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Abstract

Nowadays, ANNs are behind many great achievements, such as auto-
matic image recognition, conversing, interpreting textual documents, and
driving vehicles. Producing these great achievements needs lots of time,
computing resources, and electricity.

At the same time, the modern high-performance computing platforms
have become highly heterogeneous due to the tight integration of multi-
core CPU processors and accelerators (such as GPUs, Intel Xeon Phis, or
FPGASs) to maximize the dominant objectives of performance and energy
efficiency.

In this research, we are going to use modern heterogeneous servers
to reduce the concerns about the growth of ANN applications and their
performance and energy consumption. Optimal resources usage on het-
erogeneous platforms can significantly increase performance and reduce
energy consumption.

This research objective is to minimize the execution time and the en-
ergy consumption of different types of ANNs (Fully Connected, CNNs,
and RNNs) to execute on hybrid heterogeneous platforms. Our approach
to achieve this goal is through the distribution of the workload between
heterogeneous devices.

To obtain this goal, we implement different combinations of ANNSs’
types (Fully Connected, CNNs, and RNNs), using different parallelism
methods (Operators and Networks parallelization), and present our ANNs’
applications. Then, we develop model-based workload partitioning algo-
rithms to minimize the performance and energy consumption of ANN
applications on heterogeneous systems.

1 Introduction

Artificial Neural Networks (ANNs) routinely produces great achievements,
as computers learn to recognize images, converse, interpret the textual
data, beat humans at sophisticated games, and drive vehicles [1].

ANNs, computing systems inspired by biological neural networks, have
three important types:

e Fully Connected Neural Networks: In short, we call them Fully
Connected (FC) in this report. In this type of artificial neural net-
work, all the nodes (neurons) in one layer are connected to the neu-
rons in the next layer. A fully connected layer can be expressed and
modeled as a matrix multiplication of the weights and the neuron
values [1].

e Convolution Neural Networks This type of ANNs, also called
CNN or ConvNet, is most commonly applied to analyze visual im-
agery. The layers of a CNN consist of an input layer, an output layer,
and a hidden layer. The hidden layer includes multiple convolutional
layers, pooling layers, fully connected layers, and normalization lay-
ers [1].

e Recurrent Neural Networks: In this type of ANNs, also called
RNN, the connections between nodes form a directed or undirected



graph along a temporal sequence. This feature leads to exhibit
temporal dynamic behavior, so RNNs can use their internal state
(memory) to process variable length sequences of inputs. This type
of ANNs is commonly used for ordinal or temporal problems, such
as language translation, natural language processing (NLP), speech
recognition, and image captioning [1].

These three different types of neural networks, in different research
and industry fields, have achieved amazing achievements, but all those
advances require huge amounts of computing power and electricity to in-
vent and train algorithms. The damage caused by climate change becomes
more apparent and Al experts are increasingly bothered by those energy
demands [2].

Over the last few years, the modern HPC platforms have become
highly heterogeneous owing to the tight integration of multicore CPU pro-
cessors and accelerators (such as GPUs, Intel Xeon Phis, or FPGAs) [3].
These heterogeneous platforms can be one of the best options to reduce
the concerns about the growth of ANN applications. Optimal resources
usage on heterogeneous platforms can significantly increase performance
and reduce energy consumption.

Our research objective is to minimize the execution time and the en-
ergy consumption of different types of ANNs (Fully Connected, CNNs,
and RNNs) on hybrid heterogeneous platforms. Our approach to achieve
this goal is through the optimal distribution of the workload between
heterogeneous devices.

The rest of this report is organized as follows: Section 2 presents
related works in ‘ANN parallelization’, ‘performance optimisation’, and
‘energy optimisation’ on heterogeneous platforms. In Section 3 our re-
search questions and hypotheses are introduced. Our proposed approach
is addressed in Section 4. The done steps of this research will be explained
in Section 5. The current state and future plans are discussed in Section
6. Finally, Section 7 conclusions the report.

2 Related Work

In this section, first, the related research works in ANN parallelisation
areas are reviewed and categorised. After that, the workload partition-
ing algorithms for performance optimisation of parallel platforms will be
addressed. Then, the latest research works addressing the energy optimi-
sation problem in High-Performance Computing (HPC) platforms will be
discussed.

2.1 ANN Parallelization

Up to now, there are lots of researches that have focused on the parallel
execution of ANNs to reduce the execution time. Most of these studies
have focused on homogeneous environments, not heterogeneous ones. The
majority of these reseraches have never focused on optimizing energy con-
sumption as a separate objective. Only some of them have investigated
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Figure 1: Categorisation of ANNs parallelisation researches.

the reduction of energy consumption as a positive side effect of these par-
allelization. Despite these differences between previous researches and
ours, the investigation of these studies has given us a good idea of the
state of the art in parallelization methods and which methods should be
implemented in ANNs to be used in our research.

ANN parallelisation methods can be categorized in 2 main categories:
Parallelisation in Operators, and Parallelisation in Networks. Each of
these two main categories has several subcategories (Figure 1).

In parallelisation in operators studies, the researchers have tried to
take advantage of the opportunities for parallelizing layer execution. In
some of ANNs’ types, computations can be parallelized directly; and in
other networks types, computations have to be reshaped to reveal paral-
lelism [4]. In the following the parallelism of three popular operators have
been addressed:

e Fully Connected Networks: A fully connected layer can be ex-

pressed and modeled as a matrix-multiplication of the weights and
the neuron values. To this aim, efficient linear algebra libraries, such
as CUBLAS [5], MKL [6], and ESSL [7], can be used.
Vanhoucke et al. [8] have presented some different methods to further
optimize CPU implementations of fully connected layers. In partic-
ular, this research shows efficient loop construction, vectorization,
blocking, unrolling, and batching. These researchers also proved
how weights can be quantized to use fixed-point math instead of
floating-point.

e Convolutional neural network (CNNs): The research commu-
nity and the industry have paied considerable efforts into optimiz-
ing CNNs computation on different platforms. The first algorithmic
change proposed for CNNs was the use of the famous technique to
transform a discrete convolution into matrix multiplication, using
Toeplitz matrices (usually known as im2col) [9].

The second method proposed for CNNs is using of the Fourier do-



main, in which convolution is defined as an element-wise multiplica-
tion. In this method, both the data and the kernels are transformed
using FFT, multiplied, and the inverse FFT is applied on the re-
sult [10].

The third and the prevalent method used today to perform CNNs is
Winograd’s algorithm for minimal filtering [11]. This method, first,
proposed by Lavin and Gray [12], and modifies the original CNN
algorithm for multiple filters that there are in convolutions.

e Recurrent Neural Networks (RNNs): The gate systems that
situate within RNN units (e.g., LSTMs) contain multiple operations,
each of which does a small matrix multiplication or an element-
wise operation. Due to this reason, these layers were commonly
implemented as a series of high-level operations; but the further
acceleration of such layers is possible. On the other hand, RNN
units are usually chained together (forming consecutive recurrent
layers), so two types of parallelism can be considered: within the
same layer, and between consecutive layers [4].

The high average parallelism in neural networks may not only be done
to compute individual operators efficiently but also to parallelise the whole
network with respect to different dimensions. In the following the main
partitioning strategies (parallelisation in networks) have been addressed:
partitioning input samples (data parallelism), partitioning the network
structure (model parallelism), and partitioning the layer (pipelining) [4].

e Data Parallelism: This method is a straightforward approach for

ANN parallelization; in this method the work of the minibatch sam-
ples is partitioned among multiple computational resources (cores or
devices). Today, data parallelism is supported by the vast major-
ity of ANN frameworks, using a single GPU, multiple GPUs, or a
cluster of multi-GPU nodes [4].
In this method, all ANN parameters have to be accessible for all
processors, which means that they should be replicated. The scaling
of data parallelism is naturally defined by the minibatch size. In
the weight update phase, the results of the partitions have to be
averaged to obtain the gradient [13].

e Model Parallelism: Model parallelism is also known as network
parallelism. This strategy divides the work according to the neurons
in each layer. In this method, the minibatch samples are copied
to all processors, and different parts of the ANNs are computed
on different processors. This method can conserve memory (since
the full network is not stored in one place) but cause additional
communication after every layer [14].

e Piplining: In neural networks, pipelining can either refer to over-
lapping computations (for example, between one layer and the next
one as data becomes ready); or to partitioning the ANNs according
to depth, assigning layers to specific processors.

In another view, pipelining can be a form of data parallelism, since
the samples are processed through the network in parallel as model
parallelism.



The first and widely used in practice form of pipelining is overlap-
ping of feedforward, backpropagation, and weight updates [15]. This
scheme increases utilization by mitigating processor idle time.

e Hybrid Parallelism: In some researches, researchers try to com-
bine multiple parallelism schemes to overcome the drawbacks of each
scheme [16-18].

In this research, we intend to implement different types of ANNs (Fully
Connected, CNNs, and RNNs) with different related parallelization meth-
ods (categorised above), and then by analyzing the applications’ profiles
and applying our workload partitioning algorithms, we will optimize their
performance and energy consumption on heterogeneous platforms.

2.2 Performance Optimisation

The simplest approach for performance optimisation of parallel applica-
tions executing on parallel platforms with a few cores is the Constant
Performance Model (CPM). In this technique, the speed of applications
is characterized using positive constant numbers such as normalized cy-
cle time, normalized processor speed, average execution time, etc [19-21].
In this approach, it is assumed that there is no dependency between the
performance of processors and workload size, and the optimal solutions
balance workloads between processing elements (cores).

The advanced load-balancing algorithms use application-specific mod-
els such as the Functional Performance Model (FPM). In FPM, the speed
of processors is modelled by continuous functions of problem size where
the shapes of these functions are supposed to be smooth enough. This
way, it is guaranteed that optimal solutions minimizing the execution time
are always load-balanced [22,23].

However, new developments such as increased number of cores and
Non-Uniform Memory Access (NUMA) lead to unprecedented complexi-
ties in nodal architectures of modern HPC platforms. Due to these com-
plexities, the shapes of speed profiles of applications on modern parallel
platforms are no longer smooth and deviate significantly from the con-
ditions assumed by traditional load-balancing models such as FPM. To
overcome the limitations of the FPM-based load-balancing algorithms,
new model-based optimisation algorithms are proposed considering the
real-life performance profiles of applications [24-28]. These algorithms
take the most general shapes of performance profiles as input and find
optimal workload distributions minimising execution time. Optimal so-
lutions found by these algorithms, unlike load-balancing algorithms, may
not load-balance an application.

2.3 Energy Optimisation

Prior to the many-core era, energy profiles of applications executing on
platforms with a few number of cores exhibited linear shapes with minor
variations. That is why research works analytically modelled energy con-
sumption of parallel applications executing on multi-core platforms and
did not consider workload size as an input parameter [29-32]. In [33], it



is mathematically proved that in platforms with linear performance and
energy profiles, performance optimisation leads to energy optimisation.

Due to the complex nodal architectures of recent HPC systems, energy
profiles, like performance profiles, exhibit a non-linear correlation between
energy consumption and workload size with lots of variations in their
shapes. Because of this feature, the energy optimisation algorithms devel-
oped for single-cores fail to find optimal workload distributions minimising
energy consumption in many-core platforms. Research works in [33-38]
propose novel variation-aware workload partitioning algorithms for en-
ergy optimisation of applications executing on modern many-core HPC
platforms. These algorithms take advantage of a novel component-level
energy measurement approach to build real-life dynamic energy profiles
of parallel applications executing on hybrid many-core platforms.

3 Research Questions and Hypotheses

One of the most important experts’ concerns is that ANNs (in general,
Al and machine-learning algorithms) are consuming more energy, using
more data, and training for a longer time, day by day. It is not just a
concern for academic research centers. As more industries begin to use
Al this concern is increasing that the technology will deepen the climate
crisis [2].

On the other hand, over the last few years, the modern HPC platforms
have become highly heterogeneous owing to the tight integration of mul-
ticore CPU processors and accelerators (such as GPUs, Intel Xeon Phis,
or FPGAs) [3].

Our main objective is to minimize the execution time and the energy
consumption of ANNs via workload partitioning algorithms. The target
platform executing ANNs is a modern hybrid heterogeneous server inte-
grating multi-core CPUs and various accelerators (more details Section
4.1), and our approach to achieve this goal is through the distribution of
the workload between heterogeneous devices of the server.

The main research questions that we are going to answer in this re-
search are:

e The use of workload partitioning algorithms, how much can affect
the performance and energy consumption of each ANNs types (Fully
Connected, CNNs, and RNNs) on hybrid heterogeneous platforms?

e For each type of ANNs, which method of parallelization has the best
performance and minimum energy consumption in hybrid heteroge-
neous platforms?

e Which type of parallelization methods has the best performance and
minimum energy consumption when it uses workload partitioning
algorithm in heterogeneous platforms?

The following hypotheses are considered to find the answers to the
above questions:

e There are many available implementations of ANNs, the code of
which can be used to develop a set of configurable parallel applica-



tions for execution on hybrid heterogeneous servers for the use in
our research.

— After spending several months, we realized that this hypothesis
was wrong (more details in section 5.1).

e After investigating the ANN applications’ profiles, we can decide
how to distribute the workload between heterogeneous devices, and
this workload partitioning leads to optimize performance and energy
consumption.

e Our proposed approach is a general-purpose method that can be ap-
plied to different platforms without dependence on specific platforms
or ANNS’ types.

e Our ANNs applications and our optimisation methods can compete
with TensorFlow [39], Torch [40], and NVIDIA DIGITS [41] (The
reason for selecting these packages is presented in Section 5.1.), in
two following aspects:

— Comparing the execution time and energy consumption of our
ANNSs with the other applications while the structures, config-
urations, and datasets are the same.

— Applying our optimisation method to these selected ANNs pack-
ages to find our optimisation method effects on their execution
time and energy consumption.

In the different stages of this research, we are looking to find the answers
to the above research questions and evaluate our hypotheses.

4 Proposed Approach

Our main research goal is to minimize the execution time and the energy
consumption of ANNs. To obtain this goal, the workload partitioning
algorithms will be applied. The target platforms to execute ANNs are
modern hybrid heterogeneous servers that integrating multi-core CPUs
and various accelerators.

Our proposed main task blocks to achieve this research objective are:

e Implementing serial version of different types of ANNs (Fully con-
nected, CNNs, and RNNs)

e Parallelise the ANNs’ applications on CPUs and GPUs using differ-
ent parallelisation methods, separately.

— Table 1 shows the all combinations of ANNs’ types and paral-
lelization methods (there are 15 combinations).

— For the first time, we are going to implement comprehensive
configurable parallelised ANNs’ applications that includes dif-
ferent types of ANNs (Fully Connected, CNN, and RNN) par-
alleised with different parallelisation methods. These applica-
tions can be the first benchmark in this research area.

— We have implemented the Fully Connected ANN parallelised
via the Data Parallelism method (the X in Table 1). The idea



is that during this research we fill all cells of this table. Fi-
nally, our presented ANN applications will be a comprehensive
configurable parallelised ANNs applications.
e Develop the hybrid-application of each ANNs’ types and the paral-
lelization methods. It means the applications can run on CPUs and
GPUs resources simultaneously.

e Study performance and energy behaviours of our ANNs (the profile
of ANNs),

e Develop the workload partitioning algorithms,

e Optimise the performance and energy consumption of our ANNs
apllication.

Table 1: Combinations of different ANN types and parallelization meth

ods.

Fully Connected

CNNs

RNNs

Operators: Fully Connected, CNN, RNN

Networks: Data Parallelism X
Networks: Model Parallelism

Networks: Pipelining

Networks: Hybrid Parallelism

Figure 2 is our Gantt chart for this research. As shown in this Gantt
chart, the profile extraction step (Studying ANNs’ Behaviours in chart) is
time-consuming, so in the meantime, in parallel, the other combinations
of ANNSs types and the parallelisation methods are implemented (Imple-
menting ANNs’ Types, Parallelising on CPUs and GPUs, and Developing
Hybrid ANNs steps in chart).

In a nutshell, our main contributions and novelties in this research are:

e For the first time, we are going to implement a comprehensive paral-
lelised ANNs applications. These applications include different types
of ANNs (Fully Connected, CNN, and RNN) that they have been
paralleised with different parallelisation methods. These applica-
tions can be the first benchmark in this research area.

e For each combinations of ANNSs’ types and parallelisation methods,
we will study performance and energy behaviours of ANNs on het-
erogeneous platforms to obtain and analyse their profiles.

o We are going to develop and apply the workload partitioning algo-
rithms. The outputs of these algorithms will minimize the execution
time and the energy consumption of ANNs.

In the following of this section, our experiments platforms in this re-
search will be addressed.

4.1 Owur Experiments Platforms

Experiments of this research are executed on two servers containing an
Intel Haswell multicore CPU, NVidia K40c and 100 PCle GPU, and Intel
Xeon Phi and Gold (specifications in Tables 2 and 3).




Table 2: HCLServerl: Specifications of the Intel Haswell multicore CPU, Nvidia
K40c, and Intel Xeon Phi 3120P.

Intel Haswell E5-2670V3
No. of cores per socket | 12

Socket(s) 2

CPU MHz 1200.402

L1d cache, L1i cache 32 KB, 32 KB

L2 cache, L3 cache 256 KB, 30720 KB

Total main memory 64 GB DDR4
Memory bandwidth 68 GB/sec
NVIDIA K40c

No. of processor cores | 2880

Total board memory 12 GB GDDRA5

L2 cache size 1536 KB

Memory bandwidth 288 GB/sec
Intel Xeon Phi 3120P

No. of processor cores | 57

Total main memory 6 GB GDDR5

Memory bandwidth 240 GB/sec

Table 3: HCLServer2: Specifications of the Intel Skylake multicore CPU and
Nvidia P100 PCle.

Intel Xeon Gold 6152
Socket(s) 1
Cores per socket 22
L1d cache, L1i cache 32 KB, 32 KB
L2 cache, L3 cache 256 KB, 30976 KB
Main memory 96 GB
NVIDIA P100 PCle
No. of processor cores | 3584
Total board memory 12 GB CoWoS HBM2
Memory bandwidth 549 GB/sec

10
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Figure 2: The research Gantt chart.

5 Progresss to Date

First, we explain how to evaluate our first hypothesis and the obtained
results. Then, we mention more details of the first version of our ANNs
(Fully Connected / Data Parallelism method) that has been implemented.

5.1 Available ANN Applications

There are many available implementations for ANNs in different program-
ming languages. As mentioned before, our first hypothesis is that “There
are many available implementations of ANNs, the code of which can be
used to develop a set of configurable parallel applications for execution on
hybrid heterogeneous servers for use in our research.”.

To evaluate this hypothesis, we have investigated lots of available ANN
implementations. Considering the goals of this research, we were looking
for implementations that satisfy the following specifications:

e Open Source,
e Parallelised on at least CPUs and GPUs,

e Run on hybrid platforms (Simultaneous execution on different types
of processors),

e General usage (No dependency on specific platforms),
e Simple to extend it and apply different optimisation methods

Table 4 lists some of the most well-known available ANN packages
[42-44]. This table compares the applications based on the supported
types of ANNs (Fully Connected (FC in the table), CNN, and RNN),
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their parallelisation status (parallelised on CPUs, GPUs, and Hybrid plat-
forms), and Open Source (OS). When we applied the above features as
our filters to this list of ANN implementations, we lost them one by one.

As shown in Table 4, only a few numbers of investigated ANN appli-
cations have ‘Y’ in all columns (TensorFlow [39], Torch [40], and NVIDIA
DIGITS [41]); and among them, none is simple enough and well-documented
to consider as our benchmark to apply our optimization methods on het-
erogeneous platforms.

Table 4: Comparing some well-known available ANNs applications.

App Name CNN | RNN | CPUs | GPUs | Hybrid

Neural Designer

Neuroph

Darknet

Keras

TensorFlow

TFlearn

ConvNetJS

NeuroSolutions

NVIDIA DIGITS

SNNS

Torch

MLPNeuralNet

DNNGraph

DeepPy

NeuralN

NeuralTalk2

Aforge.Neuro

Cuda-convnet2

Dn2A

Knet

HNN

Lasagne

Mocha

LambdaNet

gobrain

neon

Deeplearn-rs

P B e o e B e B B o o o o e e e R A e e o e o e
e e e o o e e e e e e o e e e e e e e o o I =
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K== 2| 2| < 2 << 2] 2] 2| 2| 2| 2| 2| <| <| <] 2| Z|<|<|<]|<|Z| =2

RustNN

After spending several months on our first hypothesis, we have con-
cluded that it is wrong. So we decided to present our ANNs applications
as one of our important contributions in this research.

These applications will have the following specifications:

e Implemented using C++ programming language,
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e Open Source,

e Support different types of ANNs (Fully Connected, CNNs, and RNNs)

e Support different parallelisation methods (listed in Table 1)

e Parallelised on CPUs and GPUs using OpenMP and OpenACC
packages,

e Run on heterogeneous hybrid platforms,

e Independent from specific platforms,

e Simple, configurable, and well-documented.

5.2 First Version of our ANNs

As first version of our ANNs’ benchmark, we implemented the Fully Con-
nected ANN using C++ programming language. To parallelise this imple-
mentation, the Data Parallelism method (partitioning by input samples)
was used because:

e This method is consistent with the concept of batching/mini-batching
ANNSs that is even used in non-parallel implementations.

e Today, this method is supported by the vast majority of ANN frame-
works for parallelisation on GPUs.

e This method can also be implemented on the CPUs efficiently.

Figure 3 shows how our Data Parallelism implementation works. First,
the data-set is batched. To each available processor (Ps in Figure 3), one
batch of data is assigned. Each processor has a copy of the network and for
its current batch does the training steps (Feed Forward, Back-propagation,
and updating the neuron’s weights in a Fully Connected network). After
processing the batch, the processors merge their networks together (this
merge means obtaining the avg of neuron weights). The updated network
will be shared to the processors and used in the next iteration. In the
next iteration, each processor has a new batch of data to process.

6 Current State and Future Plans

In this section, the current state and future plans of my PhD program is
presented.

e Current state

1. Literature review of previous researches
— We are writing a survey article to explain the state of the
art of performance and energy optimization of ANNs appli-
cations on heterogeneous platforms.
2. Investigation of available ANN implementations to select one of
them as a benchmark to apply our optimisation method.

13
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Figure 3: Data parallelisation method.

— We spent several months in this step but finally, found that
none of the available ANN implementations can satisfy all
features that we need to do this research (more details in
Section 5.1). So we decided to implement our ANNs.

3. Implementation of Fully Connected ANNs using C++ program-
ming language.

— This language is supportrd by different parallelisation pack-
ages (e.g. OpenMP [45], and OpenACC [46]).

4. Parallelisation of our Fully Connected ANN on CPUs and GPUs

— OpenMP [45] to parallelise on CPUs; this package is effi-
cient enough, and has relatively high level of abstraction.

— OpenACC [46] to parallelise on GPUs; this package is sim-
ilar to OpenMP. There is no need to explicitly address the
hardware. It has more portability and needs less program-
ming effort.

5. Developing hybrid application to execute our first implementa-
tion on heterogeneous platforms.

— This step is on-going.

e Future plans

1. Developing a model-based data partitioning algorithm to mini-
mize the energy consumption for data-parallel applications ex-
ecuting on large scale heterogeneous systems.

2. Studying how performance-aware data partitioning of data-parallel
applications affects their energy consumption and making a
trade-off between performance and energy consumption in het-
erogeneous platforms.

3. Repeating the parallelisation and optimisation process on het-
erogeneous platforms for other types of networks:

14



— Convolutional Neural Network (CNN) and Recurrent Neu-
ral Network (RNN)

4. Publishing the outcomes. The following journals can be appro-
priate for publishing the articles derived from this research:

— IEEE Transactions on Parallel and Distributed Systems

— The Journal of Supercomputing, Springer

— IEEE Access

— Energies, Multidisciplinary Digital Publishing Institute (MDPI)

7 Conclusion

Today, ANNSs regularly produce great achievements, like automatic images
recognition, conversing, interpreting textual documents, and driving ve-
hicles. These great achievements need lots of time, computing resources,
and electricity.

On the other hand, the modern high-performance computing platforms
have become highly heterogeneous due to the tight integration of multicore
CPU processors and accelerators (like GPUs).

In this research, we are going to use the modern heterogeneous servers
to reduce the concerns about the growth of ANN applications and their
performance and energy consumption. Optimal resources usage on het-
erogeneous platforms can significantly increase performance and reduce
energy consumption.

In a nutshell, our research objective is to minimize the execution time
and the energy consumption of different types of ANNs (Fully Connected,
CNNs, and RNNs) to execute on hybrid heterogeneous platforms. Our
approach to achieve this goal is through the distribution of the workload
between heterogeneous devices.

So far, we have reviewed the related works, investigated the available
ANNSs applications, and implemented our first application (that is a Fully
Connected ANN and parallelised using the Data Parallelism method on
CPUs and GPUs).

In the future, we are going to develop a model-based data partitioning
algorithm to minimize the energy consumption for data-parallel appli-
cations on large-scale heterogeneous systems. Then, we will repeat the
parallelisation and optimization process on heterogeneous platforms for
other combinations of ANNs’ types and parallelism methods.
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