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Abstract

High Performance Computing (HPC) has grown to encompass many new
architectures and algorithms. The Top500 list, which ranks the world’s
fastest supercomputers every six months, shows this trend towards a va-
riety of heterogeneous architectures - particularly multicores and general
purpose Graphical Processing Units (GPUs). Heterogeneity, whether it is
in computational power or communication interconnect, provides new chal-
lenges in programming and algorithm development. The general trend has
been to adapt algorithms used on homogeneous parallel systems for use in
the new heterogeneous parallel systems. However, assumptions carried over
from those homogeneous systems are not always applicable to heterogeneous
systems.

Linear algebra matrix operations are widely used in scientific computing
and are an area of significant HPC study. To parallelise matrix operations
over many nodes in an HPC system, each processor is given a section of the
matrix to compute. These sections are collectively called the data partition.
Linear algebra operations, such as matrix matrix multiplication (MMM) and
LU factorisation, use data partitioning based on the original homogeneous
algorithms. Specifically, each processor is assigned a rectangular sub matrix.
The primary motivation of this work is to question whether the rectangular
data partitioning is optimal for heterogeneous systems.

This thesis will show the rectangular data partitioning is not universally
optimal when applied to the heterogeneous case. The major contribution
will be a new method for creating optimal data partitions, called the Push
Technique. This method is used to make small, incremental changes to a
data partition, while guaranteeing not to worsen it. The end result is a small
number of potentially optimal data partitions, called candidates. These can-
didates are then analysed for differing numbers of processors and topologies.
The validity of the Push Technique is verified analytically and experimen-
tally.

The optimal data partition for matrix operations is found for systems of
two and three heterogeneous processors, including differing communication
topologies. A methodology is outlined for applying the Push Technique to
matrix computations other than MMM, such as LU Factorisation, and for
larger numbers of heterogeneous processors.
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Chapter 1

Introduction to Heterogeneous
Computing and Data
Partitioning

The world of High Performance Computing (HPC) has grown to encompass
many new architectures, algorithms, models and tools. Over the past four
decades, HPC systems, comprised of increasingly complex and numerous
components, have grown by orders of magnitude in terms of computational
power, as measured by the number of floating point operations per second
(FLOPs).

As machines increased in size and parallelism, the teraFLOP barrier was
reached in 1996 by the ASCI Red supercomputer [1]. Just over a decade
later, the petaFLOP barrier was broken by the Roadrunner supercomputer
in 2008 [2].

The Top5001 list [3], which ranks the world’s fastest computers every
six months, clearly shows a trend towards a variety of heterogeneous archi-
tectures - particularly multicores and hardware accelerators such as GPUs
(Graphical Processing Units)[4, 5]. As of the June 2014 list, 37 systems
around the world had achieved petaFLOP speeds.

In the coming decade, a monumental effort will be made to achieve exas-
cale (1000 petaFLOPs, or 1018 FLOPs) computing systems. The massively
parallel nature of HPC has led to many new advancements in algorithms,
models and tools, which strive to reach the exascale goal by utilising and
working with the latest computer hardware [6]. The software stack, e.g.
compilers, message passing, and operating systems, is constantly being up-
dated to reflect the new capabilities in performance of both the computation,

1http://www.top500.org
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and the communication, of new chipsets. In general, as machines become
heterogeneous in computation and communication the homogeneous parallel
algorithms are adapted for use in these newer systems. However, the impor-
tant question remains, what if assumptions carried over from homogeneous
systems are no longer applicable when using a heterogeneous system?

1.1 Heterogeneous Computing

Heterogeneous (adj.) - “Diverse in character or content”
-Oxford English Dictionary

In terms of computing, “heterogeneous” refers to non-uniformity in some
aspect of the system, either by design or through ageing. In general terms,
heterogeneity in computing manifests in three ways:

• differing amounts of computational power among subsystems

• differing amounts of bandwidth or latency within the communication
interconnect

• some combination of the above two

This may occur naturally as systems age, and begin to be replaced piecemeal.
This type of heterogeneity happens particularly in smaller clusters, where
financial considerations might preclude an older system from being removed
entirely. Heterogeneity is increasingly intentional in HPC, however, with
systems that combine traditional multi-core processors with general purpose
GPUs and other hardware accelerators and coprocessors.

1.1.1 Types of Heterogeneous Systems

The following is an incomplete list, but should serve as an example of the
many types of heterogeneity in HPC.

• Compute nodes comprised of combinations of CPUs, GPUs, FPGAs
(field programmable gate arrays), or coprocessors

• Compute nodes comprised of specialised cores, each tailored to a spe-
cific function

• Communication networks with differing bandwidth or latency between
nodes, either symmetric or non-symmetric

2



• Clusters comprised of heterogeneous nodes, or several differing clusters
of homogeneous nodes used in concert

• Groups of workstations, often of different computational power, clock
frequency, and system software, used in concert

Whatever the form, heterogeneous systems share the common thread of
non-uniformity, which has both benefits and drawbacks [7]. These are dis-
cussed in the following sections.

1.1.2 Benefits of Heterogeneity

Heterogeneous computing presents many benefits, the scale and scope of
which depend largely on the type of heterogeneity present.

The primary benefit of concern in this thesis is increased computational
power, increasing the data throughput over traditional CPU only systems.
GPUs, for instance, were first used to render images in video games, and so,
are plentiful and inexpensive compared to other technology available for HPC
[8, 9]. The relative computational power of the GPU, specifically for highly
data parallel computations, allows speedups in many scientific applications
[10, 11].

Another example of increased computational power, is collection of net-
worked workstations viewed as a single HPC system. These workstations
groups are a network of vastly different computing resources being harnessed
for use on a single problem. This has also been shown to provide computa-
tional speedup for linear algebra applications [12, 13].

Other types of heterogeneous systems, can be used to generate benefits
other than increased computational power. Nodes with heterogeneous spe-
cialised cores, similar to what has long been used in mobile phones, can be
used to increase power efficiency [14, 15]. A general purpose CPU must be ca-
pable of a wide variety of tasks, but is not optimised for any of them. Instead,
the idea is to orchestrate a variety of specialised heterogeneous resources to
accomplish the same tasks, in a faster and more efficient way [16].

1.1.3 Issues in Heterogeneous Computing

Despite the advantages, heterogeneous systems do present unique challenges
in scalability, algorithm development, and programmability for parallel pro-
cessing. A GPU, for instance, must be controlled by a CPU core, and has
limited bandwidth for communication and memory access [17].

3



Algorithms which have been carefully tuned for homogeneous parallel
systems must be rethought to provide the optimal performance on hetero-
geneous systems, often to take advantage of the increased computational
power. A large number of proposals have been made for algorithms [18, 19],
models [20], and tools [21, 22, 23], to make up this gap in knowledge for
heterogeneous systems.

Despite all this prior work, however, HPC systems can be large, complex
and difficult to use in an optimal way. This is a rich and open research
area; how to optimally model and program for these diverse, large scale
heterogeneous environments.

1.2 Dense Linear Algebra and Matrix Com-

putation

Linear algebra operations are widely used in scientific computing and are
an important part of HPC. Software packages such as High Performance
LinPACK (HPL) [24] and ScaLAPACK [25] provide linear algebra imple-
mentations for HPC.

Dense linear algebra is essential to the computation of matrices used in
a variety of scientific fields. Some fundamental linear algebra kernels, such
as LU factorisation and its underlying parallel computation, matrix multi-
plication, are used to solve systems of linear equations with arbitrarily large
numbers of variables. In that way, any scientific field which can approximate
its applications by linear equations, such as astronomy, meteorology, physics,
and chemistry, can use HPC systems and the ScaLAPACK package to vastly
improve the execution time of the domain code.

These linear algebra kernels are computationally intense, but often this
computational load may be parallelised over many compute nodes. However,
this introduces the problem of communicating between the nodes to share
data and synchronise calculations. As HPC continues to gain computational
power, the effect of this communication time will grow proportionately [26].

Because of their usefulness in such a wide variety of applications both
matrix multiplication and LU factorisation have been studied in great detail.
Ways to model heterogeneous systems, and algorithms to improve utilisation
of computation and communication resources, are being developed and im-
proved upon. A full accounting of the advancements in parallel computation
of matrix multiplication is given in Chapter 2.
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1.3 Data Partitioning

A data partition defines the way in which the linear algebra matrices are
divided amongst the available processing resources. Data partitions are gen-
erally designed in order to optimise some fundamental metric of the appli-
cation, such as execution time, or power efficiency. This thesis will focus on
the former; the overall execution time of the matrix computation.

Data partitions endeavour to optimally distribute the computational load
of the problem matrices amongst the available processors. The speed at which
an individual processor can perform basic operations, like add and multiply,
determines the proportion of the overall problem it will be assigned. In this
way, when computing in parallel, all processors will complete computation
at the same time, and no processor will sit idle without work.

The other consideration of a data partition is its shape. The shape of a
data partition is the location within the matrix of each processor’s assigned
portion. In the case of matrix multiplication, the shape of the data parti-
tion does not affect the volume of computation (although the cost may be
adversely affected by physical constraints such as cache misses depending
on the data types used). However the partition shape does directly affect
the volume of communication. A processor may require data “owned” by a
second processor in order to compute its assigned portion.

In the case of LU factorisation, the layout of processor data within the
partition affects both computation and communication costs. As the fac-
torisation proceeds, an increasing amount of the matrix is completed and no
longer used. If the data partition assigns a processor to a section completed
early on, then it will sit idle for the remainder of the execution time; this is
clearly inefficient.

The communication time of a data partition is increasingly important
as HPC systems become ever more computationally efficient [26]. A vari-
ety of advances have been made in minimising communication for matrix
computations on heterogeneous systems [27]. The general shapes of these
partitionings are, however, always rectangular. These are described in detail
in Chapter 2.

However, these approaches are fundamentally limited by nature of the fact
that they are based on algorithms and techniques developed for homogeneous
systems. To find an optimal solution to the data partition shape problem,
one must consider not only rectangular shapes, but all shapes, i.e. non-
rectangular.
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1.4 The Optimal Data Partition Shape Prob-

lem

Despite all the previous study on data partitioning discussed in Chapter
2, the problem of optimal data partitioning for heterogeneous processors
has yet to be solved. Finding simply the optimal rectangular shape is NP -
complete [28], and research has focused almost exclusively on approximating
the optimal rectangular solution. The previous work, discussed in Section
2.3, studying non-traditional shapes was not concerned with optimality, but
with a direct comparison between one type of rectangular partition and one
type of non-rectangular partition.

The goal of this work is to define, and solve, the broader problem of
optimality. It is this fundamental broadness that necessitates a focus on
small numbers of heterogeneous processors. This is a natural starting place
for the larger problem of optimal data partitioning on arbitrary numbers
of heterogeneous processors. The remainder of this section sets out the re-
search questions and aims, and provides a roadmap of how the optimal data
partition shape problem will be solved.

1.4.1 Defining Optimality

Optimal (adj.) - “Best or most favourable; optimum”
- Oxford English Dictionary

For the purposes of this thesis, the concept of optimality will need to be
addressed directly and with specific intent. It is the data partition shape,
whatever it may look like, which will be said to be optimal or sub-optimal.
This judgement must be made on the basis of an objective fact. This fact
will be the execution time of the relevant matrix computation when using
the data partition of that shape.

A great number of factors contribute to the execution time of a data parti-
tion, both in the communication and computational subsystems. Therefore,
it is only for a given set of these factors (i.e. processor computational power
ratios or communication algorithm) that a partition shape can be said to be
optimal.

Finally, and most importantly, a shape cannot be said to be optimal
unless it has been compared to all other possible shapes, including those
shapes composed of random arrangements of elements among processors.
Consider every possible way to distribute elements among processors ran-
domly throughout the matrix; each permutation is a shape to be evaluated.
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1.4.2 Problem Formulation

As non-rectangular partition shapes have never been seriously considered, it
is possible that, even if only for certain systems, a non-rectangular shape
could be superior to the rectangular shape, or indeed even optimal in the
entire solution space. The question remains of how to determine that a
shape is optimal if it must be compared to all possible data partitions, in
order to confirm that it is indeed best (has the lowest execution time). It is
necessary to create a method which can state that a more manageable subset
of data partition shapes are guaranteed to be superior to all shapes which
are not included in the subset.

Beyond that, optimality requires specific data (the execution time) in
order to be deduced. Therefore, a processor, with computation and com-
munication characteristics, must be defined in full; but what type of hetero-
geneous processor to use? As previously discussed, heterogeneous systems
can be composed of processing elements of differing design and speed, at the
system and node levels. The solution of the optimal partition shape should
be applicable to as wide a variety of these classes of heterogeneous processors
as practical. This will require defining the key performance metrics of some
abstract heterogeneous processor.

Furthermore, there must be a way in which to model the performance
of the dense linear algebra application. Specifically, what type of algorithm
will the communication use? The linear algebra computation used also de-
termines the necessary communication pattern characteristics of the model.

Finally, the fundamental question is, what is the optimal data partitioning
shape for two or three heterogeneous processors? Is it non-rectangular?

1.4.3 Roadmap to the Optimal Shape Solution

The rest of this thesis is dedicated to answering these questions. First, the
stage is set with a full mathematical model for an abstract processor, algo-
rithms and performance metrics of a partition shape in Chapter 3. These
will provide the necessary language in order to determine the optimality of
a partition shape.

Next, the Push Technique is introduced, allowing all possible partition
shapes to be considered. A deterministic finite automaton is described to
achieve this, and the practical implementation is also discussed in Chapter
4. The technique produces several partition shapes, candidates, which will
then be analysed in the remaining chapters in order to determine the optimal
shape for each set of factors.

For two heterogeneous processors, in Chapter 5, it will be shown that the
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non-rectangular shape, called Square Corner, is optimal for defined ratios
of computational power. For three heterogeneous processors, in Chapter 7,
it will be shown that there are two non-rectangular shapes, called Square
Corner and Square Rectangle, that are each optimal, for different levels of
heterogeneity in computational power ratios.

1.5 Contributions of this Thesis

In summary the major contributions of this thesis are,

• Proposal of the Push Technique for finding optimal data partitions

• Analysis of the Push Technique for two and three processors

• The optimal data partition shape for any power ratio of two and three
processors

• The introduction of a novel optimal non-rectangular data partitioning
shape, the “Square Rectangle”

• Methodology to apply the Push Technique to any matrix computation

This thesis will show the rectangular data partitioning is not universally
optimal when applied to the heterogeneous case. The major contribution is
the new method for analysing data partitions, called the Push Technique.
This technique is shown to produce novel candidate shapes, which can be
evaluated directly to determine optimality. The validity of the Push Tech-
nique is verified analytically and experimentally.

The optimal data partition for matrix computations is found for systems
of two and three heterogeneous processors, including differing communication
topologies. For both two and three processors, non-rectangular partitions are
shown to be optimal for certain system characteristics.

One data partition, which will be referred to as the Square Rectangle due
to its shape, has never before been considered, and is shown to be an optimal
three processor shape.

A methodology is outlined for applying the Push Technique to matrix
computations other than matrix multiplication, and for larger numbers of
heterogeneous processors. Specifically, it is shown how to apply the Push
Technique to LU factorisation, and some two processor candidate shapes are
given.
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Chapter 2

Background and Related Work

This chapter will explore the background of the concepts to be questioned
and studied in this thesis. First, a review of state of the art algorithms used
to compute parallel matrix multiplication is given. Then, data partitioning
is described, along with algorithms used to create the various existing rect-
angular partition shapes. Finally, there is a review of the work to date in
non-rectangular data partitioning.

2.1 A Brief Review of Matrix Multiplication

Matrix multiplication is a focus of this thesis, and it is described first as a
serial linear algebra algorithm with advancements in the required volume of
computation. Then, several algorithms used to compute matrix multiplica-
tion in parallel on multiple processors are explored, including the state of the
art SUMMA algorithm [29].

2.1.1 Basic Matrix Multiplication

Matrix multiplication is a fundamental linear algebra operation. The general
convention followed here is to name the square input matrices A and B,
and the product matrix C. An element of matrix C is the product of the
corresponding row of matrix A and column of matrix B. Matrix A must
have N columns, and matrix B must have N rows. This calculation requires
N2 dot products, which each require N multiplications, thus, naively, matrix
multiplication is said to require N3 multiplications. Various algorithms have
been shown to reduce this number, with the current minimum being N2.3727

[30].
In the past, some of the simpler reductions, such as Strassen’s algorithm
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A B C 

Figure 2.1: Basic Matrix Multiplication. The dark grey portion of matrix C
is calculated using the data from matrices A and B, also shown in dark grey.

[31] (N2.807), have been implemented as practical matrix multiplication tech-
niques [32, 33, 34]. However, the newest algorithms developed to reduce
the number of required multiplications can be awkward to implement in
the heterogeneous case, and in scientific computing matrix multiplication is
generally done in a straightforward N3 way [35]. This is practical as HPC
platforms, especially with future exascale computational speeds, will be in-
creasingly bounded by limitations in communication and memory rather than
computation speed. Computational speed is the metric by which HPC sys-
tems are judged, so in the future it is reasonable to expect that while the
computation portion of a given algorithm is executed faster, the communi-
cation portion of that same algorithm won’t experience the same speed up.
For this reason, communication will become a larger portion of the overall
execution time, relative to the computation.

2.1.2 Parallel Matrix Multiplication

When computing matrix multiplication on multiple machines in parallel, each
processor is generally assigned some portion of the result matrix C to com-
pute. Each processor must also store the necessary data from matrices A
and B in order to complete these calculations.

For small matrices, it may be simple to naively give each processor a copy
of the entirety of matrices A and B. However, for the large matrices used in
scientific computing, there is quickly a memory bottleneck. Instead, only the
area of these input matrices actually required for the computation is stored.

For larger matrices, if a processor does not have a copy of the required
data of matrices A and B, it will be necessary to communicate that informa-
tion from the processor which does have the data. Thus, it becomes necessary
to devise a matrix multiplication data partitioning algorithm which will min-
imise the volume of communication among the processors. The following is
a summary of the historical advancements in this area, and a description of
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the current state of the art.

Cannon’s Algorithm and Fox’s Algorithm

Cannon’s algorithm [36] was first suggested in 1969. The first efficient paral-
lel matrix multiplication algorithm, it involves a circular shift and multiply
approach. Similarly, Fox’s algorithm [37] is the other classical example of par-
allel matrix multiplication algorithms. In both, processors are arranged in a
2-dimensional grid with block data distribution, and there must be a perfect
square number of processors. These algorithms provide excellent commu-
nication performance, however, they are limited to perfect squares and are
therefore inadequate for general purpose linear algebra applications.

3D Mesh

The 3D Mesh algorithm [38] arranges the p processors in a p
1
3 × p

1
3 × p

1
3

cube. The benefit of this 3D approach is a reduction in the communication
volume. It requires p

1
6 less communication than a traditional 2D algorithm.

However, the drawback is the additional memory required to store the extra
copies of data. In all, the 3D Mesh requires an additional p

1
3 copies of the

matrices, which is impractical for large problem sizes.

2.5D Algorithm

The 2.5D algorithm [39] is similar to the 3D Mesh algorithm, however it pa-
rameterises the third dimension. This allows some control over the amount of
extra memory the algorithm requires, allowing customisation to the system.
This has been shown to be communication optimal [40]. However, for large
matrices on systems with low local memory (such as GPUs), it may not be
possible to store any redundant matrix copies.

PUMMA

The PUMMA [41] (Parallel Universal Matrix Multiplication Algorithm) was
created in an attempt to generalise Fox’s algorithm to any 2-dimensional grid.
This algorithm accomplishes this by using a block scattered data distribution.
The major drawback is excessive memory usage for large matrices, making
this algorithm scale poorly.
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State of the Art: SUMMA

The SUMMA [29] (Scalable Universal Matrix Multiplication Algorithm) is
an improvement of the PUMMA algorithm, looking to, as the name would
suggest, make the PUMMA algorithm scalable. The SUMMA algorithm,
although nearly two decades old, is still considered to be a state of the art
algorithm. It is currently in use in popular linear algebra packages, such as
ScaLAPACK [25]. For this reason, it is discussed in more detail here than
the other algorithms.

In the SUMMA algorithm, the processors to be used in the computation
are arranged in a 2-dimensional grid of dimensions i × j such that each
processor is called p(i, j). The multiplication is broken down into k equal
steps, with the optimal size of a step generally being determined so as to fit
in the cache memory available on the processors.

At every step, the data of that step k is broadcast to all processors
requiring this information. Each column of matrix A is sent horizontally,
and each row of matrix B is sent vertically, as seen in Figure 2.2. Af-
ter this communication, the entire matrix C is updated with the equation
C[i, j] = C[i, j] + A[i, k] ∗B[k, j].

i 

k j 

k 

A B C 

A[i,k] 

C[i,j] 

B[k,j] 

Figure 2.2: Parallel matrix multiplication, as computed by the SUMMA
algorithm as shown on a grid of 16 processors. At each step, k, data from
column k of matrix A is broadcast horizontally and data from row k of matrix
B is broadcast vertically. At each step all elements of C are incrementally
updated.

The efficiency of the communication is improved by pipelining, which is
the formation of a logical ring out of each row and column, to pass the mes-
sages around. In this way, each processor need only communication with its
neighbour in the grid, which is more efficient than a broadcast communica-
tion [29].
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The overall cost of this algorithm is good for such a general solution. It
is computationally balanced, and achieves within log p of the communication
lower bound.

Recent Additions to SUMMA

Several algorithms have attempted to build on the SUMMA algorithmic de-
sign. The SRUMMA [42] (Shared and Remote-memory based Universal Ma-
trix Multiplication Algorithm) has a complexity comparable to Cannon’s
algorithm, but uses shared memory and remote memory access instead of
message passing. This makes it appropriate for clusters and shared memory
systems.

The HSUMMA [19] (Hierarchical Scalable Universal Matrix Multiplica-
tion Algorithm) is another recent extension of the SUMMA algorithm. It
adds a hierarchical, two dimensional decomposition to SUMMA in order to
reduce the communication cost of the algorithm.

2.2 Rectangular Data Partitioning

This section includes a review of previous work in the area of data partition-
ing for linear algebra applications. The problem of optimally partitioning
heterogeneous processors in a general way is NP -complete [28, 43]. How-
ever, a number of limited solutions have been created, and some common
sub-optimal rectangular partitioning schemes are presented here.

In all cases, the matrices are assumed to be identically partitioned across
matrices A,B, and C. As is found throughout the literature, especially
those discussed below, a change in any partition shape will be reflected in
the partition shape for all matrices. For this reason, the partition shape
is displayed as a single matrix and it is understood to represent all three
matrices.

2.2.1 One-Dimensional Partitioning

The simplest rectangular partition is a one-dimensional arrangement. Each
processor is assigned an entire column, or an entire row, as shown in Figure
2.3. The rectangles are the entire length of the matrix, and of width relative
to that processor’s speed. However, these partitioning techniques have a
large communication cost, as every processor must communicate with all the
other processors.
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P0 P1 P2 P3 

(a) 1D Columns

P0 

P1 

P2 

P3 

(b) 1D Rows

Figure 2.3: One-Dimensional data partitioning techniques for four heteroge-
neous processors.

2.2.2 Two-Dimensional Partitioning

Cartesian Partitioning. Cartesian partitioning is the most restrictive of
the two-dimensional heterogeneous partitioning schemes. Each processor
must align in its column and row with all other processors in that row and
column, as seen in Figure 2.4. It is an obvious derivation of the traditional
homogeneous partition. The benefit of this approach, for matrix multiplica-
tion, is that each processor communicates only with the processors directly
in its row and column. As [44] points out, this attribute makes cartesian
partitions highly scalable. However, the cartesian partition turns out to be
too restrictive, as it cannot guarantee that the best cartesian partition will
balance the computational load, given the number and relative speeds of
processors.

Grid Partitioning. Grid based partitioning creates a two-dimensional
grid divided into rectangles, one per processor, as seen in Figure 2.4. If
an arbitrary horizontal or vertical line is drawn through the partition shape,
it would always pass through the same number of processors. Unlike in the
homogeneous and cartesian partitions, the processors in the grid partition
need not be aligned into specified rows or columns. The major drawback of
this partitioning is that it only minimises communication cost within its rect-
angular restrictions, and finding the optimal grid partition which minimises
communication is NP -complete [43, 45].

Column-Based Partitioning. Column-Based partitioning, shown in Fig-
ure 2.5, was suggested in [46] and [47]. The idea is to divide the matrix
into some number of columns, c, and to distribute processors within these
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P11 P12 P13 P14 

P21 P22 P23 P24 

P31 P32 P33 P34 

P41 P42 P43 P44 

(a) Homogeneous

P11 P12 P13 P14 

P21 P22 P23 P24 

P31 P32 P33 P34 

P41 P42 P43 P44 

(b) Cartesian

P11 P12 
P13 P14 

P21 P22 P23 P24 

P31 P32 P33 P34 

P41 P42 P43 P44 

(c) Grid

Figure 2.4: Data partitioning techniques. On the left, (a), is a 16 processor
homogeneous partition for reference. Each processor is assigned a square of
the matrix. In (b) is a heterogeneous cartesian partition over 16 processors
of varying speeds. Similarly, (c) is a heterogeneous grid partition for 16
processors.

columns. The communication minimising algorithm presented in [28] extends
the column based approach. Both the shape and location of the rectangles
within the matrix are chosen to minimise the communication cost. As pre-
viously stated, the general solution to this problem was shown to be NP -
complete in a non-trivial proof, however with the additional restriction that
all rectangles within a column must have the same width, a polynomial time
sub-optimal solution may be found[28].

P11 P12 P13 

P21 P22 P23 

P31 P32 P31 

c1 c2 c3 

Figure 2.5: A column based partitioning with nine heterogeneous processors,
and three columns, c1, c2, c3.
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2.2.3 Performance Model Based Partitioning

The previously discussed partitioning algorithms all assumed a constant per-
formance model for the processors. Each processor is assigned a constant
positive value to represent its speed in proportion to the rest of the proces-
sors. The benefit of this technique is its simplicity, as well as it’s accuracy
for small to medium, or constant, sized problem domains. However, for large
or fluctuating problem sizes, it is possible that the performance will change
leading to inaccuracy in the model, which can cause a degradation in the
performance of the overall application.

Functional Performance Modelling. Functional performance modelling
[48, 49, 50] takes into consideration the problem size when estimating the
speed of a given processor. This allows for accurate modelling of processor
performance if the processor throughput degrades with problem size. Most
often, this occurs when some physical limit of the processor is met, such as
the filling of cache memory, and a sudden and marked deterioration in perfor-
mance occurs. With this clear physical limitation in mind, these functional
performance models have been used to find data partitions for linear algebra
applications such as parallel matrix multiplication [51].

2.3 Non-Rectangular Data Partitioning

This section provides a survey of previous work that examined non-rectangular
partitioning of matrices for matrix multiplication. These results focus on
comparing two shapes, rather than considering their optimality. They also
consider only communication, not execution time, and shapes are not com-
pared for a wide variety of performance model algorithms.

2.3.1 Two Processors

Previous work, [52], looking at the case of two heterogeneous processors
considered two data partitions, one of which was non-rectangular. While
this work did not consider the optimality of either of these shapes, it did
show that in direct comparison a non-rectangular shape was superior to the
traditional rectangular shape for ratios of computational power greater than
three to one between the processors. These two shapes are shown in Figure
2.6. The non-rectangular shape has a lower volume of communication, and
performs better in terms of execution time, at the indicated ratios.
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Figure 2.6: The two matrix data partition shapes considered in [52], parti-
tioned between two processors (white and black). The shapes are Straight
Line on the left, and Square Corner on the right. Analysis shows the Square
Corner has the lower volume of communication when the computational
power ratio between the processors is greater than 3 : 1. (As shown, each
data partition is of ratio 3 : 1).

2.3.2 Three Processors

Previous work, [53], considered three heterogeneous processors. Again, this
work does not consider the optimality of shapes, but directly compares
one non-rectangular shape against a traditional rectangular partition shape.
These shapes are detailed in Figure 2.7. This work finds that the non-
rectangular partition shape can be superior to the rectangular shape for
highly heterogeneous systems and non-fully connected network topologies.

Figure 2.7: The two matrix data partition shapes considered in [53], par-
titioned between three processors (white, grey, and black). The shapes are
Rectangular on the left, and Square Corner on the right.

Both of these works, and [54], motivate the idea that it is possible for
a non-rectangular partition shape to be optimal. In some cases one non-
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rectangular shape, the Square Corner, is superior to specific common rect-
angular shapes. However, these previous works fail to address the concept of
optimality or matrix computations other than matrix multiplication.

2.4 Abstract Processors

The notion of an abstract processor has previously been used to represent a
variety of different real world heterogeneous systems.

In [55], the authors used abstract processor models to encapsulate multi-
core processors. This approach was used to balance the computational load
for matrix multiplication on multicore nodes of a heterogeneous multicore
cluster.

In [56], the authors extend this abstract processor model approach to be
applicable to both heterogeneous multicore and hybrid multicore CPU/GPU
systems, an example of which can be seen in Figure 2.8. Using this approach,
they were able to accurately model the performance of different heteroge-
neous configurations for scientific data parallel applications. These various
heterogeneous components were often described as systems of two or three
heterogeneous abstract processors. However, these works only considered tra-
ditional, rectangular data partitions for these systems. The types of novel,
non-rectangular data partition shapes presented in this thesis have never
been considered using this type of abstract processor model.
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CPU CPU

Host 
Core

GPU

Figure 2.8: An example of the type of heterogeneous system addressed using
abstract processor models in [55, 56]. As shown, a multicore CPU with 6
cores, a multicore CPU of 5 cores, and a GPU with its host core, are shown
as three abstract processors.
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Chapter 3

Modelling Matrix Computation
on Abstract Processors

In this chapter, the complete performance model for the abstract heteroge-
neous processor is presented. An abstract processor is any unit of processing
power which may receive, store, and compute data, and most importantly, is
independent. An independent processing unit is not affected by the compu-
tational load placed on any other processing unit. For example, an indepen-
dent processor is not affected by resource contention, as cores on the same
die would be. Examples of an independent processing unit include single and
multicore CPUs, a GPU and its host core, or an entire cluster.

The notion of an abstract processor, which focuses primarily on com-
munication volume and computation volume, has been shown to accurately
predict the experimental performance of a variety of processors and even
entire clusters for matrix computations [52, 53, 54, 57, 58]. Below, the com-
munication, computation, and memory modelling of an abstract processor is
discussed further in the context of matrix computations.

Data Partition Metrics

In order to effectively model the matrix computations, several assumptions
are made and partition metrics are devised.

• The matrices are square and of size N ×N elements

• The matrices are identically partitioned among p processors

• The number of elements assigned to each processor is factorable, i.e.
may be made into a rectangle
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Formally, a partition is an arrangement of elements amongst processors
such that,

φ(i, j) =


0 Element (i, j) assigned to 1st Processor

1 Element (i, j) assigned to 2nd Processor

...

p− 1 Element (i, j) assigned to pth Processor

(3.1)

To determine whether a given row, i, contains elements that are assigned
to a given processor, x,

r(φ, x, i) =

{
0 if (i, ·) of φ is not assigned to Processor x

1 if some (i, ·) of φ is assigned to Processor x
(3.2)

To determine whether a given column, j, contains elements that are as-
signed to a given processor, x,

c(φ, x, j) =

{
0 if (·, j) of φ is not assigned to Processor x

1 if some (·, j) of φ is assigned to Processor x
(3.3)

Processor Naming Convention

The equations provided below are written in such a way to be applicable to
any number of processors p, and correspondingly the xth processor is called
px. However, for the small numbers of abstract processors studied in detail,
it may be useful to call the processors by different letters, for clarity.

For two processors, the more powerful processor is known as Processor P ,
and the less powerful as Processor S. The ratio between the computational
power of these two processors is called r, and is normalised to be r : 1.

For three processors, the processors are called, in descending order of
computational power, Processor P , Processor R, and Processor S. The ratio
between the computational power of these processors is Pr : Rr : Sr, and is
normalised to Pr : Rr : 1.

3.1 Communication Modelling

The communication of matrix multiplication may be modelled in a variety
of ways, depending on the level of specificity required. First is the question
of topology. Does a link exist between all processors? Then consider, are all
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links between processors symmetrical? Are there significant startup costs in
sending an individual message?

When considering only small numbers of abstract processors, the possible
topologies are limited. For two processors, for instance, the only option is
fully connected, or no communication would be possible. When considering
three processors, the options are fully connected or a star topology, so these
are discussed in further detail below. Additionally, the focus is placed on
symmetric communications, and latency will be ignored due to its lesser
significance in the communication and computation volume in most of the
algorithms studied (specifically those which use bulk communication).

3.1.1 Fully Connected Network Topology

In the fully connected topology, each processor has a direct communication
link to all p−1 other processors, as seen in Figure 3.1. The simplest model of
symmetric communication is the Hockney Model [59]. This states the time
of communication is a factor of latency, bandwidth, and message size, and is
given by,

Tcomm = α + βM (3.4)

α = 0 = the latency, overhead of sending one message in seconds

(which is insignificant compared to βM in this model, so set to zero)

β = the inverse of bandwidth, transfer time (in seconds) per element

(which for simplicity will be referred to as bandwidth throughout this thesis)

M = the message size, the number of elements to be sent

3.1.2 Star Network Topology

The star topology puts a single processor at the centre, with all other pro-
cessors communicating through it, as seen in Figure 3.2. For most of the
partition shapes that will be found using the Push Technique, the data that
an outer processor sends to the centre processor is not the same data (i.e.
it comes from a different location or matrix) as it sends to some other outer
processor. For this reason, the outer-to-outer term in the communication
time equation is doubled. This may be possible to improve upon, depend-
ing on the partition shape, however this equation represents the worst case
scenario.
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Figure 3.1: A fully connected network topology with four processors and
symmetric communication bandwidth.

Tcomm = (Mco +Moc + 2×Moo)β (3.5)

Mco = message size sent from centre processor to outer processors

Moc = message size sent from outer processors to centre processor

Moo = message size sent from outer processors to other outer processors

p1 

p3 

p4 

β 

β 

β p2 

Figure 3.2: A star network topology with four processors and symmetric
communication bandwidth.

3.2 Computation Modelling

The computation of matrix multiplication may be modelled in a straight-
forward way. Consider the most basic unit of computation to be the line
SUMMA iterates over, C[i, j] = A[i, k] ∗ B[k, j] + C[i, j], one multiplication
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and one addition. Each matrix element requires N of these units of compu-
tation to fully compute. The computation time in seconds, cX , of Processor
X is given by,

cX =
N ∗#X

SX
(3.6)

#X = number of elements assigned to Processor X

N ∗#X = units of computation Processor X is required to compute

SX = units of computation per second achieved by Processor X

The value of SX is quantifiable on all target systems using benchmarks
designed to test system speed for linear algebra applications, such as High
Performance LinPACK [24]. Many of the solutions found in this thesis will be
independent of matrix problem size, so using a constant performance model
is fully adequate.

Ratio of Computation to Communication speed

In some algorithms it will be useful to have some measure of computation
speed of the system compared to overall communication speed. This is pegged
to the fastest processor, known as P , and the communication speed β.

c = SP ∗ β (3.7)

3.3 Memory Modelling

Matrix computations in scientific applications use large amounts of memory
commensurate with the size of the matrix [60]. While some matrix compu-
tation algorithms such as the 3D Mesh use many redundant copies of the
matrix to minimise communication, the state of the art SUMMA algorithm
inherently uses less memory. As the SUMMA algorithm is presumed as the
method of matrix computation, it is taken as an assumption that all abstract
processors possess enough memory to store the necessary portions of matrices
A,B, and C.

However, it is possible to imagine a real life processor, such as a GPU,
which would have relatively little memory when compared to its high process-
ing power. In this case, the portion of matrix C assigned to this processor
can be divided into blocks, which are computed one at a time, and in an
order which minimises extra communication.
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3.4 Algorithm Description

There are many different ways to combine communication and computation
time to create execution time. How this occurs is determined by the al-
gorithm used to compute the matrix multiplication. The algorithm chosen
directly alters the relative importance of communication and computation
in determining execution time, and so will also effect the performance of
each data partition shape. The five algorithms presented below attempt to
encapsulate the characteristics of a wide variety of matrix multiplication algo-
rithms in use, such as bulk communication, and interleaving communication
and computation.

Figure 3.3: The communication pattern of the Square Corner two processor
shape. Each processor requires data from the other processor, from both
matrices A and B.

3.4.1 Bulk Communication with Barrier Algorithms

The first two algorithms are based on the idea of barriered bulk communi-
cations, meaning all processors send and receive all data before computation
may begin.
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P computes S computes 

Figure 3.4: A depiction of the Serial Communication with Barrier (SCB) and
Parallel Communication with Barrier (PCB) algorithms, for two processors,
P and S. Time flows downward, with an arrow depicting when the given
processor is active (sending data or computing), and no arrow indicating
receiving data or an idle processor.

Serial Communication with Barrier

The first algorithm considered is the Serial Communication with Barrier
(SCB). It is a simple matrix multiplication algorithm in which all data is sent
by each processor serially, and only once communication completes among
all processors does the computation proceed in parallel on each processor.

The execution time is given by,

Texe = V β + max(cP1, cP2, · · · , cPp) (3.8)

where V is the total volume of communication, and cPx is the time taken to
compute the assigned portion of the matrix on Processor X.

Parallel Communication with Barrier

The second algorithm considered is the Parallel Communication with Barrier.
All data is sent among processors in parallel, and only once communication
completes does the computation proceed in parallel on each processor.

Texe = max(vP1, vP2, · · · , vPp)β + max(cP1, cP2, · · · , cPp) (3.9)

where vPx is the volume of data elements which must be sent by Processor
X.
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3.4.2 Communication/Computation Overlap Algorithms

The final three algorithms attempt to overlap communication and compu-
tation where possible, in order to decrease execution time. The first two
overlap algorithms describe partition shape specific overlap, which for some
non-rectangular shapes, can allow computation to begin before communi-
cation is complete. The final algorithm will almost completely interleave
communication and computation.

P S 

(Execution Complete) 

P sends 

S sends 

SCO Algorithm 

P computes 
S computes 

P computes 

P S 

(Execution Complete) 

P sends 
S sends 

PCO Algorithm 

P computes S computes 

P computes 

Figure 3.5: A depiction of the Serial Communication with Overlap (SCO)
and Parallel Communication with Overlap (PCO) algorithms, for two pro-
cessors, P and S. Processor P is shown to have a subsection of its matrix
C which may be computed without communication. Time flows downward,
with an arrow depicting when the given processor is active (sending data or
computing), and no arrow indicating receiving data or an idle processor.

Serial Communication with Overlap

In the Serial Communication with Overlap (SCO) algorithm, all data is sent
by each processor serially, while in parallel any elements that can be com-
puted without communication are computed. Only once both communica-
tion and overlapped computation are complete does the remainder of the
computation begin. The execution time is given by,

Texe = max
(

max(V β, oP1)+cP1,max(V β, oP2)+cP2, · · · ,max(V β, oPp)+cPp

)
(3.10)

where oPx is the number of seconds taken by Processor X to compute
any elements not requiring communication, and cPx is the number of seconds
taken to compute the remainder of the elements assigned to Processor X.
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Parallel Communication with Overlap

The Parallel Communication with Overlap (PCO) algorithm, completes all
communication in parallel, while simultaneously computing any sections of
matrix C which do not require interprocessor communication. Once these
have finished, the remainder of the computation is carried out. The execution
time is given by,

Texe = max
(

max(Tcomm, oP1) + cP1,max(Tcomm, oP2) + cP2, · · · ,

max(Tcomm, oPp) + cPp

)
(3.11)

where Tcomm is the same as the PCB algorithm, oPx is the number of
seconds taken by Processor X to compute any elements not requiring com-
munication, and cPx is the number of seconds taken to compute the remainder
of the elements assigned to Processor X.

Parallel Interleaving Overlap

The Parallel Interleaving Overlap (PIO) algorithm, unlike the previous al-
gorithms described, does not use bulk communication. At each step data is
sent, a row and a column (or k rows and columns) at a time, by the relevant
processor(s) to all processor(s) requiring those elements, while, in parallel, all
processors compute using the data sent in the previous step. The execution
time for this algorithm is given by,

Texe = Send k +

(N − 1) max
(
Vkβ,max

(
kP1, kP2, · · · , kPp

))
+ Compute (k + 1) (3.12)

where Vk is the number of elements sent at step k, and kX is the number
of seconds to compute step k on Processor X.
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Chapter 4

The Push Technique

The central contribution of this thesis is the introduction of the Push Tech-
nique. This novel method alters a matrix data partition, reassigning elements
among processors, to lower the total volume of communication of the parti-
tion shape. The goal of using this technique is to prove that some random
arrangement of elements is not the optimal shape. Instead, it allows the
consideration of a few discrete partition shapes which are superior to all
other data partitions (by virtue of the fact that no Push operation can be
performed on them).

The Push Technique operates on an individual processor (although on
a given Push any and all processors may be reassigned elements) and an
individual row or column. That row or column, k, is determined by the di-
rection of the Push (Up, Down, Back, or Over) and the enclosing rectangle
of the processor being Pushed. An enclosing rectangle is an imaginary rect-
angle drawn around the elements of a given processor, which is strictly large
enough to encompass all such elements, as seen in Figure 4.1. The edges
of some Processor X’s enclosing rectangle are known in clockwise order as
xtop, xright, xbottom, xleft.

4.1 General Form

When applying the Push Technique to a data partition shape containing an
arbitrary number of processors,

• Choose one processor, X, to be Pushed (must not be the most powerful
processor)

• Choose the direction of Push, i.e. Up (↑), Down (↓), Back (←), Over
(→)
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Figure 4.1: A matrix data partition among three processors, pictured in
white, black, and grey. The enclosing rectangles for the black and grey
processors are drawn as dotted lines. The enclosing rectangle of the white
processor is the entire matrix.

• Determine the appropriate row or column k, the edge of the enclosing
rectangle of X (↑ acts on xbottom, ↓ acts on xtop, ← acts on xright, and
→ acts on xleft)

• For each element, x, assigned to Processor X in row or column k:

1. Assign Processor X an element, z, within its enclosing rectangle

2. Assign element x to the processor previously assigned z

• A valid Push may not increase the volume of communication, so select
all z such that:

1. Processor X is introduced to no more than one new row OR col-
umn

2. No processor is assigned an element in k if k is outside that pro-
cessor’s enclosing rectangle

3. A processor cannot be assigned an element in k, if it did not
already own an element in k, unless doing so would also remove
that processor from some other row or column

Note that this last item may also be achieved by considering a single Push
as an atomic operation. If assigning several elements to the same new row
or column results in all of those elements being removed from some other
same row or column (thereby removing all elements of that processor), the
volume of communication will be lowered or unchanged. This scenario is an
acceptable Push.
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4.2 Using the Push Technique to solve the

Optimal Data Partition Shape Problem

The Push Technique may be applied iteratively to a data partition shape,
incrementally improving it until a shape is reached on which no valid Push
operations may be performed. Any such data partition, with no possible Push
operations, is a candidate to be optimal and must be considered further.

In general, the Push Technique will be applied to some random starting
partition. Push operations are performed until some local minima is found,
where no further Push operations are possible. Those final states are the
candidates considered throughout this thesis.

Consider a Deterministic Finite Automaton. This DFA is a 5-tuple
(Q,Σ, δ, q0, F ) where

1. Q is the finite set of states, the possible data partitioning shapes

2. Σ is the finite set of the alphabet, the processors and the directions
they can be Pushed

3. δ is Q× Σ→ Q the transition function, the Push operation

4. q0, the start state, chosen at random

5. F is F ⊆ Q, the accept states, candidate partitions to be the optimum

The finite set of states, Q, is every possible permutation of the elements,
assigned to each processor, within the N ×N matrix. Therefore the number
of states in the DFA is dependent on the size of the matrix, the number of
processors and the relative processing speeds of those processors. The size
of Q is given by

N2!

(#P1!)× (#P2!)× · · · × (#Pp!)
(4.1)

where,
#Px is the number of elements assigned to Processor X

The finite set, Σ, called the alphabet, is the information processed by the
transition function in order to move between states. Legal input symbols
are the active processor being Pushed, Processor X, and the direction the
elements of Processor X are to be moved, i.e. Up, Down, Over or Back.

The transition function, δ, is the Push operation. This function processes
the input language Σ and moves the DFA from one state to the next, and
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therefore the matrix from one partition shape to the next. The implementa-
tion of the transition function is discussed further in the next section. If the
elements of the specified processor cannot be moved in the specified direction
then the state is not changed, i.e. the transition arrow loops back onto the
current state for that input.

The start state of the DFA, q0, is chosen randomly.
Finally, the accept states F are those fixed points in which no Processor

X may be Pushed in any direction. These states, and their corresponding
partition shapes, must be studied further.

4.3 Application to Matrix Multiplication

The Push Technique, as described above for any number of processors, will
also be detailed for specific applications of two and three processors, with
further insight into how the Push can apply to four and more processors.
This entire chapter is dedicated to the Push Technique as it applies to matrix
multiplication, so it is worth noting now which parts are constant, and which
change when applying to other matrix computations.

The Push Technique, so far as it is a methodology for incrementally al-
tering a matrix partition for the better, is applicable to nearly any matrix
computation. The difference, and what makes the remainder of this chapter
specific to matrix multiply, is the performance model (volume of communi-
cation) the Push is operating under. The rules of the Push could, therefore,
be altered to prejudice for some other metric(s) and create different matrix
partitions for different computational needs.

Matrix multiplication is straightforward with easily parallelised compu-
tation and simple communication patterns, and as such is the best starting
point for applying the Push Technique. However, any matrix computation
which can be decomposed into some quantifiable incremental changes, can
benefit from the Push Technique.

4.4 Push Technique on a Two Processor Sys-

tem

The two processor case is the simplest to which the Push Technique may be
applied. This provides an excellent base case for describing the basics of the
Push, before moving on to the more complex issues of three, four, and more
processors.
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This section first covers the algorithm used to carry out a single Push
operation. The following section will show that continuous use of the Push,
until no valid Push operations remain untaken, will result in a lower vol-
ume of communication, and thereby lower execution time, for all five matrix
multiplication algorithms considered. Finally, the outcomes of these Push
operations, the optimal candidates, are described.

4.4.1 Algorithmic Description

The algorithm used to accomplish the Push operation is given in more detail
here. Each direction is deterministic, and moves element in a typewriter-like
fashion, i.e. left to right, and top to bottom.

Elements assigned to S in row k, (set to stop, in the example below), are
reassigned to Processor P . Suitable elements are assigned to Processor S,
from Processor P , from the rows below k and within the enclosing rectangle
of Processor S. Assume S is the second processor, so φ(i, j) = 1 if element
(i, j) is assigned to Processor S.

Push Down

Formally, Push ↓ (φ, k) = φ1 where,

Initialise φ1 ← φ
(g, h) = (k + 1, sleft)
for j = sleft → sright do
{If element belongs Processor S, reassign it.}
if φ(k, j) == 1 then
φ1(k, j) = 0;
(g, h) = find(g, h); {Function defined below (finds new location).}
φ1(g, h) = 1; {Assign new location to active processor.}

end if
j ← j + 1;

end for

find(g, h):

for g → sbottom do
for h→ sright do
{If potential location belongs to other processor, hasn’t been reas-
signed already, and is in a column already containing X.}
if φ(g, h) == 0 && φ1(g, h) == 0 && c(φ, S, h) == 1 then

return (g, h);
end if
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end for
g ← g + 1;
h← sleft;

end for
return φ1 = φ {Could not find location, Push not possible in this direc-
tion.}
It is important to note that if no suitable φ(g, h) can be found for each

element in the row being cleaned that requires rearrangement, then φ is
considered fully condensed from the top and all further ↓ (φ, k) = φ.

Figure 4.2: A 10× 10 matrix partitioned between two processors, white and
black. The first figure shows the starting partition. The second figure is after
a Push Down has been performed. The third, after a Push Back. The fourth,
after a Push Up. And the fifth and final figure shows after a Push Over has
been performed.

The algorithmic descriptions for Push Up, Push Back, and Push Over,
are similar in content and can be found in Appendix A.

4.4.2 Push: Lowering Communication Time for all Al-
gorithms

The central idea of the Push Technique is that using it must not raise the
execution time of any of the algorithms considered. After each Push step, the
volume of communication must be lowered, or at least not increased. This
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section demonstrates that the Push Technique will lower, or leave unchanged,
the communication for each algorithm.

A data partition between two processors has a special metric,

‖ φ ‖x = # of rows containing elements of only one processor in φ

‖ φ ‖y = # of columns containing elements of only one processor in φ

Serial Communication.

Theorem 4.4.1 (Push). The Push Technique output partition, φ1, will have
lower, or at worst equal, communication time as the input partition, φ.

Proof. First, observe several axioms related to the Push Technique.

Axiom 1. Push ↓ and Push ↑, create a row, k, with no elements belonging
to the Pushed Processor X, and may introduce Processor X to at most one
row in φ1 in which there were no elements of Processor X in φ. No more
than one row can have elements of X introduced, as a row that was had no
elements of X in φ will have enough suitable slots for all elements moved
from the single row, k.

Axiom 2. Push ↓ and Push ↑ are defined to not add elements of Processor X
to a column in φ1 if there is no elements of X in that column of φ. However,
these Push directions may create additional column(s) without X, if the row
k being Pushed contains elements that are the only elements of X in their
column, and there are sufficient suitable slots in other columns.

Axiom 3. Push → and Push ← create a column, k, with no elements be-
longing to Processor X, and may create at most one column with X in φ1

that did not contain X in φ.

Axiom 4. Push→ and Push← will never add elements of X to a row in φ1

that did not contain elements of X in φ, but may create additional row(s)
without X.

From (3.8) we observe as (‖ φ ‖x + ‖ φ ‖y) increases, Tcomm decreases.
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Push ↓ or Push ↑ on φ create φ1 such that:

For row k being pushed,

If there exists some row i that did not have elements of X, but now does:

r(φ,X, i) = 0 and r(φ1, X, i) = 1

then by Axiom 1:

‖ φ1 ‖x = ‖ φ ‖x
else

‖ φ1 ‖x = ‖ φ ‖x +1

and by Axiom 2:

‖ φ1 ‖y ≥ ‖ φ ‖y

Push → or Push ← on φ create φ1 such that:

For column k being pushed,

If there exists some column j that did not have elements of X, but now does:,

c(φ,X, j) = 0 and c(φ1, X, j) = 1

then by Axiom 3:

‖ φ1 ‖y = ‖ φ ‖y
else

‖ φ1 ‖y = ‖ φ ‖y +1

and by Axiom 4:

‖ φ1 ‖x ≥ ‖ φ ‖x

By these definitions of all Push operations we observe that for any Push
operation, (‖ φ1 ‖x + ‖ φ1 ‖y) ≥ (‖ φ ‖x + ‖ φ ‖y). Therefore, it is
concluded that all Push operations will either decrease communication time
(3.8) or leave it unchanged.

The proof for parallel communication is similar and may be found in
Appendix B.

4.4.3 Two Processor Optimal Candidates

Repeatedly applying Push operations will result in a discrete set of partition
shapes. These fifteen shapes, shown in Figure 4.3, are formed using combi-
nations of either one, two, three, or four directions of the Push operation.
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The Push Technique consolidates the elements assigned to the less power-
ful processor into a rectangle, minimising the number of rows and columns
containing elements of both processors, and thereby minimising the commu-
nication time. Of the possible dimensions for this rectangle, there exist two
broad categories. First, rectangles with one dimension of N , and second,
rectangles with both dimensions less than N .

Figure 4.3: The result of applying operations ↓, ↑, ←, and →, until the
stopping point has been reached. Row 1 shows the result of applying just
a single transformation. Row 2 shows the result of applying a combination
of two transformations. Row 3 shows the possible results of applying three
transformations, and Row 4 shows the result of applying all four transforma-
tions.

Within these broad categories of rectangle dimensions, the location of
the rectangle within the matrix does not effect the volume of communication
(because it does not increase the number of rows or columns containing
elements of both processors). The portion assigned to Processor S may be
moved within the matrix to create, from the original fifteen outputs, just two
candidate shapes in canonical form.

More formally, this is stated as the following theorem, the proof of which
is discussed in Appendix B.3.

Theorem 4.4.2 (Canonical Form). Any partition shape, for two processor
matrix multiplication, in which Processor S has an enclosing rectangle of the
same dimensions x, y has the same communication cost.
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The two canonical shapes are named as Straight Line and Square Corner
respectively, and can be seen in Figure 5.1.
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Chapter 5

Two Processor Optimal
Partition Shape

The optimal partition shape for two abstract processors was a natural start-
ing point for the Push Technique, which was used to create candidate optimal
shapes in Chapter 4. The optimal candidates are known as Square Corner
and Straight Line.

In this chapter, the candidates are analysed to determine which is the op-
timal shape. The Square Corner shape, which is non-rectangular, is shown
to be optimal for a large range of ratios of processor computational power.
Accordingly, the Straight Line shape, which is rectangular, is optimal for ho-
mogeneous systems, and small amounts of heterogeneity in processor speed.

In the final section of this chapter, these theoretical results are confirmed
experimentally.

In order to determine which shape is optimal, first, the candidates are
analysed to determine the volume of communication each requires. Then,
using the model of an abstract processor discussed in Chapter 3, perfor-
mance models are built for both shapes, for each algorithm. Finally, these
performance models are directly compared to prove mathematically which
candidate is the optimal shape.

5.1 Optimal Candidates

Applying the Push Technique results in two potential shapes with elements
divided between Processors P and S. In the first candidate shape Processor
S is assigned a rectangle of length N to compute (Straight Line), and in
the second candidate shape Processor S is assigned a rectangle of less than
length N to compute (Square Corner).
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Figure 5.1: The optimal candidates found for two processors using the Push
Technique, divided between Processor P (in white) and Processor S (in
black). On the left is the Straight Line shape, on the right is the Square
Corner shape.

In the second candidate shape, the Push Technique can create any size
rectangle of length less than N . However, the optimal dimensions of this
rectangle occur when its width equals its length, i.e. when it is square [57].

Volume of Communication

In the Straight Line shape, the necessary communication is,

• P → S a data volume of N(N − x) elements

• S → P a data volume of Nx elements

In the Square Corner shape, the necessary communication is,

• P → S a data volume of 2s(N − s) elements

• S → P a data volume of 2s2 elements

The value of x and s

Unless otherwise stated, each algorithm, for all shapes, is assumed to begin
computation on P and S at the same time. Therefore, the area of the matrix,
the volume of elements, assigned to each processor is in proportion to its
computational power.

x =
1

r + 1
(5.1)

s =
1√
r + 1

(5.2)
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Figure 5.2: The communication pattern of the Square Corner two processor
shape. Each processor requires data from the other processor, from both
matrices A and B.

5.2 Applying the Abstract Processor Model

In the following sections, the models for both candidate shapes are derived
for each algorithm.

Serial Communication with Barrier

The two processor Straight Line SCB shape execution time is given by,

Texe(SL) = (N2)β + max(cP , cS) (5.3)

The two processor Square Corner SCB shape execution time is given by,

Texe(SC) = (2Ns)β + max(cP , cS) (5.4)

Parallel Communication with Barrier

The two processor Straight Line PCB shape execution time is given by,

Texe(SL) = max(N(N − x), Nx)β + max(cP , cS) (5.5)
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The two processor Square Corner PCB shape execution time is given by,

Texe(SC) = max(2s(N − s), 2s2)β + max(cP , cS) (5.6)

Serial Communication with Overlap

In the Serial Communication with Overlap algorithm, any portion of the
result matrix C which can be computed without communication is done in
parallel with the communication. The Straight Line shape does not have any
such portion of the result matrix C, so the cost is the same with SCO as with
SCB.

The Square Corner shape, however, does have a section that can be com-
puted without communication, seen in Figure 5.3.

P1 P2 

P3 S 

Figure 5.3: The Square Corner shape, divided into sections with dotted lines
to show which portions do not require communication. Processor P owns
all necessary data to compute section P1. Computing sections P2, P3, and S,
however, requires communication.

Recalling Equations 3.6 and 3.10, for computation time and the SCO
algorithm respectively, the Straight Line SCO execution time can be written
as,

Texe(SL) = max

(
max

(
N2β, 0

)
+
N(N(N − x))

SP
,max

(
N2β, 0

)
+
N(Nx)

SS

)
(5.7)
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And the Square Corner execution time is given by,

Texe(SC) = max

(
max

(
(2Ns)β,

N(N − s)2

SP

)
+

2Ns(N − s)
SP

,

max
(

(2Ns)β, 0
)

+
N(s2)

SS

)
(5.8)

These equations will be simpler to analyse after removing the constant
common factor N3β, normalising s and x as a proportion of N so that s = s

N

and x = x
N

, such that s is understood to be 0 < s < 1 (and x is understood
to be 0 < x < 1), and introducing the value c (given in Equation 3.7).

The Straight Line execution time is now (understanding the optimal size
of x to still be 1

r+1
),

Texe(SL)
N3β

=
1

N
+

1− x
c

(5.9)

The Square Corner execution is now,

Texe(SC)

N3β
= max

(
max

(2s

N
,
(1− s)2

c

)
+

2(s− s2)
c

,
2s

N
+
s2r

c

)
(5.10)

The Optimal Size of s for SCO. The optimal value of s is the minimum

of this
Texe(SC)

N3β
on the interval of {0, 1}. However, since a value of s = 1

would indicate that Processor S has been assigned the entire matrix, the
interval of possible s values can be made more specific. The largest s will be
without overlap is when r = 1 : 1, and therefore s = 1√

2
. It has already been

established that overlap algorithms will decrease the area assigned to S, so

it can certainly be said that the optimal value of q is the minimum of
Texe(SC)

N3β

on the interval {0, 1√
2
}.

There are 3 functions that comprise the
Texe(SC)

N3β
equation. These functions

and what they represent are as follows,

y =
2s

N
+ 2

s− s2

c
: Tcomm + (P2 + P3) (5.11)

y =
(1− s)2

c
+ 2

s− s2

c
: P1 + (P2 + P3) (5.12)

y =
2s

N
+
s2r

c
: Tcomm + S (5.13)

The first observation is that (5.11) is always less than (5.12) on the in-
terval {0, 1√

2
}. Therefore, for possible values of s, it will never dominate the

maximum function and can be safely ignored. Focusing on (5.12) and (5.13),
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Figure 5.4: Graph of Equations 5.11, 5.12, and 5.13, the three possible func-
tions to dominate the maximum function for execution time of the Square
Corner shape using the Serial Communication with Overlap algorithm. In
this example, problem size N = 3000, Processor ratio r = 3, and computa-
tion/communication ratio c = 100.

note that (5.12) is concave down and (5.13) is concave up, and therefore the
minimum on the interval will be at the intersection of these two functions.

(5.12) ∩ (5.13)

(1− s)2

c
+ 2

s− s2

c
=

2s

N
+
s2r

c

0 =s2(r + 1) + s
(2c

N

)
− 1

s =

−c
N

+
√

c2

N2 + r + 1

r + 1

Parallel Communication with Overlap

The Parallel Communication with Overlap algorithm uses the same approach
as the SCO algorithm, however the Tcomm will be the same as the Parallel
Communication with Barrier algorithm.

Recalling Equations 3.6 and 3.11, for computation time and the PCO
algorithm respectively, the Straight Line PCO execution time can be written
as,
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Texe(SL) = max

(
max

(
max(N(N − x), Nx)β, 0

)
+
N(N(N − x))

SP
,

max
(

max(N(N − x), Nx)β, 0
)

+
N(Nx)

SS

)
(5.14)

And the Square Corner execution time is given by,

Texe(SC) = max

(
max

(
max

(
2s(N − s), 2s2

)
β,
N(N − s)2

SP

)
+

2Ns(N − s)
SP

,

max
(

max
(
2s(N − s), 2s2

)
β, 0
)

+
N(s2)

SS

)
(5.15)

As with the SCO algorithm, remove the constant common factor N3β,
normalise s and x as a proportion of N so that s = s

N
and x = x

N
, and

introduce the value c given in Equation 3.7.
The updated Straight Line execution time is given by,

Texe(SL)
N3β

= max
(1− x

N
,
x

N

)
+ max

(1− x
c

,
rx

c

)
(5.16)

And the updated Square Corner execution time is given by,

Texe(SC)

N3β
= max

(
max

(
max

(2s− 2s2

N
,
2s2

N

)
,
(1− s)2

c

)
+

2(s− s2)
c

,

max
(2s− 2s2

N
,
2s2

N

)
+
s2r

c

)
(5.17)

The Optimal Size of s for PCO. As with the SCO algorithm, the
amount of the matrix assigned to Processor P in the Square Corner shape is
increased to account for the “jumpstart” that Processor P gets on computing
its portion of the matrix. The optimal size to set the square of Processor S,
s, is found by examining the five constituent functions which make up the
maximum execution time function for this shape.
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y1 =
2s− 2s2

N
+ 2

(s− s2)
c

: (vP → vS) + (P2 + P3) (5.18)

y2 =
2s2

N
+ 2

(s− s2)
c

: (vS → vP ) + (P2 + P3) (5.19)

y3 =
(1− s)2

c
+ 2

(s− s2)
c

: P1 + (P2 + P3) (5.20)

y4 =
2s− 2s2

N
+
rs2

c
: (vP → vS) + S (5.21)

y5 =
2s2

N
+
rs2

c
: (vS → vP ) + S (5.22)
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Figure 5.5: Graph of Equations 5.11, 5.12, and 5.13, the three possible func-
tions to dominate the maximum function for execution time of the Square
Corner shape using the Parallel Communication with Overlap algorithm. In
this example, problem size N = 3000, Processor ratio r = 3, and computa-
tion/communication ratio c = 100.

Both (5.18) and (5.19) are less than (5.20) on the interval {0, 1√
2
}, and

can be safely ignored. Of the remaining 3 equations, (5.20) is concave down
and both (5.21) and (5.22) are concave up on the interval. The optimal value
of s, the minimum, is therefore at the intersection of (5.20), and whichever
other function dominates. For s < 1

2
, (5.21) dominates and for s > 1

2
(5.22)

dominates. It will be shown in the next section that the Square Corner shape
is optimal for ratios greater than 2 : 1 when using parallel communication.
Ratios less than and equal to 2 : 1, will have s values greater than 1

2
, so

the optimal value of s for the comparison is at (5.20) ∩ (5.22), which will
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give the Square Corner the optimal s value when facing the Straight Line on
homogeneous systems.

(5.20) ∩ (5.22)

(1− s)2

c
+ 2

(s− s2)
c

=
2s2

N
+
rs2

c

s =
1√

r + 1 + 2c
N

Parallel Interleaving Overlap

For any given step k, the total amount of data being sent using this algorithm
on a Square Corner partition will be s. The execution time of the Square
Corner partition is given by,

Texe(SC) = 2sβ + (N − 1) ∗max
(

2sβ,
N2 − s2

SP
,
s2

SS

)
+ max

(N2 − s2

SP
,
s2

SS

)
(5.23)

Similarly, we may use this algorithm for the Straight-Line partitioning,
where the amount of data sent at each step k will be N . We define the
execution time of the Straight-Line partitioning to be given by,

Texe(SL) = Nβ+(N−1)∗max
(
Nβ,

N(N − x)

SP
,
Nx

SS

)
+max

(N(N − x)

SP
,
Nx

SS

)
(5.24)

5.3 Optimal Two Processor Data Partition

The optimal two processor matrix multiplication shape is the Square Corner
when the processor power ratio is

• greater than three to one (3 : 1) for SCB and PIO algorithms

• greater than two to one (2 : 1) for PCB algorithm

• for all ratios for SCO and PCO algorithms

For all other ratios the Straight Line shape is the optimal. These results
were previously published in [57]. The proofs for these claims follow.
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Serial Communication with Barrier

Theorem 5.3.1 (2 Processor MMM - SCB). For matrix multiplication with
two processors, using the Serial Communication with Barrier algorithm, the
Square Corner partition shape is optimal for all computational power ratios,
r, greater than 3 : 1, and the Straight Line partitioning is optimal for all
ratios less than 3 : 1.

Proof. The Straight-Line partitioning shape has constant total volume of
communication, always equal to N2. The Square-Corner partitioning shape
has a total volume of communication equal to 2Ns. We state that 2Ns < N2

subject to the conditions N, s > 0. The optimal value of s is given by
s = N√

r+1
. Substituting this in, yields:

2N2

√
r + 1

< N2

2 <
√
r + 1

4 < r + 1

r > 3

Therefore, the Square Corner shape is optimal for all r > 3 : 1, and the
Straight Line shape is optimal for all r < 3 : 1.

Parallel Communication with Barrier

Theorem 5.3.2 (2 Processor MMM - PCB). For matrix multiplication with
two processors, using the Parallel Communication with Barrier algorithm, the
Square Corner partition shape is optimal for all computational power ratios,
r, greater than 2 : 1, and the Straight Line partition shape is optimal for all
ratios less than 2 : 1.

Proof. For all power ratios, the communication volume for the Straight Line
partition shape is N2−Nx, where x is the dimension of Processor S’s portion
and is given by x = N

r+1
. The total volume of communication for Square

Corner partitioning depends on whether communication from P to S, V P =
2Ns − 2s2 or Ss to P , V S = 2s2, dominates. V P > V S when r > 3 :
1. Therefore, we compare Square Corner’s V S to Straight Line. For the
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conditions N, s, x > 0:

N2 −Nx < 2s2

N2 −N N

r + 1
< 2(

N√
r + 1

)2

N2 − N2

r + 1
< 2

N2

r + 1

r < 2

Serial Communication with Overlap

Theorem 5.3.3 (2 Processor MMM - SCO). For matrix multiplication with
two processors, using the Serial Communication with Overlap algorithm, the
Square Corner partition shape is optimal, with a lower total execution time
than the Straight Line partition shape, for all processor power ratios.

Proof.

Straight-Line Execution > Square-Corner Execution

1

N
+

1− x
c

>
(1− s)2

c
+ 2

s− s2

c

s2 > x− c

N

(

−c
N

+
√

c2

N2 + r + 1

r + 1
)2 >

1

r + 1
− c

N

(
−c
N

+

√
c2

N2
+ r + 1)2 > (r + 1)− c

N
(r + 1)2

c2

N2
− 2c

N

√
c2

N2
+ r + 1 +

c2

N2
+ r + 1 >

r + 1− c

N
(r + 1)2

2c

N
+ (r + 1)2 > 2

√
c2

N2
+ r + 1

4c

N
(r + 1)2 + (r + 1)4 > 4(r + 1)

4c

N
+ r3 + 3r2 + 3r > 3

(always positive for c,N ≥ 0) + (> 3 for r ≥ 1) > 3

SL has a greater execution time for all c,N ≥ 0 and r ≥ 1
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Therefore, by taking advantage of the overlap-ready layout of the Square
Corner partition shape, the Square Corner shape is optimal for all processor
power ratios for two processors.

Parallel Communication with Overlap

Theorem 5.3.4 (PCB). For matrix multiplication with two processors, using
the parallel communication with overlap algorithm, the Square Corner parti-
tion shape is optimal, having a lower total execution time than the Straight
Line partition shape for all processor power ratios.

Proof. The Straight Line partition shape has 4 functions which make up the
execution time, of which only two dominate when x < 1

2
, which must always

be true (as slower processor is always called S). Of these two functions, one
is of negative slope, and the other of positive slope, so the minimum on the
interval is at their intersection. Again, this intersection is at x = 1

r+1
.

Straight Line Execution > Square Corner Execution

1

N
− x

N
+

1− x
c

>
1− s2

c

s2 +
c

N
> x+

cx

N
1

r + 1 + 2c
N

+
c

N
>

1

r + 1
+

c

N(r + 1)

1 +
c(r + 1 + 2c

N
)

N
>
r + 1 + 2c

N

r + 1
+
c(r + 1 + 2c

N
)

N(r + 1)

cr2

N
+
cr

N
+

2c2r

N2
>

2c

N

(r + 1− 2

r
) > (−2c

N
)

( is ≥ 0 when r ≥ 1) > ( is < 0)

Therefore, for all c,N > 0 and r ≥ 1, the Square-Corner partitioning shape is
optimal when taking advantage of the communication/computation overlap
on the faster processor.

Parallel Interleaving Overlap

Theorem 5.3.5 (PIO). For matrix multiplication with two processors, using
the Parallel Interleaving Overlap algorithm the Square Corner partition shape
is optimal for computational power ratios, r, greater than 3 : 1, and the
Straight Line shape is optimal for ratios less than 3 : 1.
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Proof. These equations can be given the same treatment as previously in
the SCO and PCO algorithms, removing the constant N3β and normalising
x, s to x

N
and s

N
respectively. First we consider the values of c for which the

communication time dominates. This occurs at c > N(1−x) for the Straight
Line shape and c > N

2
(1
s
− s) for the Square Corner shape. When this occurs

the execution times may be given by,

Texe(SC)

N3β
=

2s

N
+

1− s2

c
(5.25)

Texe(SL)
N3β

=
1

N
+

1− x
c

(5.26)

Begin by stating that for the given optimal values of x and s, the Straight
Line execution time is greater than the Square Corner,

SL > SC

1

N
+

1− x
c

>
2s

N
+

1− s2

c

1

N
+

1− ( 1
r+1

)

c
>

2( 1√
r+1

)

N
+

1− ( 1√
r+1

)2

c

1 > 2(
1√
r + 1

)

r + 1 > 4

r > 3

Therefore, when c is such that communication time dominates, the Straight
Line shape is optimal for ratios less than 3 : 1, and the Square Corner shape
is optimal for ratios greater than 3 : 1.

However, when c is such that the computation time dominates the exe-
cution time, the formulas are,

Texe(SC)

N3β
=

2s

N2
+

1− s2

c
(5.27)

Texe(SL)
N3β

=
1

N2
+

1− x
c

(5.28)

Stating that for the given optimal values of x and s, the Straight Line shape
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has a greater execution time than the Square Corner shape,

SL > SC

1

N2
+

1− x
c

>
2s

N2
+

1− s2

c

1

N2
+

1− ( 1
r+1

)

c
>

2( 1√
r+1

)

N2
+

1− ( 1√
r+1

)2

c

1 > 2(
1√
r + 1

)

r + 1 > 4

r > 3

Therefore, when c is such that computation time dominates, Straight Line
is optimal for ratios less than 3 : 1 and Square Corner is optimal for ratios
greater than 3 : 1.

5.4 Experimental Results

These theoretical claims of optimality can be verified and reinforced by ex-
perimental data. Due to the previous work by [52, 53] regarding the Square
Corner partition shape for two processors, a wealth of experimental data
exists to conclude that the optimal shape conforms to the theoretical pre-
diction. Additional results, as first published in [57], for each of the matrix
multiplication algorithms, are discussed here.

5.4.1 Experimental Setup

The Square Corner and Straight Line partition shapes were implemented
using C and MPI, with local matrix multiplications completed using AT-
LAS [61]. All experiments were conducted on two identical processors, with
heterogeneity created between the two nodes by using a program to limit
available CPU time on a single node. This program, cpulimit [62], forces
the relevant process to sleep when a specified percentage of CPU time has
been reached using the /proc filesystem (the same information available to
programs like top). The process is awoken when a suitable amount of time
has passed, and runs normally. This tool provides a fine grained control over
the CPU power available on each processor.

The results in this section were achieved on two identical Dell Poweredge
750 machines with 3.4 Xeon processors, 1 MB L2 cache and 256 MB of RAM.
It is important to note that because heterogeneity is achieved by lowering
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the capacity of a single processor, the higher the ratio, the lower the overall
computational power of the system.

5.4.2 Results by Algorithm

Serial Communication with Barrier

The expected result, when using the Serial Communication with Barrier algo-
rithm, is that the Square Corner will be superior for processor ratios greater
than 3 : 1, while the Straight Line shape is superior for ratios less than
3 : 1. The theoretical curves of both shapes, representing volume of commu-
nication, can be seen in Figure 5.6. The Straight Line shape has a constant
volume of communication (for a given problem size) regardless of power ratio,
while the Square Corner shape is decreasing as the power ratio increases.

Processor Ratio

Figure 5.6: Straight Line and Square Corner theoretical communication time
using the SCB algorithm.

Experimental results were obtained for both the Square Corner and Straight
Line shapes for computational power ratios, r, from 1 to 25, as show in Fig-
ure 5.7. These results confirm the validity of the model, conforming well
to the expected shape, with the communication times crossing at r = 3.
Although experimental results for N = 3000 are shown, the ratio at which
Square Corner is superior to Straight Line is not dependant on the size of the
matrix. Additionally, note that as the level of heterogeneity increases (with
the computational ratio headed towards 25 : 1) the Square Corner continues
to decrease it’s necessary computation (as the size of the square decreases).
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Figure 5.7: Experimental results of the Straight Line and Square Corner
shape serial communication time, using the SCB algorithm, in seconds by
computation power ratio. N=3000.

Parallel Communication with Barrier

For the Parallel Communication with Barrier algorithm, the theoretical re-
sults suggest that the Square Corner shape is optimal for power ratios greater
than 2 : 1, as shown in Figure 5.8.
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Figure 5.8: The theoretical prediction of Square Corner and Straight Line
parallel communication times using the PCB algorithm.

The experimental results for ratios, r, from 1 to 25 are shown in Figure
5.9. As expected for small ratios of computational power, the Straight Line
partition shape is optimal. As the ratio grows, the communication time
drops significantly for the Square Corner shape, and it becomes the optimal
solution.
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Figure 5.9: The experimental Square Corner and Straight Line parallel com-
munication times, using the PCB algorithm, in seconds by computational
power ratio. N=3000.

Serial Communication with Overlap

Under the Serial Communication with Overlap algorithm, the Square Corner
is predicted to have a lower execution time for all computational power ratios,
r, which is confirmed by the experiments. The focus should be on the ratios,
r < 3 : 1, that were previously optimal for the Straight Line shape. However,
allowing the Square Corner to take advantage of the portion available for
computational overlap, makes it optimal for ratios of r < 3 : 1, as seen in
Figure 5.10.
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7.5 

1  2  3 

Straight‐Line Execu8on Time 

Square‐Corner Execu8on Time 

Figure 5.10: Experimental execution times for the Square Corner shape and
the Straight Line shape, using the SCO algorithm, for small ratios r < 3 : 1,
in seconds by computational power ratio. N=3000.

For those ratios, r > 3 : 1, in which the Square Corner was the optimal
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for the SCB algorithm, the amount by which it is superior to the Straight
Line shape increases with the SCO algorithm, as seen in Figure 5.11.

8.4 

8.9 

9.4 

9.9 

4  6  8  10  12  14  16  18  20  22  24 

Straight‐Line Execu9on Time 

Square‐Corner 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Figure 5.11: Experimental Square-Corner and Straight-Line execution times,
using SCO, for large ratios r > 3 : 1, in seconds by power ratio. N=3000.

Parallel Communication with Overlap

The theoretical results predict that the Square Corner shape should be opti-
mal for all power ratios when using the Parallel Communication with Overlap
algorithm. Recall, when using PCB, the Straight Line is optimal for ratios
two and under by a significant margin. Using PCB on the Square Corner par-
tition shape has closed that gap. In Figure 5.12, the result for ratios r ≤ 3 : 1
are shown. The parallel communication aspect of the PCO algorithm gives
less time to compute the overlapped portion, therefore it would be expected
that less speedup can be gained while using PCO than SCO. However, using
PCO, the Square Corner partition still manages to outperform the Straight
Line. As the ratio increases between the two processors, the benefit of over-
lapping communication and computation becomes more marked. In Figure
5.13, the results from r ≥ 4 : 1 show the Square Corner shape outperforming
the Straight Line as expected.

Parallel Interleaving Overlap

The experimental results for the Parallel Interleaving Overlap algorithm sup-
port the theoretical results which state that the Square Corner partition
shape has a lower execution time for power ratios, r > 3. For ratios smaller
than that, the Straight Line partition shape has the lower execution time.
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Figure 5.12: Experimental Square Corner and Straight Line shape execu-
tion times, using the PCO algorithm, for ratios r ≤ 3 : 1 in seconds by
computational power ratio. N=3000.
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Figure 5.13: Experimental Square Corner and Straight Line shape execu-
tion times, using the PCO algorithm, for ratios r ≥ 4 : 1 in seconds by
computational power ratio. N=3000.
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Figure 5.14: Experimental Square Corner and Straight Line shape execution
times, using the PIO algorithm, when the communication-computation ratio,
c, is such that computation dominates for all ratios, in seconds by computa-
tional power ratio. N=3000. The two partition shapes are equivalent.
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Figure 5.15: Experimental Square Corner and Straight Line shape execu-
tion times, using the PIO algorithm, when the communication-computation
ratio, c, is such that communication dominates for all ratios, in seconds by
computational power ratio. N=3000. The Straight Line partition shape is
optimal for power ratios, r, less than 3 : 1, and Square Corner is optimal for
power ratios, r, greater than 3 : 1.

58



Chapter 6

The Push Technique Revisited:
Three Processors

Extending the Push Technique to three processors requires additional rules,
as compared to two processors, which govern the Push in order to maintain
the guarantee that the volume of communication, and thereby the time of
execution, will not be increased. This section will describe these additional
constraints on the three processor Push, and describe the software tool nec-
essary to carry it out.

6.1 Additional Push Constraints

In a three processor Push operation, the movement of the inactive (i.e. not
being Pushed) processors must be considered. An inactive processor may
not be assigned an element outside its enclosing rectangle, or in a row and
column which does not already contain elements of that processor. There
exists six distinct ways this may occur for Processors P , R, and S. Recall
that the volume of communication of any data partition shape q is given by,

VoC =
N∑
i=1

N(ci − 1) +
N∑
j=1

N(cj − 1) (6.1)

ci −# of processors assigned elements in row i of q
cj −# of processors assigned elements in column j of q

For clarity, these sections will refer to removing a processor entirely from
some row or column, leaving the processor assigned to no elements in that row
or column, as cleaning that row or column of that processor. The addition of
a processor to a row or column in which it did not previously own an element
is referred to as dirty ing that row or column with that processor.
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These descriptions assume the chosen input to the Push DFA is a Push
Down (↓) on Processor R, but are similar for other directions and Push
operations on Processor S.

Type One - Decreases Volume of Communication

For each element assigned to Processor R in rtop, Processor R is assigned
an element in the below rows and columns already containing elements of
Processor R.

For each element which has been reassigned to R, the Processor previously
assigned that element is given some unassigned element (rtop, j). Prior to the
Push, this Processor must have already had an element in row rtop and in
column j.

Type Two - Decreases Volume of Communication

For each element assigned to Processor R in rtop, Processor R is assigned
an element in the rows below. Elements may go to some number, l, of rows
and columns which did not already contain elements of Processor R, dirty ing
those rows and columns, if l or more rows and columns are also cleaned of
R.

For each element which has been reassigned to R, the Processor previously
assigned that element is given some unassigned element (rtop, j). Prior to the
Push, this processor must already have had an element in row rtop and in
column j.

Type Three - Decreases Volume of Communication

For each element assigned to Processor R in rtop, Processor R is assigned
an element in the rows and columns below that already contain elements of
Processor R.

For each element which has been reassigned to R, the Processor previously
assigned that element is given some unassigned element (rtop, j). Prior to the
Push, it is not necessary for this Processor to have had an element in rtop
or j, provided the number of rows and columns dirtied, l, is less than the
number of rows and columns cleaned.

Type Four - Decreases Volume of Communication

For each element assigned to Processor R in rtop, Processor R is assigned an
element in the rows below. Elements may go to some number of rows and
columns, l, which did not already contain elements of Processor R, dirtying
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those rows and columns, if l or more rows and columns are also cleaned of
R.

For each element which has been reassigned to R, the Processor previously
assigned that element is given some unassigned element (rtop, j). Prior to the
Push, it is not necessary that this Processor have already had an element in
rtop or j, provided the number of rows and columns dirtied, l, is less than the
number of rows and columns cleaned.

Type Five - Unchanged Volume of Communication

For each element assigned to Processor R in rtop, Processor R is assigned an
element in the rows below. A single row or column not containing elements
of Processor R may be dirtied.

For each element which has been reassigned to R, the Processor previously
assigned that element is given some unassigned element (rtop, j). Prior to the
Push, this Processor must have been assigned an element in row rtop and in
column j.

Type Six- Unchanged/Decrease Volume of Communication

For each element assigned to Processor R in rtop, Processor R is assigned an
element in the rows below. A single row or column not containing elements
of Processor R may be dirtied.

For each element which has been reassigned to R, the Processor previously
assigned that element is given some unassigned element (rtop, j). Prior to the
Push, it is not necessary that this Processor have had an element in rtop or
j, provided the number of rows and columns dirtied, l, is less than or equal
to the number of rows and columns cleaned.

6.2 Implementing the Push DFA

In order to show that the three processor Push always converges on some
small set of candidates, the DFA was implemented as a software tool. This
section describes the design and implementation of the tool, as well as the
practical outcomes of its use.

6.2.1 Motivation

Generally, when proving mathematical concepts, the grand idea is already
fixed in mind, and equations are tools used to convince others of the veracity
of the big idea. The more complex nature of the three processor Push does
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not lend itself to a simple mathematical proof for the simple reason that the
final result, the candidate shapes, are too numerous and varied to be easily
guessed ahead of time. Despite much consideration, the number of permu-
tations and possibilities for the direction and order of the Push operations
performed, are too difficult to categorise effectively by hand. However, the
output, the candidate shapes, must still be found! Moreover, these shapes
are only considered the full set of candidate shapes if it can be shown that
no other partition shapes are output. The DFA is designed to allow us to
consider ourselves certain that all possible candidates have been found.

6.2.2 Algorithmic Description

As an example, this portion will discuss a Push Down (↓) on active Processor
R, but the other directions are similar.

Formally, Push Down (↓)φ(R) = φ1 where,

Initialise φ1 ← φ
(g, h)← (rtop + 1, rleft)
for j = rleft → rright do

if φ(rtop, j) = 0 then
{Element is dirty, clean it}
(g, h)← find (g, h) {Function defined below}
if φ(g, h) = 1 then
φ1(rtop, j)← 1 {Cleaned element assigned to S}

end if
if φ(g, h) = 2 then
φ1(rtop, j)← 2 {Cleaned element assigned to P}

end if
φ1(g, h)← 0 {Put displaced element in new spot}

end if
j ← j + 1

end for

The function find(g,h) searches for a suitable swap of elements according
to defined Push Types. This is the algorithm for finding a Type One Push,
the other Types are similar.

findTypeOne(g, h) {Look for a suitable slot to put element}
for g → rbottom do

for h→ rright do
if φ1(g, h) 6= 0 && (row(φ, rtop, (φ1(g, h)) = 1 ‖ col(φ, j, (φ1(g, h)) =
1) && (row(φ, g, R) = 1 ‖ col(φ, h,R) = 1 then

return (g, h)
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end if
h← h+ 1

end for
h← kleft
g ← g + 1

end for
return φ1 = φ {No Type One Push↓ φ(R) possible}

6.2.3 End Conditions

In order to implement the Push, there must exist strictly defined conditions
under which a partition is considered fully Pushed. In the theoretical Push,
a partition is considered fully Pushed, or condensed, when the elements of no
processors, except the largest processor, may be legally moved in any Push
direction.

The implementation of the DFA program first determines the valid di-
rections of Push for a given processor in a given run. A partition is fully
condensed if there are no available Push operations in those predetermined
directions.

6.3 Experimental Results with the Push DFA

This section describes the use of the Push DFA to collect all possible candi-
date partition shapes for further analysis. The results of these experiments
were previously published in [63].

6.3.1 Experimental Setup

The size of the matrix chosen must be large enough to possess the granularity
of elements required to form a variety of shapes, and be considered represen-
tative of any value of N . However, the larger the matrix size N , the larger
the set of possible states, Q, and therefore more experimental runs are nec-
essary to appropriately cover them all. To balance these two requirements,
N = 1000 was chosen.

The processor ratios chosen for study were 2:1:1, 3:1:1, 4:1:1, 5:1:1, 10:1:1,
10:5:1, 10:8:1 2:2:1, 3:2:1, 4:2:1, 5:2:1, 5:3:1, 5:4:1. For each ratio, the DFA
implementation was run approximately 10,000 times. The DFA is not a sim-
ulation of actual matrix multiplication on parallel processors, but searching
for partition shapes which cannot be improved using the Push operation,
so it is designed to be run on a single processor. Multiple instances of the
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program were run on multiple processors to increase the speed at which data
was collected. The Push DFA was run on a small cluster of Dell Poweredge
750 machines with 3.4 Xeon processors, 256 MB to 1 GB of RAM, and 1 MB
of L2 cache.

Thoroughness of the Push DFA

As stated in Equation 4.1, the number of possible states for the DFA to pass
through is quite large. However, it is not necessary for the DFA to pass
through every state. It is sufficient for the DFA to pass through a subset
of states, way stations, which may be reached from all states via valid Push
operations. More formally, a state, q, has been “considered” if it is:

• a q0 for an experiment

• some state, qx, which an experiment passes through

• any state with a path of legal Push transition arrows leading to either
q0 or qx

This is shown in Figure 6.1.

Figure 6.1: The Push DFA drawn as a state diagram. The program be-
gins execution at q0, passes through states using the transition arrows (Push
operations) to reach a final accept state, q4. Each state q which is not on
this path, but which leads to this path via valid Push transitions, is also
considered.
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Randomising Push Direction

Part of the difficulty of searching for potentially optimal data partition shapes
is ensuring all possible shapes are considered. Preconceived notions about
what is likely to be optimal should not determine how the program searches
for these potentially optimal shapes. For each new starting state, the DFA
program selects a random number of directions (1, 2, 3 or 4) to Push the
active processor. The Push directions are then randomly selected. For exam-
ple, if 2 is selected as the number of directions, then Up and Left, or Down
and Left, and so forth, might be selected as Push directions. Finally, the
order of Push operations is randomly selected. In this way, quite disparate
cases are accounted for, such as one Push direction only, two Push directions
in which one direction is exhausted before the other begins, or four Push
directions where each Push direction is interleaved with the others.

Randomising q0

Before beginning the program, elements must be randomly dispersed (in
correct proportion) amongst Processors P , R, and S. This is accomplished
by the following procedure,

1. All elements are assigned to Processor P

2. Until the correct number of elements have been reassigned to R do:

• Pick random integer value for row, i

• Pick random integer value for column, j

• If (i, j) is assigned to R, do nothing and pick again

• If (i, j) is assigned to P , reassign to R

3. Until the correct number of elements have been reassigned to S do:

• Pick random integer value for row, i

• Pick random integer value for column, j

• If (i, j) is assigned to R or S, do nothing and pick again

• If (i, j) is assigned to P , reassign to S

6.3.2 Description of Shape Archetypes

The result of the experiments with the Push DFA was the creation of over
one hundred thousand possible candidate partition shapes. These results
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A B C D

Figure 6.2: The general partition shape archetypes found experimentally by
the Push DFA. Each shape archetype includes all possible shapes with the
same characteristics of overlap of enclosing rectangles, and number of corners
present.

were parsed and categorised according to two distinct metrics, the relative
position of the enclosing rectangles, and the number of corners present in
each processor’s shape. This resulted in four broad categories, called Shape
Archetypes, in which all shapes output by the DFA fit. These archetypes,
called A, B, C, and D, are shown in Figure 6.2.

Archetype A - No Overlap, Minimum Corners

In Archetype A partitions, the enclosing rectangles of Processors R and S
do not overlap. Processors R and S are each rectangular, possessing the
minimum number of corners (four). Processor P is assigned the remainder
of the matrix. Depending on the dimension and location of Processors R and
S, the matrix remainder assigned to Processor P may be either rectangular
or non-rectangular.

If Processor P is rectangular, the entire partition shape, q, is rectangular.
Otherwise, q is a non-traditional, non-rectangular shape. It is important
to note that although these two partition shape types seem disparate at
first glance, they are similar in their description of enclosing rectangles and
corners, and so are grouped together.

Archetype B - Overlap, L Shape

In Archetype B partitions, the enclosing rectangles of Processors R and S
partially overlap. One processor, as shown in Figure 6.2, is rectangular,
having four corners. The other processor has six corners, and is arranged in
an “L” shape adjacent to the rectangle shape of the first Processor. Processor
P is assigned the remainder of the matrix.
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Archetype C - Overlap, Interlock

In Archetype C partitions, the enclosing rectangles of Processors R and S
partially overlap. Neither processor has a rectangular shape. Each processor
has a minimum of six corners. Processor P is assigned the remainder of the
matrix, which may be rectangular or non-rectangular.

We note that in all experimentally found examples of Archetype C, if the
shapes of Processors R and S were viewed as one processor, they would be
rectangular.

Archetype D - Overlap, Surround

In Archetype D partitions, the enclosing rectangle of one processor, shown in
Figure 6.2 as Processor S, is entirely overlapped, or surrounded, by Processor
R’s enclosing rectangle. Processor S has four corners, while Processor R has
eight corners. Processor P is assigned the remainder of the matrix, which
may be rectangular or non-rectangular.

6.3.3 Reducing All Other Archetypes to Archetype A

This section proves that all Archetypes may be reduced to Archetype A
without increasing the volume of communication of any shapes within that
Archetype. To do this, first, the idea of corners previously alluded to will be
formally defined.

Defining Corners. A single processor, in partition shape q, has a corner
at some point (x, y) if both:

• the constant coordinate (x or y), along that edge, changes after (x, y)

• the variable coordinate (x or y), along that edge, becomes constant
after (x, y)

Each shape has four edges to consider, even if parts of each edge lie on
different rows or columns. Consider the example illustrated in Figure 6.3.
The sides of the matrix, beginning at the bottom and moving clockwise are
named x, y, z, and w.

In this example, the location of each corner A through J is given in
coordinate form by,
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Figure 6.3: Introduction to corner terminology on a simple 6×6 grid between
two processors. The various corners are labelled A through J, and edges
labelled w, x, y and z.

A = (0, 0) B = (6, 0) C = (0, 6) D = (6, 6)

E = (1, 1) F = (4, 1) G = (1, 4) H = (2, 4)

I = (2, 3) J = (4, 3)

In this example, consider the Processors to be P and S, with P in light
grey, and S in dark grey. The lines composing the edges, (x, y, z, w), are then
given by,

Pz = AB Pw = BD Px = CD Py = AC

Sz = EF Sw = FJ + IH Sx = GH + IJ Sy = EG

In this example, a corner must exist (on the right (w) or bottom (x) edge,
depending on your viewpoint. Specifically, Corner I exists because H 6= J .

Now this will be applied to a more general notation for all processors,
rather than continue to use arbitrary letters to denote corners.

68



Each processor, P , R and S, has a minimum of four corners. Each edge
is denoted using the notation Px1, Px2, Py1, Py2 and so on. This is shown in
Figure 6.4. When a shape has the minimum number of corners, then each
corner may be referred to by either of the two notations, i.e. Py1 = Pz1, Pz2 =
Pw1, Pw2 = Px2 and Px1 = Py2. Note that for vertical edges, y and w, points
are given top to bottom, and for horizontal edges, x and z, are given left to
right.

If, for a given processor, the edge points are not equal to their correspond-
ing adjacent edge points, then at least one extra corner must exist along those
two edges.

y 

x 

z 

w 
Rx1 

Rx2 

Rw2 

Rw1 

Px1 Px2 

Py1 

Py2 

Pz1 Pz2 
Pw1 

Pw2 

Figure 6.4: An Archetype B partition shape shown with the corner notation
for Processor R (in grey). Not all points are labeled, but all points follow the
pattern shown by points labeled for Processor P . Notice that Rw2 6= Rx2, so
at least one corner must exist.

Location of Processors R and S. If the enclosing rectangles of Proces-
sors R and S are moved in a “drag and drop” fashion, communication time
will not be increased, which will allow equivalency between different partition
shapes.

Theorem 6.3.1. In a partition among three heterogeneous processors, the
position of the two smaller processor shapes, within the context of the larger
matrix, does not affect the total volume of communication, if the position of
the two smaller shapes do not change relative to each other.

Proof. Consider the shapes of Processor R and S to be one continuous shape.
Their position relative to each other will not change, so moving this combined
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shape is analogous to moving a single small processor in a two processor
data partition. This is known not to increase the volume of communication
[57].

Reducing Archetype B to Archetype A

Theorem 6.3.2. Any Archetype B partition shape, q, may be transformed
into an Archetype A partition shape, q1, without increasing the volume of
communication of the shape.

Proof. Within Archetype B, there exist two possible, distinct layouts of data.
These are,

• combined width or height of the smaller processors is equal to N

• combined width and height of the smaller processors is less than N

These two possibilities are shown in Figure 6.5.

x x 

y w 

z z 

Figure 6.5: The two possible cases of an Archetype B partition shape. On
the left, the combined length of the two shapes is N , the full length of the
matrix. On the right, the combined length of the two shapes is less than N .

For both cases of Archetype B partitions, a Push-like transformation can
be applied to Processor R, the “L” shape, along one of the planes with the
extra corner. In Figure 6.5 this is either the x or w sides, so the elements
of Processor R may be moved in either the Back (←) or Up (↑) directions.
This is not strictly a Push operation, as the enclosing rectangle for R will be
expanded in one direction. However, because the enclosing rectangle is also
being diminished in another direction, the volume of communication does
not increase.
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In the first case, to move the elements of R, only one transformation
direction is available because the length N of the combined rectangles does
not allow room for additional swaps. In the example of Figure 6.5 the only
available direction is Back (←).

For each column transformed to remove elements of R, at most one col-
umn previously not containing R will have elements of R introduced. This
is assured, by definition, by virtue of the existence of the corner:

Rw1 → Rx2 < Ry1 → Ry2 (6.2)

where,

Rw1 → Rx2 = # of rows separating Rw1 and Rx2

Ry1 → Ry2 = # of rows separating Ry1 and Ry2

For the second case, the elements of R can be moved in either direction,
as the combined length of both shapes is less than N , and therefore rows
and columns exist in either direction into which elements of R can be moved.
The direction of the Push-like transformation is decided by choosing that
which requires the lower volume of elements to be moved. In example Figure
6.5, first use Theorem 6.3.1 to move the entire shape of Processors R and S
down in the matrix so that Sx2 = Px2, opening rows above Processor R so
elements may be moved in the Up (↑) direction.

For each row transformed to remove elements of R, at most one row
previously not containing R will have elements of R introduced. This is
assured by definition, by virtue of the existence of the corner:

Rx1 → Rw2 < Rz1 → Rz2 (6.3)

where,

Rx1 → Rw2 = # of rows separating Rx1 and Rw2

Rz1 → Rz2 = # of rows separating Rz1 and Rz2

For every row or column made dirty with R during these transformations,
a row or column must have, by definition been made clean of R, so volume
of communication is constant or decreasing.

Archetype C to Archetype A

Theorem 6.3.3. Any Archetype C partition shape, q, may be transformed
into a Archetype A partition shape, q1, without increasing the volume of com-
munication of the shape by applying the Push operation.
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Proof. By definition of this shape, valid Push operations remain, which if
applied will result in an Archetype A partition.

Archetype C is the only archetype formed by the DFA program on which
there are valid Push operations remaining. These form as a result of the
randomised Push direction algorithm, and is a necessary downside to truly
considering every possible partition shape without preconceived notions of
the final shape. Transforming partition shapes of this archetype is a simple
matter of applying the Push operation in the direction not selected by the
program.

In the program, these cases are handled by a “beautify” function to return
rectangular or asymptotically rectangular shapes, however Archetype C is
included here for comprehensiveness.

Archetype D to Archetype A

Theorem 6.3.4. Any Archetype D partition shape, q, may be transformed
into an Archetype A partition shape, q1, without increasing the volume of
communication of the shape

Proof. In [57] it was proven that for two processors, the location of the smaller
processor within the context of the larger matrix, does not effect the total
volume of communication.

Consider the surrounding processor, in figures Processor R, and the inner
processor, Processor S, to be a two processor partition in a matrix the size
of Processor R’s enclosing rectangle.

By [57] Theorem 3.4 Canonical Forms, move Processor S so that Rx2 =
Sx2.

An Archetype B partition has now been created from an Archetype D,
without increasing its volume of communication. By Theorem 6.3.2, it may
be further reduced to Archetype A.

6.4 Push Technique on Four or More Proces-

sors

The additional conditions introduced for Push on three processors are neces-
sary and sufficient for using the Push Technique on four or more processors.
Each inactive processor, including any arbitrarily large numbers of proces-
sors, must not,

• have its enclosing rectangle enlarged
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• make dirty a number of rows and columns, without cleaning an greater
or equal amount of rows and columns

However, as the number of processors increases, so does the likelihood
that some arbitrary shape will be found that cannot be improved upon by
the Push Technique. If the Push Technique were to regularly run into arbi-
trary arrangements of elements which are not true candidates, but which are
dead ends beyond which is cannot progress, would significantly hamper its
usefulness.

To accommodate this problem, a larger matrix size could be used to in-
crease the granularity of the experimental runs. In this way, it is foreseeable
that the Push Technique can be experimentally expanded to six, eight, or
even ten abstract processors. And as an abstract processor can actually rep-
resent myriad computing resources, if the Push Technique is used at varying,
hierarchical levels, there should be no limit to the number of processors it can
be applied to. While this is outside the scope of this thesis, it does present
exciting possibilities which are discussed further in Chapter 10.
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Chapter 7

Three Processor Optimal
Partition Shape

The next step in using the Push Technique is to find the optimal data par-
tition for three processors, building on the work done with two processors.
The Push DFA provides motivation for this postulate:

Postulate 1 (Three Processor Push). There exists no arrangement of el-
ements among three heterogeneous processors in an N × N matrix which
cannot be improved with the Push operation, except those arrangements of
shapes defined as Archetypes A, B, C, and D.

As it was shown in Chapter 4, the optimal shapes must lie within Archetype
A, as all other Archetypes may be reduced to it without increasing commu-
nication volume. This chapter will evaluate all the possible shapes within
the Archetype A to determine the optimal partition shape for all compu-
tational power ratios, four different network topologies, and the five matrix
multiplication algorithms.

7.1 Archetype A: Candidate Shapes

A wide variety of partition shapes exist within Archetype A. All of these
shapes may be further categorised into six partition shape types. The can-
didate partition types included under Archetype A, found experimentally by
the Push DFA, are seen in Figure 7.1. In all six, Processors R and S are as-
signed rectangular portions of the matrix to compute. These rectangles vary
in length from, at the longest, N to, at the shortest,

√
#X, i.e. the side of a

square containing all the elements of Processor X. Processor P is assigned a
rectangular portion in three of the shape types, and non-rectangular portion
in the remaining three types.
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1 2 3 

4 5 6 

Figure 7.1: The six candidate partition types found under Archetype A.
Confirmed experimentally using the Push DFA.

Each shape type is representative of all shapes matching the same gen-
eral description (in terms of enclosing rectangles and corners). The location
within the matrix for each rectangle assigned to Processors R and S may
be different than shown, and is a factor to consider when determining the
canonical form of each partition shape type.

In the following sections each of the partition shape types is formally
defined to describe which parts are fixed and which may be changed to create
a valid partition shape of the same type. However, it is important to note
that it is not true to assert that all valid partition shapes of the same type
are necessarily equivalent. Indeed, the next section defines the canonical,
“best version”, of each candidate type.

7.1.1 Formal Definition of Candidate Shapes

Listed here are the fixed points in the definition of each type. If a dimension
or a relative location is left unspecified, that dimension may have any value
from zero to the size of the matrix, N . A shape is considered rectangular if all
processors are assigned a single rectangular portion of the matrix to compute.
Shapes in which a single processor is assigned two or more rectangles to
compute are non-rectangular.

ProcessorsR and S will be referred to as having the dimensionsRwidth, Rlength

and Swidth, Slength respectively. The value of Rwidth is derived from the dis-
tance between points Rx1 and Rx2 described in Section 6.3.3. The value of
Rlength is the distance between points Ry1 and Ry2. The values Swidth and
Slength are derived in the same manner.
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A partition shape falls under the given type if it fulfils the listed criteria
or can be rotated to meet the criteria. For all types R and S are rectangular
so, Rwidth ×Rlength = #R and Swidth × Slength = #S.

Type One

Rwidth + Swidth < N
Rlength < N
Slength < N

Type Two

Rwidth + Swidth = N
Rlength < N
Slength < N
Rlength 6= Slength

Type Three

Rwidth + Swidth < 1
Rlength < N
Slength = N

Type Four

Rwidth + Swidth = N
Rlength < N
Slength < N
Rlength = Slength

Type Five

Rwidth + Swidth = N
Rlength < N
Slength = N

Type Six

Rwidth + Swidth < N
Rlength = N
Slength = N
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7.1.2 Finding the Canonical Version of each Shape

Each of the candidate partition types has some leeway for difference either in
the dimensions of rectangles R and S or in their location within the matrix.
The best, canonical version of each shape type will be one which minimises
communication time, within the given constraints of that shape. To accom-
plish this, the combined perimeters of rectangles assigned to Processors R
and S is minimised, as the sum of half perimeters is a metric of volume of
communication [28, 52, 54].

For the following proofs the size of the matrix is normalised to N = 1,
and the total computational power of the three processor system is defined
by,

T = Pr +Rr + Sr (7.1)

Splitting Type One (Square Corner and Rectangle Corner)

The Type One candidate partition shape is composed of two rectangles, each
of width and length less than 1. The minimum perimeter of a rectangle of
fixed area occurs when width and height are equal, i.e. when the rectangle is
a square. However, it may not always be possible to form two non-overlapping
squares in an 1×1 matrix, even if the locations are fixed such that: Ry1 = Py1
and Sx2 = Px2 (i.e. when the two squares are pulled to opposite corners).

Theorem 7.1.1. The rectangles formed by Processors R and S may both be
squares when Pr > 2

√
Rr.

Proof. The volume of elements assigned to each processor is equal to the
Processors’ ratio divided by the sum of the ratios, and multiplied by the
total volume of elements in the matrix. The volume of elements assigned to
each of the Processors, P , R and S, are Pr

T
, Rr

T
, and 1

T
, respectively. Assuming

that both Processors R and S are squares, then the length of their sides will

be
√

Rr

T
and

√
1
T

respectively. In order for the squares to fit in the 1 × 1

matrix without overlapping, √
Rr

T
+

√
Sr
T
< 1

Rr + 2
√
RrSr + Sr < T

2
√
Rr < Pr
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For those ratios where Pr < 2
√
Rr, and two squares may not be formed,

the optimal shape which still conforms to the Type One criteria must be
found. This requires minimising the following function,

f(x, y) = 2
(Rr

Tx
+ x+

Sr
Ty

+ y
)

(7.2)

under the constraints,

0 <
Rr

xT
< 1

0 <
Sr
yT

< 1

x+ y < 1

The slope of the surface bounded by these constraints is increasing with x
and y. Indeed the derivative of Equation 7.2 is positive, indicating it is
increasing. To find the minimum of (7.2) then, it is necessary to search along
the lower bound, where x+ y ≈ 1.

Knowing the solution lies along this bound, Equation (7.2) may be rewrit-
ten as a function of x, and its derivative set equal to zero to solve for x. This

gives x = −
√
R−R
R−1 . Therefore, for ratios such that Pr < 2

√
Rr, the optimal

shape is two non-square rectangles R and S of combined width of approxi-
mately 1, but less than 1 by definition. The two optimal versions of Type
One partitions can be seen in Figure 7.2.

A B 

Figure 7.2: On the left is a Type 1A partition shape, the Square-Corner, with
Processors R and S each formed into a square. On the right is a Type 1B
partition shape, the Rectangle-Corner, showing two non-square rectangles.

Combining Type Two and Four (Block Rectangle)

Partition shape Types Two and Four are similar, but Type Four is more
rigid. In a Type Four partition, both dimensions of both rectangles R and S
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1 2 3 4 5 6

Figure 7.3: The candidate partition shapes identified as potentially optimal
three processor shapes. Processors P,R, and S are in white, grey, and black,
respectively. (1) Square Corner (2) Rectangle Corner (3) Square Rectangle
(4) Block 2D Rectangular (5) L Rectangular (6) Traditional 1D Rectangular

are fixed, and only their relative location in the matrix may be altered. In
Type Two, the total width of R and S is fixed, but the relative dimensions
may change. A Type Two partition is improved, lowering the volume of
communication, by transforming it into a Type Four partition by changing
the relative widths so that Rheight = Sheight. The canonical form of the Type
Four partition, the Block Rectangle, is shown in Figure 7.3, with Ry1 = Py2
and Sx1 = Rx2.

As the Type Two is now obsolete, the Types 1A and 1B may be called
Types 1 and 2, respectively.

Type Three (Square Rectangle) Canonical Form

The Type Three partition has a rectangle of height N , and therefore of fixed
width. The second rectangle is unfixed in both dimensions, and as previously
asserted, the optimal shape for a rectangle on length and width less than N
is a square. It is possible to form a square and a rectangle for all ratios
Pr : Rr : 1. The canonical form of the Type Three partition, the Square
Rectangle, is shown in Figure 7.3, with Rx1 = Sx2 and Sw1 = Px2.

Type Five (L-Rectangle) and Type Six (1D Rectangle) Canonical
Form

In both Type Five and Type Six partitions, the height and width of both pro-
cessors R and S are fixed, and only their relative position within the matrix
may be changed. For Type Five, the L-Rectangle partition, the coordinates
Sy1 = Py2 and Sx2 = Rx1 are fixed. In Type Six partitions, the 1D Rectangle
is set so Px2 = Sx1 and Sx2 = Rx1, as seen in Figure 7.3.
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7.2 Network Topology Considerations

There are two distinct network topologies in which three processors may be
arranged, the fully connected ring or the star topology. In the fully connected
topology each of the three processors has a direct communication link to all
other processors, as seen in Figure 7.4.

P 

R S 

β 

β 

β 

Figure 7.4: The Fully Connected Topology for three processors P,R, and S.

The star topology involves a single processor at the centre, with the other
two processors with a direct communication link only to that processor. How-
ever, there are three distinct variations of the star topology, depending on
which processor, P,R, or S, is the centre processor. These three variations
of the star topology are seen in Figure 7.5.
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R S 

β 

β 

P 

R S 

β β 

P 

R S 
β 

β 

Figure 7.5: The Star Topology for three processors P,R, and S. In each
variation, a different processor is at the centre of the star, giving different
communication characteristics in the model.

As the fully connected topology has links between all processors, the
parallel communication algorithm is straightforward. However, for the star
topology it is worth discussing how this will be modelled. For example,
consider star topology variant one, with P at the centre of the star. First
consider all data flowing left to right, the volumes of which are called R→ P
and P → S, for the volume of data R must send to P , and P must send to
S, respectively. Any data, R→ S, that R must send to S, will be sent after
R→ P , and only forwarded on by P after P → S is sent.
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(R→ P ) + (R→ S)

(P → S)
+(R→ S)

Processor P can only forward the message of size (R → S) to Processor
S after it has been both received by P , and P has finished sending its own
data to S. Similarly, data flows in parallel in the opposite direction such
that,

(S → P ) + (S → R)

(P → R)
+(S → R)

This can be written as a function of maximums such that,

Tcomm = βmax
(

max
(
(R→ P ) + (R→ S), (P → S)

)
+ (R→ S),

max
(
(S → P ) + (S → R), (P → R)

)
+ (S → R)

)
The other star topology variants are modelled in similar fashion.

7.3 Fully Connected Network Topology

The optimal partition shape must be among one of the six candidate par-
titions. First, this section will focus on eliminating those shapes which are
never the optimal under any circumstances. Then the remaining candidates
(Square Corner, Square Rectangle, and Block Rectangle) are evaluated to de-
termine for what system characteristics each is the optimal three processor
fully connected shape.

7.3.1 Pruning the Optimal Candidates

It is possible to eliminate three candidate shapes from contention for the
optimal shape.

Theorem 7.3.1 (Three Candidates). The three partition shapes known as
Rectangle Corner, L Rectangle and Traditional Rectangle, have a higher theo-
retical volume of communication than the Block Rectangle shape. The optimal
shape must be among the remaining three candidate shapes, Block Rectangle,
Square Rectangle and Square Corner.

The following subsections will prove that Rectangle Corner, L Rectangle,
and Traditional Rectangle each have a higher volume of communication than
Block Rectangle.
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Rw 

Rh 

Sw 

Sh h 

N 

Figure 7.6: The Rectangle Corner, left, and the Block Rectangle, right, par-
tition shapes shown in canonical form for processor ratio 2 : 2 : 1.

Discarding Rectangle Corner

The Rectangle Corner shape is formed when the volume of elements assigned
to Processors R and S is too large to form a Square Corner partition shape.
In this case, when Pr < 2

√
Rr, the optimal size of these non-square rectangles

is a combined width of N [63]. However, as a derivative of the Type One
shape, the Rectangle Corner must be composed of two rectangles of width
and height less than N as shown in Figure 7.6. By definition the Rectangle
Corner has dimensions such that,

Rw < N Rh < N Sw < N Sh < N

Rw + Sw < N Rh + Sh > N

As previously stated, the optimal size of R and S would be combined width
N , which is not legal. Alternatively, set Rw + Sw = (N − 1), and with this
system of equations create the following theorem,

Theorem 7.3.2 (Rectangle Corner). The Rectangle Corner partition shape
has a larger volume of communication than the Block Rectangle partition
shape for all ratios of computational power.

Proof. Given the taxonomy in Figure 7.6, the volume of communication for
Rectangle Corner and Block Rectangle shapes are given by,

VRC = N(Rw + Sw) +N(Rh + Sh) (7.3)

VBR = N2 +Nh (7.4)
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Rw Sw 

Sh 

Figure 7.7: The canonical form of the L Rectangular partition shape with
processor ratio 4 : 2 : 1.

Substitute Rw + Sw = (N − 1), and create the inequality given by,

BR < RC

N + h < N − 1 +Rh + Sh

h+ 1 < Rh + Sh

h ≤ Rh + Sh

By definition, Rh + Sh > N and h < N , so this is true.

Discarding L Rectangle

The L Rectangle partition shape, composed of an N height rectangle for
Processor R and a rectangle for Processor S such that the combined width
of S and R is N , can be seen in Figure 7.7. The width, Sw, of Processor S
is given in terms of the known fixed width of Processor R.

VLR = N2 +NSw (7.5)

Sw = N − RrN

T

Theorem 7.3.3 (L Rectangle). The L Rectangle partition shape has a vol-
ume of communication larger than or equal to the Block Rectangle partition
shape for all processor ratios.

Proof. Note that h can be expressed as a function of the number of elements
assigned to Processor P such that, h = N − PrN

T
. Begin by stating the
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inequality,

BR ≤ LR

N2 +Nh ≤ N2 +NSw

N
(
N − PrN

T

)
≤ N

(
N − RrN

T

)
−Pr
T
≤ −Rr

T
Rr ≤ Pr

That Pr ≥ Rr is a problem constraint, so this must always be true. The
L Rectangle has greater or equal volume of communication than the Block
Rectangle for all valid processor ratios.

Discarding Traditional Rectangle

Theorem 7.3.4 (Traditional 1D Rectangle). The Traditional 1D Rectangle
partition shape has a larger volume of communication than the Block Rect-
angle partition shape for all processor ratios.

Proof. The volume of communication for the Traditional 1D Rectangle shape
is given by,

VTR = 2N2 (7.6)

Setting the inequality with Equation 7.4 gives,

BR < TR

N2 +Nh < 2N2

N + h < 2N

h < N

By definition, h < N , so this is true.

7.3.2 Optimal Three Processor FC Data Partition

The optimal data partition shape for three fully connected processors is al-
ways one of three shapes, the Square Corner, the Square Rectangle, or the
Block Rectangle. Of these three, the first two are non-rectangular, but non-
rectangular in different ways which make each suited to a different type of
heterogeneous distribution of computational power.

In general these results show that,
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• Square Corner is the optimal shape for heterogeneous systems with a
single fast processor, and two relatively slow processors

• Square Rectangle is the optimal shape for heterogeneous systems with
two fast processors, and a single relatively slow processor

• Block Rectangle is the optimal shape for heterogeneous systems with
a fast, medium, and slow processor, as well as relatively homogeneous
systems

A full summary of the optimality of each shape for all algorithms is given
in Table 7.1.

These results are to be published in [58].

Serial Communication with Barrier

Applying the abstract processor models for the SCB algorithm to each of
the three shapes - Square Corner (SC), Square Rectangle (SR), and Block
Rectangle (BR) - gives,

Tcomm(SC) =

(
2N

√
RrN2

T
+ 2N

√
N2

T

)
β (7.7)

Tcomm(SR) =

(
N2 + 2N

√
N2

T

)
β (7.8)

Tcomm(BR) =

(
2N2 − PrN

2

T

)
β (7.9)

The minimum of these three functions is the optimum shape. The three-
dimensional graph of these shapes is shown in Figure 7.8

SCB Optimal Shape Proofs. This section contains the theorems and
proofs which state for what system characteristics each candidate shape is
optimal.

Theorem 7.3.5 (SCB Square Corner). For matrix multiplication on three
heterogeneous processors, the Square Corner partition shape minimises exe-
cution time, i.e. is the optimum, using the SCB algorithm for all processor
computational power ratios such that Pr < 2T − 2

√
RrT − 2

√
T .
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Optimal Shape

Algorithm Ratio Shape

SCB Pr < 2T − 2
√
RrT − 2

√
T Square Corner

Pr < T − 2
√
T Square Rectangle

Remaining values of Pr Block Rectangle

PCB Pr > 2(
√
RrT −Rr +

√
T − 1) Square Corner

Pr < 2Rr + Rr√
T
−2
√
T −1 and Pr > 5+ Rr−2√

T
Square Rectangle

Remaining values of Pr Block Rectangle

SCO Pr >
2
N
(
√

Rr
T

+
√

1
T
)+ 2

c
(r−r2− r2√

Rr
+ r√

Rr
− r2

Rr
)− 2

N
1
Tc
− 1

TN

and Pr >
2c
N

(
√
RrT +

√
T ) + 2T (r − r2 −

r2√
Rr

+ r√
Rr
− r2

Rr
)− Tc

N
− 2c

N

√
T

Square Corner

Pr < T − 2
√
T Square Rectangle

Remaining values of Pr Block Rectangle

PCO Remaining values of Pr Square Corner

Pr <
1+ 2√

T
−Rr

T
− Rr

T
√
T
− 3

T
−2r2

N( r2

cRr
− 1

Tc
)

Square Rectangle

PIO Remaining values of Pr Square Corner

Pr < 4
√
T Block Rectangle

Table 7.1: Summary of optimal shape results for three fully connected het-
erogeneous processors.

Proof. The graph of the Square Corner Tcomm function shows the surface
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Figure 7.8: The SCB Tcomm functions for the three candidate shapes, Square
Corner (white and grey stripes), Block Rectangle (solid grey), and Square
Rectangle (white and grey checkerboard). The x-axis is the relative computa-
tional power of P , Pr, from 1 to 30. The y-axis is the relative computational
power of R, Rr, from 1 to 20. The z-axis is the communication time in sec-
onds. The vertical black surface is the equation x = y, and represents the
problem constraint Pr ≥ Rr. On the left, viewed from the front, on the right,
rotated so as to be viewed from underneath (the lowest function is optimal).

intersects with the Block Rectangle surface.

SC < BR

2N(r + s) < N2 +Nh

2

(√
RrN2

T
+

√
N2

T

)
< N +

(
N − PrN

T

)
2

(√
Rr

T
+

√
1

T

)
< 2− Pr

T

2
√
RrT + 2

√
T < 2T − Pr
Pr < 2T − 2

√
RrT − 2

√
T

Theorem 7.3.6 (SCB Square Rectangle). For matrix multiplication on three
heterogeneous processors, the Square Rectangle partition shape minimises ex-
ecution time, i.e. is the optimum, using the SCB algorithm for all processor
computational power ratios such that Pr < T − 2

√
T .
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Proof.

SR < BR

N2 + 2Ns < N2 +Nh

N + 2

(√
N2

T

)
< N +

(
N − PrN

T

)
1 + 2

√
1

T
< 2− Pr

T

Pr < T − 2
√
T

Corollary 7.3.7 (SCB Block Rectangle). For matrix multiplication on three
heterogeneous processors, the Block Rectangle partition shape minimises exe-
cution time, i.e. is the optimum, for all processor computational power ratios
except those specified in Theorems 7.3.5 and 7.3.6.

Parallel Communication with Barrier

First, the abstract processor model for the Parallel Communication with Bar-
rier algorithm is applied to the three candidate shapes - Square Corner (SC),
Square Rectangle (SR), and Block Rectangle (BR) - to find the communica-
tion time for each shape.

Tcomm(SC) = 2N2β ∗max

(√
Rr

T
− Rr

T
+

√
1

T
− 1

T
,
Rr

T
,

1

T

)
(7.10)

Tcomm(SR) = N2β ∗max

(
1 +

2√
T
− Rr

T
− Rr

T
√
T
− 3

T
,
Rr

T
+

Rr

T
√
T
,

3

T

)
(7.11)

Tcomm(BR) = N2β ∗max

(
Pr
T
,
2Rr

T
,

2

T

)
(7.12)

The optimum partition shape minimises Tcomm. The graph of these three
functions is found in Figure 7.9.

PCB Optimal Shape Proofs. This section contains the theorems and
proofs which state for what system characteristics each candidate shape is
optimal.
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Figure 7.9: The PCB Tcomm functions for the three candidate shapes, Square
Corner (white and grey stripes), Block Rectangle (solid grey), and Square
Rectangle (white and grey checkerboard). The vertical black surface is the
equation x = y, and represents the problem constraint Pr ≥ Rr. On the left,
viewed from the front, on the right, rotated to be viewed from underneath
(the lowest function is optimal). Notice the sharp change in slope of the
Block Rectangle surface when the function dominating the max() changes.

Theorem 7.3.8 (PCB Square Corner). For matrix multiplication on three
heterogeneous processors, the Square Corner partitioning shape minimises
execution time, i.e. is the optimum shape, when using the PCB algorithm and
the computational power ratios are such that Pr > 2(

√
RrT −Rr +

√
T − 1).

Proof. Graphing the Square Corner shape for the PCB algorithm elucidates
the values for which it minimises execution time. The range of these values
lies at the border with the Block Rectangle partition shape. Begin by setting
up the inequality and removing the common factors.

SC < BR

2 max(
√
RrT −Rr +

√
T − 1, Rr, 1) < max(Pr, 2Rr, 2)

Next, determine which portion of the max function on each side will dominate
the equation within the relevant range of values, specifically when approx-
imately Pr > 2Rr. Replacing the maximum functions with the dominate
value gives,

2(
√
RrT −Rr +

√
T − 1) < Pr

Theorem 7.3.9 (PCB Square Rectangle). For matrix multiplication on three
heterogeneous processors, the Square Rectangle partitioning shape minimises
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execution time, i.e. is the optimum shape, when using the PCB algorithm
and the computational power ratios are such that Pr < 2Rr + Rr√

T
− 2
√
T − 1

and Pr > 5 + Rr−2√
T

.

Proof. Begin by stating the inequality and removing the common factors.

SR < BR

max
(
T + 2

√
T −Rr −

Rr√
T
− 3, Rr +

Rr√
T
, 3
)
< max(Pr, 2Rr, 2)

It is clear from the graph that the problem space of 2Rr > Pr should be ex-
amined more closely, to determine which functions dominate the maximum
function for Square Rectangle and Block Rectangle for these ratios. Examin-
ing SR, the graphs show that Pr > 5+ Rr−2√

T
must be true before the first term

of the max function dominates the third term and the optimality inequality
becomes,

T + 2
√
T −Rr −

Rr√
T
− 3 < 2Rr

Pr +Rr + 1 + 2
√
T −Rr −

Rr√
T
− 3 < 2Rr

Pr < 2Rr +
Rr√
T
− 2
√
T − 1

Corollary 7.3.10 (PCB Block Rectangle). For matrix multiplication on
three heterogeneous processors, the Block Rectangle partition shape minimises
execution time, i.e. is the optimum, for all processor computational power
ratios except those specified in Theorems 7.3.8 and 7.3.9.

Serial Communication with Overlap

The Square Corner shape is the only partition shape which has an area
which can be computed without communication. For the Square Rectangle
and Block Rectangle shapes, the SCO algorithm is identical to the Serial
Communication with Barrier algorithm.

As with the two processor case for the Square Corner with the SCO
algorithm, it is necessary not only to apply the abstract processor model,
but to determine the optimal volume of data to assign to Processors R and
S. As the faster processor, Processor P , has a “jumpstart” on computation,
it should be assigned a larger portion of the matrix in order to optimally
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distribute the computational load. The optimal size of the square assigned
to R (with the size assigned to S being in proportion) is,

r =
2 + 2√

Rr

Pr

Rr
+ 2√

Rr
+ 2

Rr
+ 2

(7.13)

And for those ratios of computational power at which the Square Corner
execution time intersects with the execution times of Square Rectangle and
Block Rectangle (as seen in Figure 7.10), the execution time is given by,

Texe(SC)

N3β
=

2

N

(√
Rr

T
+

√
1

T

)
+

2

c

(
r − r2 − r2√

Rr

+
r√
Rr

− r2

Rr

)
(7.14)

More information on the derivation of these results may be found in Appendix
D.

Applying the abstract processor model to Square Rectangle and Block
Rectangle gives the execution times as,

Texe(SR)

N3β
=

1

N
+

2

N

√
1

T
+ max

(
Pr
Tc
,
Pr
Tc
,
Pr
Tc

)
Texe(BR)

N3β
=

2

N
− Pr
TN

+ max

(
Pr
Tc
,
Pr
Tc
,
Pr
Tc

)
As with the two processor overlap algorithms, the constant factor of N3β

has been removed to facilitate the analysis of these equations.

SCO Optimal Shape Theorems. The proofs of the included theorems
can be found in Appendix D.

Theorem 7.3.11 (SCO Square Corner). For matrix multiplication on three
heterogeneous processors, the Square Corner partition shape minimises ex-
ecution time, i.e. is the optimum shape, when using the SCO algorithm

for computational ratios such that Pr >
2
N
(
√

Rr
T

+
√

1
T
)+ 2

c
(r−r2− r2√

Rr
+ r√

Rr
− r2

Rr
)− 2

N
1
Tc
− 1

TN

and Pr >
2c
N

(
√
RrT +

√
T )+2T (r− r2− r2√

Rr
+ r√

Rr
− r2

Rr
)− Tc

N
− 2c

N

√
T , where

r is the optimal size of the square R, given in (7.13).

Theorem 7.3.12 (SCO Square Rectangle). For matrix multiplication on
three heterogeneous processors, the Square Rectangle partition shape min-
imises execution time, i.e. is the optimum shape, when using the SCO
algorithm for computational ratios such that Pr < T − 2

√
T and Pr <

2c
N

(
√
RrT +

√
T ) + 2T (r − r2 − r2√

Rr
+ r√

Rr
− r2

Rr
)− Tc

N
− 2c

N

√
T
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Figure 7.10: Using the SCO algorithm, the Texe
N3β

functions for the three candi-

date shapes, Square Corner (white and grey stripes), Block Rectangle (solid
grey), and Square Rectangle (white and grey checkerboard). With the large
constant N3β removed, each function appears closer than in reality so only
the view from underneath is instructive. As shown, c = 50, N = 3000.

Corollary 7.3.13 (SCO Block Rectangle). The Block Rectangle partition
shape minimises execution time, i.e. is the optimum shape, for all processor
computational power ratios except those specified in Theorems 7.3.11 and
7.3.12.

Parallel Communication with Overlap

As with the SCO algorithm, only the Square Corner shape has a portion
which can be computed without communication. For this reason, the Square
Rectangle and Block Rectangle shapes have the same execution time under
PCO as under the PCB algorithm.

The derivation of the optimal size squares to assign to Processors R and
S in the Square Corner shape, as well as the determination of which function
dominates the maximum function, can be found in Appendix D.

The graphs of each of the three shapes for this algorithm can be found in
Figure 7.11.

PCO Optimal Shape Proofs. The optimal shape under the PCO algo-
rithm depends on the value of c. When examining all three shapes to deter-
mine the optimal, it is seen that as c decreases, all three equations converge.
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Figure 7.11: Uising the PCO algorithm, the Texe
N3β

functions for the three

candidate shapes, Square Corner (white and grey stripes), Block Rectangle
(solid grey), and Square Rectangle (white and grey checkerboard). Even
with the large constant N3β removed, the Square Corner shape is clearly the
minimum. As shown, c = 50, N = 3000.

However, for larger values of c, the Square Corner shape is optimal.

Theorem 7.3.14 (PCO Square Rectangle). For matrix multiplication on
three heterogeneous processors, the Square Rectangle partition shape min-
imises execution time, i.e. is the optimum shape, when using the PCO algo-

rithm for computational ratios such that Pr <
1+ 2√

T
−Rr

T
− Rr

T
√
T
− 3

T
−2r2

N( r2

cRr
− 1

Tc
)

.

Proof. Examining the equations, notice the Square Corner shape equation
is dominated by the communication and computation of R when the Square
Rectangle shape is dominated by the communication and computation of P .

2

N
r2 +

r2Pr
cRr

<
1

N
+

2

N
√
T
− Rr

NT
− Rr

NT
√
T
− 3

NT
+
Pr
Tc

Pr <
1 + 2√

T
− Rr

T
− Rr

T
√
T
− 3

T
− 2r2

N( r2

cRr
− 1

Tc
)

Corollary 7.3.15 (PCO Square Corner). The Square Corner partition shape
minimises execution time, i.e. is the optimum shape, for all processor com-
putational power ratios except those specified in Theorem 7.3.14.
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Parallel Interleaving Overlap

The Parallel Interleaving Overlap (PIO) algorithm, unlike the previous al-
gorithms described, does not use bulk communication. At each step data is
sent, a row and a column (or k rows and columns) at a time, by the relevant
processor(s) to all processor(s) requiring those elements, while, in parallel,
all processors compute using the data sent in the previous step.

In the case of the PIO algorithm, the processors compute at the same
time, meaning the optimal distribution will be in proportion to their com-
putational power. The optimal size of the r and s for the Square Corner is

therefore
√

RrN2

T
and

√
N2

T
, respectively. In order to analyse the equations,

the constant factor N4β is removed and the focus placed on the dominant
middle term which is multiplied by (N − 1).

Texe(SC)

N4β
= max

(
2

N2

(√
Rr

T
+

√
1

T

)
,
Pr
Tc

)
(7.15)

Texe(SR)

N4β
= max

(
2

N2

(
1 + 2

√
1

T

)
,
Pr
Tc

)
(7.16)

Texe(BR)

N4β
= max

(
Pr
N2T

,
Pr
Tc

)
(7.17)

PIO Optimal Shape Proofs.

Theorem 7.3.16 (PIO Block Rectangle). For matrix multiplication on three
heterogeneous processors, the Block Rectangle partition shape minimises ex-
ecution time when using the PIO algorithm for computational power ratios
such that Pr < 4

√
T .

Proof. Either communication or computation will dominate the maximum
function of all the potentially optimal partition shapes. If computation dom-
inates, all shapes are equivalent. The communication will dominate the Block
Rectangle partition shape when c > N2. In this case, the inequalities may
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be set as follows.

BR < SC

Pr
N2T

<
2

N2

(√
Rr

T
+

√
1

T

)
Pr < 2

√
RrT + 2

√
T

Pr < 4
√
T

BR < SR

Pr
N2T

<
2

N2

(
1 + 2

√
1

T

)
Pr < 2T + 2

√
T Always true as by definition Pr < T

Corollary 7.3.17 (PIO Square Corner). The Square Corner partition shape
minimises execution time, i.e. is the optimum shape, for all processor com-
putational power ratios except those specified in Theorem 7.3.16 when using
the PIO algorithm.

7.3.3 Experimental Results

To validate the theoretical results of this paper experiments were undertaken
on Grid’5000 in France using the Edel cluster at the Grenoble site. Each algo-
rithm was tested using three nodes, comprised of 2 Intel Xeon E5520 2.2 GHz
CPUs per node, with 4 cores per CPU. The communication interconnect is
MPI over gigabit ethernet, and the computations use ATLAS. Heterogeneity
in processing power was achieved using the cpulimit [62] program, an open
source code that limits the number of cycles a process may be active on the
CPU to a percentage of the total.

Serial Communication with Barrier

The experimental results, for communication time, with the SCB algorithm
can be found in Figure 7.12. Note it is not possible to form a Square Corner
shape at ratio 1 : 1 : 1. These experiments show that the theoretical optimum
does indeed outperform the other possible shapes, which also perform in
the expected order. We did find, that while the Square Corner and Square
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Rectangle shapes are theoretically identical at the 14 : 5 : 1 ratio, the Square
Rectangle performed slightly better experimentally.

1:1:1	   3:2:1	   5:4:1	   7:7:1	   10:9:1	   14:5:1	   12:1:1	   25:4:1	  

Theoretical	  Communication	  Time	  
Square	  Corner	  

Square	  Rectangle	  

Block	  Rectangle	  

0.08	  

0.10	  

0.12	  

0.14	  

0.16	  

0.18	  

0.20	  

1:1:1	   3:2:1	   5:4:1	   7:7:1	   10:9:1	   14:5:1	   12:1:1	   25:4:1	  

Experimental	  Communication	  Time	  

Square	  Corner	  
Square	  Rectangle	  
Block	  Rectangle	  

Figure 7.12: On top is the theoretical relative communication time for Square
Corner, Square Rectangle and Block Rectangle when using the SCB algo-
rithm. On bottom is the experimental communication time (in seconds) for
given ratios of Pr : Rr : 1. The value of N is 5000.

Parallel Communication with Barrier

The experimental results, for communication time, with the PCB algorithm
can be found in Figure 7.13. Note it is not possible to form a Square Corner
shape at ratio 1 : 1 : 1. The results conform to the theoretical predictions
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with the optimum shape performing best, and the other two shapes perform-
ing in their predicted order.

1:1:1	   3:2:1	   5:4:1	   7:7:1	   10:9:1	   14:5:1	   12:1:1	   25:4:1	  

Theoretical	  Communication	  Time	  PCB	  

Square	  Corner	  

Square	  Rectangle	  

Block	  Rectangle	  

0.04	  

0.05	  

0.06	  

0.07	  

0.08	  

0.09	  

0.1	  

0.11	  

0.12	  

1:1:1	   3:2:1	   5:4:1	   7:7:1	   10:9:1	   14:5:1	   12:1:1	   25:4:1	  

Experimental	  Communication	  Time	  PCB	  

Square	  Corner	  
Square	  Rectangle	  
Block	  Rectangle	  

Figure 7.13: On top is the theoretical relative communication time for Square
Corner, Square Rectangle and Block Rectangle partition shapes when using
the PCB algorithm. On bottom is the experimental communication time (in
seconds) for given ratios of Pr : Rr : 1. The value of N is 5000.

Overlap Algorithms

For both the Serial Communication with Overlap and the Parallel Commu-
nication with Overlap algorithms, two of the shapes (Square Rectangle and
Block Rectangle) are identical to the respective barrier algorithm. These
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experimental results are found in Figures 7.12 and 7.13. The Square Cor-
ner shape was implemented and provides modest speedups over the Square
Corner results in previous experiments, in keeping with the theoretical pre-
dictions.

However, the experiments show more clearly than theoretical data at
what ratios of computational power it becomes advantageous to not only
decrease the amount of data given to the slower processors, but to eliminate
them altogether. In other words, when a single fast processor, unencumbered
by communication performs the entire computation. Particularly in these
experiments, with computationally fast nodes and small(ish) problem sizes,
this occurred around ratios of 25 : 1 : 1. Further exploration on the bounds
of useful heterogeneity would be an interesting exercise, but is not done here.

7.4 Star Network Topology

The star network topologies, of which there are three variants when using
three processors, alter the necessary volume of communication and thereby
the optimality of each shape. Beginning again with the six shapes under
Archetype A of the Push DFA, the candidates are pruned to four potentially
optimal shapes. These are Square Corner, Square Rectangle, Block Rect-
angle, and L Rectangle. Finally, the optimal shapes for all computational
ratios, for each of the three topology variants, and for all five algorithms, are
found.

7.4.1 Pruning the Optimal Candidates

The Rectangle Corner is transformed into the Block Rectangle in the same
manner as for the fully connected topology. However, for the first star vari-
ant, minimising the communication between Processors R and S is advanta-
geous, so the Rectangle Corner is the canonical form, modified so that the
combined widths of Processors R and S are equal to N , rather than N − 1.
Naturally, this is only relevant for those ratios where a Square Corner par-
tition cannot be made. For parallel communication, Block Rectangle is the
better shape for the majority of ratios, and neither shape is competitive to
be the minimum at those ratios for which the Block Rectangle is not superior
to Rectangle Corner. Therefore, the Rectangle Corner is superseded by the
Block Rectangle shape for all but variant one serial communication.

The 1D Rectangle can be shown to have a higher volume of communica-
tion than Block Rectangle for all three variants of the star network topology.
This can be simply observed by noting that using the 1D rectangle partition
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shape requires each processor to send its entire volume of data to each other
processor. However, in the Block Rectangle, while Processors R and S do
send their entire volume to all processors, Processor P must only send a
portion of it’s data to each other processor.

Therefore, the four candidate partition shapes to consider are Square
Corner, Square Rectangle, Block Rectangle (Rectangle Corner for variant
one serial), and L Rectangle.

7.4.2 Applying the Abstract Processor Model

To apply the abstract processor model for each algorithm, first the necessary
volume of data in each direction must be quantified for all four shapes.

r 

r 

s 

s 

a) Square Corner

N 

s 

s 

Rw 

b) Square Rectangle

h 

Rw Sw 

c-i) Block Rectangle

h 

Rw 

Sw 

h 

c-ii) Rectangle Corner

N 

Sh 
Rw Sw 

d) L Rectangle

Figure 7.14: The four candidate shapes for three heterogeneous processors
with a star network topology. The Block Rectangle canonical form is changed
to Rectangle Corner for the first variant of the star topology only. The
labels to the various dimensions allow the data volumes to be quantified for
application of the abstract processor and algorithm models.
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Volume of Communication

The total volume of communication, broken down by processor and direction
is given for each candidate shape. However, note that while common naming
conventions between shapes does not imply equal values, i.e. while Sw stands
for the width of Processor S in multiple shapes, the actual width of S in those
shapes is not necessarily equivalent. Also note that if the entire volume
assigned to a given processor must be sent, it is given in the form of the ratio
multiplied by the number of elements in the matrix, e.g. PrN2

T
for Processor

P .

Square Corner Volume of Communication. The Square Corner vol-
ume of communication is derived using the naming scheme found in Figure
7.14a. Processors R and S do not share any rows or columns, and therefore
do not need to communicate.

• P → R has data volume of 2r(N − r) elements

• P → S has data volume of 2s(N − s) elements

• R→ P has data volume of 2r2 elements

• R→ S has data volume of 0 elements, no communication necessary

• S → P has data volume of 2s2 elements

• S → R has data volume of 0 elements, no communication necessary

Square Rectangle Volume of Communication. The Square Rectangle
volume of communication is derived from Figure 7.14b.

• P → R has data volume of PrN2

T
elements

• P → S has data volume of 2sN − 2s2 − sRw elements

• R→ P has data volume of RrN2

T
elements

• R→ S has data volume of sRw elements

• S → P has data volume of 2s2 elements

• S → R has data volume of s2 elements
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Block Rectangle Volume of Communication. The Block Rectangle
volume of communication is derived from Figure 7.14c-i. This is the canonical
shape for star topology variants two and three (when Processor R and S are
the centre of the star, respectively). It is also the canonical form for variant
one type with parallel communication.

• P → R has data volume of Rw(N − h) elements

• P → S has data volume of Sw(N − h) elements

• R→ P has data volume of RrN2

T
elements

• R→ S has data volume of RrN2

T
elements

• S → P has data volume of N2

T
elements

• S → R has data volume of N2

T
elements

Rectangle Corner Volume of Communication. The Rectangle Corner
volume of communication is derived from Figure 7.14c-ii. This is the canoni-
cal shape for star topology variant one, when Processor P is the centre of the
star, for serial communication. This decreases the communication between
Processors R and S, which is advantageous as no direct communication link
exists between these processors for this variant. For parallel communica-
tion, there is a point at which the Block Rectangle is the better form, and
Rectangle Corner is never the minimum due to better performance by other
shapes.

• P → R has data volume of PrN2

T
elements

• P → S has data volume of PrN2

T
elements

• R→ P has data volume of RrN2

T
+Rw(N − h) elements

• R→ S has data volume of Rw(2h−N) elements

• S → P has data volume of N2

T
+ Sw(N − h) elements

• S → R has data volume of Sw(2h−N) elements
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L Rectangle Volume of Communication.

• P → R has data volume of PrN2

T
elements

• P → S has data volume of PrN2

T
elements

• R→ P has data volume of Rw(N − Sh) elements

• R→ S has data volume of RwSh elements

• S → P has data volume of N2

T
elements

• S → R has data volume of N2

T
elements

Model Equations by Shape, Variant, and Communication Algo-
rithm

For each of the three variants of the star network topology, depicted in Figure
7.5, the above communication volumes are translated into equations for both
serial and parallel communication. Note, in some places the equations have
been simplified to increase readability. Particularly in the case of maximum
functions, any terms which may be mathematically shown to never dominate
the maximum have been removed.

Variant One. The first variant of the star network topology puts Processor
P at the centre of the star. Communication cost between Processor R and
S is doubled, which is the worst case scenario.

The Variant One Serial Communication equations, for Square Corner,
Square Rectangle, Rectangle Corner, and L Rectangle, are given respectively
by,

Tcomm(SC)

N2
= 2

√
Rr

T
+ 2

√
1

T
(7.18)

Tcomm(SR)

N2
= 1 + 2

√
1

T
+
Rr

T

√
1

T
+

1

T
(7.19)

Tcomm(RC)

N2
=

2Pr
T

+
4Rr

T
+

4

T
− Rr

T − Pr
− 1

T − Pr
(7.20)

Tcomm(LR)

N2
=

2Pr
T

+
3

T
+
Rr

T
+

Rr

T (T −Rr)
(7.21)

The Variant One Parallel Communication equations, for Square Corner,
Square Rectangle, Block Rectangle, and L Rectangle, are given respectively
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by,

Tcomm(SC)

N2
= max

(
2

√
Rr

T
− 2Rr

T
, 2

√
1

T
− 2

T
,
2Rr

T

)
(7.22)

Tcomm(SR)

N2
= max

(
max

(Pr
T
,

3

T

)
+

1

T
,

max
(

2

√
1

T
− 2

T
− Rr

T

√
1

T
,
Rr

T
+
Rr

T

√
1

T

)
+
Rr

T

√
1

T

)
(7.23)

Tcomm(BR)

N2
= max

(
max

( Rr

T − Pr
− Rr

T
,

2

T

)
+

1

T
,

max
( 1

T − Pr
− 1

T
,
2Rr

T

)
+
Rr

T

)
(7.24)

Tcomm(LR)

N2
= max

(
max

(Pr
T
,

2

T

)
+

1

T
,
Pr
T

+
Rr

T (T −Rr)

)
(7.25)

Variant Two. The second variant of the star network topology puts Pro-
cessor R at the centre of the star. Communication cost between Processors
P and S is doubled, which is the worst case scenario.

The Variant Two Serial Communication equations, for Square Corner,
Square Rectangle, Block Rectangle, and L Rectangle, are given respectively
by,

Tcomm(SC)

N2
= 2

√
Rr

T
+ 4

√
1

T
(7.26)

Tcomm(SR)

N2
= 1− Rr

T

√
1

T
+ 4

√
1

T
(7.27)

Tcomm(BR)

N2
=

2Rr

T
+

3

T
+

Rr

Rr + 1

(
1− Rr + 1

T

)
+

2

Rr + 1

(
1− Rr + 1

T

)
(7.28)

Tcomm(LR)

N2
=

3Pr
T

+
3

T
+
Rr

T
(7.29)

The Variant Two Parallel Communication equations, for Square Corner,
Square Rectangle, Block Rectangle, and L Rectangle, are given respectively
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by,

Tcomm(SC)

N2
= max

(2Rr

T
+

2

T
, 2

√
Rr

T
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T
+ 4

√
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T
− 4

T

)
(7.30)

Tcomm(SR)
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√
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√
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Tcomm(BR)
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Tcomm(LR)

N2
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Variant Three. The third variant of the star network topology puts Pro-
cessor S at the centre of the star. Communication cost between Processors
P and R is doubled.

The Variant Three Serial Communication equations, for Square Corner,
Square Rectangle, Block Rectangle, and L Rectangle, are given respectively
by,

Tcomm(SC)

N2
= 4

√
Rr

T
+ 2

√
1

T
(7.34)

Tcomm(SR)
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= 2

Pr
T

+
2Rr
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√
1

T
+

1
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(7.35)

Tcomm(BR)
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3Rr

T
+
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(7.36)

Tcomm(LR)

N2
=

3Pr
T

+
2

T
+
Rr

T
+
Rr

T

(
1− 1

T −Rr

)
(7.37)

The Variant Three Parallel Communication equations, for Square Corner,
Square Rectangle, Block Rectangle, and L Rectangle, are given respectively
by,
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Tcomm(LR)

N2
=

3Pr
T

(7.41)

7.4.3 Optimal Three Processor ST Data Partition

The exact system characteristics for which each candidate shape is optimal
depends on the variant of star network topology used, however, some general
observations can be made.

• Square Corner is optimal for systems with a single fast processor, and
two relatively slower processors

• Square Corner is particularly effective for variant one topology, due to
not requiring any communication along the non-existent link

• Square Rectangle is optimal for systems with two fast processors, and
a single relatively slow processor

• Block Rectangle is optimal for systems with a fast, medium, and slow
processor

• Block Rectangle is heavily affected by topology, depending on the vari-
ant used, either being optimal for most ratios, or no ratios at all.

• L Rectangle is optimal for relatively homogeneous systems

Variant One

The optimal data partition shape for variant one star network topology (P
at centre, no link between R and S) is unsurprisingly favoured toward the
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non-rectangular data partitions. The Square Corner shape especially has the
advantage of not requiring any message to be forwarded through Processor P .
The L Rectangle, which was discarded as inferior when considering the fully
connected network topology, emerges as optimal for relatively homogeneous
systems.

Serial Communication. For serial communication with variant one star
topology, the optimal shape is always one of Square Corner, Square Rect-
angle, and L Rectangle, as seen in Figure 7.15. The intersection of these
surfaces gives the ratios at which each is the optimal shape.

The following theorems are created by solving for these surface intersec-
tions.

Theorem 7.4.1 (Square Corner Serial Variant One). For matrix multipli-
cation on three heterogeneous processors, with a variant one star network
topology, the Square Corner shape is the optimum, i.e. minimises execu-
tion time, for ratios such that Pr > 2

√
RrT − Rr − Rr√

T
− 2 and Pr >

T
√

Rr

T
+ T

√
1
T
− Rr

2(T−Rr)
− Rr

2
− 3

2
.

Theorem 7.4.2 (Square Rectangle Serial Variant One). For matrix multi-
plication on three heterogeneous processors, with a variant one star network
topology, the Square Rectangle shape is the optimum, i.e. minimises exe-
cution time, for ratios such that Pr < 2

√
RrT − Rr − Rr√

T
− 2 and Pr >

2
√
T + Rr√

T
− Rr

T−Rr
− 1.

Corollary 7.4.3 (L Rectangle Serial Variant One). For matrix multiplication
on three heterogeneous processors, with a variant one star network topology,
the L Rectangle shape is the optimum, i.e. minimises execution time, for
ratios not given in Theorems 7.4.1 and 7.4.2.

Parallel Communication. Using parallel communication for the variant
one star network topology yields only two optimal data partition shapes,
Square Corner and L Rectangle. As seen in Figure 7.16, each shape is the
optimal for approximately half of the problem domain, so to determine the
exact ratio, we focus on the terms dominating the maximum function at
approximately Pr = 2Rr.

It is worth noting that around this area, the Square Rectangle shape is
also a very good shape and is asymptotically equal to the L Rectangle shape
for that brief time.
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a) Front View

b) Bottom View

Figure 7.15: The four candidate shapes for three heterogeneous processors
with a variant one star network topology for serial communication time.
The shapes are Square Corner (white and grey stripes), Square Rectangle
(white and grey checkerboard), Rectangle Corner (solid grey), and L Rect-
angle (black and grey checkerboard).

Theorem 7.4.4 (Square Corner Parallel Variant One). For matrix multi-
plication on three heterogeneous processors, with a variant one star network
topology, the Square Rectangle shape is the optimum, i.e. minimises execu-

107



a) Front View

b) Bottom View

Figure 7.16: The four candidate shapes for three heterogeneous processors
with a variant one star network topology for parallel communication time.
The shapes are Square Corner (white and grey stripes), Square Rectangle
(white and grey checkerboard), Rectangle Corner (solid grey), and L Rect-
angle (black and grey checkerboard).

tion time, for ratios such that Pr > 2Rr − 1.

Corollary 7.4.5 (L Rectangle Parallel Variant One). For matrix multipli-
cation on three heterogeneous processors, with a variant one star network
topology, the L Rectangle shape is the optimum, i.e. minimises execution
time, for ratios not given in Theorems 7.4.4.
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Variant Two

The optimal shape for variant two of the star network topology (with R at
the centre of the star) is often dominated by the Block Rectangle partition
shape, except in cases of extreme heterogeneity in processing speeds.

Serial Communication. For serial communication with variant two star
topology, the optimal shape is always one of Square Corner, Square Rectan-
gle, and Block Rectangle, with Block Rectangle being optimal for the largest
range of ratios, as seen in Figure 7.17. The intersection of these surfaces
gives the ratios at which each is the optimal shape.

The following theorems are created by solving for these surface intersec-
tions.

Theorem 7.4.6 (Square Corner Serial Variant Two). For matrix multipli-
cation on three heterogeneous processors, with a variant two star network
topology, the Square Corner shape is the optimum, i.e. minimises execution
time, for ratios such that Pr > 2

√
RrT + 4

√
T − 2Rr + T

Rr+1
− 2.

Theorem 7.4.7 (Square Rectangle Serial Variant Two). For matrix multi-
plication on three heterogeneous processors, with a variant two star network
topology, the Square Rectangle shape is the optimum, i.e. minimises execu-
tion time, for ratios such that Pr < T + T

Rr+1
+ Rr√

T
− 4
√
T .

Corollary 7.4.8 (Block Rectangle Serial Variant Two). For matrix multi-
plication on three heterogeneous processors, with a variant two star network
topology, the Block Rectangle shape is the optimum, i.e. minimises execution
time, for all ratios not specified in Theorems 7.4.6 and 7.4.7.

Parallel Communication. Parallel communication with the variant two
star network topology yields only two optimal data partition shapes, Square
Corner and Block Rectangle. As seen in Figure 7.18, the Block Rectangle is
optimal for all but those highly heterogeneous ratios at which Processor P
is very powerful.

Theorem 7.4.9 (Square Corner Parallel Variant Two). For matrix multi-
plication on three heterogeneous processors, with a variant two star network
topology, the Square Rectangle shape is the optimum, i.e. minimises execu-

tion time, for ratios such that Pr > T − Rr+2+Rr
T

+ 2
T

2
√

Rr
T

+4
√

1
T

.

Corollary 7.4.10 (Block Rectangle Parallel Variant Two). For matrix mul-
tiplication on three heterogeneous processors, with a variant two star network
topology, the Block Rectangle shape is the optimum, i.e. minimises execution
time, for ratios not given in Theorems 7.4.9.
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a) Front View

b) Bottom View

Figure 7.17: The four candidate shapes for three heterogeneous processors
with a variant two star network topology for serial communication time.
The shapes are Square Corner (white and grey stripes), Square Rectangle
(white and grey checkerboard), Rectangle Corner (solid grey), and L Rect-
angle (black and grey checkerboard).

Variant Three

Serial Communication. For serial communication with variant three star
topology, the optimal shape is always one of Square Corner, Square Rectan-
gle, and Block Rectangle, as seen in Figure 7.19. The intersection of these
surfaces gives the ratios at which each is the optimal shape.

The following theorems are created by solving for these surface intersec-
tions.
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a) Front View

b) Bottom View

Figure 7.18: The four candidate shapes for three heterogeneous processors
with a variant two star network topology for parallel communication time.
The shapes are Square Corner (white and grey stripes), Square Rectangle
(white and grey checkerboard), Rectangle Corner (solid grey), and L Rect-
angle (black and grey checkerboard).

Theorem 7.4.11 (Square Corner Serial Variant Three). For matrix multi-
plication on three heterogeneous processors, with a variant three star network
topology, the Square Corner shape is the optimum, i.e. minimises execution
time, for ratios such that Pr > 4

√
RrT + 2

√
T − 2Rr + RrT

Rr+1
− 2.

Theorem 7.4.12 (Square Rectangle Serial Variant Three). For matrix mul-
tiplication on three heterogeneous processors, with a variant three star net-
work topology, the Square Rectangle shape is the optimum, i.e. minimises
execution time, for ratios such that Pr < 1 + RrT

Rr+1
− 2
√
T .

Corollary 7.4.13 (Block Rectangle Serial Variant Three). For matrix multi-
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a) Front View

b) Bottom View

Figure 7.19: The four candidate shapes for three heterogeneous processors
with a variant two star network topology for serial communication time.
The shapes are Square Corner (white and grey stripes), Square Rectangle
(white and grey checkerboard), Rectangle Corner (solid grey), and L Rect-
angle (black and grey checkerboard).

plication on three heterogeneous processors, with a variant three star network
topology, the Block Rectangle shape is the optimum, i.e. minimises execution
time, for all ratios not specified in Theorems 7.4.11 and 7.4.12.

Parallel Communication. Parallel communication with the variant three
star network topology has three optimal data partition shapes, Square Cor-
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ner, Square Rectangle, and Block Rectangle. As seen in Figure 7.20, the
ratios for which these shapes are optimal are in the keeping with the pattern
found throughout - Square Corner for fast P , Square Rectangle for Pr ≈ Rr,
and Block Rectangle for all those in between.

a) Front View

b) Bottom View

Figure 7.20: The four candidate shapes for three heterogeneous processors
with a variant three star network topology for parallel communication time.
The shapes are Square Corner (white and grey stripes), Square Rectangle
(white and grey checkerboard), Rectangle Corner (solid grey), and L Rect-
angle (black and grey checkerboard).

Theorem 7.4.14 (Square Corner Parallel Variant Three). For matrix multi-
plication on three heterogeneous processors, with a variant three star network
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topology, the Square Corner shape is the optimum, i.e. minimises execution
time, for ratios such that Pr > T − (2Rr+1)T

6Rr+1
.

Theorem 7.4.15 (Square Rectangle Parallel Variant Three). For matrix
multiplication on three heterogeneous processors, with a variant three star
network topology, the Square Rectangle shape is the optimum, i.e. minimises
execution time, for ratios such that Pr >

3Rr

2
+ Rr

2
√
T
−
√
T + 1.

Corollary 7.4.16 (Block Rectangle Parallel Variant Three). For matrix
multiplication on three heterogeneous processors, with a variant three star
network topology, the Block Rectangle shape is the optimum, i.e. minimises
execution time, for ratios not given in Theorems 7.4.14 and 7.4.15.

7.5 Conclusion

The overwhelming conclusion when considering data partitioning shapes on
three heterogeneous processors is that while the traditional two dimensional
rectangular shape is the ubiquitous for good reason, the novel non-rectangular
have significant advantages, especially as the level of heterogeneity increases.

In the fully connected network topology, the three optimal shapes formed
the same pattern for all algorithms considered. The Square Corner is suited
to a single fast processor, the Square Rectangle to two fast processors, and
the Block Rectangle to everything in between.

More interestingly, the exploration of the star topologies gives insight into
what happens when the complexity of the model is increased. Rather than
favour the traditional 2D decomposition, new candidates began to vie for
optimality. This should only reinforce the contention that a single blanket
partition shape (Block Rectangle) is not adequate when considering the wide
variability in system parameters in real life heterogeneous systems. Many
other shapes are superior to this, and for some variants in topology the
traditional Block Rectangle is not even a contender for the optimal shape.
For each nuance in a given system, the Push Technique can be extended to
provide insight into the optimum shape.
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Chapter 8

Local Search Optimisations

This chapter will compare and contrast the Push Technique with other local
search methods, with a focus on simulated annealing. The Push Technique is
of similar computational complexity, and produces all possible output data
partition shapes. Simulated annealing experimental results are given, which
reinforce the completeness of the Push Technique results.

8.1 Description of Local Search

Local search is a method for solving computationally intensive optimisation
problems. As previously discussed, the more limited problem of optimally
partitioning heterogeneous rectangles is NP -Complete.

In general, in local search each possible solution has some associated
cost, and the aim is to minimise this cost. Each solution is part of a local
“neighbourhood”, which is the area searched for the local minima [64]. The
initial solution is repeatedly replaced with a solution in the neighbourhood
with a lower cost. At some point, no neighbouring solution has a lower cost
than the one found, and this is the local minimum.

A variety of algorithms operate in this manner such as Hill Climbing,
Simulated Annealing, Tabu Search, and Reactive Search.

8.2 Simulated Annealing

In the literature, simulated annealing is a popular choice for local search
algorithms. It allows the discovery of a variety of local minima within a large
search space. At the start of the process, an initial solution is swapped with
neighbouring solutions, even if those solutions provide an increased cost. As
the local search progresses, or “cools”, the swaps with neighbouring solutions
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must be strictly beneficial in minimizing the cost. This allows the solution
to move through the search space initially, exploring it fully, before settling
down and finding the local minimum.

In order to function, the simulated annealing algorithm has two important
parts; the objective function, and the neighbour function. The first is used
to evaluate a given solution, while the second determines how solutions are
swapped.

8.2.1 Experimental Method for Matrix Partitioning

To use simulated annealing to solve the optimal data partition shape problem,
the first step is to define the objective function. This is understood to be
the volume of communication required in a given solution. This is calculated
by considering the number of processors that own elements in each row and
each column of the matrix.

The next step is to define the neighbourhood function. The simplest
approach would be to pick two random elements of the matrix (which are
assigned to different processors) and swap their assigned processors. How-
ever, this simple function does not result in a tractable simulated annealing
algorithm. A single swap of two random elements, in the scheme of larger
partition shape problem, is very unlikely to improve the objective function.

To create a tractable algorithm, a fairly sophisticated neighbourhood
function is required. Designing this function leads to swaps which are very
similar to the Push operations discussed in this thesis. The implemented
strategy is described here.

1. A row or column of the matrix is chosen at random. Assume a row is
chosen. The move is to chose a batch of assignment swaps in order to
lower the number of processors assigned to the selected row.

2. Specifically, a processor assigned to the chosen row is selected at ran-
dom, with preference given to the processor assigned to the fewest
elements in the row. Say that there are s elements in the row assigned
to this processor.

3. Then s elements from the remainder of the matrix (excluding the row)
are selected at random, such that these elements are assigned to one of
the other processors assigned to the chosen row. Preference is given to
elements with highest score, where the score of an element is the sum of
the number of processors assigned to the row and column corresponding
to that element i.e. the elements selected to move into the chosen row
are elements from high-cost rows and columns of the matrix.
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The effect of this neighbourhood function is to propose moves that defi-
nitely improve a selected row or column and which are relatively unlikely to
worsen other rows and columns. The simulated annealing algorithm proceeds
by iteratively proposing a move and accepting this move if it improves the
objective, or with some random chance even if it worsens the move. An explo-
ration of the simulated annealing parameters suggests that the Kirkpatrick
annealing strategy with the temperature updated using Tk+1 = αTk, α = 0.8
works well [65].
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Figure 8.1: The partition shape solution found on a 50× 50 matrix by Sim-
ulated Annealing, with the three processors shown in red, blue and black.
This is the raw result, before permutations to create an equivalent partition
are done.

8.3 Conclusion

The simulated annealing algorithm, in order to be tractable, became quite
similar to the Push operation. The results of the simulated annealing give a
variety of partition shapes, all of which had been previously found using the
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Figure 8.2: The solution found on a 50× 50 matrix by Simulated Annealing.
This is the final result, after permutations to create an equivalent partition
are done. All rows and columns containing three processors are moved to the
far left/top, then all rows and columns containing two processors, and so on.

Push. For example, in Figures 8.1 and 8.2, the results of a single run of the
simulated annealing are given. At first, the results look unfamiliar, as the
Push technique has a natural tendency towards a processor being assigned
contiguous elements. However, a simple permutation of the matrix gives
a shape that is recognisable as being in the same archetype as the Square
Rectangle. This permutation involves swapping rows or columns, and does
not affect the cost of the solution found.

The Push Technique is similar to local search. It starts with a random
solution, and moves between solutions according to a predetermined function
to arrive at some final result which is a local minimum. The Push Technique
finds all possible local minima, also called candidates.
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Chapter 9

The Push Technique and LU
Factorisation

The Push Technique can be adapted to create optimal matrix partition
shapes for a variety of matrix computations. This section will lay out the
methodology for a Push on LU factorisation, showing that it satisfies the re-
quirement for not increasing communication time of the algorithm. Finally,
the Push is applied to create some two processor partition shapes.

9.1 A Brief Review of LU Factorisation

This section gives a basic review of LU factorisation, both for a single pro-
cessor and in parallel on multiple processors.

9.1.1 Basic LU Factorisation

LU factorisation (also called decomposition) is a common linear algebra ker-
nel based on Gaussian Elimination. The matrix A is factorised to become
the product of two (or three) matrices. The factors L and U are triangu-
lar matrices, and a permutation matrix P may be used if row exchanges in
matrix A are necessary to complete the elimination. For simplicity here, the
row exchanges are ignored. The factorisation A = LU is shown as,


a11 a12 a13

a21 a22 a23

a31 a32 a33

 =


l11 0 0

l21 l22 0

l31 l32 l33



u11 u12 u13

0 u22 u23

0 0 u33
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Gaussian Elimination. The cost of performing Gaussian elimination is
about 1

3
N3 multiplications and 1

3
N3 subtractions [35]. The main goal of the

Gaussian elimination is to create a matrix in which back substitution can be
used to solve the linear equation A = xb.

For this description, we assume that the elimination will be successful.
The elimination multiplies a row by some number (called a multiplier),

and subtracts it from the next row. The purpose of this is to remove (elim-
inate) some variable from that second row. This is continued for each row,
until a zero is in the first column for all but the first row. This first row, first
column element is called the pivot.

The elimination then starts on the second row, second column, which is
now the pivot. For each of the subsequent rows a multiplier is found and the
second row is subtracted.

A simple example from [35] is repeated here, (pivots are marked with [ ]
and multipliers are listed below the relevant matrix),

[1] 2 1

3 8 1

0 4 1

→


1 2 1

0 [2] −2

0 4 1

→


1 2 1

0 2 −2

0 0 [5]


Multipliers: 3,0 Multiplier: 2

The final matrix shown is the U of LU factorisation.

9.1.2 Parallel LU Factorisation

Computing LU factorisation in parallel on multiple processors requires an
algorithm which will balance computational load, while minimising commu-
nication cost. The parallel LU factorisation algorithm used by the popular
software package ScaLAPACK, as described in [66], is explained here.

In general, as pointed out by [67], this parallel algorithm can be divided
into two broad parts. First is the panel factorisation, in which the multi-
pliers for the gaussian elimination are calculated, and all this information is
accumulated for the entire step. The second part is the trailing sub matrix
update, in which all the changes accumulated during the panel factorisation
are applied to the trailing sub matrix in a single matrix multiply step. Ma-
trix multiplication is one of the most efficient parallel BLAS (Basic Linear
Algebra Subroutines)[68] computations. For this reason, the parallel algo-
rithm waits to update the trailing matrix with matrix multiply, rather than
executing as a series of rank-1 updates.

These two parts, and their sub steps, are discussed further below.
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Algorithm Description. Figures in 9.1 are adapted from James Dem-
mel’s Lecture Notes1 on Dense Linear Algebra.

Divide the matrix A into k steps, each of width b columns. The simple
example shown in Figure 9.1a has just four steps. For each row, i, within a
given step k, determine if pivoting it needed. The row with the largest value
in column i is swapped with row i, as shown in Figure 9.1b. Next, each row
is divided by the pivot value in parallel on all processors to determine the
multipliers. Subtract multiples of row i from the new sections of L and U.
The completed panel is shown in Figure 9.1c.

When those steps have been repeated for each row in step k, all the work
done so far (row swaps and calculation of LL) is broadcast horizontally among
the processors, as shown in Figure 9.1d. The final steps are a triangular
solve, and the matrix multiplication to update the trailing matrix as shown
in Figure 9.1e.

9.2 Background on Data Partitioning for LU

Factorisation

As with matrix multiplication several methods of data partitioning exist for
LU factorisation, each with benefits and drawbacks. For both one and two-
dimensional partition shapes, the computational load must remain balanced
while minimising communication.

9.2.1 One-Dimensional Partitioning

The simplest partition is the one-dimension shape. Like the one-dimensional
matrix multiplication shapes, the LU shape can either be row or column
oriented. However, due to the communication and computation needs of the
panel factorisation stage, column oriented is more commonly used [13].

In order to balance computation, each processor receives multiple columns,
in round robin or cyclic fashion, unlike the one-dimensional matrix multipli-
cation partition which assigns one column per processor. The sum of all the
widths of all the columns assigned to a given processor is in proportion to
the speed of that processor. A one-dimensional partition shape is shown in
Figure 9.2. This type of shape is an example of the generalised block parti-
tion discussed in [47] and [26]. The generalised block, static one-dimensional,
partition is also used in [13] and [69].

1http://cs.berkeley.edu/˜demmel/cs267 spr14
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a) k = 4 steps

i

(i,i)

b) Search column for pivot and swap

c) Compute multipliers and sub-
tract

d) Send LL horizontally and do
triangular solve

1

2

e) Matrix Multiply (Submatrix = Sub-
matrix - (Matrx 1 * Matrix 2)

Figure 9.1: LU factorisation parallel algorithm. White is the current step,
light grey the completed factorisation, and dark grey the trailing submatrix
to be updated/factorised.
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Figure 9.2: A one dimensional, column oriented, partition shape for LU
factorisation on three heterogeneous processors (shown in white, grey, and
black).

In addition to the generalised block, two other algorithms for one-dimensional
LU partitions exist. First is the Dynamic Programming [45, 70] method,
which distributes column panels to processors for execution. This algorithm
returns an optimal solution, but does not scale well for non-constant perfor-
mance models. The second is the Reverse Algorithm [71, 72]. This algorithm
also provides an optimal solution, at somewhat worse complexity, with the
benefit of an easier extension to non-constant performance models of proces-
sor speed.

9.2.2 Two-Dimensional Partitioning

Two-dimensional partitioning for LU factorisation is not common among
two and three processor systems, due to the considerations of computational
load. However, the same two-dimensional partitions used for four and more
processors could be used to partition three heterogeneous processors.

A common one of these is the two-dimensional cyclic layout as shown in
Figure 9.3.

9.3 Applying Push to LU Factorisation

This section will show how the Push Technique may be applied to LU factori-
sation, specifically considering the issues of maintaining a balanced compu-
tational load while minimising communication. To use the Push under these
constraints involves a modified methodology, which is also described. Finally,
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Figure 9.3: A two dimensional, cyclic, partition shape for LU factorisation
on four processors.

the Push Technique is used to find some two processor optimal candidates
for LU factorisation.

9.3.1 Special Considerations of LU Push

Data partitioning for LU factorisation is fundamentally different from matrix
multiplication due to the serialised nature of the computation, as described
in Section 9.1.2. As the computation progresses, the factorisation is finalised
on an increasingly large portion of the matrix. Therefore, if a processor is
assigned a square of the matrix in the top left hand corner of size r × r (as
with the Square Corner for matrix multiply), then after the first r steps that
processor is idle for the remainder of the factorisation.

Data partitions for LU factorisation must evenly distribute the computa-
tion of each step, and of each trailing sub matrix. As a large portion of the
computation and communication load takes places in the update to the trail-
ing sub matrix (in the form of matrix multiplication), this is the area to which
the Push must be applied. Consideration must be given to both maintaining
the proper distribution of computational load within each trailing sub ma-
trix (and thereby also in each step), and to minimising communication that
occurs at each step.

9.3.2 Methodology of LU Push

The two processor Push on a matrix partition shape for LU factorisation
must accomplish two things,

• Maintain the correct ratio of data volume for each processor, in each
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trailing sub matrix

• Minimise necessary communication between preceding steps and the
current trailing sub matrix

Begin by considering the smallest trailing matrix, with elements randomly
distributed to two Processors in proper proportion, and execute the Push
Technique. The boundaries of the Push are the edges of the submatrix; no
elements may move through this hard boundary. The simplest results to
predict are those of the Push Technique for matrix multiplication on two
processors, Straight Line and Square Corner, as shown in Figure 9.4.

a) Straight Line b) Square Corner

Figure 9.4: Perform Push on the smallest submatrix, to obtain partition
shape for step k, partitioned between two processors (white and black). Grey
represents the unPushed area of the matrix which has not yet been addressed.

This process continues considering the next smallest trailing submatrix,
and Pushing the previously unPushed elements within it. The aim is to
minimise the number of rows and columns containing elements of both pro-
cessors. This could look like the partitions in Figure 9.5.

It is important to note that in order for the partition to remain compu-
tationally balanced, elements may not be Pushed across the boundaries of a
step. Each step, and each trailing submatrix, must contain the proportional
number of elements belonging to a given processor.

9.3.3 Two Processor Optimal Candidates

This section is not intended to display all possible optimal candidates for two
processor LU factorisation. It is possible to imagine many dimensions and
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a) Straight Line b) Square Corner

Figure 9.5: Add the previous step to the submatrix, and perform Push on
the new submatrix.

locations of the rectangle assigned to the smaller processor in the smallest
trailing submatrix. This rectangle will affect the ending partitions which are
possible to make. Further investigation is required before other rectangle
dimensions and locations can be eliminated. However, the two partitions
shown in Figure 9.6 are certainly among the candidates, and are based on
the Straight Line and Square Corner partitions, respectively.

a) Straight Line b) Square Corner

Figure 9.6: Some potential candidates for the optimal LU factorisation shape
with two heterogeneous processors, depicted between a fast (white) processor
and slow (black) processor.
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Chapter 10

Further Work

While the work of the previous chapters has made significant progress de-
termining optimal data partitioning shapes for matrix computations, there
are a variety of ways this work could be further expanded. First, the most
obvious addition to this work is to increase the number of processors to which
it is applicable. A general roadmap to using the Push Technique on four and
more processors has been provided, however, this section further expands on
the possibilities and challenges in this future work.

The concept of the abstract processor was strictly defined in a simple
manner, to provide a base case that might be applicable to the largest number
systems possible. By increasing the number of metrics used to describe an
abstract processor in terms of computation, communication, and memory,
the boundaries at which each candidate becomes the optimal shape could be
further refined for particular system types.

Finally, the Push Technique itself is a powerful tool that, with some
changes to the performance model of the optimisation metric, can be applied
to matrix computations in general.

10.1 Arbitrary Number of Processors

This thesis does not exhaust the number of processors for which the Push
Technique is a useful tool. Using the Push DFA to implement an extension
to the software tool for four and more processors is underway. However, it is
not expected that the Push Technique be a feasible tool beyond some number
of processors, perhaps eight or ten.

To consider the question of an arbitrary number of processors, a formal
method for using the Push Technique in a hierarchical way would need to be
developed. This method would describe the interaction of multiple layers of
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processing power, and how a Push at one level in the hierarchy would effect
the optimal partition shape at other levels. For example, if at the highest
level several clusters were used (and due to their computational speeds) the
Square Corner was chosen to distribute the data amongst them, any change
in their underlying computational speed (due to change in the optimal data
partition at a lower, node level) could affect the distribution at the higher
level. This process could be defined in fashion similar to that of the LU
factorisation Push, which starts at the base level and works up to some
complete partition shape.

This leads naturally to the question of how would non-rectangular parti-
tions be divided at the lower levels. The Push Technique should be extended
for use on non-square matrices, so a non-rectangular matrix could potentially
be considered two or more non-square rectangular matrices.

10.2 Increasing Complexity of Abstract Pro-

cessor

There are a variety of ways the abstract processor model could be extended
to increase the sensitivity of the model to diverse types of heterogeneous
processors and networks.

10.2.1 Non-Symmetric Network Topology

The communication interconnect among processors can be widely varied in
actual technology (Ethernet, InfiniBand), and in latency and bandwidth as
a result of overall network congestion. Throughout this work, it has been as-
sumed that communication is symmetric and can be represented by a single
constant bandwidth, β. In future work, non-symmetric links could be repre-
sented using a unique constant for each link (including a constant of zero for
non-existent links). If p processors are connected by nn−1

2
links, then there

exist n(n−1) bandwidth variables labelled pi→j for communication travelling
from Processor pi to Processor pj.

As with the optimal rectangle tiling problem, the optimal distribution
of data on a heterogeneous network has also been shown to have cases of
NP -completeness [73].

10.2.2 Computational Performance Model

The abstract processor is currently modelled computationally as a single
integer number, expressed in the form of a ratio in proportion to the total
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power of the system. However, this constant performance model could be
replaced with a more complex functional performance model, based on the
overall problem size (matrix size). A functional model would account for the
changes that occur, as the matrix size grows, in the performance of different
processors. While the addition of a functional performance model would not
change the candidate shapes, it could alter the boundaries at which each
candidate is the optimum.

Other options for growth in computational modelling include further pa-
rameterising of the basic unit of computation, such as is necessary for other
matrix computations.

10.2.3 Memory Model

Related to the computational model, as it is often the reason for varying
computational performance, is the memory model. It is well known that
different processor types possess significantly different amounts of memory,
especially in comparison to their respective throughput in FLOPs.

10.3 Push Technique and Other Matrix Com-

putations

The Push Technique has been thoroughly investigated for matrix multipli-
cation, and a methodology for use with LU factorisation has been given.
However, other matrix computations pose some difficult challenges.

The key idea will be to identify those performance metrics of a given
matrix computation which can be incrementally altered to achieve an op-
timal ending shape. Some possibilities for extension lie in other common
linear algebra kernels in ScaLAPACK such as QR factorisation and other
decomposition problems.

However, it is worth mentioning that the work done in this thesis with
matrix multiplication could give insights into any matrix computation which
uses matrix multiply in its parallel algorithm for the BLAS-3 speedup (as
LU factorisation does).
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Chapter 11

Conclusions

This thesis has outlined a solution to a particularly thorny problem - the
optimal data partitioning for matrix computation for heterogeneous proces-
sors. Candidates for the optimal shape were found using the new Push
Technique, which included unconventional non-rectangular shapes. Several
of these shapes are indeed optimal for certain system characteristics in re-
gards to ratios of computational power and communication speed.

11.1 The Push Technique

The Push Technique is a simple but powerful method of obtaining partition
shapes. Using small, incremental changes to a data partition (each of which
improves the partition metrics of communication time) the end result of
the Push DFA is a finite set of candidate partition shapes. These candidate
shapes may be compared directly, according to their performance models and
algorithms, to determine which of the candidates is indeed the optimum.

The Push has several distinct advantages over typical methods for finding
the partition shapes. The Push Technique:

• finds all candidate shapes, especially unexpected or novel shapes (such
as Square Rectangle)

• ensures that candidate shapes are potentially optimally (as opposed to
sub-optimal by definition)

• needs only to be thoroughly used once for each number of processors
(to find all possible candidates)

• complexity of the DFA scales well with problem size
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11.2 Non-Rectangular Partitioning

A fundamental assumption of much of the prior study of data partitioning for
matrix computation on heterogeneous processors is that the partition shape
should be rectangular. A rectangular partition is composed of rectangles (of
any dimension, but of fixed area relative to their speed) assigned to each
processor; no processor may have a non-rectangular portion of the matrix to
compute. This problem, of optimally tiling rectangles of varying dimensions
onto a unit square to minimise communication, is provably NP -complete
[28]. The NP -complete result has driven the search for data partitions away
from the realm of optimality. Instead, most work in this area has focused on
various algorithms and heuristics to approximate a solution, which is always
assumed to be rectangular.

The results of this thesis show that these approximate rectangular solu-
tions are provably suboptimal for a variety of heterogeneous computational
power ratios, under several different matrix multiplication algorithms. The
larger goal of this thesis is to provide a framework for finding the optimal
partition shape under myriad conditions, without assumptions about the
rectangular/non-rectangular nature of those shapes.

11.2.1 The Square Corner Shape

The Square Corner shape, which was first described in [52] and [53], inspired
this new search for optimality in data partitioning. For certain types of het-
erogeneous systems, this shape minimises the sum of the half perimeters, a
metric of the total volume of communication required for matrix multiplica-
tion. In Figure 11.1, the Square Corner is shown for two and three processors,
and is drawn to show example ratios for which it is optimal.

Figure 11.1: Examples of the Square Corner shape for two and three proces-
sors. Drawn to approximate ratios for which it is optimal.
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In general, the Square Corner shape is optimal for two abstract processors
when the ratio between the computational power of the two processors is
greater than 3 : 1. However, the arrangement of elements in the Square
Corner shape allows for a large swath of elements of the faster Processor
P to be computed without communication. Overlapping this computation
with the communication increases the ratios for which the Square Corner is
optimal to ratios greater than 2 : 1.

For three abstract processor systems, the Square Corner shape is generally
optimal when there is a single fast processor, and two slower processors. As
with two processors, it is possible for a part of Processor P to be computed in
parallel with communication, which increases the range for which the Square
Corner is optimal.

11.2.2 The Square Rectangle Shape

The Square Rectangle shape is a completely new shape introduced in this
thesis. The Square Rectangle was discovered using the Push Technique, and
despite its unconventional non-rectangular appearance, it is optimal for a
variety of heterogeneous systems. Figure 11.2 shows the Square Rectangle
shape drawn to approximate ratios for which it is the optimum.

Figure 11.2: The Square Rectangle shape for three processors. Each proces-
sor is drawn to approximate ratios for which it is optimal.

In general, the Square Rectangle is optimal for three abstract processors
when the ratios of computational power are such that there exists two fast
processors and one slow processor. The Square Rectangle can be seen as
a combination of the best attributes of both of the two processor shapes,
Square Corner and Straight Line. For two relatively equal, nearly homoge-
neous, processors the Straight Line is optimal. Added to this is a small third
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processor, in the shape of a square to minimise communication with the rest
of the matrix.

11.3 Pushing the Boundaries: Wider Appli-

cability

While Chapter 10 outlined the limitations of this thesis in terms of number
of processors used (two or three rather than many) and abstract processor
model (basic rather than complex), the overall theme of this thesis is one of
generality. The Push Technique, incrementally improving a partition shape
according to some metric, was applied to both matrix multiplication and LU
factorisation with good results. To increase the complexity of the abstract
processor would not change this fundamental result.

Similarly, the three processor case shows the wider applicability of the
Push Technique to any arbitrary number of processors. It appears that for
any reasonable number of processors, say less than ten, the Push Technique
could create candidate partitions for sufficiently large enough problem sizes
(to allow greater granularity in element movement). Furthermore, the candi-
dates created using the Push Technique can be utilised in a hierarchical way,
so as to minimise communication for any number of processors.
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Appendix A

Two Processor Push
Algorithmic Description

This section contains the algorithm description for the Push Up, Push Over,
and Push Back, operations.

A.1 Push Down

Formally, Push ↓ (φ, k) = φ1 where,

Initialise φ1 ← φ
(g, h) = (k + 1, xleft)
for j = xleft → xright do
{If element belongs Processor X, reassign it.}
if φ(k, j) == 1 then
φ1(k, j) = 0;
(g, h) = find(g, h); {Function defined below (finds new location).}
φ1(g, h) = 1; {Assign new location to active processor.}

end if
j ← j + 1;

end for

find(g, h):

for g → xbottom do
for h→ xright do
{If potential location belongs to other processor, hasn’t been reas-
signed already, and is in a column already containing X.}
if φ(g, h) == 0 && φ1(g, h) == 0 && c(φ,X, h) == 1 then

return (g, h);
end if
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end for
g ← g + 1;
h← xleft;

end for
return φ1 = φ {Could not find location, Push not possible in this direc-
tion.}
It is important to note that if no suitable φ(g, h) can be found for each

element in the row being cleaned that requires rearrangement, then φ is
considered fully condensed from the top and all further ↓ (φ, k) = φ.

A.2 Push Up

The Push Up operation is the opposite of the Push Down. Elements are
reassigned from the bottom edge of the enclosing rectangle to the rows above.

Formally, Push ↑ (φ, k) = φ1 where,

Initialise φ1 ← φ
(g, h) = (k − 1, xleft)
for j = xleft → xright do

if φ(k, j) == 1 then
φ1(k, j) = 0;
(g, h) = find(g, h);
φ1(g, h) = 1;

end if
j ← j + 1;

end for

find(g, h)
for g → xtop do

for h→ xright do
if φ(g, h) == 0 && φ1(g, h) == 0 && c(φ,X, h) == 1 then

return (g, h);
end if

end for
g ← g − 1;
h← xleft;

end for
return φ1 = φ
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A.3 Push Over

The Push Over operation reassigns elements from the left edge of the enclos-
ing rectangle to the columns to the right.

Formally, Push→ (φ, k) = φ1 where,

Initialise φ1 ← φ
(g, h) = (xleft, k + 1)
for i = xtop → xbottom do

if φ(i, k) == 1 then
φ1(i, k) = 0;
(g, h) = find(g, h);
φ1(g, h) = 1;

end if
i← i+ 1;

end for

find(g, h)
for g → xbottom do

for h→ xright do
if φ(g, h) == 0 && φ1(g, h) == 0 && r(φ,X, h) == 1 then

return (g, h);
end if

end for
g ← xtop;
h← h+ 1;

end for
return φ1 = φ

A.4 Push Back

The Push Back operation, the opposite of the Push Over, reassigns elements
from the right edge of the enclosing rectangle to the columns to the left.

Formally, Push← (φ, k) = φ1 where,

Initialise φ1 ← φ
(g, h) = (xtop, k − 1)
for i = xtop → xbottom do

if φ(i, k) == 1 then
φ1(i, k) = 0;
(g, h) = find(g, h);
φ1(g, h) = 1;

end if

136



i← i+ 1;
end for

find(g, h)
for g → xbottom do

for h→ xleft do
if φ(g, h) == 0 && φ1(g, h) == 0 && r(φ,X, h) == 1 then

return (g, h);
end if

end for
g ← xtop;
h← h− 1;

end for
return φ1 = φ
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Appendix B

Push Lowers Communication
Time: Two Processor Proofs

This appendix provides the full proofs for each of the five algorithms. These
show that the Push Technique, when applied repeatedly, lowers the commu-
nication volume of the partition shape. These results were previously given
in technical report [74].

B.1 Serial Communication

Theorem B.1.1 (Push). The Push Technique output partition, φ1, will have
lower, or at worst equal, communication time as the input partition, φ.

Proof. First, observe several axioms related to the Push Technique.

Axiom 5. Push ↓ and Push ↑, create a row, k, with no elements belonging
to the Pushed Processor X, and may introduce Processor X to at most one
row in φ1 in which there were no elements of Processor X in φ. No more
than one row can have elements of X introduced, as a row that was had no
elements of X in φ will have enough suitable slots for all elements moved
from the single row, k.

Axiom 6. Push ↓ and Push ↑ are defined to not add elements of Processor X
to a column in φ1 if there is no elements of X in that column of φ. However,
these Push directions may create additional column(s) without X, if the row
k being Pushed contains elements that are the only elements of X in their
column, and there are sufficient suitable slots in other columns.

Axiom 7. Push → and Push ← create a column, k, with no elements be-
longing to Processor X, and may create at most one column with X in φ1

that did not contain X in φ.
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Axiom 8. Push→ and Push← will never add elements of X to a row in φ1

that did not contain elements of X in φ, but may create additional row(s)
without X.

From (3.8) we observe as (‖ φ ‖x + ‖ φ ‖y) increases, Tcomm decreases.
Push ↓ or Push ↑ on φ create φ1 such that:

For row k being pushed,

If there exists some row i that did not have elements of X, but now does:

r(φ,X, i) = 0 and r(φ1, X, i) = 1

then by Axiom 1:

‖ φ1 ‖x = ‖ φ ‖x
else

‖ φ1 ‖x = ‖ φ ‖x +1

and by Axiom 2:

‖ φ1 ‖y ≥ ‖ φ ‖y

Push → or Push ← on φ create φ1 such that:

For column k being pushed,

If there exists some column j that did not have elements of X, but now does:,

c(φ,X, j) = 0 and c(φ1, X, j) = 1

then by Axiom 3:

‖ φ1 ‖y = ‖ φ ‖y
else

‖ φ1 ‖y = ‖ φ ‖y +1

and by Axiom 4:

‖ φ1 ‖x ≥ ‖ φ ‖x
By these definitions of all Push operations we observe that for any Push

operation, (‖ φ1 ‖x + ‖ φ1 ‖y) ≥ (‖ φ ‖x + ‖ φ ‖y). Therefore, we conclude
that all Push operations will either decrease communication time (3.8) or
leave it unchanged.

B.2 Parallel Communication

Theorem B.2.1 (Push). The Push Technique output partition, φ1, will have
lower, or at worst equal, communication volume to the input partition, φ.
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Proof. From the definition of the maximum function of execution time, and
the definition of Tcomm, for the PCB algorithm, the following observations
may be made:

1. Tcomm decreases as the volume of vP decreases, if vP > vS

2. Tcomm remains constant as V P decreases if V Q > V P

3. Tcomm remains constant as V Q increases if V P > V Q

VP will decrease or remain constant for all push operations on partition φ.

A push is defined to keep constant the number of elements in #P and #Q.
From this fact and from the long form of the definition of Tcomm, parallel,
we observe Lemma 1: V P decreases as (‖ φ ‖0x + ‖ φ ‖0y) increases.

push ↑ and ↓ of φ are defined to create φ1 such that:

For some k, r(φ, k) = 1 and r(φ1, k) = 0

By axiom 1,

If there exists some i such that r(φ, i) = 0 and r(φ1, i) = 1 then

‖ φ1 ‖0x = ‖ φ ‖0x
Else,

‖ φ1 ‖0x = ‖ φ ‖0x +1

By axiom 2,

‖ φ1 ‖0y ≥ ‖ φ ‖0y

push → and ← of φ are defined to create φ1 such that:

For some k, c(φ, k) = 1 and c(φ1, k) = 0

By axiom 3,

If there exists some j such that c(φ, j) = 0 and c(φ1, j) = 1 then

‖ φ1 ‖0y = ‖ φ ‖0y
Else,

‖ φ1 ‖0y = ‖ φ ‖0y +1

By axiom 4,

‖ φ1 ‖0x ≥ ‖ φ ‖0x
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From these definitions we observe Lemma 2: For all push operations,
(‖ φ1 ‖0x + ‖ φ1 ‖0y) ≥ (‖ φ ‖0x + ‖ φ ‖0y). By Lemmas 1 and 2, we conclude
that V P decreases or remains constant for any push operation.

B.3 Canonical Forms

The location within the larger matrix of the rectangle assigned to Processor
S does not affect the overall communication time because it does not change
the number of rows and columns containing elements of both Processors P
and S.

Theorem B.3.1. Any partition shape, for two processor matrix multiplica-
tion, with an enclosing rectangle of Processor S of some dimensions x, y has
the same communication cost.

Proof. Consider a partition shape, q, divided between two Processors P and
S. Processor S is of equal or lesser computational power of P and is assigned
a rectangle of some dimensions x, y to compute. Processor P may be assigned
a rectangular or non-rectangular portion to compute.

Volume of communication, the communication cost, is given by

VoC =
N∑
i=1

N(ci − 1) +
N∑
j=1

N(cj − 1) (B.1)

ci −# of processors assigned elements in row i of q
cj −# of processors assigned elements in column j of q

Regardless of the location, the rectangle assigned to S may only occupy
y rows and x columns. So all shapes with identical dimensions of Processor
S are equivalent.
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Appendix C

Push Lowers Execution Time:
Three Processor Proofs

This section contains the performance models of each of the five algorithms,
specific to three processors. It is asserted that each of these models will
decrease the execution time, or at least not increase it, for each of these
algorithms. These results were previously published in technical report [75].

C.1 Serial Communication with Barrier

Texe =Tcomm + Tcomp (C.1)

Tcomm =
( N∑
i=1

N(pi − 1) +
N∑
j=1

N(pj − 1)
)
× Tsend (C.2)

where,

pi = # of processors assigned elements in row i

pj = # of processors assigned elements in column j

Tsend = # of seconds to send one element of data

As Push is designed to clean a row or column of a given processor, it will de-
crease pi and pj, lowering communication time, and thereby execution time.
At worst, it will leave pi and pj unchanged.
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C.2 Parallel Communication with Barrier

Texe = Tcomm + Tcomp (C.3)

Tcomm = max(dP , dR, dS) (C.4)

Here, dX is the time taken, in seconds, to send all data by Processor X and
is formally defined below.

dX =
(
(N × iX +N × jX)−#X

)
× Tsend (C.5)

where,

iX = # of rows containing elements of Processor X

jX = # of columns containing elements of Processor X

#X = # of elements assigned to Processor X

Each Push operation is guaranteed, by definition, to decrease or leave un-
changed, either iX or jX , or both.

C.3 Serial Communication with Bulk Over-

lap

Texe = max
(
dP + dR + dS,max(oP , oR, oS)

)
+ max(cP , cR, cS) (C.6)

where,

oX =# of seconds to compute the overlapped computation

on Processor X

cX =# of seconds to compute the remainder of the data on

Processor X

Each Push operation is guaranteed, by definition, to decrease or leave un-
changed, iX and jX of dX for the active processor. It also, by definition, will
not increase dX for either inactive processor.
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C.4 Parallel Communication with Overlap

Texe = max
(

max(dX , dR, dS),max(oP , oR, oS)
)

+ max(cP , cR, cS) (C.7)

Each Push operation is guaranteed, by definition, to decrease or leave un-
changed, iX and jX of dX for the active processor. It also, by definition, will
not increase dX for either inactive processor.

C.5 Parallel Interleaving Overlap

Texe = Send k+

N∑
i,j,k=1

max

((
N ×

(
(pi − 1) + (pj − 1)

))
× Tsend,

max(kP , kR, kS)

)
+ Compute(k + 1) (C.8)

where,

pi = # of processors assigned elements in row i

pj = # of processors assigned elements in column j

kX = # of seconds to compute step k on Processor X

Again, Push is designed to clean a row or column of a given processor, it
will decrease pi and pj, lowering communication time, and thereby execution
time. At worst, it will leave pi and pj unchanged.
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Appendix D

Three Processor Fully
Connected Optimal Shape
Proofs

D.1 Serial Communication with Overlap

In the Serial Communication with Bulk Overlap (SCO) algorithm, all data
is sent by each processor serially, while in parallel any elements that can be
computed without communication are computed. Only once both communi-
cation and overlapped computation are complete does the remainder of the
computation begin. The execution time is given by,

Texe = max
(

max(Tcomm, oP )+cP ,max(Tcomm, oR)+cR,max(Tcomm, oS)+cS

)
where Tcomm is the same as that of the SCB algorithm, oX is the number

of seconds taken by Processor X to compute any elements not requiring com-
munication, and cX is the number of seconds taken to compute the remainder
of the elements assigned to Processor X.

D.1.1 Square Corner Description

Of the three candidate partitions, only the Square Corner has an oX term
which is not equal to zero, i.e. it contains elements which may be computed
without any communication amongst processors. The overlap-able area may
be seen Figure D.1. The addition of the non-zero oP term implies that cP
will no longer be equal to cR and cS if we continue to naively assign the
volume of elements as N2Pr

T
. As Processor P is getting a head start on its
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Figure D.1: The area of Processor P which does not require communication in
the Square Corner partition shape is enclosed in dotted lines. The existence
of this area is taken advantage of by the SCO and PCO algorithms.

computation, it should be assigned a larger portion of the matrix to compute
than suggested by Pr.

Execution Time

To determine this optimal size, we first assume that the volumes (and thereby
the size of the squares) assigned to Processors R and S should decrease in
proportion to each other, so their computation times remain equal (cR = cS).
The size of a side of the square R, r, and a side of the square S, s, being set

at s =
√

r2

Rr
ensures that computation on Processors R and S will complete

at the same time. We may safely ignore the third term of the SCO max
function, as it is redundant in this case. Execution time may now be given
by,

Texe = max
(

max(Tcomm, oP ) + cP , Tcomm + cR

)
There are three possible functions that may dominate this execution time.

Those are communication time and computation of P (Tcomm + cP ), all com-
putation of P (oP + cP ) or communication time and computation of R,
(Tcomm + cR). These functions are given by,
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Texe(1)(Tcomm + cP ) = 2N2

(√
Rr

T
+

√
1

T

)
β+

2N

Sp

(
Nr − r2 − r2√

Rr

+
Nr√
Rr

− r2

Rr

)
Texe(2)(oP + cP ) =

N

Sp

(
N2 − r2

Rr

− r2
)

Texe(3)(Tcomm + cR) = 2N2

(√
Rr

T
+

√
1

T

)
β + r2

N

Sr

where Sp
N

is the number of elements computed per second by Processor
P , and Sr

N
is the number of elements computed per second by Processor R.

In order to make the execution time equations easier to analyse, the con-
stant factor N3β has been removed. This introduces a new variable c = Spβ,
which represents a ratio between computation and communication speeds.
The size of N and r have been normalised, so that r

N
becomes r, and r is

understood to be 0 ≤ r < 1.

Texe(1)
N3β

(Tcomm + cP ) =
2

N

(√
Rr

T
+

√
1

T

)
+

2

c

(
r − r2 − r2√

Rr

+
r√
Rr

− r2

Rr

)
Texe(2)
N3β

(oP + cP ) =
(1− r2

Rr
− r2)

c

Texe(3)
N3β

(Tcomm + cR) =
2

N

(√
Rr

T
+

√
1

T

)
+
r2Pr
cRr

Lemma 1 (SCO Texe(1)). The completion time of the communication and the
computation of the remainder of Processor P ’s elements will dominate the
maximum function and determine the execution time of the Square Corner

partition shape for the SCO algorithm when T −Rr− 2c
N

(
√

Rr

T
+
√

1
T

) + r(r+

2r−2√
Rr

+ r
Rr
− 2) < Pr <

2Rr

r
− 2Rr − 2

√
Rr + 2

√
Rr

r
− 2.
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Proof. Directly compare each of the Texe functions, beginning with,

Texe(1) > Texe(2)

2

N

(√
Rr

T
+

√
1

T

)
+

2

c

(
r − r2 − r2√

Rr

+
r√
Rr

− r2

Rr

)
>

(1− r2

Rr
− r2)

c

2c

N

(√
Rr

T
+

√
1

T

)
+ 2r − r2 − 2r2√

Rr

+
2r√
Rr

− r2

Rr

> 1

2c

N

(√
Rr

T
+

√
1

T

)
+ 2r − r2 − 2r2√

Rr

+
2r√
Rr

− r2

Rr

− T > 1− Pr −Rr − Sr

T −Rr −
2c

N

(√
Rr

T
+

√
1

T

)
+ r
(
r +

2r − 2√
Rr

+
r

Rr

− 2
)
< Pr

And then comparing,

Texe(1) > Texe(3)

2

N

(√
Rr

T
+

√
1

T

)
+

2

c

(
r − r2 − r2√

Rr

+
r√
Rr

− r2

Rr

)
>

2

N

(√
Rr

T
+

√
1

T

)
+
r2Pr
cRr

2

c

(
r − r2 − r2√

Rr

+
r√
Rr

− r2

Rr

)
>
r2Pr
cRr

2Rr

r
− 2Rr − 2

√
Rr +

2
√
Rr

r
− 2 > Pr

Lemma 2 (SCO Texe(2)). The computation of all elements assigned to Pro-
cessor P will dominate the maximum function and determine the execu-
tion time of the Square Corner partition shape for the SCO algorithm when

Pr < T − Rr − 2c
N

(
√

Rr

T
+
√

1
T

) + r(r + 2r−2√
Rr

+ r
Rr
− 2) and when Pr <

Rr

r2
− 1−Rr − 2cRr

r2N

(√
Rr

T
+
√

1
T

)
.

Proof. The comparison of Texe(1) and Texe(2) may be found in the proof of
Lemma 1. The second comparison is given by,

Texe(2) > Texe(3)

(1− r2

Rr
− r2)

c
>

2

N

(√
Rr

T
+

√
1

T

)
+
r2Pr
cRr

1− r2

Rr

− r2 − 2c

N

(√
Rr

T
+

√
1

T

)
>
r2Pr
Rr

Rr

r2
− 1−Rr −

2cRr

r2N

(√
Rr

T
+

√
1

T

)
> Pr

148



-0.25 0 0.25 0.5 0.75 1

0.5

1

Tcomm + cP

oP + cP
Tcomm + cR

Figure D.2: Graph of the three constituent functions of execution time for
the Square Corner shape under the SCO algorithm. N is normalised to 1,
so valid values of x, which represents r, are 0 < x < 1. As shown, c = 1,
Rr = 2 and Pr = 10.

Lemma 3 (SCO Texe(3)). The completion time of the communication and
the computation of all elements assigned to Processor R will dominate the
maximum function and determine the execution time of the Square Corner
partition shape for the SCO algorithm when Pr <

2Rr

r
−2Rr−2

√
Rr+

2
√
Rr

r
−2

and when Pr <
Rr

r2
− 1−Rr − 2cRr

r2N

(√
Rr

T
+
√

1
T

)
.

Proof. The comparison of Texe(3) and Texe(1), and the comparison of Texe(3)
and Texe(2), may be found in Lemma 1 and Lemma 2, respectively.

Optimal size of R and S

The optimal size of r depends on which function dominates the maximum
function of the execution time. To determine the optimal sizes of r, we
examine the graphs of these three functions. The graph is shown in Figure
D.2. The functions are all parabolas, with the first two (Tcomm + cP and
oP + cP ) are concave down while the third (Tcomm + cR) is concave up. If the
size of r is zero, neither Processor R or S are assigned any part of the matrix
to compute.
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(1 ∩ 2) r =
Rr +

√
Rr −

√
(2cRr

N
)(1 +Rr + 2

√
Rr)(

√
Rr

T
+
√

1
T

)

1 +Rr + 2
√
Rr

(D.1)

(2 ∩ 3) r =

√
−( Pr

Rr
+ 1 + 1

Rr
)(2c
N

√
Rr

T
+ 2c

N

√
1
T
− 1)

( Pr

Rr
+ 1 + 1

Rr
)

(D.2)

(1 ∩ 3) r =
2 + 2√

Rr

Pr

Rr
+ 2√

Rr
+ 2

Rr
+ 2

(D.3)

D.1.2 SCO Optimal Shape

Theorem D.1.1 (SCO Square Corner). The Square Corner partition shape
minimizes execution time, i.e. is the optimum shape, when using the SCO
MMM algorithm for computational ratios such that

Pr >
2
N
(
√

Rr
T

+
√

1
T
)+ 2

c
(r−r2− r2√

Rr
+ r√

Rr
− r2

Rr
)− 2

N
1
Tc
− 1

TN

and Pr >
2c
N

(
√
RrT+

√
T )+2T (r−

r2− r2√
Rr

+ r√
Rr
− r2

Rr
)− Tc

N
− 2c

N

√
T , where r is the optimal size of the square

R, given in (D.3).

Proof. The Square Corner shape, as seen in graph 7.10, minimises execution
time along the highly heterogeneous processor ratios, intersecting with the
Block Rectangle and the Square Rectangle shape surfaces as the ratio ap-
proaches Pr = Rr. To compare the Square Corner shape, we first determine
which constituent function of the max will dominate the execution time at
those ratios. As heterogeneity decreases, and the intersections with Square
Rectangle and Block Rectangle shapes are approached, it becomes increas-
ingly vital to performance that powerful processors (R and S) not be left
idle. In these cases, for the ratios at which each function of the maximum
intersects with these other shapes, by Lemma 1, the maximum function will
be dominated by the first function, Texe(1) = Tcomm + cP .

It is now possible to compare each shape directly.

150



SC < BR

2

N
(

√
Rr

T
+

√
1

T
) +

2

c
(r − r2 − r2√

Rr

+
r√
Rr

− r2

Rr

) <

2

N
− Pr
TN

+ max

(
Pr
Tc
,
Pr
Tc
,
Pr
Tc

)
2
N

(
√

Rr

T
+
√

1
T

) + 2
c
(r − r2 − r2√

Rr
+ r√

Rr
− r2

Rr
)− 2

N

1
Tc
− 1

TN

< Pr

SC < SR

2

N
(

√
Rr

T
+

√
1

T
) +

2

c
(r − r2 − r2√

Rr

+
r√
Rr

− r2

Rr

) <

1

N
− 2

N

√
1

T
+ max

(
Pr
Tc
,
Pr
Tc
,
Pr
Tc

)
2c

N
(
√
RrT +

√
T ) + 2T (r − r2 − r2√

Rr

+
r√
Rr

− r2

Rr

)− Tc

N
− 2c

N

√
T < Pr

Theorem D.1.2 (SCO Square Rectangle). The Square Rectangle partition
shape minimises execution time, i.e. is the optimum shape, when using the
SCO MMM algorithm for computational ratios such that Pr < T − 2

√
T and

Pr <
2c
N

(
√
RrT +

√
T ) + 2T (r − r2 − r2√

Rr
+ r√

Rr
− r2

Rr
)− Tc

N
− 2c

N

√
T

Proof. The ratios of intersection of the Square Rectangle and the Square
Corner shapes is found in the proof of Theorem 7.3.11 above. The comparison
of the Square Rectangle and Block Rectangles shapes gives,

SR < BR

1

N
− 2

N

√
1

T
+ max

(
Pr
Tc
,
Pr
Tc
,
Pr
Tc

)
<

2

N
− Pr
TN

+ max

(
Pr
Tc
,
Pr
Tc
,
Pr
Tc

)
1

N
− 2

N

√
1

T
<

2

N
− Pr
TN

Pr < T − 2
√
T
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Corollary D.1.3 (SCO Block Rectangle). The Block Rectangle partition
shape minimises execution time, i.e. is the optimum shape, for all proces-
sor computational power ratios except those specified in Theorems D.1.1 and
D.1.2.

D.2 Parallel Communication with Overlap

In the Parallel Communication with Bulk Overlap (PCO) algorithm all data
is sent among processors in parallel, while in parallel any elements that can be
computed without communication are computed. Once both communication
and overlapped computation are complete, the remainder of the computation
begins. The execution time for this algorithm is given by,

Texe = max
(

max(Tcomm, oP )+cP ,max(Tcomm, oR)+cR,max(Tcomm, oS)+cS

)
where Tcomm is the same as that of the PCB algorithm, oX is the num-

ber of seconds taken to compute any elements not requiring communication,
by Processor X, and cX is the number of seconds taken to compute the
remainder of the elements assigned to Processor X.

D.2.1 Square Corner

In the PCO algorithm, the Square Corner shape has a portion assigned to
Processor P , oP , which may be overlapped with the communication. Proces-
sor P begins computation before Processors R and S, meaning that Processor
P should be assigned more elements to compute. This will decrease the size
of the squares assigned to Processor R and S, which we assert should be
decreased in proportion to each other such that cR = cS. In this section, we
determine the optimal size of square assigned to Processors R and S. We fix
the size of the square of Processor S to be s = r√

Rr
. The general form of the

execution time equation will then be,

Texe = max
(

max(Tcomm, oP ) + cP , Tcomm + cR

)
Execution Time

There exist three functions which may dominate the execution time function
for this partition shape, Tcomm + cP , oP + cP , and Tcomm + cR. These are
given by,
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Texe(1)(Tcomm + cP ) = max(2rN − 2r2 + 2sN − 2s2, 2r2, 2s2)β

+
2r(N − r) + 2s(N − r − s)

Sp
N

Texe(2)(oP + cP ) =
N2 − r2 − s2

Sp
N

Texe(3)(Tcomm + cR) = max(2rN − 2r2 + 2sN − 2s2, 2r2, 2s2)β +
r2

Sr
N

To simplify these equations, we substitute s, remove the constant N3β
and normalize r

N
to r. As r and s are no longer independent variables,

the third term of Tcomm is redundant, and is ignored. The execution time
functions may now be given by,

Texe(1)
N3β

(Tcomm + cP ) =
2

N
max(r − r2 +

r√
Rr

− r2

Rr

, r2)

+ 2
r − r2 + r√

Rr
− r2√

Rr
− r2

Rr

c

Texe(2)
N3β

(oP + cP ) =
1− r2 − r2

Rr

c

Texe(3)
N3β

(Tcomm + cR) =
2

N
max(r − r2 +

r√
Rr

− r2

Rr

, r2) +
r2Pr
cRr

Value of Tcomm

The Tcomm function may be dominated by either the communication time of
the data sent by Processor P or the data sent by Processor R.

Theorem D.2.1 (PCO SC Tcomm). The Tcomm function of the Square Corner
shape, under the PCO algorithm, will be dominated by the communication
time of Processor P (the first term) when Pr < T − 1 +

√
Rr− 2rRr− r, and

by the communication time of Processor R otherwise
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Proof. Begin by stating,

VP > VR

r − r2 +
r√
Rr

− r2

Rr

> r2

1− r +
1√
Rr

− r

Rr

> r

Rr +
√
Rr > 2rRr + r

T +
√
Rr − 1 + r(2Rr + 1) < Pr

Optimal Size of R and S

The optimal size of r is found by examining the graphs of the constituent
functions Texe(SC). The minimum will be found at the intersection of the
concave up and concave down parabolas, such that

r =
−(2c

N
+ 2c

N
√
Rr

) +
√

(2c
N

+ 2c
N
√
Rr

)2 + 4( Pr

Rr
− 2c

NRr
− 2c

N
+ 1

Rr
+ 1)

2( Pr

Rr
− 2c

NRr
− 2c

N
+ 1

Rr
+ 1)

(D.4)

D.2.2 Square Rectangle

As with the SCO algorithm, the Square Rectangle shape does not have a
portion which may be overlapped with communication under PCO. The time
of execution, as with PCB model, is given by,

Texe(SR)

N3β
= max

( 1

N
+

2

N
√
T
− Rr

NT
− Rr

NT
√
T
− 3

NT
,
Rr

NT
+

Rr

NT
√
T
,

3

NT

)
+ max

(
Pr
Tc
,
Pr
Tc
,
Pr
Tc

)
Value of Tcomm

The Tcomm function may be dominated by the communication time of the
data sent by Processor P or S.

Theorem D.2.2 (PCO SR Tcomm). The Tcomm function of the Rectangle
Corner shape, under the PCO algorithm, will be dominated by the communi-
cation time of Processor P (the first term) when Pr > 5 − 2

√
T + Rr√

T
, and

by the communication time of Processor S otherwise
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Proof. First, the intersection of the equations of communication time for
Processors P and R lies at Pr = Rr+

2Rr√
T
−2
√
T+2. However, this intersection

may be show to lie outside the problem domain of Pr ≥ Rr. Instead, we
consider the intersection of Processor P and Processor S’s communication
time. Begin by stating,

1

N
+

2

N
√
T
− Rr

NT
− Rr

NT
√
T
− 3

NT
>

3

NT

Pr > 5− 2
√
T +

Rr√
T

D.2.3 Block Rectangle

Texe(BR)

N3β
= max

(
Pr
NT

,
2Rr

NT
,

2

NT

)
+ max

(
Pr
Tc
,
Pr
Tc
,
Pr
Tc

)
Value of Tcomm

The Tcomm function may be dominated by either the communication time of
the data sent by Processor P or the data sent by Processor R.

Theorem D.2.3 (PCO SC Tcomm). The Tcomm function of the Block Rectan-
gle shape, under the PCO algorithm, will be dominated by the communication
time of Processor P (the first term) when Pr > 2Rr, and by the communica-
tion time of Processor R otherwise

Proof. The communication time of Processor R will always be equal to or
larger than the communication time of Processor S, 2Rr ≥ 2, as by definition
Rr ≥ 1. Therefore, when communication of Processor P does not dominate,
that of Processor R will.

D.2.4 PCO Optimal Shape

The optimal shape under the PCO algorithm depends on the value of c.
When examining all three shapes to determine the optimal, we see that as c
decreases, all three equations converge. However, for larger values of c, the
Square Corner shape is optimal.

Theorem D.2.4 (PCO Square Rectangle). The Square Rectangle partition
shape minimises execution time, i.e. is the optimum shape, when using the
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PCO MMM algorithm for computational ratios such that

Pr <
1+ 2√

T
−Rr

T
− Rr

T
√
T
− 3

T
−2r2

N( r2

cRr
− 1

Tc
)

.

Proof. Examining the equations, we see that the Square Corner shape equa-
tion is dominated by the communication and computation of R when the
Square Rectangle shape is dominated by the communication and computa-
tion of P .

2

N
r2 +

r2Pr
cRr

<
1

N
+

2

N
√
T
− Rr

NT
− Rr

NT
√
T
− 3

NT
+
Pr
Tc

Pr <
1 + 2√

T
− Rr

T
− Rr

T
√
T
− 3

T
− 2r2

N( r2

cRr
− 1

Tc
)

Corollary D.2.5 (PCO Square Corner). The Square Corner partition shape
minimises execution time, i.e. is the optimum shape, for all processor com-
putational power ratios except those specified in TheoremD.2.4.
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