.

One method for measuring the independent computation time is to cre-

ate a serial computation kernel code which is analogous to the real parallel

application in that it performs the same computations as one iteration while

replacing all communications with either local memory operations or dummy

communications to itself. The serial code is packaged into a dynamic library

which can be linked to by any of the static or dynamic building tools and called

repeatedly with different parameters.

For a more complex parallel application, such as N-body simulation, within

each iteration a different subset of subroutines may be executed and many dif-

ferent synchronisations may be performed. Extracting a serial computational

kernel from this for the purpose of benchmarking would require considerable

developer time and then may not even yield an accurate representation of the

application.

Performance analysis tools, such as Paraver, provide a visualisation of par-

allel application behaviour from the data obtained from trace files. Extrae

comes with Paraver and is a tool for generating the trace files by injecting

probes into the target application. The application code can also be instru-

mented with Extrae and user events defined so that information can be gath-

ered on when specific subroutines are executed. The data gathered by Extrae

can then be viewed and analysed in Paraver.

We have developed a tool which parses the output of Extrae to extract

a mean independent computation time of one iteration of the application. A

full FPM can be built by executing the application multiple times, assigning

a different distribution to the devices, and therefore adding one point to the

models of each device each time.

10



1.1. CONTRIBUTIONS OF THIS RESEARCH

1.1.7 FuPerMod: a Software Framework for Data Partition-

ing

A significant contribution of this doctoral research study is the design, develop-

ment and testing of a framework for functional performance model based data

partitioning called FuPerMod [12, 13, 14]. It is an open-source project avail-

able under the GNU General Public License. This framework provides the

tools for accurate and cost-effective performance measurement, construction

of computation performance models implementing different methods of inter-

polation of time and speed, and invocation of model-based data partitioning

algorithms for static and dynamic load balancing. All of the partitioning algo-

rithms presented in this thesis are available in this software package. A guide

to FuPerMod is presented in Appendix A.
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Chapter 2

Background

This chapter begins by reviewing the history of heterogeneity in high perfor-

mance computing, describes heterogeneous systems in use today, and makes

some predictions of further heterogeneous platforms. We summarise the fields

of scheduling, data partitioning and load balancing, how they relate to high

performance heterogeneous computing, and more specifically the applications

and hardware we target in this thesis.

2.1 Heterogeneous HPC Platforms

Heterogeneous platforms first appeared when researchers looked for in-

creased computing power on a budget and found that networks of worksta-

tions built from commodity hardware proved to be a cost effective method of

building a HPC platform. Often these clusters were either made from existing

workstations or upgraded over time resulting in a heterogeneous network of

workstations (HNOW) [15, 16].

In the past, mainstream supercomputers were homogeneous by design.

Throughout the 1990s the trend was to move away from specialised propri-

ety parallel supercomputers towards networks of workstations. Many of these

machines contained symmetric multiprocessors (SMP) with identical tightly

coupled processors. Multi-core processors appeared in the mid 2000s with

each CPU socket containing multiple identical cores. However, as the num-
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2.1. HETEROGENEOUS HPC PLATFORMS

ber of cores on each node increased, the single memory bus through which

all memory transfers were routed became a bottleneck. Hardware designers

introduced heterogeneity in the form of non-uniform memory access (NUMA)

where groups of processors are more tightly coupled to some memory banks

than others.

Co-processors and accelerators have been used throughout the history of

HPC. However, it was not until the mid 2000s that systems that were specif-

ically heterogeneous by design began leading the way in supercomputing.

The ClearSpeed co-processor started the trend and was quickly followed by

the IBM Cell processor, a heterogeneous multicore. Cell was used as a co-

processor in the Roadrunner supercomputer which went on to become the

first petaFLOPS system in the world in 2008 [17]. GPU accelerators, originally

developed for the gaming industry by NVIDIA and ATI, have been repurposed

for use in HPC and can provide a few hundred GigaFLOPS to a TeraFLOPS of

double precision general purpose computing with much lower power demands

than an equivalent CPU. Because of their performance per watt efficiency,

GPUs have been used successfully in many of the world’s top supercomput-

ers. The Tianhe-2 supercomputer, first in the last two TOP500 lists, continues

the trend of heterogeneous systems leading the way in supercomputing. Each

node in the system contains two Intel Xeon IvyBridge processors and three

Intel Xeon Phi many-core co-processors.

In the most recent TOP500 list, Nov. 2013, systems that use co-processors

and accelerators make up for only 10.6% of all systems but they account for

over 35% of the performance share [18]. The top 10 systems on the Green500

list, which ranks top supercomputers by energy efficiency, are all heteroge-

neous [19]. From this we can draw two conclusions. Firstly, co-processors

and accelerators are able to push back the power wall that has impeded the

development of traditional multi-core CPUs and allow for faster systems to be

built. Secondly, since all systems on the list have been built since GPUs be-

came popular, 90% of supercomputer owners have actively chosen not to use

them in their clusters despite the performance gain and energy saving. This

is because using heterogeneous platforms efficiently is very difficult and exist-

ing code almost always needs to be rewritten and validated, and furthermore,
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2.1. HETEROGENEOUS HPC PLATFORMS

some applications may not even be suitable for execution on a GPU.

The number of cores in a single socket is expected to increase by an order

of magnitude in the near future and these many-core processors will almost

certainly be heterogeneous by design for two reasons. Firstly, it is impractical

to give all cores equal access to the main memory. Secondly, it would be

impractical to make all cores identical. Instead, it is better to have different

cores specialised for different types of computations. A early example of this

may be the soon to be released Intel’s Knights Landing, which will include both

cores and vector units in a host processor (CPU) and uses an only slightly

modified x86 instruction set.

In the early 1990s, supercomputing was dominated by special-purpose

vector and SIMD architectures. During the mid to late 1990s there was a

rapid expansion in the desktop market, which led, because of the economy

of scale, to adoption of commodity processors in HPC. Likewise, the research

and development costs of GPUs is subsidised by the gaming industry. From

this we can get an impression of the future of HPC by noting the recent mas-

sive expansion in the mobile and embedded systems market. Most notably

those based on the ARM architecture [20]. The challenges faced when de-

signing processors for smartphones, tablets and embedded systems are to

reduce cost, heat and power use and these are the same challenges faced

by the HPC community today. One example of this is the ARM big.LITTLE

heterogeneous computing architecture which mixes fast and slow processors

with the goal of reducing power consumption [21].

Other heterogeneous systems of note in use today are as follows. Field-

programmable gate arrays (FPGA) are an integrated circuit designed to be

configured by a customer or a designer after manufacturing, typically they are

used as an adaptable co-processor along with an x86 or ARM processor. They

can be configured to perform a specific task extremely efficiently. A single or

small cluster of multi-core workstations with a GPU accelerators can be an

ideal dedicated HPC platform for a researcher. Grid computing is a distributed

system that makes a pool of networked resources available to the users of

the system. Cloud computing has evolved from grid computing and can use

the same hardware as a grid with the addition of utility computing in which

14
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users of the system pay for only what they use. And finally, global distributed

computing projects, for example BOINC [22, 23], use the donated spare com-

pute cycles of volunteers from all around the world to solve some of the most

challenging problems. The Folding@home project [24], which simulates pro-

tein folding for the benefit of disease research, for over 4 years outperformed

the top supercomputers in the world. However, distributed computing is only

suitable for embarrassingly parallel applications where there exists no depen-

dency between tasks, hence it poses no significant HPC challenges.

2.2 Scheduling, Data Partitioning and Load Bal-

ancing

It is clear that heterogeneity is an important factor in supercomputing today

and this importance will grow in the future. Scientific applications need to

be adapted to utilise these current and future platforms to their full potential.

This task is not easy and has similarities to the challenges faced when porting

a serial application to a parallel platform. Application code may need to be

rewritten or at least recompiled for each unique piece of hardware. Hardware

optimised libraries are available and can be utilised to aid the porting task;

however, considerable programmer hours are still needed to port legacy code.

Scheduling in HPC is a broad topic and extensive research has gone into

it for both homogeneous and heterogeneous platforms. It is the character-

istics of both the application and the platform that determines which form of

scheduling will yield the best results. The target platform may have shared

memory (instruction and thread level parallelism) or distributed memory (inter-

socket and inter-node level parallelism). The parallelism in the HPC application

may be implemented by either dividing the work into several tasks which are

mapped onto threads (task parallelism) or by performing the same task on dif-

ferent data (data parallelism). Task scheduling is best suited for task parallel

applications while data partitioning is suited for data parallel applications.

Most of the unconstrained scheduling and partitioning problems sum-

marised in the following sections are either NP-hard or NP-complete. The
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authors of these works either apply constraints so that the problem can be

solved in polynomial time, or they settle for a sub-optimum steady-state solu-

tion. We can classify the algorithms by when (static or dynamic) and where

(centralised and distributed) the scheduling decisions take place.

Applications run on both homogeneous and heterogeneous platforms re-

quire load balancing. Imbalance in a parallel application can originate from:

(i) the application itself, (ii) the hardware or (iii) external factors.

(i) The parallel application may be comprised of unequal size tasks, for ex-

ample a simulation application with non-uniform density. This imbalance may

be present at the beginning of the application or may accumulate during a

simulation as the domain acquires more particles than its neighbours. The

unit of work may change throughout the calculation, for example LU decompo-

sition. The amount of computational work required by a task may be unknown

prior to execution, for example in a sorting algorithm. The communication load

may vary throughout the computation as is the case in a matrix multiplication

routine which does not use a block-cyclic data partitioning scheme.

(ii) Load imbalance can originate from heterogeneous hardware; for exam-

ple, heterogeneous processing devices computing at different speeds, devices

having differing memory hierarchies, or complex communication topology. Dif-

ferent hardware specific libraries may be used to perform the same computa-

tion locally, and contribute further to the heterogeneity of the system.

(iii) Sources external to both application and hardware can also introduce

load imbalance. Other processes and users on a shared system as well as

contention on the communication network can affect application performance.

Hardware failures, which are statistically likely for large scale parallel systems,

can also affect performance in unforeseen ways.

In this research we focus on (ii) load balancing for heterogeneous hard-

ware. To this end, we target parallel applications which have a well-defined

workload and can be partitioned into chunks of equal workload. We test our

algorithms on dedicated heterogeneous HPC platforms which are, as much as

possible, free from external interference.
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2.2.1 Task Scheduling

The purpose of task scheduling is to map logical tasks to physical processing

devices with the aim of maximising the throughput of the system. It is therefore

most suitable for applications with task parallelism. These tasks may have

dependency or be independent and may require equal or different amounts of

work.

When the tasks are fully independent and equal sized they can be con-

sidered as a bag of tasks available for scheduling to homogeneous or het-

erogeneous processing devices[25, 26, 27, 28]. When each iteration of a

loop is independent of all iterations, parallel loop scheduling can be performed

[29, 30, 31].

Divisible load theory was developed for applications with large, arbitrarily

partitionable workloads executed on distributed memory platforms [32, 33]. It

is a methodology which models both computation and communication costs

[34, 35, 31].

Tasks have dependency if it cannot start before another is completed. This

can occur when the input to a task is derived from the output of the other

task. The dependencies between tasks can be plotted on a directed acyclic

graph (DAG). DAG scheduling algorithms [1, 36] aim to minimise the overall

execution time within the precedence constraints of the tasks.

The job shop scheduling problem [37, 38, 39] involves the scheduling of

tasks for which a number of different operations must be performed on each

task by finite heterogeneous resources.

All of the aforementioned task scheduling algorithms are, in their most com-

mon formulation, centralised algorithms, meaning that parameters of the ap-

plication and platform are gathered together so that a global load balancing

decision can be made. This has the advantage that, to within the limitations

of the algorithm, a globally optimum solution can be found. However, such al-

gorithms may not scale, especially with perspective exascale computing plat-

forms. Conversely distributed algorithms naturally scale well but may be only

able to achieve local optimum while balancing the load.

A popular distributed task scheduler is the work stealing algorithm [40, 41,
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42, 43], with this dynamic algorithm idle processes “steal” tasks from their

more heavily loaded neighbours.

2.2.2 Data Partitioning

The task scheduling algorithms described in the previous section are suitable

for applications that are composed of an unordered set of tasks which need

to be mapped to the available resources. These tasks may have some prece-

dence dependencies that require the execution of some tasks before others,

but the location of their execution is not important. If the application is such

that there is a set of data upon which the same arithmetic operation needs to

be applied, for example a matrix, lattice points or a domain in simulated space,

then data partitioning is more suitable than task scheduling. Let us take naïve

matrix multiplication as an example of this.

To perform the operation C = αAB + βC, if A,B and C are N × N

matrices, then we must perform the following operation N3 times: cij = α ×
aik× bkj +βcij . A task scheduler could consider this as a bag of N3 tasks with

a unordered dependency on cij . The scheduler can then assign a number

of these tasks to each of the worker devices. Such an approach is suitable

for a shared memory SMP machine. However, all contemporary and future

HPC platforms have distributed memory (or at least NUMA). Computing cij =

α × aip × bpj + β × cij and cij = α × aiq × bqj + βcij , where 0 < p, q ≤ N ,

on devices which are far from each other on the network is expensive; doing

so costs both time and energy to transfer the data. It has been shown that for

some applications the overhead of transferring data to a GPU can take 50x

more time than the processing on the GPU [44].

Data partitioning provides a better solution for this application by consid-

ering the whole problem and partitioning the matrix between the devices such

that all of the data assigned to a device is contiguous.

Using the best available device for a given computation will, when consid-

ered individually, be quickest and most energy efficient. This is especially true

for battery-powered embedded SoC devices. However, in a HPC setting, the

two primary goals are to maximise the overall performance and to maximise
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the size of problems that can be tackled. The most general data partitioning

problem is to find the subset of the available heterogeneous devices which

will execute a given application in the shortest time. It may be necessary to

compare the optimum partitioning for each subset in order to find the globally

optimum partitioning. Therefore, the fist step is to find the optimum partitioning

which uses all devices in a set. A data partitioning in which all devices take

the same time to complete their workload solves this problem provided that:

the time spent communicating does not overshadow the performance gain; by

using a resource to perform a calculation it is not prevented from being used

in some other part of the same application for which it is better suited. Find-

ing a data partitioning, using all devices, which balances the computational

workload is the primary aim of this thesis.

The parallel matrix-matrix multiplication routine is a well studied kernel in

the data partitioning field, for both homogeneous and heterogeneous plat-

forms. There is good reason for this. It is used as a fundamental building

block of many other matrix operations, for example Gaussian elimination and

LU decomposition, which are in turn used to solve a very wide variety of prob-

lems, all of which will benefit from any speedup made to matrix multiplication.

The naive algorithm has complexityO(n3) and there is considerable communi-

cation cost in all known parallel routines. Furthermore, if a general partitioning

algorithm can be applied successfully to parallel matrix multiplication then it

is widely accepted that it will perform well for other applications. In contrast,

scheduling and partitioning algorithms that are only tested on embarrassingly

parallel applications, may not work for tightly coupled parallel applications. For

these reasons we will use matrix multiplication to test many of the algorithms

presented in this thesis, however we have designed the algorithms with wider

applicability in mind.

Homogeneous parallel matrix multiplication routines are a good starting

point when designing equivalent routines for heterogeneous platforms. These

include Cannon’s algorithm [45], Parallel Universal Matrix Multiplication Al-

gorithm (PUMMA) [46], Scalable Universal Matrix Multiplication Algorithm

(SUMMA) [47], and Distribution-Independent Matrix Multiplication Algorithm

(DIMMA) [48]. All of these parallel routines partition the matrices in two di-
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mensions.

On a homogeneous platform the data partitioning problem is a parallel ap-

plication specific problem. Namely, how can the computations be arranged,

with respect to the data, in order to allow maximum parallelisation and min-

imum total runtime? If each piece of data requires the same amount of

computations then simply an equal partition will be assigned to each device.

However, on a heterogeneous platform, the same operation to parallelise the

application is required as it is on a homogeneous platform. In addition there

is a non-trivial load balancing problem to be solved. For example the block

cyclic partitioning scheme [48] solves the partitioning problem for matrix mul-

tiplication on homogeneous distributed memory processors and allows com-

putations and communications to be overlapped. This matrix multiplication

partitioning algorithm was extended to a HNOWs by unevenly partitioning the

matrix between the workstations with respect to processor performance [49].

Lastovetsky and Kalinov present two methods for data partitioning [49].

The first method is to partition the problem into many small equal-sized pieces

of work, each of which is assigned to a process. Processes are then mapped

to processing devices in proportion to each devices performance [50]. This ap-

proach overlaps with the field of scheduling. The second method is to assign

one process per processor and perform an uneven data partitioning on the

problem. The former had the advantage that existing homogeneous parallel

applications can be used unmodified, however there is extra communication

and management overhead due to the extra processes, and reduced granu-

larity avalible for accurate load balancing. The latter requires modification of

the application but allows fine grained load balancing, because of a greater

number of small computational units, without suffering from the overhead as-

sociated with additional processes.

An efficient Grid based matrix partitioning is given in [51], Cartesian parti-

tioning in [52] [53]. The memory constrained problem is solved in [54] and for

LU decomposition [55].
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2.2.3 Heterogeneous Data Partitioning Problem

All data parallel applications have the common property that the data can be

subdivided into small chunks upon which computations can be performed in-

dependently in parallel. For applications where the amount of computational

workload is independent of the value of the data, we define the computational

unit as the smallest amount of work that can be given to a single device. For

a given application, the computational unit requires a fixed data storage and a

fixed amount of computations.

The performance of a device can be quantified by timing the execution of

the application with problem size d. From this time t(d) speed can be com-

puted. We define speed as

s(d) =
C(d)

t(d)
(2.1)

where C(d) is the application specific complexity involved in computing d com-

putational units. If C(d) returns the number of floating point operations in one

computational unit times d, then the magnitude of si(d) will be in FLOPS; if

C(d) returns d then the magnitude of si(d) will be in computational units per

second. Either approach will yield the same final distribution from the partition-

ing algorithms provided there is consistency in the value of C(d). The code

being benchmarked must be such so that C(d) is a linear function of d in order

for valid distributions to be returned by the algorithms presented in this work.

We make the proposition that, for all real hardware, the computation time

t(d) increases monotonically with d. This is to say that a device will not finish

all computations in less time if more workload is assigned to it.

The total application running time is reduced by (i) minimising the longest

running process and (ii) minimising the communication time. Condition (i) can

be stated as

minimise
(

p
max
i=1

ti(di)
)

. (2.2)

The lower bound of equation (2.2) is when all devices take the same time to

finish the workload assigned to them.

t1(d1) = . . . = ti(di) = . . . = tp(dp) . (2.3)
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However, since di ∈ N0 it may not be possible to satisfy (2.3), and the closest

integer approximation provides an asymptotically optimum solution.

Satisfying condition (ii), minimising communication time, is more complex.

There are up to p(p − 1)/2 logical interconnects between devices, each link

is parametrised by bandwidth and latency, and normally there is contention

for this bandwidth between the devices. Therefore, solving this problem is be-

yond the scope of this work. A simpler problem to solve is to find a partition

which minimises the total volume of communication in the application. How-

ever, this is an application specific optimisation. Algorithms for minimising the

total volume of communication for matrix multiplication are given in [2] and

[56]. A tile partitioning algorithm for QR factorization [57], targeted at mas-

sively parallel platforms, uses a hierarchical tree to minimise inter-processor

communications. We will show in Section 5.1 how a communication minimisa-

tion algorithm can be used with FPM-based partitioning.

With the definitions of computational unit, speed and complexity, we can

now state the heterogeneous data partitioning problem. Given a total problem

size of D computational units to be distributed between p (p < D) physi-

cal devices, P1, . . . , Pp , with speeds s1, . . . , sp. Find the distribution vector of

computational units d = (d1, . . . , dp), that satisfies
d1 + . . .+ di + . . .+ dp = D

C(d1)

s1(d1)
= . . . =

C(di)

si(di)
= . . . =

C(dp)

sp(dp)

(2.4)

Algorithms which solve this problem are often refered to as predicting-the-

future algorithms, since they make load balancing decisions based on past

performance measurements.
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2.3 Data Partitioning Based on the Constant Per-

formance Model

If in the data partitioning problem (2.4), the speeds s = (s1, . . . , sp) are con-

sidered constant such that si = si(x), ∀x ∈ N, the solution to this problem

is given by

di = D × si∑p
j=1 sj

. (2.5)

On a real system an integer approximation of this solution must be made

since only an integer number of computational units can be assigned to each

device.

We call performance models which represent speed by a single positive

number Constant Performance Model (CPM). We define the solution (2.5) to

the load balancing problem as CPM-based data partitioning.

The CPM is used in the majority of state of the art load balancing data

partitioning and scheduling algorithms which target heterogeneous platforms

[58, 52, 2, 27, 53, 59, 3, 34, 54, 55, 60, 51, 61, 62, 63, 64, 65, 66, 31, 67, 68].

These works are all predicting-the-future algorithms.

There is considerable variance in the literature on how the parameter defin-

ing a device’s performance is found. Some use normalised processor speed

[69], relative cycle-time [3], count clock cycles [70], while others perform syn-

thetic benchmarks. Other works measure the execution time of the whole

application [67], measure just the time to compute a serial subtask of the par-

allel code [71], or just time the application with a small problem size [61]. The

execution time is calculated from the hardware counters in [64]. Algorithms tar-

geting iterative applications can time one [62] or a few iterations [68, 65, 72].

The authors of [66] measure a dominant computational kernel of the algorithm

in GFLOPS and the authors of [27] use a relative speed in work units based

on the workstations peak speed. Many other works do not specify how they

obtain the heterogeneous processing devices relative or absolute speeds.

Whichever metric is used, all these works characterise the performance of

each device by a single positive number so we refer to them as CPM-based

data partitioning algorithms. In dynamic load balancing works, such as [62],
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the performance of each device is repeatedly measured with each iteration of

the application. However, each load balancing decision uses only the latest

measurement, so we still consider this a CPM-based algorithm.

The fundamental assumption of the conventional CPM-based algorithms

is that the devices’ relative speeds do not depend on the size of the computa-

tional task. This assumption is typically satisfied when medium-sized scientific

problems are solved on a heterogeneous network of workstations. However, it

becomes much less accurate in the following situations:

• The partitioning of the problem results in some tasks either not fitting

into the available memory of the assigned processor and hence causing

paging or fully fitting into faster levels of its memory hierarchy.

• Some processing devices involved in computations are not traditional

general-purpose processors (say, accelerators such as GPUs or spe-

cialised cores). In this case, the relative speed of a traditional processor

and a non-traditional one may differ for two different sizes of the same

computational task even if both sizes fully fit into the available memory.

• Different processors use different codes to solve the same computational

problem locally.

The above situations become more and more common in modern and per-

spective HPC heterogeneous platforms. As a result, applicability of the tradi-

tional CPM-based distribution algorithms becomes more restricted. Indeed, if

we consider two really heterogeneous processing devices Pi and Pj , then the

more different they are, the smaller will be the range Rij of sizes of the com-

putational task where their relative speeds can be accurately approximated

by constants. In the case of several different heterogeneous processing de-

vices, the range of sizes where CPM-based algorithms can be applied will be

given by the intersection of these pair-wise ranges,
⋂p

i,j=1Rij as illustrated in

Fig. 2.1. Therefore, if a high-performance computing platform includes even

a few significantly heterogeneous processing devices, the area of applicability

of CPM-based algorithms may become quite small or even empty. For such

platforms, new algorithms are needed that would be able to optimally distribute
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computations between processing devices for the full range of problem sizes

[73].
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Figure 2.1: Shaded area indicates the range of problem sizes where CPM-
based data partitioning can be applicable, for: (a) multiplication of two square
N×N matrices (GEMM kernel), observed on heterogeneous multi-cores from
Grid5000; (b) matrix mutiplication update of b×b blocks, observed on a number
of hybrid CPU/GPU and CPU only nodes from Grid’5000 Grenoble site.

In [27], the authors admit that a single parameter to measure the relative

speeds of the workstations is a significant idealization, since the actual speed

of each workstation depends on the details of how the task is executed. How-

ever, since their high level algorithm knows nothing about the details of of the
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tasks it schedules, they cannot avoid this idealisation. Furthermore, it has

been demonstrated that a kernel can have different performance characteris-

tics when acting on either a m × n matrix or a n × m matrix when m 6= n

[64].

A number of load balancing algorithms [60, 70, 61, 72, 74, 75] are not

based on equation (2.5), instead they form more complex equations with pa-

rameters for each of the following: device speed, inter-device and inter-node

communication bandwidths, sizes of cache and main memory, total problem

size, etc. The load balancing problem is solved by finding suitable values for

these parameters and solving the equations. Hence, these models are all

application- and platform-specific. The number of parameters and the predic-

tive formulas for the execution time on each device must be defined for each

application. This approach requires a detailed knowledge of the computational

algorithm and the hardware in order to provide an accurate prediction. In [75],

it was also acknowledged that the linear models might not fit the actual per-

formance in the case of resource contention, and therefore, data partitioning

algorithms might fail to balance the load.

So far we have concentrated on static partitioning, however the vast ma-

jority of the literature deals with dynamic load balancing algorithms. These

algorithms perform load balancing throughout the execution of the application

by periodically remapping tasks or repartitioning in order to remedy observed

load-imbalance. These predicting-the-future algorithms use the currently ob-

served device performance to decide the next distribution. They may be cen-

tralised [31, 67, 62, 3, 68, 64, 76, 77, 72, 78] or distributed [40, 43, 41]. In

these algorithms there is a trade-off between the performance gained by hav-

ing a balanced workload and the penalty incurred in migrating data and tasks.

An application requires an initial partitioning before the dynamic algorithms

can begin their work. Less migration is required and quicker convergence can

be achieved if this initial partitioning is already close to a balanced distribution.

Therefore, good results can be achieved if a static load balancing algorithm is

used at application start-up and then a dynamic algorithm is used throughout

the application.
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2.3.1 Criticism of Traditional Data Partitioning Algorithms

Based on Constant Performance Models

We propose, in this body of research, that the constant performance model

is too simplistic of a model of processor performance, and hence data parti-

tioning algorithms based on the CPM may fail. The first contribution of this

work is to demonstrate that when applied to the full range of problem sizes the

CPM-based partitioning algorithm fails to converge to a balanced solutions.

Furthermore, it can enter a cycle of oscillation resulting in large amounts of

data transfer with each redistribution. To show this we have implemented the

dynamic load balancing algorithm described in [62] which we summarise be-

low. Furthermore, this approach is similar to that taken in [65] and many other

works.

Iterative routines have the following structure: xk+1 = f(xk), k = 0, 1, ...

with x0 given, where each xk is an D-dimensional vector, and f is some func-

tion from RD into itself. The iterative routine can be parallelised on p proces-

sors by letting xk and f be partitioned into p block-components. During an

iteration, each processor calculates its assigned elements of xk+1. Therefore,

each iteration is dependent on the previous one.

This algorithms works by measuring the computation time of one iteration,

calculating the new distribution and redistributing the workload, if necessary,

for the next iteration.

Initially: The computation workload is distributed evenly between all proces-

sors, d0i = D/p . All processors execute D/p computational units in parallel.

At each iteration:

1. The computation execution times t1(dk1), ..., tp(d
k
p) for this iteration are

measured on each processor and gathered to the root processor.

2. If max
1≤i,j≤p

∣∣∣ ti(dki )−tj(dkj )
ti(dki )

∣∣∣ ≤ ε then the current distribution is considered bal-

anced and redistribution is not needed.

3. Otherwise, the root processor calculates the new distribution of compu-

tations dk+1
1 , ..., dk+1

p as dk+1
i = n × ski /

∑p
j=1 s

k
j , where ski is the speed

of the i’th processor given by ski = dki /ti(d
k
i ).
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4. The new distribution dk+1
1 , ..., dk+1

p is broadcast to all processors and

where necessary data is redistributed accordingly.

This strategy works well where si(d) = constant ∀ 0 < d ≤ D, as de-

picted in Fig. 2.2. The problem is initially divided evenly between two proces-

sors for the first iteration and then redistributed to the optimal distribution at

the second iteration.

Figure 2.2: CPM-based partitioning algorithm successfully applied to two pro-
cessors in a region where speed is invariant with problem size. Initially the
problem is partitioned evenly and the execution time is measured. Based on
this measurement the algorithm computes a new distribution (outlined points).
This new distribution will be successful as the points lie on the speed functions
s1(d) and s2(d).

Consider the situation in which the problem can still fit within the total main

memory of the cluster but the problem size is such that the memory require-

ment of n/p is close to the available memory of one of the processors. In

this case paging can occur. If paging does occur, the traditional load balanc-

ing algorithm is no longer adequate. This is illustrated for two processors in

Fig. 2.3. Let the real performance of processors P1 and P2 be represented by

the speed functions s1(x) and s2(x) respectively. Processor P1 is a faster pro-

cessor but with less main memory than P2. The speed function drops rapidly

at the point where main memory is full and paging is required. First, D in-

dependent computational unit are evenly distributed, d01 = d02 = D/2, between

the two processors and the speeds of the processors, s01, s
0
2, are measured

Fig. 2.3(a). Then at the second iteration the computational units are divided
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D

(a) (b)

(c) (d)

Figure 2.3: CPM-based data partitioning algorithm applied to two processors
in a region where the speed varies with problem size. Hence, the algorithm is
unable to achieve balance. (a) Initially speed is measured for an equal data
distribution and the algorithm computes a new distribution with a predicted
speed (outlined points). (b) The difference between the predicted and actual
speed of the processors measured at the second iteration. (c) Based on the
speed measurements from the second iteration, the constant models are re-
calculated and a new distribution is computed. (d) At the third iteration, there
is a large difference between the predicted speed and the actual speed.
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according to d11
d12

=
s01
s02

, where d11+d12 = D. Therefore, at the second iteration, P1

will execute less computational units than P2. However, P1 will perform much

faster and P2 will perform much slower than the model predicts, Fig. 2.3(b).

Moreover the speed of P2 at the second iteration is slower than P1 at the first

iteration.

Based on the speeds of the processors demonstrated at the second it-

eration, their CPMs are changed accordingly, Fig. 2.3(c), and the computa-

tional units are redistributed again for the third iteration as: d21
d22

=
s11
s12

, where

d21 + d22 = D. Now the situation is reversed, P2 performs much faster than P1,

Fig. 2.3(d). This situation will continue in subsequent iterations with the algo-

rithm never converging. The majority of the computational units will oscillate

between the processors.

Experimental Results for Constant Performance Based Partitioning

The CPM-based partitioning algorithm described above was applied to the

Jacobi method, which is representative of the class of iterative routines we

study, and was tested on a cluster of 16 heterogeneous servers. For clarity,

we present results from two configurations of 4 processors (Table 2.1). The

clusters differ by the number of processors with 256MB RAM. Comparable

results were obtained when all 16 nodes were used.

Table 2.1: Specifications of Cluster 1 (P1, P3, P4, P5) and Cluster 2 (P1, P2, P3,
P4.)

P1 P2 P3 P4 P5

Processor 3.6 Xeon 3.0 Xeon 3.4 P4 3.4 Xeon 3.4 Xeon
RAM (MB) 256 256 512 1024 1024

The memory requirement of the partitioned routine is a D × di block of a

matrix, three D dimensional vectors and some additional arrays of size p. For

4 processors, with an even distribution, problem sizes of D = 8000 and D =

11000 will have a memory requirement which lies either side of the available

memory on the 256MB RAM machines, and hence will be good values for

benchmarking.
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The traditional load balancing algorithm worked efficiently for small prob-

lem sizes, Fig. 2.4(a,c). For problem sizes, sufficiently large to potentially

cause paging on some machines, the load balancing algorithm caused diver-

gence as the theory in this section predicted, Fig. 2.4(b,d). A plot of problem

size against absolute speed can help to illustrate why the traditional load bal-

ancing algorithm is failing for large problems. Fig. 2.5 shows the absolute

speed of each of the processors for the first five iterations.
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(d) Cluster 2 with n = 11000

Figure 2.4: Time taken for each of the 4 processors to complete their assigned
computational units during iterations. In (a) and (c) the problem fits in main
memory and the load converges to a balanced solution. In (b) and (d) paging
occurs on some machines and the load remains unbalanced.

The experimentally built full functional models for the processors are dot-

ted in to aid visualisation, but this information was not available to the load

balancing algorithm. Initially each processor has D/4 rows of the matrix. At

the second iteration, P1and P2 are given very few rows as they both performed

slowly at the first iteration, however they now compute these few rows quickly.

At the third iteration, P1 is given sufficient rows to cause paging and hence a

cycle of oscillating row allocation ensues.

Since data partitioning is employed in Jacobi iterative routine, it is neces-

sary to redistribute data after each change of distribution. When the balancing
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Figure 2.5: Distributions produced by the CPM-based partitioning algorithm
for four processors on cluster 2 with D = 11000. Showing initial distribution at
D/4 and four subsequent iterations. The x axis represents the number of com-
putational units processed by each node as well as the memory requirements
of the problem, namely, the number of rows of the matrix stored in memory.
The full functional performance models are dotted in to aid visualisation.
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algorithm converges quickly to an optimum distribution, the network load from

data redistribution is acceptable. However, if the distribution oscillates, not

only is the computation time affected but there will also be a heavy load on the

network. On cluster 2 with D = 11000 approximately 300MB is been passed

back and forth between P1 and P2 with each iteration.

Experimental results for FPM-based partitioning

We will present the FPM-based partitioning algorithms in detail in Chapter 4,

However, for now let us present the results for the same experiment using

FPM-based partitioning with the Geometric Partitioning Algorithm (GPA) in-

stead of CPM-based partitioning. For small problem sizes (D = 8000, p = 4),

FPM-based partitioning performed in much the same way as CPM-based par-

titioning. For larger problem sizes D = 11000 this algorithm was able to suc-

cessfully balance the computational load within a few iterations (Fig. 2.6, 2.7).

As in the traditional algorithm, paging also occurred but the algorithm,

through empirical measurements fit the problem to the available RAM. Pag-

ing at the 8th iteration on P1 demonstrates how the algorithm experimentally

finds the memory limit of P1. The 9th iteration represents a near optimum dis-

tribution for the computation on this hardware. A plot of speed vs. problem

size, Fig. 2.7, shows how the computational distribution approaches an opti-

mum distribution within 9 iterations. We can see why P1 performs slowly at the

8th iteration. At the 9th iteration, we can see that the maximum performance of

processors P1 and P2 has been achieved.
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Figure 2.6: Time taken for each of the 4 processors to complete each iteration
of the Jacobi iterative routine, with D = 11000 on cluster 2.
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Figure 2.7: Dynamic load balancing of Jacobi iterative routine with geometrical
data partitioning. Problem size D = 11000 on cluster 2. Speed plots show dy-
namically built functional performance models. The line intersecting the origin
represents the optimum solution and points converge towards this line.
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2.4 Software Frameworks for Data Partitioning

and Load Balancing

One of the contributions of this research work is the FuPerMod framework. It

provides the tools for using FPM-based partitioning with parallel applications

executed on heterogeneous platforms. Here we would like to mention some

other frameworks that also target heterogeneous and hybrid platforms. Many

of them implement the scheduling, partitioning and load balancing algorithms

discussed in this chapter. Some are targeted specifically at CPU/GPU parti-

tioning and balancing problems: Magma [79]; CHPS [80]; StarPU [42]; Qilin

[72]; and Anthill [81]. Others are more general and target distributed memory

parallel platforms: Charm++ [82]; Cilk [83, 84]; Map Reduce[85]; ADITHE [65];

Merge [86]; and CACHE [63].
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Chapter 3

Building Models

3.1 Modelling the Computational Performance of

Heterogeneous Processors

In this section we present in detail how functional performance models are

built. Since FPMs are derived empirically and are application and platform

specific, models must be built for each application on each unique processing

device. The models are composed of a series of data points, each point is

generated by timing the execution of the application for a given problem size

d. If care is not taken, more time could be spent building the performance

models than the total runtime of the application.

3.1.1 Computational Unit

We define the computational unit as the smallest fixed amount of work that

can be assigned to a device. A parallel application may be composed of D

computational units. All units require the same computational work and have

the same input and output data storage requirements. It is a measure of the

granularity of the application and is defined differently for different applications.

The compute time for a given problem size on a given device must remain

constant. For example in an N-body simulation it would be incorrect to chose

a fixed volume of space as the computational unit because in some regions
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that volume may contain a large number of particles and hence large workload

while in other regions it may contain none. A computational unit consisting of

a fixed number of particles might seem like a good choice but may not be

compatible with the algorithm. The ideal choice for N-body simulation might

be to make use of a domain decomposition algorithm so that a unit is defined

as volume of space containing a fixed number of particles.

3.1.2 Complexity of Computations

The complexity C(di) is a measure of the useful work involved in processing

di computational units. In some cases this my be the number of floating point

operations. For example if the process being benchmarked does a full di × di
matrix multiplication, then C(di) = 2 × d3i . However, if the process was one

process of a much larger SUMMA matrix multiplication application [47], C =

αAB + βC, with a blocking factor b, then the computational unit is the update

of a b × b block of C. Device Pi is responsible for the calculations associated

with a rectangle of size mi× ni blocks of size b and the benchmark is done by

measuring the time to execute 3 iterations of the outer loop of the algorithm.

The complexity is then given as C(mi, ni) = 2 ∗ (mi ∗ b) ∗ (ni ∗ b) ∗ (3 ∗ b). This

application is presented in more detail in Section 5.1. In the proceeding two

matrix multiplication examples, where the algorithm is straightforward and the

complexity is well-know, we can plot the speed functions with a scale of floating

point operations per second (FLOPS). If the application is more complex, it

may not be possible or continent to count the number of useful floating point

operations in a computational unit and hence we cannot plot a speed function

in MFLOPS. We can however set C(di) = di and plot to a relative scale of

computational units processed per second.

3.1.3 Performance Measurement Point

Models are made up of a series of data points consisting of a problem size

d, time of execution t(d) and the complexity C(d). These data points can be

output to and read from plain text files with one point on each line. From this

37



3.1. MODELLING THE COMPUTATIONAL PERFORMANCE OF
HETEROGENEOUS PROCESSORS

the speed of each point can be calculated as

s(d) = C(d)/t(d). (3.1)

One of the requirements of FPMs is that when a point (di, t(di)) is added

to the model, subsequent executions on that same hardware with the same

partitioning di take, within some small ε, the same time to complete. This

implies two restrictions: (i) the same amount of work is done in subsequent

executions; (ii) the benchmark must be independent of what is happening on

other processes. (i) precludes applications that have non-deterministic work-

load from being used with FPMs; it also requires that care be taken with the

benchmark for applications, like the basic parallel LU-decomposition, where

the amount of work diminishes as the calculation progresses. (ii) requires that

any time spent communicating and waiting on other processes must be ex-

cluded from the benchmark.

Each line in the model data file also holds additional statistical information.

We will show in Sections 3.1.4 and 3.1.5 how a time ti(d) measurement is

made. Both methods make empirical measurements so there will be some ex-

perimental error in the result. We use repetition and Student’s t-test to achieve

a desired confidence interval. Recorded in the model file are the number of

repetitions the measurement has actually taken (reps), and the confidence

interval of the measurement (ci).

3.1.4 Benchmarking with a Computational Kernel

It has been noted that building performance models for an application on a

given set of hardware can take considerable time. A first optimisation can be

made by noting that the majority of parallel scientific applications spend most

of the time iterating through a main outer loop. In this loop, some calcula-

tions take place in parallel and then some communication takes place. If the

characteristics of the application are compatible, it may be sufficient to bench-

mark just one or a few such iterations in order to get a realistic measure of

the application performance on the target hardware. This optimisation cou-
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pled with the idea of making measurements independent of communication

with other processes leads us to developing the computational kernel. It is

a piece of code that is analogous to, yet independent from, the real parallel

application. Implemented as a shared library, a kernel makes available four

functions to the model building tool. (i) An initialise function that, for problem

size di, allocates and initialises all needed variables in the same manner as

would be done in the preliminary stages of the real application. (ii) An execute

function, which performs calculations equivalent to one iteration of the main

loop of the application. Communications are either looped back to itself or

replaced with an internal memory copy. This execute function may be called

multiple times by the model building tool to achieve a statistically significant

benchmark. (iii) A finalise function which deallocates all memory allocated by

the initialise function. (iv) A complexity function which returns the complexity

C(di) of the executed function.

The serial code is packaged into a shared dynamic library which can be

linked to by one of a number of model building tools. Full FPMs can be built

for a given range by repeatedly executing the kernel with different parameters.

Repetitions can be used to achieve a specified confidence interval as shown

in Algorithm 1.

increment = (max−min)/(x− 1);
for d = min; d ≤ max; d+ = increment do

initialise(d);
while reps < 3 or (confindence interval > ε and
reps < max_reps) do

Start timer ;
execute() ;
Stop timer ;
perform statistical analysis ;

end
finialise() ;
write point to file ;

end
Algorithm 1: To build a model with x points in the range [min,max]

We will now discuss briefly other works on building accurate FPMs. The
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problem of minimising the construction cost of the full-FPM has been studied

and a relatively efficient suboptimal solution has been proposed in [87]. In

some setups it is not possible to perform an independent benchmark, not be-

cause of the communication in the application, but because of the hardware.

For example a hybrid node with multi-socket multicore CPUs with GPU ac-

celerators, parallel processes interfere with each other as they contend with

each other for access to the shared memory. Benchmarking a single core

while other cores are idle would not give a true performance measurement.

FPM building methods which group sets of cores together for the purpose of

benchmarking are presented in [88, 89].

3.1.5 Benchmarking with instrumented tracefiles

Taking the open-source cosmological N-body/SPH simulation software

GADGET-2 [90] as an example application. It fits the specification of our target

application, it is a data parallel application, partitioning is done with domain

decomposition, and it has a main iterative loop for which it performs the com-

putations on the data to advance the simulated time. GADGET-2 has over

16k lines of code. In a singe iteration it performs many different computations,

and performs different sets of communications to share gravitational forces,

update particle positions, and to perform dynamic load balancing as particles

move across domain boundaries. Producing a computational kernel for a self-

contained routine such as matrix multiplication is a relatively easy task, how-

ever doing it for an application such as this would be infeasible. Furthermore,

if a serial kernel was extracted its performance characteristics may be so far

from the real application as to render it useless.

We propose a novel approach for benchmarking complex parallel applica-

tions. Performance analysis tools, such as Paraver [91], are used to visualise

the behaviour of parallel applications from tracefiles. Tracefiles are gathered

by tools, such as Extrae [92], by injecting probes into the target application.

Information can be gathered on when a specific subroutine is executed. Fur-

thermore, application code can also be instrumented with calls to the Extrae

shared library, so that a timestamp is added to the tracefile whenever a user
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defined event occurs. All of this data can be viewed and analysed in Paraver,

and decisions made on how to improve application performance.

Instead of using Paraver, we have developed our own tool which parses

the output of Extrae to extract a mean independent computation time of one

iteration of the application. A full FPM can thus be built by executing the ap-

plication multiple times, assigning a different distribution to the devices, and

therefore adding one point to the models of each device each time.

3.2 Fitting Continuous Curves to Models

In Section 3.1 we showed how performance data points can be obtained. How-

ever, to be useful for FPM-based partitioning algorithms the FPMs must be de-

fined within the range 0 < x ≤ D, and be bounded, continuous, positive and

non-zero. We have developed two methods for fitting continuous functions to

the discrete data points, piecewise linear approximations and Akima splines.

Both have their own advantages and disadvantages, Fig. 3.1.
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Figure 3.1: Speed function for non-optimised Netlib BLAS. (a) Fitting shape
restricted piecewise approximation. (b) Fitting Akima spline interpolation. Both
fitted models have been offset slightly for clarity.
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3.2.1 Piecewise Linear Approximations

Continuous piecewise linear approximations are composed from the discreet

data points by joining each consecutive point with a straight line segment,

horizontal lines are extended from zero to the first point and from the last

point to infinity (Fig. 3.2). In the next chapter we will present the Geometric

Partitioning Algorithm which places certain restrictions on the shape of the

functions to ensure convergence; for some value x, in the interval (0, x] the

function must be monotonically increasing and concave, and in the interval

[x,∞) monotonically decreasing. Generally, at the macro scale, real functions

fit this shape restriction. However, because of experimental noise, and for

some application-hardware combinations, they may not hold true at the micro

scale (Fig. 3.1). It is therefore necessary to “fix” the data points in order to

satisfy these restriction and guarantee convergence. Through experience, we

found the best heuristic to be as follows:

• Choose x = dij where s(dij) is max speed.

• For each point in range (0, x] remove if less than previous point.

• For each point in range (0, x], compute slope of line to next point. If

greater than previous slope, remove point and go back one point.

• For each point in range [x,∞) remove if greater than previous point.

(a) (b)

Figure 3.2: Construction of partial speed functions using linear interpolation.
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We find this practice of removing points that do not fit the shape restrictions

reliably gives good approximations of the models.

3.2.2 Akima Spline Interpolation

The linear interpolation does not satisfy the condition of differentiability at the

breakpoints (xi, si). The spline interpolations of higher orders have derivatives

but may yield significant oscillations in the interpolated function. However,

there is a special non-linear spline, the Akima spline [93], that is stable to

outliers (Fig. 3.3).
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Figure 3.3: Fitting smooth curves to experimentally found data points with:
(a) Cubic splines and (b) Akima spline interpolation.

By approximating the FPMs with continuous differentiable smooth func-

tions we can then use the Numeric Partitioning Algorithm presented in the next

section; this is an alternative to using the Geometric Partitioning Algorithm with

piecewise linear approximations. Therefore, we do not need to make the ad-

justments described in the previous section, and hence detail of the model is

not lost.

Fitting the data with interpolation algorithms or cubic splines does not yield

good results because real functions can change their value and slope rapidly

producing overshoot and oscillations.

Akima splines [93] are ideally suited to fit our models. They are designed

to be stable to outliers. They are based on a piecewise function composed of
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a set of polynomials, each of degree three and are ideally suited to abruptly

changing data. Included in the GSL package [94], when fitted to the data it

provides a continuous smooth function with continuous first derivatives and

very little overshoot. Akima splines are only defined within the range of the

points, so the only modification to the data necessary is to add 3 points in the

range between the zero and the first point with a speed equal to the first point

and 3 points in the range between the last data point and 2×D with a speed

equal to the last data point.

3.3 Construction of Partial Speed Functions

FPMs are composed of a set of data points; each point records an empirically

measured benchmark as a problem size and time pair. A typical full FPM is

composed of in the order of 100 to 1,000 data points, and this produces an

accurate representation of device performance. However, given much less

points, say 1 to 20 points, some useful information about device performance

is still known, especially if these few points are clustered in the region of the

model we are currently interested in. We call this the Partial FPM.

In Section 4.3 we will present the DPA, an algorithm which starts with an

empty model and iteratively adds points as it performs benchmarks and con-

verges towards the optimum distribution. This typically done in between 3 and

20 iterations.

For an FPM to be used with either the GPA or the NPA it mush be defined

within the range 0 < x ≤ D, and be bounded, continuous, positive and non-

zero. We define the function outside the range of points to have the same

value as the nearest data point. Therefore, a FPM with a single point in it will

be represented by a horizontal line and FPM-based partitioning will produce

the exact same results as CPM-based partitioning.
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3.3.1 Construction of Partial Piecewise Linear Approxima-

tions

Partial piecewise linear approximations are needed when the Dynamic Par-

titioning Algorithm uses the Geometric Partitioning Algorithm. Let us outline

how the partial FPM s̄ is approximated. We start with an empty model and

points are added one by one. The first approximation is given as s̄(x) = s0,

Fig. 3.4(a). Let {(d(j)i , s
(j)
i )}mj=1, d

(1)
i < . . . < d

(m)
i , be points currently in the ap-

proximation. At the k’th step, point (dk, sk(dk)) is to be added as (Fig. 3.4(b)):

1. If dk < d(1), then the line segment (0, s(1)) → (d(1), s(1)) of the s̄(x) ap-

proximation will be replaced by two connected line segments (0, sk))→
(dk, sk) and (dk, sk)→ (d(1), s(1));

2. If dk > d(m), then the line (d(m), s(m)) → (∞, s(m)) of this approximation

will be replaced by the line segment (d(m), s(m)) → (dk, sk) and the line

(dk, sk)→ (∞, sk);

3. If d(j) < dk < d(j+1), the line segment (d(j), s(j)) → (d(j+1), s(j+1)) will

be replaced by two connected line segments (d(j), s(j)) → (dk, sk) and

(dk, sk)→ (d(j+1), s(j+1)).

(a) (b)

Figure 3.4: Construction of partial FPMs using piecewise linear approxima-
tions.

After adding the new data point to the partial FPM, we verify that the shape

of the resulting approximation satisfies the GPA shape restrictions, and adjust
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it when required. We keep the original data points and only update the ap-

proximation.

3.3.2 Construction of Partial Akima Spline Interpolation

Let us consider a set of k data points (xi, si), 0 < xi < D, 1 ≤ i ≤ k. Here

and after in this section, the data points (xi, si) correspond to a single device,

for which the speed function s(x) is approximated. To approximate the FPM in

the interval [0, D], we also introduce two extra points: (0, s1) and (n, sk).

Akima splines require no less than 5 points. In the inner area [x3, xk−2],

the interpolation error has the order O(h2). This interpolation method does not

require solving large systems of equations and therefore it is computationally

efficient.

At the first few iterations, when the model consists of less than 5 data

points, the Akima splines can be built for an extended model that duplicates

the values of the left- and rightmost points, s1, sk, as follows (Fig. 3.3):

1. k = 1: x1 = n/p, s1 = s(n/p), the extended model specifies the con-

stant speed as (0, s1) ,
(
x1

2
, s1
)
, (x1, s1) ,

(
n−x1

2
, s1
)
, (n, s1).

2. k = 2: the extended model is

(0, s1) ,
(
x1

2
, s1
)
, (x1, s1) , (x2, s2) ,

(
n−x2

2
, s2
)
, (n, s2).

3. k = 3: the extended model is

(0, s1) , (x1, s1) , (x2, s2) , (x3, s3) , (n, s3).

The interpolation is recalculated at each iteration of the routine.

3.4 Two-dimensional Functional Performance

Models

Thus far, we have only considered FPMs for applications with a partitioning

scheme defined by one free parameter. For clarity we refer to this as One-

dimensional Functional Performance Model (1D-FPM). However, an applica-

tion’s partitioning scheme may be defined by two or more free parameters.
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The Two-dimensional Functional Performance Model (2D-FPM) has param-

eters (m,n) and is represented as a surface in 3D space (Fig. 3.5). The

complexity function becomes C(m,n) and speed is defined as

s(m,n) =
C(m,n)

t(m,n)
. (3.2)

With the 2D-FPM the solution space for finding a balanced partitioning is

greatly increased, as is the number of benchmarks needed to obtain a model

of the same accuracy, where a 1D-FPM requires x experimental points to

achieve a given accuracy, a 2D-FPM requires x2 points.
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Figure 3.5: Two-dimensional models for two nodes from our local heteroge-
neous cluster, showing hcl16 is a faster node with less memory then hcl13.
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Chapter 4

Partitioning Based on the

Functional Performance Model

In this chapter we formulate the load balancing problem and then present the

two main partitioning algorithms: the geometric and the numeric partitioning

algorithms. We go on to present the dynamic partitioner which can use either

of the main partitioning algorithms at its core.

The data partitioning problem can be formulated as follows. Given a set

of p dedicated distributed memory heterogeneous devices and a data-parallel

scientific application, which can be subdivided into D computational units for

parallel execution. The computational unit is defined as the smallest amount

of work that can be assigned to any one device and each unit has an equal

amount of associated data and requires the same amount of computation.

What distribution d1, . . . , dp of computational units will minimise the total appli-

cation running time?

We have shown in Section 2.3.1 that the FPMs are a more accurate mea-

sure of performance than the CPM. In the following sections we present two

algorithms that take p FPMs s(d1), . . . , s(dp) and a total problem size D as

input, and output a vector d1, . . . , dp describing the partitioned workload to be

assigned to each device (Fig. 4.1). Both algorithms tackle the load balancing

problem by first solving for x1, . . . , xp, where 0 < xi ≤ D, xi ∈ R, and then

finding the approximate integer solution di ∈ N0.
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Figure 4.1: Optimal data distribution based on FPMs for four devices.

The Geometric Partitioning Algorithm uses FPMs fitted with piecewise lin-

ear approximations, while the Numeric Partitioning Algorithm uses FPMs fitted

with Akima spline interpolation.

4.1 Geometric Partitioning Algorithm

The GPA can be described as follows. Given a set of continuous single-valued

positive-definite FPM speed functions si(x) defined for all 0 < x < ∞. If

we plot them all on the same Cartesian plane, with problem size and speed

in the x and y directions respectively, any line drawn with a positive slope

m which passes through the origin will intersect each of the functions at the

points
(
x1, s(x1)

)
, . . . ,

(
x1, s(x1)

)
. From the equation of a line, each of these

points can be expressed as:

1

m
=

x1
s1(x1)

=
x2

s2(x2)
= . . . =

xp
sp(xp)

. (4.1)

For device i, execution time ti is defined in equation 3.1 as:

ti(x) =
C(x)

si(x)
. (4.2)
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Provided a good computational unit is chosen so that the complexity C(x) is a

linear function of x, then:

ti(xi) =
1

m

C(xi)

xi
(4.3)

and

t1(x1) = t2(x2) = . . . = tp(xp). (4.4)

We can subsequently find the approximate integer solution d1, . . . , dp.

What this means is that the set of points given by the intersection of the

FPMs with a line passing through the origin gives a balanced distribution.

However, not any line can solve a given problem since each line produces a

distribution with a different total problem size. The problem is thus reduced

to finding the slope of the line which produces the desired total workload,

d1 + d2 + . . . + dp = D. The algorithm to find the slope of this line iteratively

bisects the space of solutions until it converges on the optimum solution.

The solution space consists of all such lines passing through the origin.

The two outer bounds of the solution space are selected as the starting point

of the algorithm.

The upper line U is chosen as the line passing through the point(
D
p
,maxi{si(Dp }

)
and it represents the optimal data distribution xU1 , . . . , x

U
p for

some problem size DU < D. The lower line L is chosen as the line passing

through the point
(

D
p
,mini{si(Dp }

)
and it represents the optimal data distri-

bution xL1 , . . . , x
L
p for some problem size DL > D (Fig. 4.2(a)).

The region between the two lines is bisected to form line M . The distri-

bution given by M is summed to give the problem size DM = xM1 , . . . , x
M
p . If

DM > D then the lower bound L is given the slope of M , otherwise the upper

bound U is given the slope of M (Fig. 4.2(b)). This procedure continues until

DL −DU < 1. At this point the distribution DU = xU1 , . . . , x
U
p yields a solution

which, to the nearest integer, is optimum.

The integer solution is found by letting di = bxUi c, ∀i and then sorting

the distributions in descending order and incrementing a successive di until

d1 + . . .+ dp = D.

Convergence of this algorithm is guaranteed provided there are some mi-

nor restrictions placed on the shape of each FPM. Namely for some point x,
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(a)

(b)

Figure 4.2: Two steps of the iterative geometrical data partitioning algorithm.
The dashed line O represents the optimal solution. (a) Upper line U and lower
line L represent the two initial outer bounds of the solution space. Line (B1)
represents the first bisection. (b) Line B1 becomes line L. Solution space is
again bisected by line B2, which, in the next step will become line U . Through
this method the partitioner converges on the optimal solution.
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the function is monotonically increasing and concave in the interval [0, x] and

monotonically decreasing in the interval [X,∞]. FPMs not fitting this profile

need to be modified before use with the GPA.

4.2 Numerical Partitioning Algorithm

In this section we present the Numerical Partitioning Algorithm (NPA). By

approximating the FPMs with continuous differentiable functions of arbitrary

shape, as described in Section 3.2.2, the problem of optimal data partitioning

(2.4) can be formulated as for the system of nonlinear equations and can be

solved using multidimensional root finding for F (x) = 0.

F(x) =


D −

p∑
i=1

xi

xi
si(xi)

− x1
s1(x1)

2 ≤ i ≤ p

(4.5)

where x = (x1, ..., xp) is a vector of real numbers corresponding to a data

partition d = (d1, ..., dp). The first equation specifies to the distribution of n

computational units between p processors. The rest specify the balance of

computational load. The problem (4.5) can be solved by an iterative algorithm

based on the Newton–Raphson method:

xk+1 = xk − J(xk)F(xk) (4.6)

The equal data distribution

x0 = (D/p, . . . , D/p) (4.7)
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can be reasonably taken as the initial guess for the location of the root. J(x)

is a Jacobian matrix, which can be calculated as follows:

J(x) =


−1 −1 ... −1

− s1(x1)−x1s′1(x1)

s21(x1)

s2(x2)−x2s′2(x2)

s22(x2)
0 0

... 0 ... 0

− s1(x1)−x1s′1(x1)

s21(x1)
0 0

sp(xp)−xps′p(xp)

s2p(xp)

 (4.8)

We use the HYBRJ algorithm, a modified version of Powell’s Hybrid method

[95], implemented in the MINPACK library. It retains the fast convergence

of the Newton method and reduces the residual when the Newton method

is unreliable. Solving the function (4.5) with the initial guess (4.7) yields the

root x∗ = (x∗1, ..., x
∗
p). The integer solution to the problem is found by letting

di = round(x∗i ), ∀i, and then sorting the distributions in descending order and

incrementing a successive di until d1 + . . .+ dp = D.

4.2.1 Convergence and complexity analysis

Proposition 1. The FPMs s1(x), . . . , sp(x) are defined within the range

0 < x ≤ D and are bounded, continuous, positive, non-zero and have

bounded, continuous first derivatives.

Proof. Device Pi has an associated FPM si(x) composed of k experimentally

found data points {
(
x1, si(x1)

)
, . . . ,

(
xj, si(xj)

)
, . . . ,

(
xk, si(xk)

)
}, 0 < xk ≤

D. The point
(
xj, si(xj)

)
is found by measuring the application execution time

with problem size xj , and is calculated with si(xj) =
xj

ti(xj)
. It is a practical

requirement that each benchmark finishes in a finite time, therefore all points in

si(x) are positive, non-zero and finite. Akima splines closely fit the data points

with continuous smooth functions, and a property of Akima splines is that they

have continuous first derivatives [93]. Therefore, we can conclude that si(x) is

continuous, bounded, positive, non-zero within the range 0 < x ≤ D.

Proposition 2. Within the range 0 < x ≤ D, the system of nonlinear equa-

tions F(x) = 0 contains no stationary points and the functions fi(x) have

bounded, continuous first derivatives, where fi(x) is the i ’th equation of F(x).
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Proof. F′(x) is non-zero for all 0 < xi ≤ D, hence F(x) contains no stationary

points. f1(x) has a constant first derivative. For fi(x), 1 < i ≤ p, if si(x) and

s
′
i(x) are continuous, bounded and if si(x) is non zero then f ′i(x) is bounded,

continuous. This requirement is satisfied by proposition 1.

Proposition 3. The NPA converges in a finite number of iterations.

Proof. It is proven in [95] that if the range of x is finite, and F(x) contains no

stationary points and if f ′i(x) is bounded continuous then the HYBRJ solver

will converge to |F(x)| < ε, where ε is a small positive number, in a finite

number of iterations. These requirements are satisfied by proposition 2.

Proposition 4. The complexity of one iteration of the solver is O(p2).

Proof. It is show in [96] that the HYBRJ solver has complexity O(p2). All other

steps of the algorithm are of order O(p).

The number of iterations required for the solver to converge to a solution

with sufficiently small ε depends on the shape of the functions. In practice

we found that often 2 iterations are sufficient when the speed functions are

very smooth and up to 30 iterations when partitioning in regions of rapidly

changing speed functions. However, since the algorithm has complexity O(p2)

and p� D the total solution time for the NPA is negligible when compared to

the time to benchmark one point in a FPM.

4.3 Dynamic Partitioning Algorithm

We have developed the Dynamic Partitioning Algorithm (DPA) for situations

where FPMs are not given as input. Building detailed FPMs is expensive. This

expense may be prohibitive in situations where each run of the application

is considered unique. This may be because a given application parameter

changes the shape of the FPMs; or because the set of hardware changes, for

example in a grid or cloud environment.

The only required input is the number of available devices p, the total prob-

lem size D and access to the application code (either a serial computational

kernel, or an instrumented iterative application). It outputs a vector d1, . . . , dp
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describing the partitioned workload. The algorithm is iterative and converges

towards the optimum distribution. Within each iteration the DPA makes a calls

to either the GPA or the NPA.

Our use of the term “dynamic” here may differ from its use in some other

works in the literature. This algorithm is dynamic because it does not require

FPMs as input, instead it builds the necessary partial-FPMs to sufficient detail

in order to achieve load balancing. Other works use the term “dynamic” to

refer to the process of rebalancing the application throughout its execution to

compensate for changing application workload or external interference on a

shared platform, for example dynamic scheduling and work-stealing.

The DPA may be used in one of two ways based on the characteristics

of the application. (i) If the application is iterative then the DPA can be inte-

grated into the application and change the partitioning over the course of the

first few iterations, starting with an even distribution and converging on the

optimum distribution. This is much the same as the approach taken in [62].

This has the advantage that the application can commence immediately but

at the expense of time spent migrating data between iterations until the bal-

ance is achieved. The alternative approach (ii) is to perform the necessary

benchmarks of the hardware with a characteristic serial kernel using dummy

data immediately before executing the real application. With this approach

the application cannot start until the optimum partitioning is found but has the

advantage that no unnecessary data is sent on the network. However, with

a well designed serial kernel, this delay to start can be kept proportionately

small. The choice between approaches (i) and (ii) comes down to the char-

acteristics of the application and a ratio between the benchmark time and the

communication bandwidth.

We present the DPA below in a form that is common to both (i) and (ii), and

note the differences after. This is an iterative algorithm, at the k’th step:

1. The data is distributed in accordance with the partition obtained at the

previous iteration dk = (dk1, . . . , d
k
p). For k = 0, the data is distributed

evenly: d0 = (D/p, . . . , D/p).

2. The computation times ti(dki ) are measured on all devices and speeds
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are computed as si(dki ) =
C(dki )

ti(d)ik)
.

3. If max1≤i,j≤p

(∣∣∣ ti(di)−tj(dj)ti(di)

∣∣∣) ≤ ε then the current distribution solves the

load balancing problem and the algorithm stops.

4. The newly measured points
(
dk1, s1(d

k
1)
)
, . . . ,

(
dkp, sp(d

k
p)
)

are added to

the models and the partial FPM approximations are recalculated as

s̄1(x), . . . , s̄p(x).

5. A data partitioning algorithm (either GPA or NPA) takes the partial FPM

approximations as input and outputs a new refined partition dk+1 for the

next iteration.

Since s̄i(x) → si(x) as k → ∞, 1 ≤ i ≤ p, this procedure adaptively

converges to the optimal data distribution dk → d∗.

For (ii), when Step 3 is true, the data partitioning problem has been solved

and the real application is executed with the final distribution. For iterative

applications (i), the load is balanced when Step 3 is true, the DPA stops at this

point and the application continues with its iterations.

At each iteration k of the dynamic load balancing algorithm, the problem

(4.5)-(4.8) is solved for the current approximations of the speed functions s̄i(x),

1 ≤ i ≤ p. Since the functions are smooth, the root x∗ = (x∗1, ..., x
∗
p) will be

found in a few steps of the multidimensional root finding algorithm. The optimal

data partition for the next iteration will be obtained by rounding and distributing

the remainders: dk+1 = round(x∗).

Fig. 4.3 illustrates the work of this algorithm for the Jacobi method for 4

processors with n = 12000. The algorithm converges to the optimal data dis-

tribution with each iteration. By the 7th iteration optimum partitioning has been

achieved. Fig. 4.4 shows the speedup of the CPM and FPM algorithms over a

homogeneous distribution. The FPM algorithm used in the experiments is the

one based on nonlinear multidimensional root finding. For small problem sizes

the speedup is not realised because of the cost involved with data redistribu-

tion, however as the size increases both load balancing algorithms improve up

to the point were the traditional algorithm based on a constant performance
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model fails, from which point it performs worse than the homogeneous distri-

bution. The speedup achieved by FPM based load balancing increases as the

difference between the relative speeds of the processors increases.
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Figure 4.3: Dynamic load balancing using multidimensional root-finding par-
titioning algorithm and the Akima spline interpolation for n=12000 on cluster
2.
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4.3.1 Experimental Results

To show the accuracy and efficiency of partial FPM-based partitioning we com-

pare three applications, each performing the same heterogeneous matrix mul-

tiplication operation but using different data partitioning algorithms, namely the

CPM-based, full FPM-based and partial FPM-based algorithms. All three ap-

plications execute the same kernel when benchmarking the hardware. How-

ever, the CPM- and partial FPM-based applications perform necessary bench-

marks at each runtime, while the full FPM-based application performs detailed

benchmarks once, in advance, and then uses the result as input at each run-

time.

This CPM-based application is equivalent to the iterative application pre-

sented in the previous section but instead of using FPMs and the FPM-based

data partitioning algorithm, it uses CPMs and the traditional CPM-based data

partitioning algorithm. Namely, the speed s̄i is represented by a constant,

which is redefined at each iteration. This constant is calculated from the

measured time of the immediately previous benchmark: s̄i = di/ti(di). At

step 3, a new distribution of computation units, d1, . . . , dp is calculated as

di = s̄i/
∑p

j=1 s̄j . Therefore, in the CPM-based application, the matrix par-

titioning is improved by iteratively performing multiple benchmarks for different

problem sizes in order to obtain more accurate speed constants, similar to the

method proposed in [62].
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These experiments were performed on 75 dedicated nodes from 3 clusters

from the Grenoble site of the Grid’5000 experimental testbed. Within each

cluster, nodes are homogeneous, therefore, to increase the impact of our ex-

periments we artificially limited the amount memory and number of cores on

some machines (Table 4.1). Such an approach is realistic since it is possible

to book individual CPU cores on this platform. The high performance Goto-

BLAS2 library [97] was used for execution of the local GEMM routine; Open

MPI was used for communication. All nodes are interconnected by a high

speed InfiniBand network which reduces the impact of communication on the

total execution time. The full functional performance models of nodes illustrate

the range of heterogeneity of the platform (Fig. 4.5). These FPMs are the input

to the full FPM-based partitioner.

Table 4.1: Experimental hardware setup using 75 nodes from 3 clusters of the
Grenoble site from Grid’5000. 10 nodes from Adonis cluster (2.27GHz Xeon),
34 nodes from Edel cluster (2.27GHz Xeon) and 31 nodes from Genepi cluster
(2.5GHz Xeon). All nodes have 8 CPU cores and 24GB or 8GB of memory.
For increased heterogeneity the number of cores and memory was limited as
tabulated below. All nodes are connected with InfiniBand 20G & 40G.

Memory
Cores

2 4 6 8 Total

1GB 4 2 2 4 12
2GB 4 2 2 4 12
4GB 4 2 2 4 12
6GB 4 2 2 4 12
8GB 4 2 2 5 13
12GB 2 1 1 2 6
24GB 2 2 2 2 8

Total 24 13 13 25 75

The execution time for all three applications to perform the full parallel

matrix multiplication operation, including communication time, is shown in

Fig. 4.6. Also shown is this time plus the time to find a balanced data par-

titioning for both partial FPM-based and CPM-based partitioning. Since the

full FPM-based application uses detailed pre-built models and does not per-

form any runtime benchmarks it demonstrates the best performance. When

comparing the matrix multiplication only time, the performance of the partial
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Figure 4.5: Functional performance models for the matrix update kernel from a
selection of the 75 nodes from Grid’5000 Grenoble as configured in Table 4.1.
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Figure 4.6: Time to execute the matrix multiplication operation (MM), C =
A × B, where A, B and C are N × N matrices, on 75 heterogeneous nodes
from Grid’5000, using three applications: CPM-based, full FPM-based and
partial FPM-based. Also shown is the total execution time including time spent
benchmarking the application on the platform (MM + bench) for CPM-based
and partial-FPM based. The full-FPM models were built in approximately 7200
seconds.
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FPM-based application, using approximations of the speed functions, is close

to that of the FPM-based application. When we include the time to bench-

mark, indicating the total makespan of one run of the application, the partial

FPM-based application takes considerably longer, however it still outperforms

the CPM-based application, while having the added benefit of not requiring

any a-priori information about the platform.
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Figure 4.7: Some of partial (solid lines) and full (dotted lines) FPMs. The initial
even distribution is marked at 1.2×108. The optimum distribution (solid points)
lies on the line passing through the origin (dot-dashed line). The partial FPMs
closely approximate the real models in the region close to the optimum line.
The available cores and memory for each of the nodes is shown in the key.

The cost of using both full FPM- and partial FPM-based partitioning is de-

tailed in Table 4.2. The first column shows the size of the square matrices used

in the experiments. The second column shows the execution time for parallel

matrix multiplication based on the full FPM distribution. The third column gives

the time for the partial FPM-based partitioning algorithm to converge to a bal-

anced distribution, and the fourth column shows the execution time for parallel

matrix multiplication using this distribution. The fifth column shows the total ex-

ecution time of the partial FPM-based application and the last column shows

the percentage overhead of the partial FPM-based partitioning algorithm. To

further improve the performance of the partial FPM-based application in these

experiments the following optimisation was applied. If a benchmark is taking

such time that its speed will be less than 0.5 GFLOPS, it is killed immediately

and a speed of 0.1 GFLOPS is entered in the model.
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Table 4.2: Cost analysis of FPM-based data partitioning. All times are in sec-
onds. (∗) Building the full FPMs took 7200 sec; the full FPM-based partitioning
took 0.94 sec.

Square ma-
trix size
N

Full FPM MM∗ Partial FPM
partitioning

Partial FPM
MM

Partial FPM to-
tal

% cost of par-
tial FPM

16000 35.93 1.73 36.48 38.21 4.7
32000 129.78 3.81 111.28 114.09 2.5
48000 158.61 21.82 141.03 162.85 15.5
64000 327.76 21.70 333.57 355.26 6.5
80000 654.8 56.95 703.0 760.0 8.1
96000 1226 79.70 1417 1497 5.6
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Chapter 5

Applications

5.1 1.5D Matrix Partitioning Algorithm

In this section we demonstrate how FPM-based partitioning can be used to

improve the performance of the parallel matrix multiplication routine when it is

executed on a heterogeneous platform.

Two-dimensional partitioning of matrices yields more efficient parallel algo-

rithm then one-dimensional slicing. A matrix multiplication algorithm employing

two-dimensional matrix partitioning for homogeneous platforms was proposed

in [98]. This partitioning scheme reduces the required memory and the com-

munication overhead. Hence, ScaLAPACK [99], a linear algebra library de-

signed for homogeneous platforms, implements the two-dimensional regular

grid partitioning in the parallel outer-product routine. In addition, this routine

has a blocking factor, b, designed to take advantage of processor cache. Each

matrix block contains b × b elements, and each step of the routine involves

updating one block.

For heterogeneous platforms, there are no existing algorithms to find the

general solution of irregular partitioning. However, there are some algorithms

that find sub-optimal solutions under certain restrictions. We will now sum-

marise 4 algorithms which solve this problem, compare their features in Ta-

ble 5.1 and then present them in detail in the following sections.

By applying a column-based constraint to the matrix partitioning partition-
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ing problem, the authors of [49] were able to produce an algorithm with linear

complexity which finds an optimal solution to the load balancing problem (KL).

This was the first algorithm to solve the heterogeneous two-dimensional matrix

partitioning problem, however they did not consider the cost of communication.

They defined the relative speeds of the heterogeneous workstations with sin-

gle positive numbers.

The authors of [2] extend the column-based partitioning scheme and

present an algorithm (BR) which (i) solves the load balancing problem, and

(ii) uses a Communication Minimising Algorithm (CMA) to minimise the total

volume of communication for the matrix multiplication routine. They calculate

speed of each processor from the relative cycle-times.

The FPM-KL algorithm is also column-based and it uses the more accurate

2D-FPMs instead of the CPM to describe the performance of each device. It

does not consider the cost of communication.

The 1.5D Matrix Partitioning Algorithm (1.5D-FPM) solves the two-

dimensional matrix partitioning problem by taking 1D-FPMs as input, finding

a balanced partitioning and then making a call to an application specific CMA

which arranges processors into columns in a shape and order which minimises

the total volume of communication.

Table 5.1: Comparison of two-dimensional matrix partitioning algo-
rithms. All algorithms output a set of p two-dimensional partitionings(
(m1, n1), . . . , (mq, nq)

)
Partitioning Algorithm Performance model Comm. vol.

KL CPM –
BR CPM CMA
FPM-KL 2D-FPM –
1.5D-FPM 1D-FPM CMA

For two-dimensional matrix multiplication, the computational unit is the up-

date of a b × b block. Each device Pi is responsible for the computations

associated with a rectangle of mi × ni blocks.

Standard FPMs are one-dimensional and are represented by a line in 2D

space. In two-dimensional matrix partitioning, the problem size is composed of
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two parameters, m and n. Hence, 2D-FPMs becomes a surface in 3D space,

where the z axes represents speed.

A 2D-FPM-based partitioning algorithm is presented in [8]. It iteratively

slices 2D plains through the 3D space at positions that represent the column

width, reducing the problem to a series of one-dimensional partitioning. FPM-

based algorithm is used to find optimal partitioning within each column, while

the column widths are found using the basic partitioning algorithm based on

single values.

This algorithm does find a good partitioning but it has a number of dis-

advantages: (i) communication cost is not taken into account and any prime

number of processors cannot be used efficiently; (ii) convergence is not guar-

anteed because it uses the basic partitioning algorithm; (iii) building full 2D

models is expensive.

In this section we present a matrix partitioning algorithm that uses the com-

munication minimising part of the BR algorithm, but instead of the simplistic

CPM, it uses the more accurate FPM. The complexity of matrix partitioning

is reduced from two parameters down to one by using the area of rectangles

d = m × n. This allows us to build less expensive 1D-FPMs and to solve the

partitioning problem in one step with help of one of the FPM-based partitioning

algorithms (GPA or NPA). The result of this partitioning is the areas of rectan-

gles, which are then arranged by the CMA algorithm so that the total volume

of communication is minimised. Therefore, we achieve more optimal data par-

titioning, which is based on more accurate performance model of processors,

while also minimising communication volume.

The methods described here can be generalised to wider scope of appli-

cations which uses a partitioning described by N degrees of freedom. The

partitioning problem can be reduced to one parameter, 1D-FPMs can be built

and 1D-FPM-based partitioning used, then an application specific CMA can be

used to arrange the partitioning within the N dimensions. An example of this

is in computational fluid dynamics (CFD), 3D space is partitioned. The compu-

tational unit can be defined as a volume of space containing a fixed number of

particles. Partitioning can be performed based on this computational unit, then

a CFD specific domain decomposition algorithm can be used, as the CMA, to
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arrange the partitions in 3D space so that the surface area of each domain is

minimised.

5.1.1 Column-Based Matrix Partitioning (KL)

To partition a M ×N matrix into p rectangles so that the size of rectangle as-

signed to each processor is proportional to its speed, processors are arranged

into columns, and all processors in a column are allocated rectangles of the

same width. The widths of all the columns sum to the N dimension of the

matrix. The heights of rectangles in a column sum to the M dimension of the

matrix. This algorithm uses the CPM to model processor performance.

Column-based partitioning of matrices was first introduced in [49]. This

algorithm KL distributes a unit square between p̂ heterogeneous processors

arranged into q columns, each of which is made of pj processors, j ∈ [1, ..., q]:

• Let the relative speed of the i-th processor from the j-th column, Pij , be

sij such that
∑q

j=1

∑pj
i=1 sij = 1.

• Then, we first partition the unit square into c vertical rectangular slices

such that the width of the j-th slice is nj =
∑pj

i=1 sij . This partition-

ing makes the area of each vertical slice proportional to the sum of the

speeds of the processors in the corresponding column.

• Second, each vertical slice is partitioned independently into rectangles in

proportion to the speed of the processors in the corresponding processor

column.

This algorithm has some drawbacks. Namely, it does not take communi-

cation cost into account, and it relies on the less accurate CPM. These issues

are addressed by the algorithms in Section 5.1.2 and 5.1.3 respectively.

5.1.2 Column Based Partitioning with Communication Min-

imising Algorithm (BR)

The BR algorithm [2] minimises the total volume of communication as follows.

The objective is to tile the unit square into p̂ non-overlapping rectangles, where
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each rectangle is assigned to a processor, in such a way as to achieve load

balancing and minimise communication. Then, this unit square can be scaled

to the size of the matrix. The general solution to this problem is NP complete,

however, by applying a restriction that all processors in the same column have

the same width, the authors were able to produce an algorithm of polynomial

complexity.

First, the relative speed of each processor is calculated from the relative

cycle-times ti: si = 1/ti∑
(1/ti)

. This CPM speed gives the area di of the rectangle

assigned to the processor Pi. However, there are degrees of freedom with

regards to the shape and ordering of the rectangles.

In each iteration, the number of elements of matrix A that each processor

either sends or receives is directly proportional to its heightmi and the number

of elements of matrix B sent or received is proportional to its width ni. The

total volume of data exchange is proportional to the sum of the half perimeters

H =
∑p−1

i=0 (mi + ni). Communication cost can be reduced by minimising

H. This is achieved by arranging the rectangles so that they are as square

as possible. The optimum number of columns c and the optimum number of

processors in each column rj is calculated by the algorithm. The processors

are sorted in order of increasing speed. A table is built to summarise the

communication costs for 1 to p columns, i.e. from all processors in the same

column to each processor in an individual column. The algorithm then works

backwards through the table, selecting values for c and rj which minimise the

half perimeter.

The main disadvantage of this algorithm is that cycle-times is not an ac-

curate measure of the processor performance. This may result in poor perfor-

mance of parallel matrix multiplication.

5.1.3 2D-FPM-based Matrix Partitioning (FPM-KL)

The FPM partitioning algorithms presented in Chapter 4 are designed for par-

titioning with one parameter. However, the ScaLAPACK outer-product routine

requires two partitioning parameters, mij and nj , for each processor Pij . Here

we present a two-dimensional iterative algorithm to overcome this. The strat-
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Figure 5.1: Two-dimensional FPMs for two nodes from our local heteroge-
neous cluster, showing hcl16 is a faster node with less memory then hcl13.

egy is similar to that of KL with FPMs used in place of CPMs. The two parame-

ters, m and n, gives two degrees of freedom which leads to a model consisting

of a surface in 3D space (Fig. 5.1). The z axis represents processor speed.

Processors are arranged into a p× q grid. Initially column widths are given

by nj = N/q ∀j. Iterating:

1. A 2D plane is sliced through the 3D space at positions equal to nj . This

gives 1D-FPMs which can be used by a FPM-based partitioner (GPA or

NPA) to find the optimum partitioning within each column, mij . Single

value speeds for this partitioning can then be found from the model sij .

2. If the maximum relative difference between execution times is less then

some ε the algorithm finishes, otherwise it continues.

3. New column widths ni are calculated in proportion the single value

speed of each column
∑p

i=1 sij

This algorithm does find a good partitioning but it has a number of disad-

vantages: (i) it does not take communication cast into account; (ii) the pro-

cessor grid is fixed and the algorithm is unable to change the ordering of the

processors; (iii) it relies on a CPM to find the location of the next slice so there
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is no guarantee of convergence; (iv) building full 2D models requires more time

consuming benchmarking (while a 1D model requires x experimental points to

achieve a given accuracy, a 2D model requires x2 points).

5.1.4 1.5D Matrix Partitioning Algorithm

The efficient heterogeneous ScaLAPACK outer-product routine requires two

partitioning parameters for each processor. Load balancing with 1D functional

performance models only works with problems with one degree of freedom.

The existing 2D FPM-KL partitioning algorithm does not take communication

cost into account while the BR algorithm minimises communication volume but

uses a too simplistic model for processor performance. To overcome these

shortcomings, we present 1.5D-FPM algorithm that combines the strengths of

these algorithms.

The height mi and width ni parameters can be combined into one param-

eter, area di = mi × ni. Our computational unit is a b × b block, and bench-

marking is done for square areas m = n =
√
d, for 0 < d ≤ M ×N . We can

then partition using the one-dimensional FPM-based algorithm (GPA or NPA)

to determine the areas of the rectangles that should be partitioned to each

processor. The BR algorithm is then used to calculate the optimum shape

and ordering of the rectangles so that the total volume of communication is

minimised.

In the algorithm proposed above we have made the assumption that a

benchmark of a square area will give an accurate prediction of computation

time of any rectangle of the same area, namely s(x, x) = s(x/c, c.x). How-

ever, in general this does not hold true for all c (Fig. 5.2(a)). Fortunately, in or-

der to minimise the total volume of communication the BR algorithm arranges

the rectangles so that they are as square as possible. We have verified this

experimentally by partitioning a medium sized square dense matrix using the

FPM-BR algorithm for 1 to 1000 nodes from the Grid’5000 platform (incorpo-

rating 20 unique hardware configurations), and plotted the frequency of the

ratio m : n in Fig. 5.2(c). Fig. 5.2(b), showing a detail of Fig. 5.2(a), illustrates

that if the rectangle is approximately square the assumption holds.
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Figure 5.2: Showing speed against the ratio of the sides of the partitioned rect-
angles. Lines connect rectangles of equal area. The centerline at 1 : 1 repre-
sents square shape. In general speed is not constant with area (a). However,
when the ratio is close to 1 : 1, speed is approximately constant (b). (c) Shows
the frequency distribution of the ratio of m : n using the FPM-BR algorithm for
1 to 1000 machines (incorporating 20 unique hardware configurations)

70



5.1. 1.5D MATRIX PARTITIONING ALGORITHM

Table 5.2: Lille Site Hardware Specifications

Nodes Processor Cores Memory

20 2.6GHz Opteron 4 4
20 2.83GHz Xeon 8 8
19 2.4GHz Xeon 8 16
5 2.4GHz Xeon 8 8

5.1.5 Experimental results

To demonstrate the effectiveness of the FPM-BR matrix partitioning algo-

rithm we applied it to a heterogeneous MPI implementation of the blocked

ScaLAPACK outer product routine [99]. The high performance, cross-platform

multi-threaded GotoBLAS2 [97] library was used for the BLAS implementa-

tion. Dense square matrices are filled with random numbers. A block size of

b = 16 was chosen, increasing block size allows the GotoBLAS2 dgemm sub-

routine to make more efficient use of cache levels, however this reduces the

granularity available to the partitioner. The total matrix dimension is given by

N b = N × 16, where N is the dimension used by the partitioner algorithm.

A benchmark to build the functional performance model must be done inde-

pendently of other nodes. Serial code, which closely resembles one iteration

of the parallel code, is timed. Memory is allocated and freed in the same or-

der and MPI point-to-point communications are sent to itself. Statistics are

applied so that benchmarks are repeated until a specified confidence interval

has been achieved.

Four partitioning algorithms (even homogeneous, BR, FPM-KL, FPM-BR)

are applied to parallel matrix multiplication on 64 nodes from Grid’5000 Lille

site. The total execution time for a range of problem sizes was recorded and

plotted in Fig. 5.4. The nodes are from 4 interconnected clusters with 4 unique

hardware configurations (Table 5.2, Fig. 5.3). The FPM-BR algorithm was able

to efficiently partition for all problem sizes up a maximum size of N b = 160000

at which point all of the available memory is used. The BR algorithm works

successfully for medium sized problems but fails for problems withN b > 80000

because it uses a too simplistic model of processor speed. The FPM-KL algo-
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Figure 5.3: Functional performance models for 4 nodes from the Grid’5000
Lille site.

rithm is also able to partition up to the maximum size but performance is lower

than FPM-BR because the total volume of communication is not minimised.

The speedup for FPM-BR algorithm over FPM-KL algorithm is more pro-

nounced for non-square number of processes, for example 14 as shown in

Fig. 5.5. The total volume of communication is reduced by 17.1% and there is

a corresponding 13.6% reduction in total computation time. The difference can

be accounted for by an increase, with the FPM-BR algorithm, in the number

of point-to-point communications to send matrix A horizontally. Namely in the

first iteration processor 03 must send to 7 processors (04, 14, 10, 12, 08, 05,

06) (Fig. 5.5(b)). With the FPM-KL algorithm, processor 03 needs only send

horizontally to 3 processors (10, 13, 14) (Fig. 5.5(a)). Collective communica-

tions are used to broadcast elements of matrix B vertically.

The presented experimental results demonstrate that by combining func-

tional performance models with the BR algorithm we are able to achieve both

optimisation goals, namely partitioning the workload in proportion to processor

speed and reducing the total volume of communication. This algorithm also al-

lows us to use the simpler one-dimensional models rather then the more com-

plex 2D models to partition for the two-parameter matrix multiplication routine.
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a range of problem sizes using the three algorithms discussed in this paper
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Figure 5.5: Matrix partitioning for 14 heterogeneous nodes, with a problem size
of N = 840. Using: (a) FPM-KL and (b) FPM-BR algorithms. The normalised
total volume of communication is 9 and 7.457. Total computation time was 192
sec and 166 sec respectively.
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5.2 Hierarchical Matrix Partitioning

All large scale HPC platforms have hierarchy in their parallelism. This ranges

from instruction level parallelism all the way up to clusters of clusters. When

performing data partitioning on a hierarchical heterogeneous HPC platform,

each of the low level compute devices could be considered as a flat tree, and

a single partitioning decision made. However, this approach does not consider

the structure and locality of the devices, and it will not scale well as the num-

ber of devices increases. A better approach is to perform the data partitioning

with respect to the underling hierarchy of the platform. This has the advantage

that devices that are physically near to each other are clustered in the parti-

tioning, and therefore, communication costs are kept down. Furthermore, this

approach will scale to future exascale platforms.

In this section we present the Hierarchical Partitioning Algorithm. It is de-

signed for load balancing applications run on heterogeneous hierarchical HPC

platforms. This Hierarchical Partitioning Algorithm builds on top of the work of

the 1.5D Matrix Partitioning Algorithm (Section 5.1) and the Dynamic Partition-

ing Algorithm (Section 4.3). We present it for two levels of hierarchy, however,

it can be easily extended to more levels.

Our target platform is a two level hierarchical distributed platform with q

nodes, Q1, . . . , Qq, where a node Qi has pi devices, Pi1, . . . , Pipi . The prob-

lem to be solved by this algorithm is to partition a matrix between these nodes

and devices with respect to the performance of each of these processing ele-

ments. The proposed partitioning algorithm is iterative and converges towards

an optimum distribution which balances the workload. It consists of two it-

erative algorithms, inter-node partitioning algorithm (INPA) and inter-device

partitioning algorithm (IDPA). The IDPA algorithm is nested inside the INPA

algorithm.

Without loss of generality we will work with square N × N matrices. We

introduce a blocking factor b to allow optimised libraries to achieve their peak

performance as well as reducing the number of communications. For clarity of

this description we assume N to be a multiple of b, hence there is a total of W

computational units to be distributed, where W = (N/b)× (N/b).
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Figure 5.6: Two level matrix partitioning scheme: (a) two dimensional parti-
tioning between the nodes; (b) one dimensional partitioning between devices
in a node

The INPA partitions the total matrix into q sub-matrices to be processed on

each heterogeneous computing node. The sub-matrix owned by node Qi has

an area equal to wi × b × b, where w1 + . . . + wq = W. The Geometric parti-

tioning algorithm (GPA) uses experimentally built speed functions to calculate

a load balanced distribution w1, . . . , wq. The shape and ordering of these sub-

matrices is calculated by the communication minimising algorithm (CMA). The

CMA uses column-based 2D arrangement of nodes and outputs the heights

bmi and widths bni for each of the q nodes, such thatmi×ni = wi, bm = b×m
and bn = b× n (Fig. 5.6(a)). This two-dimensional partitioning algorithm uses

a column-based arrangement of processors. The values of mi and ni are cho-

sen so that the column widths sum up to N and heights of sub-matrices in a

column sum to N .

The IDPA iteratively measures, on each device, the time of execution of the

application specific core computational kernel with a given size while converg-

ing to a load balanced inter-device partitioning. It returns the kernel execution

time of the last iteration to the INPA. IDPA calls the GPA to partition the sub-

matrix owned byQi into vertical slices of width dij , such that di1+. . .+dip = bni

(Fig. 5.6(b)) to be processed on each device within a Qi node. Device Pij will

be responsible for doing matrix operations on bmi × dij matrix elements.

We now present an outline of a parallel application using the proposed
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hierarchical partitioning algorithm. The partitioning is executed immediately

before execution of the parallel algorithm. The outline is followed by a detailed

description of the individual algorithms.

INPA
(
IN: N, b, q, p1, . . . , pq OUT: {mi, ni, di1, . . . , dip}qi=1

)
{

WHILE inter-node imbalance

CMA
(

IN: w1, . . . , wq OUT: (m1, n1), . . . , (mq, nq)
)

;

On each node i (IDPA):

WHILE inter-device imbalance

On each device j: kernel
(

IN: bmi, bni, dij OUT: tij
)

;

GPA
(

IN: pi, bni, piFPMs OUT: di1, . . . , diq)
)

;

END WHILE

GPA
(

IN: q,W , qFPMs OUT: w1, . . . , wq

)
;

END WHILE

}

Parallel application
(

IN: {mi, ni, di1, . . . , dip}qi=1, . . .
)

5.2.1 Inter-Node Partitioning Algorithm (INPA)

Run in parallel on all nodes with distributed memory. Inputs: square matrix

size N , number of nodes q, number devices in each node p1, . . . , pq and block

size b.

1. To add initial small point to the model, each node, in parallel, invokes the

IDPA with an input (pi, bmi = 1, bni = 1). This algorithm returns a time

which is sent to the head node.

2. The head node calculates speeds from these times as si(1) = 1/ti(1)

and adds the first point, (1, s(1)), to the model of each node.
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3. The head node then computes the initial homogeneous distribution by

dividing the total number of blocks, W , between processors wi = W/q.

4. The CMA is passed w1, . . . , wq and returns the inter-node distributions

(m1, n1), . . . , (mq, nq) which are scattered to all nodes.

5. On each node, the IDPA is invoked with the input (pi, bmi, bni) and the

returned time ti is sent to the head node.

6. IF max
1≤i,j≤q

∣∣∣ ti(wi)−tj(wi)

ti(wi)

∣∣∣ ≤ ε1 THEN the current inter-node distribution

solves the problem. All inter-device and inter-node distributions are

saved and the algorithm stops;

ELSE the head node calculates the speeds of the nodes as si(wi) =

wi/ti(wi) and adds the point (wi, si(wi)) to each node-FPM.

7. On the head node, the GPA is given the node-FPMs as input and returns

a new distribution w1, . . . , wq

8. GOTO 4

5.2.2 Inter-Device Partitioning Algorithm (IDPA)

This algorithm is run on a node with p devices. The input parameters are p

and the sub-matrix sizes bm, bn. It computes the device distribution d1, · · · , dp
and returns the time of last benchmark.

1. To add an initial small point to each device model, the kernel with pa-

rameters (bm, bn, 1) is run in parallel on each device and its execution

time is measured. The speed is computed as sj(1) = 1/tj(1) and the

point (1, sj(1)) is added to each device model.

2. The initial homogeneous distribution dj = bn/p, for all 1 ≤ j ≤ p is set.

3. In parallel on each device, the time tj(dj) to execute the kernel with

parameters (bm, bn, dj) is measured.
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4. IF max
1≤i,j≤p

∣∣∣ ti(di)−tj(dj)ti(di)

∣∣∣ ≤ ε2 THEN the current distribution of computa-

tions over devices solves the problem. This distribution d1, · · · , dp is

saved and max
1≤j≤p

tj(dj) is returned;

ELSE the speeds sj(dj) = dj/tj(dj) are computed and the point

(dj, sj(dj)) is added to each device-FPM.

5. The GPA takes bn and device-FPMs as input and returns a new distribu-

tion d1, . . . , dp.

6. GOTO 3

5.2.3 Experimental Results

To demonstrate the effectiveness of the Hierarchical Partitioning Algorithm we

applied it to parallel matrix multiplication. The resulting application is hierarchi-

cal and uses nested parallelism which matches the hierarchy of the platform it

is to be run on. At the inter-node level it uses a heterogeneous modification

of the two-dimensional blocked matrix multiplication [48], upon which ScaLA-

PACK is based. At the inter-device level it uses one-dimensional sliced matrix

multiplication. It can be summarised as follows: to perform the matrix mul-

tiplication C = A × B, square dense matrices A, B and C are partitioned

into sub-matrices A′, B′, C ′ (Fig. 5.7(a)), according to the output of the INPA.

The algorithm has N/b iterations, within each iteration, nodes with sub-matrix

A′ that forms part of the pivot column will send their part horizontally and

nodes with sub-matrix B′ that forms part of the pivot blocks from the pivot

row will broadcast their part vertically. All nodes will receive into a buffer A(b)

of size bmi × b and B(b) of size b × bni. Then on each node Qi with devices

Pij , for 0 ≤ j < pi, device Pij will do the matrix operation C ′j = C ′j+A(b)×B(b)j

where sub-matrix C ′j is of size bmi × dij and sub-matrix B′j is of size b × dij
(Fig. 5.7(b)). Therefore, the kernel that is benchmarked for this application is

the dgemm operation C ′j = C ′j + A(b) ×B(b)j .

The Grid’5000 experimental testbed proved to be an ideal platform to test

this application. We used 90 dedicated nodes from 3 clusters from the Greno-

ble site. 12 of these nodes from the Adonis cluster included NVIDIA Tesla
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Figure 5.7: Parallel matrix multiplication algorithm: (a) two-dimensional
blocked matrix multiplication between the nodes; (b) one-dimensional matrix
multiplication within a node

GPUs. The remaining nodes where approximately homogeneous. In order to

increase the impact of our experiments we chose to utilise only some of the

CPU cores on some machines (Table 5.3). Such an approach is not unre-

alistic since it is possible to book individual CPU cores on this platform. For

the local dgemm routine we used high performance vendor-provided BLAS li-

braries, namely Intel Math Kernel Library (MKL) for CPU [100] and cuBLAS

for GPU devices [101]. Open MPI was used for inter-node communication

and OpenMP for inter-device parallelism. The GPU execution time includes

the time to transfer data to the GPU. For these experiments, an out of core

algorithm is not used when the GPU memory is exhausted. All nodes are in-

terconnected by a high speed InfiniBand network which reduces the impact of

communication on the total execution time, for N = 1.5 × 105 all communica-

tions (including wait time due to any load imbalance) took 6% of total execution

time. The full functional performance models of nodes, Fig. 5.8, illustrate the

range of heterogeneity of the platform.

Before commencing full scale experiments it was necessary to find an ap-

propriate block size b. A large value of b allows the optimised BLAS libraries

to achieve their peak performance as well as reducing the number of commu-

nications, while a small value of b allows fine grained load balancing between

nodes. We conducted a series of experiments, using one Adonis node with

7 CPU cores + 1GPU, for a range of problem sizes and a range of values of

b. The IDPA was used to find the optimum distribution between CPU cores
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Table 5.3: Experimental hardware setup using 90 nodes from three clusters of
the Grenoble site from Grid’5000. All nodes have 8 CPU cores, however, to
increase heterogeneity only some of the CPU cores are utilised as tabulated
below. One GPU was used with each node from the Adonis cluster and 1
CPU core was devoted to control execution on the GPU. As an example, we
can read from the table that two Adonis nodes used only 1 GPU and 6 Edel
nodes used just 1 CPU core. All nodes are connected with InfiniBand 20G &
40G.

Cluster Processor Cores Memory GPU

Adonis 1-10 2.27 Xeon E5520 8 24GB Tesla T10
Adonis 11-12 2.4GHz Xeon E5620 8 24GB Tesla C2050
Edel 2.27GHz Xeon E5520 8 24GB na
Genepi 2.5GHz Xeon E5420 QC 8 8GB na

Cores: 0 1 2 3 4 5 6 7 8 Nodes CPU Cores GPUs

Adonis 2 1 1 1 1 1 2 3 0 12 48 12
Edel 0 6 4 4 4 8 8 8 8 50 250 0
Genepi 0 3 3 3 3 4 4 4 4 28 134 0
Total 90 432 12

 0

 20

 40

 60

 80

 100

 120

 140

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000

S
p
e
e
d
 (

G
F

L
O

P
S

)

Problem Size wi (b × b blocks updated)

adonis 7CPU + 1GPU
adonis 1CPU + 1GPU
adonis 0CPU + 1GPU

genepi 8CPU
genepi 4CPU
genepi 1CPU

edel 8CPU
edel 4CPU
edel 1CPU

Figure 5.8: Full functional performance models for a number of nodes from
Grid’5000 Grenoble site. Problem size is in number of b × b blocks of matrix
C updated by a node. For each data point in the node model it was neces-
sary to build device models, find the optimum inter-device distribution and then
measure the execution time of the kernel with this distribution.
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Figure 5.9: Overall node performance obtained for different ranges of block
and problem sizes when running optimal distribution between 7 CPU cores
and a GPU

and GPU. The effects of block size on computation speed is shown in Fig. 5.9.

A block size value of b = 128 was chosen, because with it near-peak perfor-

mance is achieved for a range of values of N , while still allowing reasonably

fine grained inter-node load balancing to be done.

In order to demonstrate the effectiveness of the proposed FPM-based par-

titioning algorithm we compare it against 3 other partitioning algorithms. All

four algorithms invoke the communication minimisation algorithm and are ap-

plied to an identical parallel matrix multiplication application. They differ on

how load balancing decisions are made.

• Multiple-CPM Partitioning uses the same algorithm as proposed

above, with step 7 of the INPA and step 5 of the IDPA replaced with

wi = W × si∑
q si

and dj = bn × sj∑
p sj

respectively, where si and sj are

constants. This is similar to the approach used in [62, 65, 3].

• Single-CPM Partitioning does one iteration of the above multiple-CPM

partitioning algorithm. This is similar to the approach used in [68, 49, 2].

• Homogeneous Partitioning uses an even distribution between all

nodes: w1 = w2 = · · · = wq and between devices in a node:

di1 = di2 = · · · = dipi .

Fig. 5.10 shows the speed achieved by the parallel matrix multiplication
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Figure 5.10: Absolute speed for a parallel matrix multiplication application
based on four partitioning algorithms. Using 90 heterogeneous nodes con-
sisting of 432 CPU cores and 12 GPUs from 3 dedicated clusters.

application when the four different algorithms are applied. It is worth empha-

sizeing that the performance results related to the execution on GPU devices

take into account the time to transfer the workload to/from the GPU. The speed

of the application with the homogeneous distribution is governed by the speed

of the slowest processor (a node from Edel cluster with 1CPU core). The

Single-CPM and multiple-CPM partitioning algorithms are able to load bal-

ance for N up to 60000 and 75000 respectivly, however this is only because the

speed functions in these regions are horozontal. In general, for a full range of

problem sizes, the simplistic algorithms are unable to converge to a balanced

solution. By chance, for N = 124032, the multiple-CPM algorithm found a rea-

sonably good partitioning after many iterations, but in general this is not the

case. Meanwhile the FPM-based partitioning algorithm reliably found good

partitioning for matrix multiplication involving in excess of 0.5TB of data.
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Chapter 6

Conclusion

This thesis works on the problem of load balancing parallel scientific applica-

tions for execution on heterogeneous HPC platforms. This is done by perform-

ing data partitioning with respect to the performance of the processing devices

and the communication cost. Traditional algorithms which solve this problem

represent the speed of each device by a single positive number. We present

the Functional Performance Model, in which speed is a function of problem

size, as a more accurate measure of device performance. Over the full range

of problem sizes, FPM-based partitioning algorithms are able to produce a par-

titioning which optimally balances the workload while CPM-based algorithms

can fail to converge.

In Chapter 2 we stated clearly the heterogeneous data partitioning problem

that we set out to solve. Namely, to find a balanced partitioning which will lead

to all devices completing their assigned work within the same time, and where

all workload is assigned to devices. We go on to identify works which also

solve this problem. Most of these traditional partitioning algorithms use some

form of the Constant Performance Model to describe the relative speed of

devices. Under the CPM, the performance of each device is described by a

single positive number. We demonstrated that for medium size problems the

CPM is sufficiently accurate to achieve load balancing, however when it is used

for the full range of problem sizes that can be executed on a platform it can

fail to converge to a balanced distribution. We demonstrate that FPM-based

partitioning is able to successfully load balance this same problem.
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FPMs are platform and application specific, fully based on empirical mea-

surements by timing the execution of the application on the hardware. This

benchmarked time must be repeatable, and hence independent of external

influences. In Chapter 3 we showed how an independent FPM can be ob-

tained for an application, either by benchmarking an equivalent serial code or

by parsing performance tracefiles. These application benchmarks produce a

set of data points. However, for FPMs to be used by the data partitioning al-

gorithms, they must be defined over the full problem range. Therefore, we can

either: fit the data with piecewise linear approximations and use the GPA; or fit

the points with smooth Akima splines and use the NPA. We finish the chapter

by showing that, if an application has two free parameters describing problem

size then 2D-FPMs can be built as surfaces in 3D space.

In Chapter 4 we present algorithms, which use the more accurate FPM,

and solving the heterogeneous data partitioning problem. The Geometric Par-

titioning Algorithm and the Numerical Partitioning Algorithm are two algorithms

we present which both solve the same data partitioning problem. They have

different advantages and disadvantages. Both of these algorithms require, as

input, a FPM for each device. However, if these full models are not available

at runtime we present the Dynamic Partitioning Algorithm which builds the

necessary parts of the model to produce partial models and therefore find a

balanced partitioning.

Often, more than one free parameter, to describe the data partitioning

scheme, is needed in order to implement an effective parallel application; ma-

trix multiplication is a well studied example of this. FPM-based partitioning can

be used to partition a matrix in two-dimensions by using 2D-FPMs, however

building 2D models is expensive. The FPM-KL algorithm presented uses CPM

in one of its steps, and it does not consider communication cost. In Chap-

ter 5, we presented the 1.5D-FPM Matrix Partitioning Algorithm as a novel

solution to this problem. The two free parameters are collapsed into one,

representing area. This single parameter is indicative of the volume of compu-

tations required and the data storage requirements. FPM-based partitioning

is performed with the 1D-FPMs and the output is passed to an application

specific Communication Minimising Algorithm which arranges the final two-
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dimensional partitioning such that the volume of communication is minimised.

We have demonstrated how the 1.5D-FPM matrix partitioner can optimise

parallel matrix multiplication, however we believe that this approach is applica-

ble to a much wider scope of parallel applications such as computational fluid

dynamics and N-body simulation. These data parallel applications partition

3D space and often have a communication volume in proportion to the surface

area of the partition. This work demonstrates that instead of building FPMs

with 3, or N dimensions, it is better to represent the partition by a single pa-

rameter, such as volume, radius of a sphere, or number of cells in an adaptive

mesh. There are many existing domain decomposition algorithms which are

designed specifically for each of these applications that arrange the partition-

ing so that communication is minimised. These decomposition algorithms can

perform the role of the communication minimising algorithm.

Also in Chapter 5 we presented the Hierarchical Matrix Partitioning Algo-

rithm, considering a heterogeneous cluster composed of nodes, with each

node having a number of CPU cores and GPU accelerators. All of the devices

(CPUs and GPUs) could be considered on a flat level, a global partitioning

found and the application deployed. While this approach is the easiest data

partitioning problem to solve, it will have issues scaling it to larger platforms.

It does not take advantage of the inherent nested parallelism of the platform,

and data locality and communication cannot be optimised. We have developed

an algorithm which works with the hierarchy of the platform. Partial FPMs are

built dynamically at each level of the hierarchy, with the lower level models

passing information up to the higher level models. This approach reduces

communication overhead by improving data locality. Partitioning with respect

to the hierarchy of the platform becomes essential as we move towards exas-

cale computing, and this algorithm demonstrates how it can be done using the

functional performance model.

Finally in the appendix we present the FuPerMod framework, a model-

based data partitioning framework for load balancing applications run on het-

erogeneous platforms. The algorithms presented in this thesis are all imple-

mented in the framework. The development of FuPerMod is one of the contri-

butions of this research work.
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Appendix A

FuPerMod: a Software Framework

for Data Partitioning

In this appendix, we give a high-level outline of the FuPerMod framework for

model-based data partitioning. It is available through the open-source license

from http://hcl.ucd.ie/project/fupermod. The framework provides the

programming interface for:

• accurate and cost-effective performance measurement,

• construction of computation performance models implementing different

methods of interpolation of time and speed,

• invocation of model-based data partitioning algorithms for static and dy-

namic load balancing.

This functionality can be incorporated into a data-parallel applications as

follows. First, the application programmer has to provide the serial code for

the computation kernel of their application and define its computation unit by

using the API provided. This code will be used for computation performance

measurements, which can be carried out either within the application or sep-

arately, in order to obtain the a priori performance information. Then, the pro-

grammer chooses the appropriate computation performance model and data

partitioning algorithm, for example Akima spline based models and the nu-

meric partitioning algorithm. Upon execution of the data-parallel application
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on the heterogeneous platform, the models of processors/devices will be con-

structed and the data partitioning algorithm will yield the optimal distribution of

workload for a given problem size. Finally, the programmer is responsible for

distribution of the application data according to the optimum distribution given

in computation units.

The library is used in the generic tools and example routines in the frame-

work. It can be embedded into user applications in order to make them adapt-

able to heterogeneous platforms. In this section, we describe the FuPerMod

programming interface.

In generic form, the main steps of model-based data partitioning are im-

plemented in the FuPerMod tools:

• configurator – a serial tool generating a template configuration file for

processes;

• builder – a parallel MPI-based tool that measures the performance of

a kernel, which is implemented in terms of the computation kernel API,

and outputs the results for different problem sizes;

• modeller – a serial tool to test the approximation of kernel’s time and

speed, using different computation performance models, different meth-

ods of interpolation and smoothing;

• partitioner – a serial tool that performs model-based data partitioning,

using different computation performance models and data partitioning

algorithms;

• dyparter – a parallel MPI-based tool that performs dynamic data parti-

tioning, building the partial functional performance models [5].

There are several routines provided to experiment with model-based data

partitioning:

• mxm – a heterogeneous modification of the scalable universal matrix

multiplication algorithm [48] with the model-based heuristics for two-

dimensional matrix partitioning [9];
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• mxm_hybrid – a hybrid CPU/GPU implementation of matrix multiplica-

tion with hierarchical data matrix partitioning [9];

• jacobi – a parallel Jacobi solver with dynamic load balancing based on

data repartitioning between iterations [4].

A.1 Process Configuration

FuPerMod provides a single configuration file that contains the main process-

specific parameters. The configurator tool generates a template configuration

file, with host names, ranking, default device and application parameters. This

file is then customised by the user, who knows the details the heterogeneous

environment.

The FuPerMod library provides a data structure specifying the configura-

tion of a process, fupermod_process_conf, which has the following interface:

s t r u c t fupermod_process_conf {

char∗ hostname ;

i n t r a n k _ i n t r a ;

char∗ bind ;

char∗ device_type ;

char∗ subopts ;

} ;

where:

• hostname is the host executing the process;

• rank_intra is the rank of the process in the intra-node MPI communicator;

• bind is the binding of the process to a core or a socket;

• device_type is the type of the device executing the process (CPU, GPU,

etc);

• subopts is the configuration of software components (sub-options).

Configuration of a process can be obtained from a configuration file, which is

provided as input to all FuPerMod tools and routines.
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A.2 Measurement of Computational Performance

The programming interface for computation performance measurement con-

sists of a data structure encapsulating the computation kernel, fuper-

mod_kernel, the benchmark function, fupermod_benchmark, and a data struc-

ture storing the result of the measurement, fupermod_point.

The serial code of the computation kernel has to be provided together with

the functions to allocate and deallocate the data for a problem size given in

computation units. In these functions, the application programmer defines the

computation unit and reproduces the memory requirements of the application.

To enable conversion of speed from units/sec to FLOPS, the programmer has

to specify the complexity of the computation unit. As a whole, fupermod_kernel

has the following interface:

s t r u c t fupermod_kernel {

double (∗ complex i ty ) ( i n t d , vo id∗ params ) ;

i n t (∗ i n i t i a l i z e ) ( i n t d , vo id∗ params ) ;

i n t (∗ execute ) ( pthread_mutex_t∗ mutex , vo id∗ params ) ;

i n t (∗ f i n a l i z e ) ( vo id∗ params ) ;

} ;

• complexity is a pointer to the function that returns the complexity of com-

puting d units;

• initialize/finalize allocate and deallocate memory for the problem of d

computation units (create and destroy the execution context for the ker-

nel);

• execute executes the computation kernel in a separate thread;

• params stores the execution context of the kernel;

• mutex protects some resources, when kernel is terminated during a long

run.

Let us consider how to define the computation kernel for a typical data-parallel

application, such as matrix multiplication.
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In this application, square matrices A, B and C are partitioned over a 2D

arrangement of heterogeneous processors so that the area of each rectangle

is proportional to the speed of the processor that handles the rectangle. This

speed is given by the speed function of the processor for the assigned prob-

lem size. Figure A.1(a) shows one iteration of matrix multiplication, with the

blocking factor b parameter, adjusting the granularity of communications and

computations [48]. At each iteration of the main loop, pivot column of matrix A

and pivot row of matrix B are broadcasted horizontally and vertically, and then

matrix C is updated in parallel by the GEMM routine of the Basic Linear Al-

gebra Subprograms (BLAS). In this application, we use the matrix partitioning

algorithm [2] that arranges the submatrices to be as square as possible, min-

imising the total volume of communications and balancing the computations

on the heterogeneous processors.

We assume that the total execution time of the application can be approx-

imated by multiplying the execution time of a single run of the computational

kernel by the number of iterations of the application. Therefore, the speed of

the application can be estimated more efficiently by measuring just one run

of the kernel. For this application, the computation kernel on the processor i

will be an update of a b × b block of the submatrix Ci with the parts of pivot

column A(b) and pivot row B(b): Ci+ = A(b) × B(b) (Fig. A.1(b)). This block

update represents one computation unit of the application. The processor i is

to process mi × ni such computation units, which is equal to the area of the

submatrix if measured in blocks. For nearly-square submatrices, which is the

(a) (b)

Figure A.1: Heterogeneous parallel column-based matrix multiplication (a) and
its computational kernel (b)
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case in this application, one parameter, area di, can be used as a problem

size.

Therefore, in the initialize function, for the problem size di, we define mi =

b
√
dic;ni = bdi/mic. We allocate and initialise (mi× b)× (ni× b) elements for

each of the submatrices Ai, Bi and Ci. We allocate the working buffers A(b)

and B(b) of sizes (mi×b)×b and b×(ni×b) respectively. The execute function

for this kernel will be representative of the local work performed by one iteration

of the main loop of the application. To replicate the local overhead of the MPI

communication it does a memory copy from part of submatrices Ai and Bi

to working buffers A(b) and B(b) respectively. It then calls the GEMM routine

once with A(b), B(b) and Ci. Having the same memory access pattern as the

whole application, the kernel will be executed at nearly the same speed as the

whole application. The complexity function returns the number of arithmetic

operations performed by the kernel: 2× (mi × b)× (ni × b)× b.
Performance measurement of this kernel on heterogeneous devices that

share resources and use different programming models is challenging. In our

previous work, we proposed the measurement techniques for a multicore node

[88] or GPU-accelerated node [89], which are now implemented in the FuPer-

Mod framework. They provide reproducible results within some accuracy and

can be summarised as follows. Automatic rearranging of the processes pro-

vided by operating system may result in performance degradation, therefore,

we bind processes to cores to ensure a stable performance. Then, we syn-

chronise the processes that share resources (on a node or a socket), in order

to minimise the idle computational cycles, aiming at the highest floating point

rate for the application. Synchronisation also ensures that the resources will

be shared between the maximum number of processes, generating the high-

est memory traffic. To ensure the reliability of the measurement, experiments

are repeated multiple times until the results are statistically correct.

GPU depends on a host process, which handles data transfer between the

host and device and launches kernels on the device. A CPU core is usually

dedicated to deal with the GPU, and can undertake partial computations simul-

taneously with the GPU. Therefore, we measure the combined performance of

the dedicated core and GPU, including the overhead incurred by data trans-
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fer between them. Due to limited GPU memory, the execution time of GPU

kernels can be measured only within some range of problem sizes, unless

out-of-core implementations, which address this limitation, are available.

To measure the performance of a computation kernel on heterogeneous

processors/devices, FuPerMod provides a function fupermod_benchmark,

which has the following interface:

i n t fupermod_benchmark (

fupermod_kernel∗ kernel , i n t d ,

fupermod_precis ion prec is ion ,

MPI_Comm comm_sync ,

fupermod_point∗ po in t

) ;

s t r u c t fupermod_point {

i n t d ;

double t ;

i n t reps ;

double c i ;

} ;

This function initialises the kernel for the problem size d and executes it mul-

tiple times accordingly to the precision argument, which defines the number

of repetitions and statistical parameters. The kernel can be executed in mul-

tiple processes. MPI communicator comm_sync is used to synchronise the

processes running on a multi-CPU/GPU node. The function returns a point,

which contains the results of the measurement: the problem size in compu-

tation units, d ; the measured execution time, t ; the number of repetitions the

measurement has actually taken, reps; and the confidence interval of the mea-

surement, ci. Arrays of these experimental points are then used to model the

performance of CPU core(s), or the bundled performance of a GPU and its

dedicated CPU core, or the total performance of a multi-CPU/GPU node.

FuPerMod provides several routines, with their computation kernels imple-

mented in separate shared libraries, and a generic parallel tool builder that

loads a kernel shared library and performs a series of benchmarks on multiple

nodes and devices for different problem sizes. The command-line arguments

of builder are the following:

• l<string> path to the shared library

• m<0,1> method of selection of the data points for benchmarks

0– fixed number of points set given by [L,U,s]

105



A.3. MODELS OF COMPUTATIONAL PERFORMANCE

1– adaptive set given by [L,U,g,c]

• L<int> lower problem size

• U<int> upper problem size

• s<int> number of steps in the model

• g<double> granularity of measurement

• c<int> initial increment

• r<int> minimum number of repetitions

• R<int> maximum number of repetitions

• i<double> confidence level

• e<double> relative error

• T<double> maximum time for benchmarking a point

For each process, builder generates a file that contains the list of data points.

A.3 Models of Computational Performance

The key abstraction of the programming interface for computation performance

modeling is fupermod_model, which has the following interface:

s t r u c t fupermod_model {

i n t count ;

fupermod_point∗ po in t s ;

double (∗ t ) ( fupermod_model∗ model , double x ) ;

i n t (∗ update ) ( fupermod_model∗ model , fupermod_point po in t ) ;

} ;

It encapsulates experimental points obtained from measurements, which are

given by the count and points data fields, and the approximation of the time

function, t. update specifies how the approximation changes after adding

a new experimental point. The speed in FLOPS is evaluated using the
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Figure A.2: Speed functions of the matrix multiplication kernel based on the
Netlib BLAS GEMM: (a) piecewise linear interpolation, (b) Akima spline inter-
polation

approximated time and the complexity of the computation kernel: s(x) =

complexity(x)/time(x), where x is a problem size given in computation units.

These approximations are used in the model-based data partitioning algo-

rithms to predict the computation performance and distribute the workload

proportionally.

Currently, FuPerMod implements the following performance models:

• CPM (requires only one experimental point);

• FPM based on the piecewise linear interpolation of the time function;

• FPM based on the Akima spline interpolation of the time function.

The first FPM is based on some assumptions on the shape of the speed func-

tion [102]. In addition to the piecewise linear interpolation, it coarsens the

real performance data in order to satisfy those assumptions, as shown in Fig.

A.2(a). The FPM based on the Akima spline interpolation removes these re-

strictions [6], and therefore, represents the speed of the processor with more

accurate continuous functions (Fig. A.2(b)). The fupermod_model data struc-

ture can be used to implement other computation performance models, for

example, application-specific analytical models, such as [75].
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A.4 Static Data Partitioning

Computation performance models of processes are used as input for model-

based data partitioning algorithms. The FuPerMod framework currently pro-

vides the following algorithms:

• basic algorithm based on CPMs;

• geometrical algorithm based on the piecewise-linear FPMs;

• numerical algorithm based on the Akima-spline FPMs.

The CPM-based algorithm divides the data in proportion to the constant

speeds. This is the fastest but least accurate data partitioning algorithm. It

is appropriate for the cases when it has been observed that the speeds do not

vary much. The geometrical algorithm implements iterative bisection of the

speed functions with lines passing through the origin of the coordinate system

[102]. Convergence of this algorithm is ensured by putting restrictions on the

shape of the speed functions, which is implemented in the piecewise-linear

FPMs. The numerical algorithm applies multidimensional solvers to numerical

solution of the system of non-linear equations that formalise the problem of

optimal data partitioning [6]. It can be applied to smooth speed functions of

any shape. As input, the algorithm takes the Akima-spline FPMs, since this

approximation provides continuous derivative.

Data partitioning algorithms have the following interface:

typedef i n t (∗ f upe rmod_par t i t i on ) (

i n t s ize , fupermod_model∗∗ models , fupermod_dist∗ d i s t ) ;

where size is the number of the processes, models is an array of the models

corresponding to the processes, and dist is the distribution of data. The distri-

bution is an input/output argument and has the following structure:
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s t r u c t fupermod_dist {

i n t D;

i n t s i ze ;

fupermod_part∗ par ts ;

} ;

s t r u c t fupermod_part {

i n t d ;

double t ;

} ;

where D is the total problem size to partition (in computation units); size is the

number of processes; parts is the array specifying the workload d that will be

assigned to the processes, and the predicted computing time t of the workload.

After execution of the data partitioning algorithm, the application programmer

distributes the workload in accordance with the dist argument. A sample code

demonstrating how to use the programming interface for data partitioning will

be provided below, within a more practical example of dynamic load balancing.

The cost of experimentally building a full computation performance model,

i.e. a functional model for the full range of problem sizes, may be very high,

which limits the applicability of the above partitioning algorithms to situations

where the construction of the models and their use in the application can be

separated. For example, if we develop an application that will be executed on

the same platform multiple times, we can build the full models once and then

use these models multiple times during the repeated execution of the appli-

cation. In this case, the time of construction of the models can become very

small compared to the accumulated performance gains during the multiple

executions of the optimized application. Building full functional performance

models is not suitable for an application that is run a small number of times on

a platform. In this case, computations should be optimally distributed between

processors without a priori information about execution characteristics of the

application running on the platform. In the following section, we describe the

programming interface for dynamic data partitioning and load balancing, which

can be used to design applications that automatically adapt at runtime to any

set of heterogeneous processors.
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A.5 Dynamic Data Partitioning and Load Balanc-

ing

FuPerMod provides the efficient data partitioning algorithms that do not require

performance models as input. Instead, they approximate the speeds around

the relevant problem sizes, for which performance measurements are made

during the execution of the algorithms. These algorithms do not construct

complete performance models, but rather partially estimate them, sufficiently

for optimal distribution of computations. They balance the load not perfectly,

with a given accuracy. The low execution cost of these algorithms makes

them suitable for employment in self-adaptable applications. Currently, FuPer-

Mod provides two such algorithms, designed for dynamic data partitioning and

dynamic load balancing [5].

The dynamic algorithms perform data partitioning iteratively, using the par-

tial estimates instead of the full computation performance models. At each iter-

ation, the solution of the data partitioning problem gives new relevant problem

sizes. The performance is measured for these problem sizes, and the partial

estimates are refined. In the case of dynamic data partitioning, the measure-

ments are made by benchmarking the representative computation kernel of

the application. In the case of dynamic load balancing, the real execution

of one iteration of the application is timed. Figure A.3 shows a few steps of

dynamic data partitioning for piecewise linear FPMs and geometrical data par-

titioning algorithm.

The programming interface for the dynamic algorithms consists of a data

structure fupermod_dynamic, specifying the context of their execution, and

two functions fupermod_partition_iterate and fupermod_balance_iterate, im-

plementing one step of dynamic partitioning and load balancing respectively:

s t r u c t fupermod_dynamic {

fupermod_par t i t i on p a r t i t i o n ;

i n t s i ze ;

fupermod_model∗∗ models ;

fupermod_dist∗ d i s t ;

}
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(a) (b)

Figure A.3: Construction of the partial FPMs based on piecewise linear inter-
polation, using the geometrical data partitioning algorithm

i n t f u p e r m o d _ p a r t i t i o n _ i t e r a t e ( fupermod_dynamic ∗ , MPI_Comm comm,

fupermod_precis ion prec is ion , fupermod_benchmark∗ benchmark ,

double eps ) ;

i n t fupermod_balance_i terate ( fupermod_dynamic ∗ , MPI_Comm comm,

s t r u c t t imespec s t a r t ) ;

The context includes the pointer to a data partitioning algorithm, partition, cur-

rent partial estimates, models, and near-optimal data partition, dist. Both func-

tion invoke the data partitioning algorithm once, using the current estimates,

and store the result in dist. The dynamic data partitioning function performs

the benchmark, with the statistical parameters precision, while the dynamic

load balancing function uses the start time of the current iteration of the appli-

cation to time. Then both function update the partial estimates. The dynamic

data partitioning also requires the accuracy, eps, as a termination criterion.

In conclusion, we demonstrate how to use this API for optimisation of an-

other data-parallel application, which implements the Jacobi method. This

application distributes the matrix and vectors by rows between the processors

and iteratively solves the system of equations. In the source code below, the

partial FPMs based on piecewise linear interpolation are constructed at run-

time during the iterations of the Jacobi method. At each iteration, the load

balancing function invokes the geometrical data partitioning algorithm. The

system of equations is redistributed accordingly to the newly obtained data

distribution. Figure A.4 demonstrates that after several iterations of the appli-
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cation, the load is balanced.

MPI_Comm_size (comm, &s ize ) ;

/ / FPMs based on piecewise l i n e a r i n t e r p o l a t i o n

fupermod_model∗∗ models = mal loc ( s i z e o f ( fupermod_model ∗ ) ∗ s ize ) ;

f o r ( i = 0 ; i < s ize ; i ++)

models [ i ] = fupermod_model_piecewise_al loc ( ) ;

/ / con tex t f o r dynamic load balanc ing

fupermod_dynamic balancer = { fupermod_par t i t ion_geometr ic ,

s ize , models , fupermod_d is t_a l loc (D, s ize ) } ;

/ / cu r ren t d i s t r i b u t i o n , i n i t i a l l y even

fupermod_dist∗ d i s t = fupermod_d is t_a l loc (D, s ize ) ;

/ / Jacobi data : d i s t−>par t s [ i ] . d rows of mat r i x and vec to rs

double ∗A, ∗b , ∗x ; / / a l l o c a t i o n , i n i t i a l i s a t i o n

/ / main loop

double e r r o r = DBL_MAX;

wh i le ( e r r o r > eps ) {

/ / r e d i s t r i b u t i o n o f Jacobi data accord ing ly to balancer . d i s t

j a c o b i _ r e d i s t r i b u t e (comm, d i s t , A , b , x , balancer . d i s t ) ;

/ / s to re the cu r ren t d i s t r i b u t i o n

fupermod_dist_copy ( d i s t , balancer . d i s t ) ;

s t r u c t t imeva l s t a r t ;

get t imeofday (& s t a r t , NULL ) ;

/ / Jacobi i t e r a t i o n

j a c o b i _ i t e r a t e (comm, d i s t , A , b , x , &e r r o r ) ;

/ / load balanc ing wi th the ( d i s t−>par t s [ i ] . d , now−s t a r t ) po i n t

fupermod_balance_i terate (& balancer , comm, s t a r t ) ;

}
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Appendix B

List of abbreviations

The following describes the significance of various acronyms and terms used

throughout this thesis. The page on which each one is defined or used is also

given.

Acronyms

1.5D-FPM The 1.5D Matrix Partitioning Algorithm. 64, 69

1D-FPM One-dimensional Functional Performance Model . 46

2D-FPM Two-dimensional Functional Performance Model . 47

BR Column-based matrix partitioning with CPM and CMA. 64, 66

CMA Communication Minimising Algorithm. 8, 64

CPM Constant Performance Model . 3, 23, 30, 83

DPA Dynamic Partitioning Algorithm. 7, 44, 54, 55

FPM Functional Performance Model . 3, 48

FPM-KL The 2D-FPM based Matrix Partitioning Algorithm. 64, 67
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Nomenclature

GPA Geometric Partitioning Algorithm. 33, 49

HNOW heterogeneous network of workstations. 12, 20

KL Column-based matrix partitioning algorithm. 64, 66

NPA Numerical Partitioning Algorithm. 6, 52, 54

NUMA non-uniform memory access. 1, 13, 18

Nomenclature

C(d) complexity, number of useful computations (number of FLOP) to process

d computational units. 21

D total problem size, in computational units, to be partitioned. 22

Pi the i’th device. 24

di number of computational units assigned to device Pi. 37

p number of devices in current partitioning/application instance. 22

si(d) speed of i’th device, number of computational units processed per unit

time. 21

1.5D Matrix Partitioning Algorithm partitions matrix in two dimensions us-

ing 1D-FPMs. 8

Akima splines continuous smooth function with continuous first derivatives

and very little overshoot. 43

complexity a measure of the useful work involved in processing one compu-

tational unit. 21

computational kernel Serial code equivalent to the parallel application for

the purpose of independent benchmarking. 39
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Nomenclature

computational unit The smallest amount of work that can be given to a sin-

gle device, it is a fixed quantity of data and computations. 21

computational unit smallest fixed amount of work that can be assigned to a

device. 36

device any unit with computational ability, may be CPU core, CPU socket,

GPU, a compute node, a collection of nodes considered as one unit for

partitioning. 1

piecewise linear approximation continous functions composed from the

discreet data points by joining each consecutive point with a straight line

segment. 42, 43
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