
March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

Parallel Processing Letters
c© World Scientific Publishing Company

Dynamic Load Balancing of

Parallel Computational Iterative Routines

on Highly Heterogeneous HPC Platforms

David Clarke, Alexey Lastovetsky, Vladimir Rychkov

School of Computer Science and Informatics, University College Dublin,

Belfield, Dublin 4, Ireland
David.Clarke.1@ucdconnect.ie, {Alexey.Lastovetsky, vladimir.rychkov}@ucd.ie

Received (27 December 2010)

Revised (29 March 2011)

Communicated by (Guest Editors)

ABSTRACT

Traditional load balancing algorithms for data-intensive iterative routines can success-

fully load balance relatively small problems. We demonstrate that they may fail on highly

heterogeneous HPC platforms. Traditional algorithms use models of processors’ perfor-
mance which are too simplistic to reflect the many aspects of heterogeneity. This paper

presents a new class of dynamic load balancing algorithms based on the advanced func-

tional performance models. The models are functions of problem size and are built adap-
tively by measuring the execution time of each iteration. Two particular load balancing

algorithms of this class are presented in the paper. The low execution cost of distribution

of computations between heterogeneous processors in these algorithms make them suit-
able for employment in self-adaptable applications. Experimental results demonstrate

that our algorithms can successfully balance data-intensive iterative routines on parallel

platforms with high heterogeneity for the whole range of problem sizes.

Keywords: dynamic load balancing; iterative algorithms; highly heterogeneous HPC plat-

forms; functional performance models of processors; data partitioning.

1. Introduction

In this paper we study load balancing of data-intensive parallel iterative routines

on heterogeneous platforms. These routines are characterised by a high data-to-

computation ratio within a single iteration. The computation load of a single itera-

tion can be broken into any number of equal independent computational units [1].

Each iteration is dependent on the previous one. The generalised scheme of these

routines can be summarised as follows: (i) data is partitioned over the processors,

(ii) at each iteration some independent calculations are carried out in parallel by the

processors, and (iii) some data synchronisation takes place. Typically computational

workload is directly proportional to the size of data. Examples of scientific compu-

1

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

2 Parallel Processing Letters

tational routines include Jacobi method, mesh-based solvers, signal processing and

image processing.

High performance of iterative routines on heterogeneous platforms can be

achieved when all processors complete their work within the same time. This is

achieved by partitioning the computational workload and, hence, data unevenly

across all processors. Workload should be distributed with respect to the processor

speed, memory hierarchy and communication network [2]. Load balancing of par-

allel applications on heterogeneous platforms has been widely studied for different

types of applications and in various aspects of heterogeneity. Many load balancing

algorithms are not appropriate to either the applications or platforms considered in

this paper. Applicable algorithms use models of processors’ performance which are

too simplistic and may fail.

Conventional algorithms for distribution of computations between heterogeneous

processors are based on a performance model that represents the speed of a pro-

cessor by a constant positive number; computations are distributed between the

processors in proportion to this speed of the processor. The constant characterising

the performance of the processor is typically its relative speed demonstrated during

the execution of a serial benchmark code solving locally the core computational task

of some given size.

The fundamental assumption of the conventional algorithms based on the con-

stant performance models (CPMs) is that the absolute speed of the processors does

not depend on the size of the computational task. This assumption proved to be

accurate enough if:

• The processors, between which we distribute computations, are all general-

purpose ones of the traditional architecture,

• The same code is used for local computations on all processors, and

• The partitioning of the problem results in a set of computational tasks that are

small enough to fit into the main memory of the assigned processors and large

enough not to fit into the cache memory.

These conditions are typically satisfied when medium-sized scientific problems

are solved on a heterogeneous network of workstations. Actually, heterogeneous net-

works of workstations were the target platform for the conventional heterogeneous

parallel algorithms. However, the assumption that the absolute speed of the proces-

sor is independent of the size of the computational task becomes much less accurate

in the following situations:

• The partitioning of the problem results in some tasks either not fitting into the

main memory of the assigned processor and hence causing paging or fully fitting

into faster levels of its memory hierarchy (Fig. 1).

• Some processing units involved in computations are not traditional general-

purpose processors (say, accelerators such as GPUs or specialised cores). In this

case, the relative speed of a traditional processor and a non-traditional one may

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

Dynamic Load Balancing of Iterative Routines on Heterogeneous Platforms 3

 0

 400

 800

 0 2000 4000

S
p

e
e

d
 (

M
F

L
O

P
S

)

size (columns)

Example Functional Performance Models
 of DGEMM with GSL CBLAS

(a)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

S
p
e
e
d
 (

M
F

L
O

P
S

)
size (columns)

Example Functional Performance Models
of matrix multiplcation on GPUs and CPU

ATI 4770 / ACML-GPU
NVIDIA GTX285 / CUBLAS

8-core Xeon / GotoBLAS

(b)

Fig. 1. Functional performance models showing speed against problem size for matrix multipli-

cation. (a) Non-optimised GSL CBLAS library on single core Xeon. (b) Optimised BLAS librarys
on two GPU’s and an 8 core Xeon processor [3].

differ for two different sizes of the same computational task even if both sizes

fully fit into the main memory.

• Different processors use different codes to solve the same computational problem

locally.

The above situations become more and more common in modern and especially

perspective high-performance heterogeneous platforms. As a result, applicability of

the traditional CPM-based distribution algorithms becomes more restricted. Indeed,

if we consider two really heterogeneous processing units Pi and Pj , then the more

different they are, the smaller will be the range Rij of sizes of the computational

task where their relative speed can be accurately approximated by a constant. In

the case of several different heterogeneous processing units, the range of sizes where

CPM-based algorithms can be applied will be given by the intersection of these

pair-wise ranges,
⋂p

i,j=1 Rij . Therefore, if a high-performance computing platform

includes a relatively large number of significantly heterogeneous processing units,

the range of applicability of CPM-based algorithms may become quite small or

even empty. For such platforms, new algorithms are needed that would be able to

optimally distribute computations between processing units for the full range of

problem sizes.

The functional performance model (FPM) of heterogeneous processors proposed

and analysed in [4] has proven to be more realistic than the constant performance

models because it integrates many important features of heterogeneous processors

such as the architectural and platform heterogeneity, the heterogeneity of memory

structure, the effects of paging and so on. The algorithms employing it therefore dis-

tribute the computations across the heterogeneous processing units more accurately

than the algorithms employing the constant performance models. Under this model,

the speed of each processor is represented by a continuous function of the size of the

problem. While this model is application centric because, generally speaking, differ-

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

4 Parallel Processing Letters

ent applications will characterise the speed of the processor by different functions,

a speed function is supposed to satisfy some general restrictions on its shape [4]. In

particular, beginning from some point, it should be monotonically decreasing.

The cost of experimentally building the full functional performance model of

a processor, i.e., the model for the full range of problem sizes, is very high. This

is due to several reasons. To start with, the accuracy of the model depends on

the number of experimental points used to build it. The larger the number, the

more accurate the model is. However, there is a cost associated with obtaining

an experimental data point, which requires execution of a computational kernel

for a specified problem size. This cost is especially high for problem sizes in the

region of paging. Also, the number of experimental points required to build the full

functional performance model increases remarkably as the number of parameters

used to represent the problem size increases, as shown in the experimental results

in this paper.

The high model-construction cost limits the applicability of parallel algorithms

based on full FPMs to situations where the construction of the full FPMs of hetero-

geneous processors and their use in the application can be separated. For example,

if we develop an application for dedicated stable heterogeneous platforms, with the

intention of executing the application on the same platform multiple times, we can

build the full FPMs for each processor of the platform once and then use these mod-

els multiple times during the repeated execution of the application. In this case, the

time of construction of the FPMs can become very small compared to the accumu-

lated performance gains during the multiple executions of the optimised application.

However, this approach does not apply to applications for which each run is con-

sidered unique. This is the case for applications that are intended to be executed

in dynamic environments or any other environments where the available processors

and their performance characteristics can change. This is also the case for applica-

tions that can be run just once or a small number of times in each environment.

Such applications should be able to optimally distribute computations between the

processors of the executing platform assuming that the platform is different and a

priori unknown for each run of the application. In this paper, we call applications

that automatically adapt at runtime to any set of heterogeneous processors with a

priori unknown performance characteristics self-adaptable applications.

This paper presents new dynamic load balancing algorithms for data-intensive

iterative routines on highly heterogeneous computational clusters. In contrast to

the traditional algorithms, our algorithms are adaptive and take into account dif-

ferent aspects of heterogeneity. They assume that the speed of processors depends

on the problem size but do not require the speed functions to be given. Instead,

they estimate the speed functions of the processors for different problem sizes dur-

ing iterations. The algorithms do not construct the complete speed function for

each processor but rather build and use a partial estimate, which is sufficient for

optimal distribution of computations. Load balancing decisions are based on the

functional performance models, which are constantly improved with each iteration

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

Dynamic Load Balancing of Iterative Routines on Heterogeneous Platforms 5

[5]. Use of the functional performance models allows a computational scientist to

utilise the maximum available resources on a given cluster. We demonstrate that

our algorithms succeed in balancing the load even in situations when the traditional

algorithms fail.

This paper is structured as follows. In Section 2, related work is discussed. In Sec-

tion 3, we describe the target class of iterative routines and the design of traditional

load balancing algorithms. Then we analyse the shortcomings of the traditional al-

gorithms and illustrate them by experimental results. In Section 4, we propose a

design of dynamic load balancing algorithms based on functional performance mod-

els, which overcomes the shortcomings of the traditional algorithms. In Sections 5

and 6, we present two particular algorithms implementing this design. The algo-

rithms use different data partitioning algorithms and different approximations of

speed functions. We demonstrate that, unlike the traditional algorithms, they can

successfully balance data-intensive iterative routines for the whole range of problem

sizes.

2. Related Work

In this section, we classify load balancing algorithms and discuss their applicability

to data-intensive iterative routines and dedicated computational clusters.

Load balancing algorithms can be either static or dynamic. Static algorithms

[6, 7, 8] use a priori information about the parallel application and platform. This

information can be gathered either at compile-time or run-time. These strategies

are restricted to applications with pre-determined workload and cannot be applied

to such iterative routines as adaptive mesh refinement [9], for which the amount

of computation data grows unpredictably. Dynamic algorithms [10, 11, 12, 13, 14]

do not require a priori information and can be used with a wider class of parallel

applications. In addition, dynamic algorithms can be deployed on non-dedicated

platforms. The algorithms we present in this paper are dynamic.

Another classification is based on how load balancing decisions are made: in

a centralised or non-centralised manner. In non-centralised algorithms [13, 14],

load is migrated locally between neighbouring processors, while in centralised

ones [6, 7, 8, 10, 11, 12], load is distributed based on global load information.

Non-centralised algorithms are slower to converge. At the same time, centralised

algorithms typically have higher overhead. Our algorithms belong to the class of

centralised algorithms.

Centralised algorithms can be subdivided into two groups: task queue and pre-

dicting the future [2]. Task queue algorithms [11, 12] distribute independent tasks

and schedule them on shared-memory platforms; hence they are not suitable for

iterative routines on a distributed memory platform. Predicting-the-future al-

gorithms [6, 7, 8, 10] can distribute both tasks and data by predicting future per-

formance based on past information. They are suitable for data-intensive iterative

routines and any parallel computational platform.

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

6 Parallel Processing Letters

The traditional approach taken for load balancing of data-intensive iterative

routines belongs to static/dynamic centralised predicting-the-future algorithms. In

these traditional algorithms, computation load is evaluated either in the first few

iterations [8] or at each iteration [10] and globally redistributed among the proces-

sors. Current speed measurements are used to predict future performance. As it will

be demonstrated in Section 3, when applied to large scientific problems and highly

heterogeneous parallel platforms, this strategy may never balance the load, because

it uses simplistic models of processors’ performance.

It has been shown in [4] that it is more accurate to represent performance as

a function of problem size. In this paper, we propose new dynamic load balancing

algorithms based on partial functional performance models of processors [5]. Unlike

traditional algorithms, our algorithms impose no restriction on problem sizes.

We would also like to mention some advanced load balancing strategies that are

not directly applicable to data-intensive iterative routines on heterogeneous clusters.

It has been shown that the task queue model implemented in [12] can outperform

the model [11] because decisions are based on adaptive speed measurements rather

than single speed measurements. The algorithm presented in this paper also applies

an adaptive performance model, but in such a way that it is applicable to scientific

computational iterative routines.

In this paper, we focus on dynamic load balancing with respect to computa-

tional performance, and to this end, we do not take into account communication

heterogeneity. Future work could be the development of a hybrid approach, similar

to [7], in which our algorithms will be combined with one of the many existing

communication models.

3. Traditional Algorithms of Dynamic Load Balancing of Iterative

Routines

Iterative routines have the following structure: xk+1 = f(xk), k = 0, 1, ... with x0

given, where each xk is an n-dimensional vector, and f is some function from Rn

into itself [14]. The iterative routine can be parallelized on a cluster of p processors

by letting xk and f be partitioned into p block-components. During an iteration,

each processor calculates its assigned elements of xk+1. Therefore, each iteration is

dependent on the previous one.

The objective of load balancing algorithms for iterative routines is to distribute

computations across a cluster of heterogeneous processors in such a way that all

processors will finish their computation within the same time and thereby minimis-

ing the overall computation time: ti = tj , 1 ≤ i, j ≤ p. The computation, consisting

of n computational units, is spread across a cluster of p processors P1, ..., Pp such

that p� n. Processor Pi contains di elements of xk and f , such that n =
∑p

i=1 di.

Traditional load balancing algorithms work by measuring the computation time

of one iteration, calculating the new distribution and redistributing the workload,

if necessary, for the next iteration. A typical algorithm works as follows:

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

Dynamic Load Balancing of Iterative Routines on Heterogeneous Platforms 7

Initially. The computation workload is distributed evenly between all processors,

d0i = n/p . All processors execute n/p computational units in parallel.

At each iteration.

(1) The computation execution times t1(dk1), ..., tp(dkp) for this iteration are mea-

sured on each processor and gathered to the root processor.

(2) If max
1≤i,j≤p

∣∣∣∣ ti(dk
i)−tj(d

k
j)

ti(dk
i)

∣∣∣∣ ≤ ε then the current distribution is considered balanced

and redistribution is not needed.

(3) Otherwise, the root processor calculates the new distribution of computations

dk+1
1 , ..., dk+1

p as dk+1
i = n × ski /

∑p
j=1 s

k
j , where ski is the speed of the i’th

processor given by ski = dki /ti(d
k
i).

(4) The new distribution dk+1
1 , ..., dk+1

p is broadcast to all processors and where nec-

essary data is redistributed accordingly.

3.1. Analysis of traditional load balancing

The traditional load balancing algorithm is based on the assumption that the ab-

solute speed of a processor depends on problem size but the speed is represented

by a constant at each iteration. This strategy can work well in regions where speed

is approximately invariant with problem size as depicted in Fig. 2. The problem

is initially divided evenly between two processors for the first iteration and then

redistributed to the optimal distribution at the second iteration.

Fig. 2. Traditional load balancing algorithm successfully applied to two processors in a region
where speed is invariant with problem size. Initially the problem is partitioned evenly and the
execution time is measured. Based on this measurement the algorithm computes a new distribution
(outlined points). This new distribution will be successful as the points lie on the speed functions

s1(d) and s2(d).

Consider the situation in which the problem can still fit within the total main

memory of the cluster but the problem size is such that the memory requirement of

n/p is close to the available memory of one of the processors. In this case paging can

occur. If paging does occur, the traditional load balancing algorithm is no longer

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

8 Parallel Processing Letters

(a) (b)

(c) (d)

Fig. 3. Traditional load balancing algorithm applied to two processors in a region where the speed

varies with problem size. Hence, the algorithm is unable to achieve balance. (a) Initially speed is
measured for an equal data distribution and the algorithm computes a new distribution with a

predicted speed (outlined points). (b) The difference between the predicted and actual speed of

the processors measured at the second iteration. (c) Based on the speed measurements from the
second iteration, the constant models are recalculated and a new distribution is computed. (d) At

the third iteration, there is a large difference between the predicted speed and the actual speed.

adequate. This is illustrated for two processors in Fig. 3. Let the real performance

of processors P1 and P2 be represented by the speed functions s1(x) and s2(x) re-

spectively. Processor P1 is a faster processor but with less main memory than P2.

The speed function drops rapidly at the point where main memory is full and pag-

ing is required. First, n independent units of computations are evenly distributed,

d01 = d02 = n/2, between the two processors and the speeds of the processors, s01, s
0
2,

are measured Fig. 3(a). Then at the second iteration the computational units are

divided according to
d1
1

d1
2

=
s01
s02

, where d11 + d12 = n. Therefore at the second iteration,

P1 will execute less computational units than P2. However, P1 will perform much

faster and P2 will perform much slower than the model predicts, Fig. 3(b). Moreover

the speed of P2 at the second iteration is slower than P1 at the first iteration.

Based on the speeds of the processors demonstrated at the second iteration,

their constant performance models are changed accordingly, Fig. 3(c), and the com-

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

Dynamic Load Balancing of Iterative Routines on Heterogeneous Platforms 9

putational units are redistributed again for the third iteration as:
d2
1

d2
2

=
s11
s12

, where

d21 + d22 = n. Now the situation is reversed, P2 performs much faster than P1,

Fig. 3(d). This situation will continue in subsequent iterations with the algorithm

never converging. The majority of the computational units will oscillate between

the processors.

3.2. Experimental results of the traditional load balancing

algorithm

The traditional load balancing algorithm was applied to the Jacobi method, which

is representative of the class of iterative routines we study. The program was tested

successfully on a cluster of 16 processors. For clarity the results presented here are

from two configurations of 4 processors, Table 1. The clusters differ by the number

of processors with 256MB RAM.

Table 1. Specifications of Cluster 1 (P1, P3, P4, P5) and Cluster 2 (P1, P2, P3, P4.)

P1 P2 P3 P4 P5

Processor 3.6 Xeon 3.0 Xeon 3.4 P4 3.4 Xeon 3.4 Xeon

RAM (MB) 256 256 512 1024 1024

The memory requirement of the partitioned routine is a n×di block of a matrix,

three n dimensional vectors and some additional arrays of size p. For 4 processors

with an even distribution, problem sizes of n=8000 and n=11000 will have a

 0.12

 0.125

 0.13

 0.135

 0.14

 0.145

 0.15

 1 2 3 4 5

T
im

e
 (

s
)

Iterations

(a) Cluster 1 with n = 8000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

T
im

e
 (

s
)

Iterations

16 16 18 16

(b) Cluster 1 with n = 11000

 0.12

 0.125

 0.13

 0.135

 0.14

 0.145

 0.15

 1 2 3 4 5

T
im

e
 (

s
)

Iterations

(c) Cluster 2 with n = 8000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8

T
im

e
 (

s
)

Iterations

19 17 18 13 22 14 17 13

(d) Cluster 2 with n = 11000

Fig. 4. Time taken for each of the 4 processors to complete their assigned computational units

during iterations. In (a) and (c) the problem fits in main memory and the load converges to a
balanced solution. In (b) and (d) paging occurs on some machines and the load remains unbalanced.

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

10 Parallel Processing Letters

memory requirement which lies either side of the available memory on the 256MB

RAM machines, and hence will be good values for benchmarking.

The traditional load balancing algorithm worked efficiently for small problem

sizes, Fig. 4(a,c). For problem sizes sufficiently large to potentially cause paging on

some machines the load balancing algorithm caused divergence as the theory, in

Section 3.1, predicted, Fig. 4(b,d).

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

1st Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

2nd Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

3rd Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

4th Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

5th Iteration

FPM P1

FPM P2

FPM P3

FPM P4

P1

P2

P3

P4

Fig. 5. Traditional load balancing algorithm for four processors on cluster 2 with n=11000.

Showing initial distribution at n/4 and four subsequent iterations. The x axis represents the number

of elements of x′ computed by each processor as well as representing the memory requirements
of the problem, namely, the number of rows of the matrix stored in memory. The full functional

performance models are dotted in to aid visualisation.

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

Dynamic Load Balancing of Iterative Routines on Heterogeneous Platforms 11

A plot of problem size vs. absolute speed can help to illustrate why the tra-

ditional load balancing algorithm is failing for large problems. Fig. 5 shows the

absolute speed of each of the processors for the first five iterations.

The experimentally built full functional models for the processors are dotted

in to aid visualisation, but this information was not available to the load balanc-

ing algorithm. Initially each processor has n/4 rows of the matrix. At the second

iteration, P1and P2 are given very few rows as they both performed slowly at the

first iteration, however they now compute these few rows quickly. At the third it-

eration, P1 is given sufficient rows to cause paging and hence a cycle of oscillating

row allocation ensues.

Since data partitioning is employed in our iterative routine, it is necessary to

redistribute data after each change of distribution. When the balancing algorithm

converges quickly to an optimum distribution, the network load from data redistri-

bution is acceptable. However, if the distribution oscillates, not only is the compu-

tation time affected but there will also be a heavy load on the network. On cluster

2 with n = 11000 approximately 300MB is been passed back and forth between P1

and P2 with each iteration.

4. Dynamic Load Balancing Based on Functional Performance

Models

Functions much more accurately represent the speed of processors than constants

[15]. Being application-centric and hardware-specific, functional performance mod-

els reflect different aspects of heterogeneity. To overcome the shortcomings of the

traditional algorithms of dynamic load balancing, we propose a new design, which

uses functional models of processors instead of single speed values. In this section,

we define the key features of the dynamic load balancing algorithms based on func-

tional performance models.

The speeds of p processors are represented by positive continuous functions

of problem size s1(x), ..., sp(x): si(x) = x
ti(x)

, where ti(x) is the execution time

for processing of x elements on the processor i. Speed functions are defined at

[0, n], where n is a problem size to partition. As in traditional algorithms, load

balancing is achieved when all processors execute their work within the same time:

t1(x1) = ... = tp(xp). This can be expressed as:

x1

s1(x1)
= ... =

xp

sp(xp)
, where x1 + x2 + ... + xp = n (1)

The solution to these equations, d1, ..., dp, can be represented geometrically by inter-

section of the speed functions with a line passing through the origin of the coordinate

system (Fig. 6).

In practice, the speed function can be built as a piecewise linear function fitting

within a band of historic records of workload fluctuations of the processor [15]. This

building procedure is very time consuming, especially for full functional performance

models, which are characterised by numerous points. Generating the speed functions

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

12 Parallel Processing Letters

Fig. 6. Optimal distribution of computational units showing the geometric proportionality of the

number of chunks to the speeds of the processors.

is especially expensive in the presence of paging. For example, the measurement of

just 20 points for the function in Fig. 5 took approximately 1473 seconds, 4 times

longer than the actual calculation with a homogeneous distribution for 20 iterations.

This forbids building full functional performance models at run time.

To reduce the cost of building the speed functions, the partial func-

tional performance models were proposed [5]. They are based on a few

points and estimate the real functions in detail only in the relevant regions:

s̄i(x) ≈ si(x), 1 ≤ i ≤ p, ∀x ∈ [a, b]. Both the partial models and the regions are

determined at runtime, while the data partitioning algorithm is iteratively applied

to the partially built speed functions. The result of the data partitioning, the esti-

mate of the optimal data distribution dk1 , ..., d
k
p, determines the next experimental

points (dk1 , s1(dki)), ..., (dkp, sp(dkp)) to be added to the partial models s̄1(x), ..., s̄p(x).

The more points are added, the closer the partial functions approximate the real

speed functions in the relevant regions. The low cost of partially building the models

makes it ideal for employment in self-adaptive parallel applications, particularly in

dynamic load balancing. The partial models can be built during the execution of

the computational iterative routine.

This work studies dynamic load balancing of computational iterative routines.

The performance of such routines can be represented by the speed of a single itera-

tion as all iterations perform the same amount of computation. We propose a new

design of dynamic load balancing algorithm that is based on partial speed functions

instead of single speed values. It can be summarised as follows. At the iteration k

of the routine:

(1) The data is distributed in accordance with the partition obtained at the pre-

vious iteration dk = (dk1 , ..., d
k
p). For k = 0, the data is distributed evenly:

d0 = (n/p, ..., n/p).

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

Dynamic Load Balancing of Iterative Routines on Heterogeneous Platforms 13

(2) The computation is executed and its performance is evaluated on all processors

sk1 , ..., s
k
p.

(3) The new observation points
(
dk1 , s

k
1

)
, ...,

(
dkp, s

k
p

)
are added to the partial per-

formance models of processors and approximations of the speed functions

s̄1(x), ..., s̄p(x) are recalculated.

(4) Data partitioning algorithm is applied to the current approximations of the

speed functions and returns the refined partition dk+1 for the next iteration.

Since s̄i(x) → si(x) as k → ∞, 1 ≤ i ≤ p, this procedure adaptively converges to

the optimal data distribution dk → d∗.

In Sections 5 and 6, we present two algorithms implementing this design. They

both execute steps 1-4 but use different data partitioning algorithms and different

approximations of the speed functions. The first algorithm is based on the geomet-

rical data partitioning algorithm proposed in [4]. It imposes some restrictions on

the shape of speed functions but guarantees the existence and uniqueness of the

optimal data partitioning.

The second algorithm is based on a new data partitioning algorithm proposed

in this paper. This new algorithm formulates the original data partitioning prob-

lem as a problem of finding a solution to a multi-dimensional system of nonlinear

equations. It employs a numerical multi-dimensional non-linear solver to find the

optimal partitioning. It is not that restrictive to the shape of speed functions as

the geometrical algorithm and therefore can use more accurate approximations of

the real-life speed functions. However, the second algorithm does not guarantee a

unique solution.

5. Dynamic Load Balancing Algorithm Based on Geometrical

Data Partitioning

In this section, we present the algorithm balancing the computational load with help

of the data partitioning algorithm proposed in [4]. It is based on the geometrical

solution of the problem (1), assuming that any straight line passing through the

origin of the coordinate system intersects the speed functions only once.

To ensure the existence of a unique optimal data distribution some restrictions

were placed on the shape of the speed functions. Experiments performed with many

scientific kernels on various heterogeneous networks of workstations have demon-

strated that, in general, processor speed could be approximated, within some ac-

ceptable degree of accuracy, by a function satisfying the following assumptions [4]:

(1) On the interval [0, X], the function is monotonically increasing and concave.

(2) On the interval [X,∞], the function is monotonically decreasing.

This guarantees that any straight line passing through the origin of the coordinate

system intersects the graph of the function in no more than one point.

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

14 Parallel Processing Letters

5.1. Data partitioning algorithm

Any line passing through the origin and intersecting the speed functions repre-

sents an optimum distribution for a particular problem size. Therefore, the space

of solutions of the problem (1) consists of all such lines. The two outer bounds

of the solution space are selected as the starting point of algorithm. The up-

per line represents the optimal data distribution du1 , ..., d
u
p for some problem size

nu < n, nu = du1 + ... + dup , while the lower line gives the solution dl1, ..., d
l
p for

nl > n, nl = dl1 + ... + dlp. The region between two lines is iteratively bisected.

Fig. 7. Geometrical data partitioning algorithm. Line 1 (the upper line) and line 2 (the lower line)

represent the two initial outer bounds of the solution space. Line 3 represents the first bisection.
Line 4 represents the second one. The dashed line represents the optimal solution.

At the iteration k, the problem size corresponding to the new line intersecting the

speed functions at the points dk1 , ..., d
k
p is calculated as nk = dk1 + ...+dkp. Depending

on whether nk is less than or greater than n, this line becomes a new upper or lower

bound. Making nk close to n, this algorithm finds the optimal partition of the given

problem d1, ..., dp: d1 + ... + dp = n. The assumptions about the shape of the speed

functions provide the existence and uniqueness of the solution. Fig. 7 illustrates the

work of the bisection algorithm.

5.2. Approximation of partial speed functions

Let us outline how the partial functions s̄i(x), 1 ≤ i ≤ p, are constructed in the

dynamic load balancing algorithm based on the geometrical data partitioning. The

first approximations of the partial speed functions, s̄i(x), are created as constants

s̄i(x) = s0i = si(n/p), Fig. 8(a). At the iteration k, the piecewise linear approx-

imations s̄i(x) are improved by adding the points (dki , s
k
i), Fig. 8(b). Namely, let

{(d(j)i , s
(j)
i)}mj=1, d

(1)
i < . . . < d

(m)
i , be the experimentally obtained points of s̄i(x)

used to build its current piecewise linear approximation, then

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

Dynamic Load Balancing of Iterative Routines on Heterogeneous Platforms 15

(1) If dki < d
(1)
i , then the line segment (0, s

(1)
i) → (d

(1)
i , s

(1)
i) of the s̄i(x) approxi-

mation will be replaced by two connected line segments (0, ski))→ (dki , s
k
i) and

(dki , s
k
i)→ (d

(1)
i , s

(1)
i);

(2) If dki > d
(m)
i , then the line (d

(m)
i , s

(m)
i) → (∞, s

(m)
i) of this approximation

will be replaced by the line segment (d
(m)
i , s

(m)
i) → (dki , s

k
i) and the line

(dki , s
k
i)→ (∞, ski);

(3) If d
(j)
i < dki < d

(j+1)
i , the line segment (d

(j)
i , s

(j)
i) → (d

(j+1)
i , s

(j+1)
i) of s̄i(d)

will be replaced by two connected line segments (d
(j)
i , s

(j)
i) → (dki , s

k
i) and

(dki , s
k
i)→ (d

(j+1)
i , s

(j+1)
i).

(a) (b)

Fig. 8. Construction of partial speed functions using linear interpolation.

After adding the new data point (dji , s
j
i) to the partial speed function s̄i(x),

we verify that the shape of the resulting piecewise linear approximation satisfies

the above assumptions, and update the value of sji when required. Namely, to keep

the partial speed function increasing and convex on the interval [0, X], we ensure

that sj−1i ≤ sji ≤ sj+1
i and

sj−1
i −sj−2

i

dj−1
i −dj−2

i

≥ sji−s
j−1
i

dj
i−d

j−1
i

≥ sj+1
i −sji

dj+1
i −dj

i

. The latter expression

represents non-increasing tangent of the pieces, which is required for the convex

shape of the piecewise linear approximation. On the interval [X,∞], we ensure that

sj−1i ≥ sji ≥ sj+1
i for monotonously decreasing speed function.

5.3. Experimental results

We tested our geometrical data partitioning algorithm on the same experimental

setup as in Section 3.2. For small problem sizes (n = 8000, p = 4), our algorithm per-

formed in much the same way as the traditional algorithm. For larger problem sizes

(n = 11000), our algorithm was able to successfully balance the computational load

within a few iterations (Fig. 9). As in the traditional algorithm, paging also occurred

but our algorithm experimentally fit the problem to the available RAM. Paging at

the 8th iteration on P1 demonstrates how the algorithm experimentally finds the

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

16 Parallel Processing Letters

.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9

T
im

e
 (

s
)

Iterations

16 11 9

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

1st Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

2nd Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

3rd Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

7th Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

8th Iteration

 0

 4000

 8000

 12000

 0 2000 4000 6000

A
b

s
o

lu
te

 s
p

e
e

d
,

s
(x

)

size of problem, x

9th Iteration

FPM P1

FPM P2

FPM P3

FPM P4

P1

P2

P3

P4

Fig. 9. Dynamic load balancing of Jacobi iterative routine with geometrical data partitioning.
Problem size n=11000 on cluster 2. Bar graph shows time taken by each of the 4 processors to

compute each iteration. Speed plots show dynamically built functional performance models. The
line intersecting the origin represents the optimum solution and points converge towards this line.

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

Dynamic Load Balancing of Iterative Routines on Heterogeneous Platforms 17

memory limit of P1. The 9th iteration represents a near optimum distribution for

the computation on this hardware. A plot of speed vs. problem size, Fig. 9, shows

how the computational distribution approaches an optimum distribution within 9

iterations. We can see why P1 performs slowly at the 8th iteration. At the 9th iter-

ation, we can see that the maximum performance of processors P1 and P2 has been

achieved.

6. Dynamic Load Balancing Algorithm Based on Multidimensional

Root-Finding Data Partitioning

In order to converge to a solution, the algorithm in the previous section requires

each speed function to be monotonically increasing and concave up to some point

and then monotonically decreasing which guarantees that each speed function will

be intersected only once by any line passing from the origin. In general speed func-

tions have this shape, but it is not always the case. For example, a non-optimised

algorithm such as Netlib BLAS can have a sawtooth function due to cache misses

(Fig. 10). A less accurate function must be fitted to the data to satisfy the shape

restrictions (Fig. 10(a)).

 0

 1

 2

 3

 4

 5

 0 1000 2000 3000 4000 5000

S
p
e
e
d
 (

G
F

L
O

P
S

)

size of problem

Netlib Blas Speed Function

true speed function
piecewise approximation

(a)

 0

 1

 2

 3

 4

 5

 0 1000 2000 3000 4000 5000

S
p
e
e
d
 (

G
F

L
O

P
S

)

size of problem

Netlib Blas Speed Function

true speed function
Akima spline interpolation

(b)

Fig. 10. Speed function for non-optimised Netlib BLAS. (a) Fitting shape restricted piecewise

approximation. (b) Fitting Akima spline interpolation. Both speed functions have been offset

slightly for clarity.

Here we present a new data partitioning algorithm which removes these re-

strictions and therefore represents the speed of the processor with more accurate

continuous functions. This allows us to perform more accurate partitioning. For

example, by using the more accurate fit in Fig. 10(b), we can achieve a speedup of

1.26 for some problem sizes. For different routines this speedup could potentially

be much bigger.

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

18 Parallel Processing Letters

6.1. Data partitioning algorithm based on nonlinear

multidimensional root finding

If the processor speeds are approximated by continuous differentiable functions of

arbitrary shape, the problem of optimal data partitioning (1) can be formulated as

multidimensional root finding for the system of nonlinear equations F (x) = 0,

where

F (x) =

{
n−

∑p
i=1 xi

xi

si(xi)
− x1

s1(x1)
, 2 ≤ i ≤ p

(2)

x = (x1, ..., xp) is a vector of real numbers corresponding a data partition

d = (d1, ..., dp). The first equation specifies to the distribution of n computational

units between p processors. The rest specify the balance of computational load.

The problem (2) can be solved by a number of iterative algorithms based on the

Newton–Raphson method:

xk+1 = xk − J(xk)F (xk) (3)

The equal data distribution

x0 = (n/p, ..., n/p) (4)

can be reasonably taken as the initial guess for the location of the root. J(x) is a

Jacobian matrix, which can be calculated as follows:

J(x) =


−1 −1 ... −1

− s1(x1)−x1s
′
1(x1)

s21(x1)

s2(x2)−x2s
′
2(x2)

s22(x2)
0 0

... 0 ... 0

− s1(x1)−x1s
′
1(x1)

s21(x1)
0 0

sp(xp)−xps
′
p(xp)

s2p(xp)

 (5)

We use the HYBRJ algorithm, a modified version of Powell’s Hybrid method,

implemented in the MINPACK library [16]. It retains the fast convergence of the

Newton method and reduces the residual when the Newton method is unreliable.

Our experiments demonstrated that for the given vector-function (2) and initial

guess (4), the HYBRJ algorithm is able to find the root x∗ = (x∗1, ..., x
∗
p), which

will be the optimal data partition after rounding and distribution of remainders:

d = round(x∗).

At each iteration k of the dynamic load balancing algorithm, the problem (2)-(5)

is solved for the current approximations of the speed functions s̄i(x), 1 ≤ i ≤ p.

Since the functions are smooth, the root x∗ = (x∗1, ..., x
∗
p) will be found in a few

steps of the multidimensional root finding algorithm. The optimal data partition

for the next iteration will be obtained by rounding and distributing the remainders:

dk+1 = round(x∗).

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

Dynamic Load Balancing of Iterative Routines on Heterogeneous Platforms 19

6.2. Approximation of partial speed functions

Let us consider a set of k data points (xi, si), 0 < xi < n, 1 ≤ i ≤ k. Here and after

in this section, the data points (xi, si) correspond to a single processor, for which

the speed function s(x) is approximated. To approximate the speed function in the

interval [0, n], we also introduce two extra points: (0, s1) and (n, sk). The linear

interpolation does not satisfy the condition of differentiability at the breakpoints

(xi, si). The spline interpolations of higher orders have derivatives but may yield

significant oscillations in the interpolated function. However, there is a special non-

linear spline, the Akima spline [17], that is stable to outliers (Fig. 11). It requires

no less than 5 points. In the inner area [x3, xk−2], the interpolation error has the

order O(h2). This interpolation method does not require solving large systems of

equations and therefore it is computationally efficient.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1000 2000 3000 4000 5000 6000

S
p

e
e

d
 (

G
F

L
O

P
S

)

Problem size

Fig. 11. Akima spline interpolation of a dynamically built functional performance model.

At the first few iterations, when the model consists of less than 5 data points,

the Akima splines can be built for an extended model that duplicates the values of

the left- and rightmost points, s1, sk, as follows:

(1) k = 1: x1 = n/p, s1 = s(n/p), the extended model specifies the constant speed

as (0, s1) ,
(
x1

2 , s1
)
, (x1, s1) ,

(
n−x1

2 , s1
)
, (n, s1).

(2) k = 2: the extended model is (0, s1) , (x1, s1) , (x2, s2) ,
(
n−x2

2 , s2
)
, (n, s2).

(3) k = 3: the extended model is (0, s1) , (x1, s1) , (x2, s2) , (x3, s3) , (n, s3).

The interpolation is recalculated at each iteration of the routine.

Proposition 1. The speed functions si are defined within the range 0 < x ≤ n

and are bounded, continuous, positive, non-zero and have bounded, continuous first

derivatives.

Proof. The data points (xi, si) are calculated with si(x) = x
ti(x)

. As it is

a practical requirement that each iteration finishes in a finite time and the Akima

splines closely fit the data points with continuous smooth functions, we can conclude

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

20 Parallel Processing Letters

that si is continuous, bounded, positive, non-zero within the range 0 < x ≤ n. A

feature of Akima splines is that they have continuous first derivatives [17].

6.3. Convergence and complexity analysis

Proposition 2. Within the range 0 < x ≤ n, the system of nonlinear equations

F (x) = 0 contains no stationary points and the functions fi(x) have bounded,

continuous first derivatives, where fi(x) is the i ’th equation of F (x).

Proof. F ′(x) is non-zero for all 0 < x ≤ n, hence F (x) contains no stationary

points. f0(x) has a constant first derivative. For fi(x), 1 ≤ i < n, if si and s
′

i are

continuous, bounded and if si is non zero then f ′i(x) is bounded, continuous. This

requirement is satisfied by proposition 1.

Proposition 3. The new data partitioning algorithm presented in this section

converges in a finite number of iterations.

Proof. It is proven in [16] that if the range of x is finite, and F (x) contains no

stationary points and if f ′i(x) is bounded continuous then the HYBRJ solver will

converge to |F (x)| < ε, where ε is a small positive number, in a finite number of

iterations. These requirements are satisfied by proposition 2.

Proposition 4. The complexity of one iteration of the solver is O(p2).

Proof. It is show in [18] that the HYBRJ solver has complexity O(p2). All other

steps of the algorithm are of order O(p).

The number of solver iterations depends on the shape of the functions. In practice

we found that often 2 iterations are sufficient when the speed functions are very

smooth and up to 30 iterations when partitioning in regions of rapidly changing

speed functions.

6.4. Experimental results

Fig. 12 illustrates the work of this algorithm for the Jacobi method for 4 processors

with n = 12000. The algorithm converges to the optimal data distribution with

each iteration. By the 7th iteration optimum partitioning has been achieved.

Fig. 13 shows the speedup of the CPM and FPM algorithms over a homoge-

neous distribution. The FPM algorithm used in the experiments is the one based

on nonlinear multidimensional root finding. For small problem sizes the speedup is

not realised because of the cost involved with data redistribution, however as the

size increases both load balancing algorithms improve up to the point were the tra-

ditional algorithm based on a constant performance model fails, from which point

it performs worse than the homogeneous distribution. The speed up achieved by

FPM based load balancing increases as the difference between the relative speeds

of the processors increases.

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

Dynamic Load Balancing of Iterative Routines on Heterogeneous Platforms 21

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000

A
b

s
o

lu
te

 s
p

e
e

d
 (

G
F

L
O

P
S

)

size of problem

1st Iteration

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000

A
b

s
o

lu
te

 s
p

e
e

d
 (

G
F

L
O

P
S

)

size of problem

2nd Iteration

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000

A
b

s
o

lu
te

 s
p

e
e

d
 (

G
F

L
O

P
S

)

size of problem

3rd Iteration

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000

A
b

s
o

lu
te

 s
p

e
e

d
 (

G
F

L
O

P
S

)

size of problem

4th Iteration

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000

A
b

s
o

lu
te

 s
p

e
e

d
 (

G
F

L
O

P
S

)

size of problem

7th Iteration

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2000 4000 6000 8000

A
b

s
o

lu
te

 s
p

e
e

d
 (

G
F

L
O

P
S

)

size of problem

10th Iteration

FPM P1

FPM P2

FPM P3

FPM P4

P1

P2

P3

P4

Fig. 12. Dynamic load balancing using multidimensional root-finding partitioning algorithm and
the Akima spline interpolation for n=12000 on cluster 2.

7. Conclusion

In this paper, we have shown that traditional dynamic load balancing algorithms

can fail on highly heterogeneous parallel platforms. They do not take into account

all aspects of heterogeneity and use simplified models of processors’ performance.

To address this issue, we proposed the new design of dynamic load balancing based

on functional performance models of processors. Then we implemented this design

in two algorithms which use different methods of data partitioning and different

approximations of partially built speed functions. The first, geometrical, algorithm

is based on the data partitioning proposed in our previous work. It imposes some

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

22 Parallel Processing Letters

 0

 4

 8

 12

 16

 5000 10000 15000 20000 25000

S
p
e
e
d
 U

p

Problem Size

FPM
CPM

homogeneous

Fig. 13. Speed up of Jacobi iterative routine using dynamic load balancing algorithms over a

homogeneous distribution of n/p on a cluster of 16 heterogeneous machines.

restrictions on the shape of speed functions but guarantees the existence and unique-

ness of the optimal data partition. In this algorithm, partial functional models are

approximated by piecewise linear functions. The second algorithm employs the new

numerical solution of the data partitioning problem. It relaxes the restrictions on

the shape of speed functions and numerically solves the system of non-linear equa-

tions which corresponds to the optimal data partitioning. We have shown that the

dynamic load balancing algorithms based on functional models can be used success-

fully with any problem size and on a wide class of heterogeneous platforms.

Acknowledgements

This publication has emanated from research conducted with the financial support

of Science Foundation Ireland under Grant Number 08/IN.1/I2054.

References

[1] Bharadwaj, V., Ghose, D., Robertazzi, T.G., Divisible Load Theory: A New Paradigm
for Load Scheduling in Distributed Systems. Cluster Comput. 6, 7–17 (2003)

[2] Cierniak, M., Zaki, M.J., Li, W., Compile-Time Scheduling Algorithms for Heteroge-
neous Network of Workstations. Computer J. 40, 356–372 (1997)

[3] Higgins, R., Modelling the Performance of Processors in Heterogeneous Computing
Environments. PhD Thesis, School of Computer Science and Informatics, University
College Dublin, 2011.

[4] Lastovetsky, A., Reddy, R., Data Partitioning with a Functional Performance Model
of Heterogeneous Processors. Int. J. High Perform. Comput. Appl. 21, 76–90 (2007)

[5] Lastovetsky, A., Reddy, R., Distributed Data Partitioning for Heterogeneous Proces-
sors Based on Partial Estimation of their Functional Performance Models. In: Het-
eroPar’2009. LNCS, vol. 6043, pp. 91–101. Springer (2010)

[6] Ichikawa, S., Yamashita, S., Static Load Balancing of Parallel PDE Solver for Dis-
tributed Computing Environment. In: PDCS-2000, pp. 399–405. ISCA (2000)

[7] Legrand, A., Renard, H., Robert, Y., Vivien, F., Mapping and load-balancing iterative
computations. IEEE T. Parall. Distr. 15, 546–558 (2004)

[8] Mart́ınez, J.A., Garzón, E.M., Plaza, A., Garćıa, I., Automatic tuning of iterative com-
putation on heterogeneous multiprocessors with ADITHE. J. Supercomput. (published
online 5 November 2009)

March 29, 2011 15:32 WSPC/INSTRUCTION FILE DLB˙PCIR˙HHHP-16

Dynamic Load Balancing of Iterative Routines on Heterogeneous Platforms 23

[9] Li, X.-Y., Teng, S.-H., Dynamic Load Balancing for Parallel Adaptive Mesh Refine-
ment. In: IRREGULAR’98 pp. 144–155. Springer (1998)

[10] Galindo, I., Almeida, F., Bad́ıa-Contelles, J. M., Dynamic Load Balancing on Dedi-
cated Heterogeneous Systems. In: EuroPVM/MPI 2008, pp. 64–74. Springer (2008)

[11] Hummel, S.F., Schmidt, J., Uma, R. N., Wein, J., Load-sharing in heterogeneous
systems via weighted factoring. In: SPAA’96, pp. 318–328. ACM (1996)

[12] Cariño, R.L., Banicescu, I., Dynamic load balancing with adaptive factoring methods
in scientific applications. J. Supercomput. 44, 41–63 (2008)

[13] Cybenko, G., Dynamic load balancing for distributed memory multi-processors. J.
Parallel Distr. Com. 7, 279–301 (1989)

[14] Bahi, J.M., Contassot-Vivier, S., Couturier, R., Dynamic Load Balancing and Effi-
cient Load Estimators for Asynchronous Iterative Algorithms. IEEE T. Parall. Distr.
16, 289–299 (2005)

[15] Lastovetsky, A., Reddy, R., Higgins, R., Building the Functional Performance Model
of a Processor. In: SAC 2006, pp. 746–753. ACM (2006)

[16] M.J.D. Powell, A Hybrid Method for Nonlinear Equations. In: Gordon and Breach,
Eds, Numerical Methods for Nonlinear Algebraic Equations, pp., 87–114 (1970)

[17] Akima, H., A New Method of Interpolation and Smooth Curve Fitting Based on
Local Procedures. J. ACM 17, 589–602 (1970)

[18] M.J.D. Powell, A Fortran Subroutine for Solving Systems on Nonlinear Algebraic
Equations. In: Gordon and Breach, Eds, Numerical Methods for Nonlinear Algebraic
Equations, pp. 115–161 (1970)

