
Design and Optimization of OpenFOAM-based

CFD Applications for Modern Hybrid and

Heterogeneous HPC Platforms

Amani AlOnazi

For the Degree of

Master of Science

Uniersity College Dublin, Dublin,

Ireland

King Abdullah University of Science and Technology, Thuwal,

Kingdom of Saudi Arabia

December, 2013

2

The thesis of Amani AlOnazi was carried out under the supervision of:

Alexey Lastovetsky

School of Computer Science and Informatics,

University College Dublin, Dublin,

Ireland

David E. Keyes

Applied Mathematics and Computational Science,

King Abdullah University of Science and Technology, Thuwal,

Saudi Arabia

3

Copyright ©2013

Amani AlOnazi

All Rights Reserved

4

ABSTRACT

Design and Optimization of OpenFOAM-based CFD Applications for

Modern Hybrid and Heterogeneous HPC Platforms

Amani AlOnazi

The progress of high performance computing platforms is dramatic, and most of

the simulations carried out on these platforms result in improvements on one level,

yet expose shortcomings of current CFD packages capabilities. Therefore, hardware-

aware design and optimizations are crucial towards exploiting modern computing

resources. This thesis proposes optimizations aimed at accelerating numerical sim-

ulations, which are illustrated in OpenFOAM solvers. A hybrid MPI and GPGPU

parallel conjugate gradient linear solver has been designed and implemented to solve

the sparse linear algebraic kernel that derives from two CFD solver: icoFoam, which

is an incompressible flow solver, and laplacianFoam, which solves the Poisson equa-

tion, for e.g., thermal diffusion. A load-balancing step is applied using heterogeneous

decomposition, which decomposes the computations taking into account the perfor-

mance of each computing device and seeking to minimize communication. In addition,

we implemented the recently developed pipeline conjugate gradient as an algorithmic

improvement, and parallelized it using MPI, GPGPU, and a hybrid technique. While

many questions of ultimately attainable per node performance and multi-node scal-

ing remain, the experimental results show that the hybrid implementation of both

solvers significantly outperforms state-of-the-art implementations of a widely used

open source package.

5

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisors Alexey Lastovetsky and

David E. Keyes for the continuous support of my study and research, for their pa-

tience, motivation, enthusiasm, and immense knowledge. Their guidance helped me

in all the time of research and writing of this thesis. It has been an honor to work

with you.

My sincere thanks also goes to both King Abdullah University of Science and

Technology (KAUST) and University College Dublin (UCD) for exciting and encour-

aging environments in which to fulfill and complete my research. I would like to thank

the Erasmus Mundus Gulf Countries program for giving me the opportunity to study

in Dublin. Special thanks goes to both Heterogeneous Computing Laboratory group

at UCD and Strategic Initiative in Extreme Computing at KAUST for their support

and help. I really appreciate all your guidance. Also, I would like to express my

appreciation to the Computational Mechanics Group from the School of Mechanical

and Materials Engineering at UCD for their help.

The most special thanks goes to my family especially my parents for their uncon-

ditional love and support throughout my life.

6

TABLE OF CONTENTS

Copyright 3

Abstract 4

Acknowledgements 5

List of Abbreviations 8

List of Symbols 9

List of Figures 10

List of Tables 13

1 Introduction 14

2 Background 18

2.1 Related Work . 18

2.2 OpenFOAM CFD Package . 22

2.2.1 icoFoam . 25

2.2.2 laplacianFoam . 28

2.2.3 Linear Solvers . 28

2.3 Summary . 31

3 Parallel Computing in OpenFOAM 32

3.1 OpenFOAM in Parallel . 32

3.1.1 Domain Decomposition Methods 34

3.2 Cufflink Library . 35

3.3 Performance Analysis and Results . 36

3.4 Summary . 46

7

4 Hybrid Heterogeneous Solver 47

4.1 Hybrid Conjugate Gradient . 49

4.2 Hybrid Pipeline Conjugate Gradient 53

4.3 Heterogeneous Decomposition . 56

4.4 Summary . 59

5 Evaluation 61

5.1 Experimental Platforms . 61

5.2 Test Cases . 62

5.3 Results and Discussions . 63

5.3.1 Pipeline Conjugate Gradient Solvers 63

5.3.2 Heterogeneous Decomposition Results 66

5.3.3 Hybrid Solvers Results . 69

5.4 Summary . 73

6 Concluding Remarks 74

6.1 Future Research Work . 75

References 76

8

LIST OF ABBREVIATIONS

CFD Computational Fluid Dynamics

MPI Message Passing Interface

OpenFOAM Open source Field Operation And Manipula-

tion

PDE Partial Differential Equations

PISO Pressure Implicit with Splitting of Operators

9

LIST OF SYMBOLS

p Pressure Field

u Velocity Field

ν Kinematic Viscosity

10

LIST OF FIGURES

3.1 Topology of Tesla machine by invoking lstopo. 37

3.2 Trace of the second step laplacianFoam application executed using

eight MPI processes on the Tesla Machine. 40

3.3 Timeline of MPI calls executed at each point in time by each process

during the execution of the second step laplacianFoam application on

the Tesla Machine . 40

3.4 Trace of the second step icoFoam application on the Tesla Machine . 41

3.5 Timeline of MPI calls executed at each point in time by each process

during the execution of the second step icoFoam application on the

Tesla Machine . 41

3.6 Profile result obtained by IPM that shows the percentage of MPI-time

consumed by each MPI call . 43

3.7 Trace of one iteration of the conjugate gradient linear solver 43

3.8 Timeline of MPI calls executed at each point in time by each process

while executing an iteration of CG 44

3.9 Timeline with the instructions per cycle (IPC) achieved by each interval

of useful computation during the execution of laplacianFoam 45

3.10 Timeline with the instructions per cycle (IPC) achieved by in each

interval of useful computation during the execution of icoFoam 45

4.1 Performance of Cufflink CG and OpenFOAM CG. icoFoam has been

used to benchmark both solvers, while solving the pressure field of 3D

cavity test case. 47

4.2 Available parallel code of CG integrated in OpenFOAM. Cufflink pro-

vides only multi-GPU code, and OpenFOAM provides only multi-core

code. Both solvers can not be combined because of the different com-

munication scheme. 48

11

4.3 Design and implementation of the hybrid Conjugate Gradient solver,

showing the steps executed on CPUs on the left (in blue), and, the

steps executed on GPUs on the right (in green), and the coordination

presents through black arrows. 52

4.4 Design and implementation of the Hybrid Pipeline Conjugate Gradient

solver; interpreted as in Figure 4.3. 55

4.5 Example of simple 2D mesh and its corresponding coefficient matrix . 57

4.6 Design of the heterogeneous decomposition 58

5.1 Diagram shows the underlying architecture topology of HCL cluster . 62

5.2 Performance comparison of the Cufflink CG and CUDA Pipeline CG

(2GPUs and 2Hosts) on Tesla Machine. 64

5.3 Speed-up comparison of the Cufflink CG and CUDA Pipeline CG

(2GPUs and 2Hosts) relative to sequential CG on Tesla Machine. . . 65

5.4 Speed-up comparison of the OpenFOAM Parallel CG and Parallel

Pipeling CG (MPI only) using 2 processors on Tesla Machine, rela-

tive to sequential CG. 65

5.5 Performance comparison of the OpenFOAM Parallel CG and Parallel

PipeCG (MPI only) using 24 processors on Tesla Machine 66

5.6 Total execution time comparison of the heterogeneous decomposition

and the original decomposition for running parallel icoFoam 20 time-

steps that calls OpenFOAM CG linear-solver on HCL cluster. 66

5.7 Total execution time comparison of the SCOTCH heterogeneous de-

composition and the original decomposition for running parallel ico-

Foam 20 time-steps that calls OpenFOAM CG linear-solver on HCL

cluster. 67

5.8 Total execution time comparison of the METIS heterogeneous decom-

position and the original decomposition for running parallel icoFoam

20 time-steps that calls OpenFOAM CG linear-solver on HCL cluster. 67

5.9 Total execution time comparison of the SCOTCH heterogeneous de-

composition and the original decomposition for running parallel Hybrid

CG linear-solver on Tesla Machine. 68

5.10 Total execution time comparison of the SCOTCH heterogeneous de-

composition and the original decomposition for running parallel Hybrid

PipeCG linear-solver on Tesla Machine. 68

12

5.11 Performance comparison of OpenFOAM parallel CG, hybrid CG and

hybrid pipeline CG on different problem size running on Tesla machine 69

5.12 Speed-up of the execution time of different parallel run over the se-

quential execution of laplacianFoam 70

5.13 Speed-up of the execution time of different parallel run over the lapla-

cianFoam calling Cufflink CG . 71

5.14 Speed-up of the execution time of different parallel run over the se-

quential execution of icoFoam . 72

5.15 Speed-up of the execution time of different parallel run over the ico-

Foam calling Cufflink CG . 72

13

LIST OF TABLES

3.1 Tesla Node GPU Devices . 38

3.2 The output of checkMesh on Mesh with a million cells. 39

14

Chapter 1

Introduction

Computational Fluid Dynamics (CFD) is a cornerstone in the understanding of many

scientific and technological areas such as meteorological phenomena, aerodynamics,

and environmental hazards. Computational science enabled by High Performance

Computing (HPC) makes it possible for scientists and researchers to simulate these

phenomena in a virtual laboratory. CFD is extensively used throughout the whole

process, from early concept phases to the detailed analysis of a final product. How-

ever, CFD packages, until recently, have been aimed at homogenous systems and

the parallel approach is mostly based on the process-level Message Passing Interface

(MPI).

On the other hand, the progress of HPC platforms over the recent years has been

dramatic, reaching the Petascale computing level and aiming towards the Exascale.

Moreover, the underlying architecture is no longer an interconnected set of homoge-

nous uni-processors each with its own memory system. It is growing more complex,

hybrid, and heterogeneous. A typical compute node on modern HPC platforms com-

prises multi-core processors and graphic unit devices (GPUs) that act as co-processors

or accelerators. This trend in the HPC platforms invites redesign of the CFD packages

or the algorithms themselves to use these platforms efficiently. Therefore, there is an

increasing demand to optimize the current CFD packages aimed at better utilization

15

of the modern computing resources.

Open source Field Operation And Manipulation (OpenFOAM) [1] is a library

written in C++ used to solve partial differential equations (PDEs). It consists of

a large set of pre-processing utilities, PDE solvers, and post-processing tools. An

attraction of OpenFOAM is in its modularity, which leads to an efficient and flexible

design. It features a wide range of solvers employed in CFD, such as Laplace and

Poisson equations, incompressible flow, multiphase flow, and user defined models [2].

OpenFOAM uses MPI to provide parallel multi-processors functionality, which scales

well on homogenous systems but does not fully utilize potential per-node performance

on hybrid heterogeneous platforms.

Current high performance computing systems are complex and difficult to utilize

and manage at their extremes. The heterogeneity of these platforms leads to sev-

eral challenges and much contemporary attentions devoted to new software solutions.

Indeed, there is an increasing interest in implementing and optimizing applications

for hybrid parallel systems, which employ different parallelization levels. Two of the

main challenges are data distribution and workload balancing across the heteroge-

neous devices.

In this work, we selected the OpenFOAM CFD package because of its popularity

as an open source library with broad adoption. We specifically targeted two Open-

FOAM solvers: icoFoam, which is an incompressible flow solver, and laplacianFoam,

which solves the Laplace equation. We studied and optimized the most expensive

components of the selected solvers. According to the profiling results and the perfor-

mance analysis of icoFoam and laplacianFoam, most of their execution time is spent

in sparse linear algebraic solver, which is, in our case, the conjugate gradient solver.

16

Therefore, improving the linear solver will provide significant improvements to the

whole application.

A set of optimizations has been introduced, which are aimed at accelerating the

execution time of icoFoam and laplacianFoam solvers on modern heterogeneous nodes

beyond their current performance. A hybrid conjugate gradient solver has been de-

signed and implemented combining MPI and CUDA routines. Consequently, a het-

erogeneous decomposition method has been designed and implemented to decompose

the computational domain across heterogeneous devices and aimed at balancing the

workload of the devices during the execution of the whole applications. This method

combines the traditional domain decomposition methods, which are supported by

OpenFOAM, and the state-of-the-art heterogeneous data partitioning algorithms.

Moreover, algorithmic improvements of the conjugate gradient linear solver that are

inspired by the recent work of Ghysels and Vanroose work [3] have been implemented.

The implementation of the project is broken into the following stages:

• Analyze the structure and parallel approach of the OpenFOAM code.

• Study the mathematical models of the solvers icoFoam and laplacianFoam.

• Benchmark and profile both selected solvers in order to identify the most time

consuming kernel. The profiling result reveals that the conjugate gradient linear

solver in icoFoam and in laplacianFoam is the most time consuming kernel.

• Study the conjugate gradient linear solver both in OpenFOAM and the Cufflink

library [4], which extends the linear solver capability to run on GPU devices

using the CUSP library [5].

• Evaluate the performance gain of the optimizations on the execution time of

the selected solvers.

17

The contributions of this thesis are as follows:

• We design and implement a hybrid conjugate gradient linear solver for execution

on multi-core/multi-GPU platforms and integrate it into OpenFOAM.

• We propose and demonstrate a heterogeneous decomposition method aimed

at balancing the load of heterogeneous computing devices in modern multi-

core/multi-GPU platforms. This method combines the domain decomposition

methods in OpenFOAM and the-state-of-the-art heterogeneous data partition-

ing algorithms.

• We implement a recently introduced pipeline conjugate gradient algorithm [3]

and parallelize it using GPGPU, MPI, and hybrid MPI+GPGPU. Our imple-

mentations of the pipeline conjugate gradient are integrated into OpenFOAM.

• We deploy and evaluate the solvers on two hybrid and heterogeneous platforms.

This thesis is organized as follows. Chapter 2 presents background research re-

lating to OpenFOAM CFD package and heterogenous computing. In Chapter 3, we

study and analyze the parallel and sequential run of the selected solvers. We present

the implementation and design detail of the hybrid approach and the heterogeneous

decomposition in Chapter 4. Chapter 5 compares and evaluates the performance

of our optimizations using a wide array of problem sizes and test cases. Chapter 6

discusses future work and concludes the thesis.

18

Chapter 2

Background

2.1 Related Work

In the past decade, a number of parallel packages designed for CFD have been pro-

posed such as OpenFOAM[1], PETSc [6], Sierra [7], and Deal.II [8]. These packages

are aimed at homogenous systems, use MPI-based bulk synchronous processing par-

allelization, and pay no special attention to the underlying hardware. The addition

of GPUs to high-end scientific computer systems anticipates new achievable perfor-

mance levels. The world’s most powerful platform is Titan at OakRidge National

Laboratory, which is a hybrid architecture that combines CPUs and GPUs [9]. Sig-

nificant work has been done on GPUs, most of it for linear algebra routines such as

QR factorization on multi-GPU [10], Cholesky factorization [11], sparse direct solvers

[12], Conjugate Gradient and multi-grid solvers [13, 14, 15, 16, 17]. While linear sys-

tem solution generally leads the implementation wave onto new hardware, because

it is a key kernel, there is new significant interest in migrating whole applications to

the hybrid environment.

As a result, several works attempt to employ GPGPUs in CFD codes and much

more attention is focused on sparse linear algebra kernels, such as implementing the

conjugate gradient on GPU [18, 14, 19]. These works include the Cufflink library

19

[4], which extends the OpenFOAM linear solvers capabilities to perform on GPUs.

However, no research so far in the simulation area appears to have shipped an entire

CFD computations onto heterogeneous hybrid architecture. The major problem is

that most CFD packages have a large source code base. Additionally, algorithmic

effects of hybrid execution of parallel CFD computations, including their impact on

accuracy and convergence tradeoffs in iterative methods, are not well studied yet.

Heterogeneity is one of the most challenging features of modern HPC systems. A

modern CPUs consist of multi-core processors because concurrency is the remaining

means of exploiting Moore’s Low. Moreover, several multi-core processors are con-

nected to a shared main memory, forming a tightly coupled multiprocessor system

often called Symmetric Multi-Processing (SMP). Furthermore, a SMP can have ac-

cess to special purpose processors often called co-processors such as GPU devices.

As mentioned above, GPU provides potential compute performance that has crafted

computational inroads against modern CPUs. This trend in HPC platforms leads to

several challenges and novel approaches. Indeed, HPC programming models have not

seen such innovation for more than 25 years.

Based on early pioneering works [20, 21], a tool [22] has been designed that ports

the scalable linear algebra package (ScaLAPACK) [23] to the Heterogeneous Message

Passing Interface (HeteroMPI) [24] aimed at heterogeneous networks of computers.

This work presents algorithms that are mainly aimed at distributing and mapping

the data of linear algebra applications to the heterogenous environment. A recently

published work [25] claims an optimal partitioning shape for parallel matrix-matrix

multiplication with heterogeneous processors.

These heterogeneous algorithms have been designed based on a performance model

20

representing the target platform by a vector of positive numbers whose values rep-

resents the speed of the associated processing elements. This performance model is

used to partition the matrix into certain number of sub-matrices and each portion

contains number of elements that approximately is proportional to the speed of the

associated processor. This model is often called the constant performance model [26].

More advanced models have been proposed, which take into account the memory

hierarchy, such as the functional performance model [27, 28, 29]. The constant perfor-

mance model assumes the data fully fits the main memory. Whereas, the functional

performance model [30, 31, 32, 33] takes into account the possible presence of paging

and the degradation of speed accordingly. Lastovetsky and Raddy [34] estimate the

speed function of each processor for array of problem sizes during the execution of a

computational kernel, which is illustrated in dense matrix-matrix multiplication.

Over recent years, the functional performance model has been adopted for the

dynamic load balancing algorithms and multi-core/multi-GPU systems [35, 36, 37].

Accordingly, several partitioning algorithms have been designed and analyzed for

hierarchical and heterogeneous architecture demonstrated using matrix-matrix mul-

tiplication and dense linear algebra routines [38, 39, 40].

Pioneering CFD works address heterogeneous and hybrid systems. A parallel sim-

ulation of oil extraction has been designed and optimized for heterogeneous networks

of computers[41] by applying the performance model of the target platform. Gropp

et al. [42] studied the hybrid MPI+OpenMP programming model on unstructured

implicit CFD solvers and its affects on obtaining per-processor efficiency and parallel

efficiency. Accordingly there have been some attempts to obtain a hybrid paralleliza-

tion in CFD on multi-core platforms [43, 44] such as the CFD solver TAU [45] that

21

provides hybrid MPI+OpenMP parallelization. There are, also, matrix and graph

partitioning library, which considers a heterogeneity of the devices such as METIS

[46] and SCOTCH [47]. These two libraries assume a given percentage, which repre-

sents the volume of computations per each processor.

In CFD packages, there have been few attempts recently to investigate the parallel

model of hybrid MPI+GPGPU. Papadrakakis [48], attempts to balance the compu-

tation across heterogeneous hybrid CPU+GPU system. The balancing is performed

during the runtime by using task-based parallelism and migrations between the com-

pute devices. On the other hand, a general framework is supported by StarPU [49, 50]

project, which provides and supports task-based programming and scheduling the

provided tasks on heterogeneous platform, which combines CPUs and GPUs.

The OP2 project [51] provides a framework to implement CFD applications using

unstructured meshes on different computational hardware including multi-cores and

GPUs (many-cores) systems. The parallelization scheme is similar to task-based par-

allelism in the way it handles the data dependencies. However, it is not applicable

to multi-block codes as is the case in OpenFOAM and there is no special attention

to the heterogeneity in the domain decomposition method, which is performed at the

MPI level. Moreover, it does not discuss the multi-GPU, which is noted in the paper

as a future work.

In this work, we propose a set of optimizations that combine the current HPC

trend and OpenFOAM for heterogenous hybrid platforms. As discussed earlier, the

current available parallelization in OpenFOAM is either multi-core/multi-processor

parallelization MPI [1], or GPGPU parallelization [4]. There appears to have been no

published research on developing a hybrid MPI+GPGPU solver in the OpenFOAM

22

package, which would aim at exploitation and utilization of hybrid heterogeneous

platforms.

2.2 OpenFOAM CFD Package

Computational Fluid Dynamics is an interdisciplinary research area that integrates

physics, applied mathematics, and computer science. It can be defined as the set of

methodologies and numerical methods that enable the computer to solve and pro-

vide a simulation of fluid motions. Fluid flows are encountered in many areas such

as meteorological phenomena and aerodynamics [52]. Most of these phenomena are

described by partial differential equations that can be discretized in the form of alge-

braic equations, which can be solved using computers. The CFD package on which

this study is based is OpenFOAM [1]. We selected OpenFOAM because of its popu-

larity as an open source library with broad adoption.

OpenFOAM is written in C++ and it heavily depends on C++ object oriented

features such as operator overloading, inheritance, and templates. The package can be

used to solve general continuum mechanics problems [2]. As with many other CFD

codes, it contains three main components, namely, pre-processing utilities, Partial

Differential Equations (PDE) solvers, and post-processing tools. The OpenFOAM

main library provides a solution framework, including mesh handling, finite volume

discretization method, linear system solvers, data structure and input and output

handling. We briefly examine the task of each of these components within the con-

text of OpenFAOM.

The preprocessing utilities handle the input of a flow problem to the CFD solver

23

by means of a set of transformation of the provided input into a suitable form that

can be used by the solver. The input of a flow problem is a specification of the

computational domain, the equations to be solved in it, and its boundary and initial

conditions. OpenFOAM provides a mesh generation tool called blockMesh, which

generates meshes of hexahedra from a blockMeshDict configuration file. This file

contains keywords and values, which are given by the user that determines the scale,

shape and type of the cells within the computational domain. This step subdivides

the geometry into number of smaller non-overlapping elements called grid or mesh of

cells. After that, the user must specify the appropriate boundary conditions at cells,

which coincide with the domain boundary [53].

The mesh is described by four basic building blocks: points, faces, cells, and

boundary. A point is a vector holding the corresponding coordinates of its location.

It can be a point in 3D-space or 2D-space. The points are compiled into a list, and a

label, which represents its position in the list, refers to each point. A face is an ordered

list of points represented by their labels. The faces also are compiled into a list, and a

label refers to each face. A cell is a list of faces represented by their labels. A patch is

a list of faces that clearly must contain only boundary faces and no internal faces. A

boundary is a list of patches, each of which is associated with a boundary condition [2].

The numerical methods that form the basic of any solver of flow problem can be

summarized in three phases [52]. The first phase is approximating the flow variable,

e.g., pressure. The second phase is applying a discretization method to estimate the

partial differential equations by a system of algebraic equations, which can be solved

on a computer. The discretization phase consists of two steps: discretization of the

computational domain and the discretization of the equations. The third phase is

the solution of the algebraic equations. OpenFOAM uses finite volume method as a

24

discretization method.

Finite volume discretization [54] of the computational domain provides a numeri-

cal description of the domain, including the positions of points in which the solution

is obtained and the description of the boundary. The space is divided into a finite

number of discrete regions, called control volumes. For time-dependent simulations,

the time interval is divided into a finite number of time-steps. The discretization

of the equations gives an appropriate transformation of terms of governing equa-

tions into algebraic expressions, which is the main goal of the discretization process.

An iterative solution approached is used because the underlying physical phenomena

are complex and non-linear. One of the most popular solution procedures is PISO

algorithm, which stands for pressure implicit with splitting of operators [52]. Post-

processing is visualization the solution domain in such a way to provide an insight of

the flow motions.

Modularity and flexibility are the main advantages of OpenFOAM code. One of

the modules is the linear algebra kernels module, which can be seen in almost all

the PDE solver codes. This work selects two solvers from the OpenFOAM solvers

set. One of them is icoFoam, which solves the incompressible laminar Navier-Stokes

equations using the pressure-implicit splitting operator (PISO) algorithm iteratively.

The other one is laplacianFoam, which solves the Laplace equation for unsteady,

isotropic diffusion. Both solvers use internally linear solvers, which are supplied by

the OpenFOAM main library. The linear solver, which is used in both icoFoam and

laplacianFoam, is conjugate gradient (CG). However, the linear solver is selected at

run-time. The following subsections provide essential information and structure anal-

ysis of icoFoam, laplacianFoam, and conjugate gradient solvers.

25

2.2.1 icoFoam

The incompressible laminar Navier-Stokes equations can be solved by icoFoam, which

is an application supplied by the OpenFOAM standard solvers set. It applies the PISO

algorithm in time stepping loop. The governing equations are the incompressible

continuity 2.1 and momentum equations 2.2 as follows [52]:

∇ � u = 0 (2.1)

∂u

∂t
+∇ � (uu)−∇ � (ν∇u) = −∇p (2.2)

Here u is the vector velocity, ν kinematic viscosity, and p is the pressure [52]. The

coupling between the density and pressure is removed in incompressible flow, because

the density changes are negligible. There is no prognostic pressure equation, but

the continuity equation imposes a scalar constraint on the momentum equation; this

combination can be used to derive a diagnostic equation for the pressure [52]. The

Pressure Implicit with Splitting of Operators (PISO) algorithm solves the incompress-

ible flow iteratively, which is described in the following section.

PISO Algorithm

The algorithm is essentially a predict-and-correct procedure for calculation of pres-

sure on the collocated grid, where the flow quantities are defined at a single node

in the control volume [52]. This type of grid arrangement can lead to well-known

difficulties when coupling the pressure and velocities. A remedy for this problem is

to use staggered grid for the velocity field [55]. Thus, to create a staggered grid,

OpenFOAM uses a new variable that saves the interpolated velocity values at the

faces.

The control-volume discretized Navier-Stokes equations for incompressible flow

26

are as follows [54]:

acuc = −
∑
n

anun +
u∗

∆t
−
∑
f

S(p)f (2.3)

∑
f

S.

[(
1

ac

)
f

∇pf

]
=
∑
f

S.

(
H(u)

ac

)
f

(2.4)

Equation 2.3 is abstracted by introducing the H(u) term as in Equation 2.5,

which contains the transport part including the matrix coefficients for all neighbors

multiplied by the associated velocities [1], and the source part including the transient

term [56]. We can rewrite Equation 2.3 as in Equation 2.6.

H(u) = −
∑
n

anun +
u∗

∆t
(2.5)

acuc = H(u)−
∑
f

S(p)f (2.6)

Here an in Equation 2.3 is the matrix coefficient corresponding to the neighbors

n and ac is the central coefficient. The subscript f implies the value of the variable

(in Equation 2.3, it is p) in the middle of the face and S is the outward-pointing face

area vector. Equation 2.7 computes the face flux, F. The fluxes should satisfy the

continuity equation.

F = S.uf = S.

[(
H(u)

ac

)
f

−
(

1

ac

)
f

(∇p)f

]
(2.7)

The algorithm consists of three stages [56]. The first stage is the momentum

predictor, which solves the momentum equation by using an initial or previous pres-

sure field. This solution of the momentum equation gives the velocity field that is

not divergence free but approximately satisfies the momentum equation. The second

stage is the pressure solution that formulates the pressure equation and assembles

the H(u) term. Third is the explicit velocity correction stage. Equation 2.7 gives set

27

of conservative fluxes consistent with the new pressure field. Therefore, the velocity

field is corrected as a consequence of the pressure distribution. The velocity correc-

tion is performed in an explicit manner [56] using Equation 2.8, which consists of two

parts: H(u)
ac

and 1
an
∇p [56]. The first part is the transported influence of corrections

of neighboring velocities. The second one is a correction due to the change in the

pressures gradient. The main velocity error comes from the error in the pressure

term, however, it is necessary to correct the H(u) term, formulate the new pressure

equation, and repeat the procedure again [52, 54].

uc =
H(u)

ac
− 1

an
∇p (2.8)

To sum up, the solution for incompressible flow problem obtained by icoFoam can

be summarized as follows [52]:

1. Initialize all field values (from initial conditions or previous time step).

2. Start the calculation of the new time-step.

3. Formulate and solve the momentum predictor equation with the available face

fluxes.

4. Invoke the PISO procedures until the tolerance for pressure-velocity system is

reached, which is usually 1.0e−06. At this stage, pressure and velocity fields for

the current time-step are obtained, as well as the new set of conservative fluxes.

5. Using the new obtained values, solve all other discretized equations in the sys-

tem.

6. Repeat from 2 until the last time step.

28

2.2.2 laplacianFoam

The solver is used to find the solution of the Laplacian equation. The equation

contains one variable, a passive scalar, for instance, a temperature, T. The matrix is

formed and computed [1]:

∂T

∂t
−∇2(DT · T) = 0 (2.9)

Here DT is a constant [52]. laplacianFoam is one of the simplest OpenFOAM solvers.

It is useful as starting point to understand and benchmark the linear solver. The

linear solver that is used to solve the temperature in laplacianFoam as well as the

pressure field in icoFoam is the Conjugate Gradient.

2.2.3 Linear Solvers

The result of the discretization process is a system of algebraic equations [52]. The

matrices derived from the partial differential equations are large and sparse. The

iterative methods avoid factorization, and instead perform matrix-vector operations

and minimize the residual over the resulting vector space. These procedures are often

referred to as Krylov subspace methods.

Conjugate Gradient Solver

One of the best-known Krylov sub-space methods is Conjugate Gradient [57], which

is used to solve a system of linear equations given by the following form:

Ax = b (2.10)

Here x is an unknown vector of size number of cells in the computational domain,

b is a corresponding length vector, and A is a known square, symmetric, positive-

definite matrix. A pseudo-code of the common conjugate gradient algorithm as listed

29

in Algorithm 1.

Algorithm 1 Conjugate Gradient Method [57]

1: Data: Square, symmetric, and positive-definite matrix A, initial guess for vector
x, constant vector b, and tolerance τ

2: Result: Solution of linear system x
3: p = r = b− Ax
4: rsk = dotProduct(r, r)
5: norm0 = initialNorm = computeNorm(r)
6: k = 0
7: while normk ≥ τ and k ≤ max number of iterations do
8: q = SparseMatrixV ectorMultiply(A, p)
9: α = rsk/dotProduct(p, q)
10: x = x+ α ∗ p
11: r = r − α ∗ q
12: normk−1 = normk

13: normk = computeNorm(r)
14: rsk+1 = dotProduct(r, r)
15: β = rsk+1/rsk
16: p = r + β ∗ p
17: rsk = rsk+1

18: end while

The behavior of the conjugate gradient method has been extensively studied. It

is clear that the matrix vector multiplication is the most computationally intensive

step in the algorithm [57]. The parallel-run of the conjugate gradient on a distributed

memory architecture using MPI parallelizes the computations and introduces com-

munications as well. Two types of communications are necessary to support the

algorithm. The first type is point-to-point communication during the matrix-vector

multiplication in order to include the influence of the parallel interfaces with neighbor

processors. The second one is a collective communication to reduce the sum of scalars

as part of forming inner products. It occurs three times while calculating global vari-

able and updating the residual norm.

Several have proposed alternatives to conjugate gradients that reduce the global

communications in order to improve the scalability of the parallel run. A recent study

30

[3] defines a pipeline conjugate gradient, which reduces the global communication into

only one reduction per loop body instead of three. The pipeline conjugate gradient

pseudo-code is as listed in Algorithm 2.

Algorithm 2 Pipeline Conjugate Gradient Method [3]

1: Data: Square, symmetric, and positive-definite matrix A, initial guess for vector
x, constant vector b, and tolerance τ

2: Result: Solution of linear system x
3: r0 = b − Ax
4: w0 = Ar0
5: k = 0
6: while ‖r‖2 ≥ τ and k ≤ max number of iterations do
7: λk = dotProduct(rk, rk)
8: δ = dotProduct(wk, rk)
9: q = SparceMatrixV ectorMultiply(A,wk)
10: if (k >0) then
11: β = λk/λk−1

12: α = λk/(δ − (β ∗ λk)/α)
13: else
14: β = 0
15: α = λk/δ
16: end if
17: z = q + β ∗ z
18: s = w + β ∗ s
19: p = r + β ∗ p
20: x = x+ α ∗ p
21: r = r − α ∗ s
22: w = w − α ∗ z
23: end while

The pipeline conjugate gradient as shown in algorithm 2 introduces more compu-

tational steps, unnecessary in the original, while reducing the global communication

into one at computing the dot product step [3]. Given the trends of computer archi-

tecture, this is a very useful option, as we demonstrate.

31

2.3 Summary

Most CFD packages, as in our case OpenFOAM, are aimed at homogenous systems

and mostly carried out on modern high performance platforms. However, the un-

derlying architecture of these platforms have taken significant turns. Several hybrid

and heterogeneity-aware implementations have been done [26]. Recently, there have

been few attempts [45, 43] to implement hybrid MPI+OpenMP CFD code. The OP2

[51] project provides a framework to implement CFD application using unstructured

meshes on different computational hardware including multi-core and multi-GPU

system. However, OP2 is not applicable for multi-block codes as in the case of Open-

FOAM. One of the major works in the heterogenous computing area is the functional

performance model, which distributes the workload across the heterogenous devices

in accordance to the processing elements speed [58].

32

Chapter 3

Parallel Computing in OpenFOAM

A common approach for parallelizing numerical algorithms is domain decomposition.

The mesh and its associated fields are divided into subdomains and allocated to

separate processors. OpenFOAM uses the domain decomposition to perform a process

level parallelism using the runtime library MPI. It provides different utilities of domain

decomposition such as METIS [46] and SCOTCH [47]. The communication between

the subdomains is explicitly handled within the package. This chapter explains how

the parallelism is handled in OpenFOAM and presents a performance analysis of the

selected solvers. Section 3.1 describes its parallel model followed by a description of

the domain decomposition methods available in OpenFOAM. Section 3.2 explores the

Cufflink [4] library that extends some of the OpenFOAM linear solvers capabilities

to be computed on GPU. Section 3.3 presents the performance analysis results of

OpenFOAM selected solvers.

3.1 OpenFOAM in Parallel

The domain decomposition approach is a natural way to make good use of parallel

computing in CFD [52, 88]. The main idea is to subdivide the domain into subdo-

mains and assign each one to a processor. There is a one-to-one mapping between the

processors and the subdomains, thus, it is a single program multiple data parallelism

33

(SPMD). In this case, each processor executes the same program on its own set of

data. At some stage each processor needs data that exists in other subdomains, then

communication between processors is performed to synchronize the data.

OpenFOAM applies domain decomposition to enable process-level parallelism [1].

Thus, the program can run in parallel on separate subdomains, with communica-

tion between processors using the MPI communications protocol. The first step to

enable a parallel run in OpenFOAM-based application is to decompose the solution

domain into subdomains. The number of subdomains should be equal to the number

of running processors. The parallel run engages communication and synchronization

between the processors on each subdomain. There are mainly two types of com-

munication: communication with neighboring, and global communication with all

the processors. As with most mesh based applications, the communication scheme

between processors is based on the halo-layer approach with overlapping elements,

which duplicates the cells next to a processor boundary (internal boundary). The

halo-layer covers all internal boundaries and is explicitly updated through communi-

cations between processors.

In OpenFOAM, the parallelization strategy employs a zero-halo layer [56, 1], which

considers the processor boundaries as internal edges and treated as boundary condi-

tions. It introduces implicit updated boundaries, thus, the difference between parallel

and serial run is the presence of processor boundary. The parallel communications

are wrapped in a Pstream module, which isolates the communications details from

the code of icoFoam or any other solver in OpenFoam. Thus, similar patterns can be

seen in some local computation that requires an interface influence to be included.

This common pattern can be summarized in the following stages: initialize the in-

terfaces, perform local computations, and then update interfaces as well as include

34

the interfaces influence into the computations. The communication wrapper Pstream

contains processor rank and size, and performs both point-to-point communication

and collective ones in generic forms. Also it contains global mesh information, and

handles patched neighboring communication. One processor owns each cell in the

computational subdomain. The faces can be categorized as: internal faces located

within a subdomain, inter-processor boundary faces that make up the border of two

subdomains, and external boundary faces, where physical boundary conditions are

applied.

3.1.1 Domain Decomposition Methods

OpenFOAM supports four methods of domain decomposition, which decompose the

data into non-overlapping subdomains [1, 2]. These methods are Simple, Hierarchical,

METIS [46], and SCOTCH [47]:

• Simple: The simple geometric decomposition, as its name implies, splits the

domain into pieces by coordinate in a tensor product fashion, e.g. n cuts along the

x axis and n cuts along y axis. The user should specify the number of partitions per

each coordinate in the space.

• Hierarchical: Hierarchical geometric decomposition is similar to the simple

except the user specifies the order in which the directional split is done recursively,

e.g. first in the y direction then the x direction.

• METIS: METIS is a versatile library for partitioning and ordering matrices

and graphs. It is used by OpenFOAM to partition the computational domain. By

default OpenFOAM enables multilevel k-way partitioning to minimize the commu-

nication volume, however, the user may specify either of the two main methods of

35

METIS, which are multilevel recursive bisections and multilevel k-way partitioning.

Both methods try to minimize the communication volume between processors. Also,

it is possible to specify weights for the different subdomains. The parallel version of

METIS is called ParMETIS.

• SCOTCH: SCOTCH is a library for partitioning and ordering graph and mesh

and attempts to minimize the number of internal boundaries. The domain decom-

position can be modeled as graph partitioning problems on the adjacency graph of

matrices. The main purpose is to separate the edges in a way to cause the minimal

communication between internal boundaries. This library implements the multilevel

FM-like algorithms, k-way graph partitioning and recursive bi-partitioning. The user

can specify the strategy and the weights of the subdomains. Also, it offers a parallel

version called PtSCOTCH.

3.2 Cufflink Library

Cufflink [4] stands for CUDA-For-FOAM-Link, it is an open source library that im-

plements an interface between OpenFOAM and numerical methods based implemen-

tation on NVIDIA’s Compute Unified Device Architecture (CUDA) [78]. In other

words, Cufflink solves the linear system derived from OpenFOAM using CUSP [5]

and Thrust [59] library calls. It implements two linear solvers, conjugate gradients

and bi-conjugate gradients stabilized. Both solvers are implemented based on CUSP

routines and Thrust library support. Cufflink supports Multi-GPUs via OpenFOAM

process-level parallelism through domain decomposition. The parallel-run of Cuf-

flink assumes homogenous processor capabilities that each processor has a GPU to

accelerate the linear system. For example, if the computational domain has been

36

decomposed into 4 subdomains, then, 4 GPGPU kernels will be assigned, one-to-one,

to accelerate them.

The internal implementation of Cufflink is based on CUSP and Thrust libraries.

CUSP is a C++ template library for sparse matrix and graph computations on CUDA

architecture GPUs [5]. It offers a flexible API, and high-level interface for manipu-

lating sparse matrices. It supports most common sparse matrix formats such as

coordinate (COO), compressed sparse row (CSR), diagonal (DIA), ELLPACK (ELL)

and Hybrid (HYB) [84, 85]. Each format has advantages and disadvantages, which

depend on the matrix structure of the problem. CUSP implements most of the main

sparse matrix operations such as add, subtract, copy convert, and multiply. The

Thrust library is a parallel algorithm library that resembles the C++ Standard Tem-

plate Library (STL) on CUDA architecture GPUs [59]. Cufflink extends the conjugate

gradient solver and bi-conjugate gradient stabilized solver in OpenFOAM to be run

on CUDA architectures, but does not support hybrid computation, MPI+GPGPU.

3.3 Performance Analysis and Results

In order to accurately assess the profiling of the selected solvers, we turned off the

I/O feature and carried out all simulations to avoid any possible noise. The selected

solvers consist of several time-steps, however, only the second time-step has been

scanned in order to avoid any start up allocation noise at the first time-step. The

selected platform (Tesla), which is used to benchmark and profile the applications,

is a single node consisting of two sockets, each socket is connected to a GPU device.

The socket has 6 dual cores Intel Xeon CPU X5670 @ 2.93GHz. Figure 3.1 shows

the topology of the platform by invoking lstopo command that renders the topology

of the machine [63]. Table 3.1 shows the GPU devices characteristics. However, the

37

profiling is for CPU computation only because there is no hybrid application to profile.

Figure 3.1: Topology of Tesla machine by invoking lstopo.

38

Table 3.1: Tesla Node GPU Devices
Device 0: ”Tesla C2050”
CUDA Driver Version / Runtime Version 5.5 / 5.5
CUDA Capability Major/Minor version number: 2.0
Total amount of global memory: 2687 MBytes (2817982464 bytes)
(14) Multiprocessors x (32) CUDA Cores/MP: 448 CUDA Cores
GPU Clock rate: 1147 MHz (1.15 GHz)
Memory Clock rate: 1500 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 786432 bytes
Max Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536,65535),
3D=(2048,2048,2048)
Max Layered Texture Size (dim) x layers 1D=(16384) x 2048,
2D=(16384,16384) x 2048
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768
Warp size: 32
Maximum number of threads per multiprocessor: 1536
Maximum number of threads per block: 1024
Maximum sizes of each dimension of a block: 1024 x 1024 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 65535
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Bus ID / PCI location ID: 2 / 0

Test cases have been chosen in order to analyze the performance of icoFoam and

laplacianFoam. The test cases are:

• The lid-driven cavity flow test case [1] contains the solution of a laminar, isother-

mal and incompressible flow over a three-dimensional unstructured cubic geometry us-

ing the icoFoam solver. The top boundary of the cube is a wall that moves in the x di-

39

rection, whereas the rest are static walls. The size of the mesh is a 100×100×100 cells,

Table 3.2 shows more information about the mesh obtained from calling checkMesh

command supported by OpenFOAM.

•The other test case is the heat equation test case solved over a three-dimensional

unstructured cubic geometry using the laplacianFoam. In addition, we studied a sin-

gle iteration of the conjugate gradient solver using a matrix derived from the 3D heat

equation.

In order to determine which number of processors reveal more information, several

experiments were carried out, which have similar patterns, however, the eight subdo-

mains were chosen, each four are bound to each socket. The SCOTCH method is used

to decompose the solution domain into evenly distributed subdomains. The profiling

tools, which are used to scan the applications and collect statistics, are Extrae and

Paraver [62, 64], IPM [66] and TAU [65] for parallel-run and GNU profiler.

Table 3.2: The output of checkMesh on Mesh with a million cells.
Mesh Statistics Value

Points 1030301
Faces 3030000
Cells 1000000
Boundary Patches 2

Patch Type Faces Points

Moving Wall 10000 10201
Fixed Walls 50000 50201

40

Figure 3.2: Trace of the second step laplacianFoam application executed using eight
MPI processes on the Tesla Machine.

Figure 3.3: Timeline of MPI calls executed at each point in time by each process dur-
ing the execution of the second step laplacianFoam application on the Tesla Machine

41

Figure 3.4: Trace of the second step icoFoam application on the Tesla Machine

Figure 3.5: Timeline of MPI calls executed at each point in time by each process
during the execution of the second step icoFoam application on the Tesla Machine

Figure 3.2 shows the trace of the second time-step of the laplacianFoam, which

42

solves a 3D heat equation using the OpenFOAM conjugate gradient linear solver

internally to solve the temperature field. The horizontal axis represents the total

execution time of the application. The color encoding is as follows.

• The blue represents the computation on each process.

• The red indicates the processor is waiting, i.e., idle.

• The orange represents the global communication. In this case, it symbolizes

MPI-Allreduce calls.

• The green and pink represent the point-to-point communication phase i.e. send

and receive.

• The yellow lines represent communication between processors.

Figure 3.3 shows the timeline of which each MPI call is being executed at each point in

time by each process. The horizontal axis represents time, from the start time of the

application at the left of the figure to the end time at the right. For every processor,

the colors represent the MPI call or light blue when doing computation outside of MPI.

The white color indicates idle time where the processor is waiting. This execution

consists of several hundreds iterations of the conjugate gradient solver. Similarly,

Figure 3.4 shows the trace of the second time-step of the icoFoam application, and,

Figure 3.5 presents the timeline of which the MPI call is being executed at each point

in time by each process. The horizontal axis represents the total execution time of

the second time-step execution of icoFoam. It solves the 3D cavity test case using

PISO algorithm iteratively. The dominance of the global communication is strong

in icoFoam. The MPI-Allreduce occupies more than 75% of MPI time as shown in

Figure 3.6 that has been obtained obtained by IPM [66]. However, as a laplacianFoam

trace file, this run consists of several hundreds of iterations of the conjugate gradient

43

loop. Thus, we scanned a one iteration of the conjugate gradient solver using a matrix

derived from the 3D heat equation as shown in Figure 3.7.

Figure 3.6: Profile result obtained by IPM that shows the percentage of MPI-time
consumed by each MPI call

Figure 3.7: Trace of one iteration of the conjugate gradient linear solver

44

Figure 3.8: Timeline of MPI calls executed at each point in time by each process
while executing an iteration of CG

Figure 3.7 shows the profiling trace of the conjugate gradient (CG) solver imple-

mented in OpenFOAM main library version 1.6-ext. The horizontal axis represents

the total execution time of one iteration of CG. From the figure, we can observe the

effect of the collective communication MPI-Allreduce and the point-to-point commu-

nication, mainly the receive call. The percentage of MPI calls is 31% of the total

execution time. Figure 3.8 presents the timeline of which MPI call is being executed

at each point in time by each process while executing an iteration of CG. The colors

represent the MPI calls or light blue when doing computation outside of MPI. From

the profiling result, the CG main computation phase is the matrix-vector multiplica-

tion, which can be seen at the left of the Figure 3.7.

45

Figure 3.9: Timeline with the instructions per cycle (IPC) achieved by each interval
of useful computation during the execution of laplacianFoam

Figure 3.10: Timeline with the instructions per cycle (IPC) achieved by in each
interval of useful computation during the execution of icoFoam

Figure 3.9 shows a timeline with the instructions per cycle (IPC) achieved by each

46

interval of useful computation during the execution of laplacianFoam. Also, Figure

3.10 shows a timeline with the IPC achieved in each interval of useful computation

during the execution of icoFoam. The color encoding of IPC function of time for each

process is a gradient between light green representing a low IPC value and dark blue

representing a high IPC value. This view shows in black in the regions where processes

are in MPI in order to focus on the actual useful computation parts, however, this

configuration of Paraver does not take into account the collective communications.

Some part of the computation phases show low IPC value due to high cache misses

rate. Taking a closer look to OpenFOAM structures, it is not optimized for cache

blocking, thus it causes high cache miss rates. The same observation can be seen

in icoFoam profiling result as well, however, a high IPC value is indicated towards

the end of the graph, this is associated with the conjugate gradient phase. From the

profiling results, one of the possible optimization option is enhancing the structures

and the data storage to be more cache friendly. This step requires a magnificent

amount of editing that time and topic restrains do not allow for here, however, it can

be noted as future work.

3.4 Summary

The OpenFOAM parallel run is based on MPI level parallelization. The domain

decomposition plays an important role in the parallel run. If the domain is not

decomposed properly according to the computing devices and minimizing the bound-

aries between the processors, the parallel run will suffer from an unbalanced workload

execution and communications overhead. According to the performance analysis, the

collective communication is the dominant part in MPI calls. Minimizing the global

communication and hiding the necessary calls would offer better scalability and speed-

up. The most time consuming part as expected is the sparse linear algebraic kernels.

47

Chapter 4

Hybrid Heterogeneous Solver

The main motivation of this work is to increase the performance of the selected solvers

and maintain an effective use of the allocated resources. The benchmarking shown

in Figure 4.1 suggests that the CPUs performance is good enough to be included in

the computation side by side with the GPUs. The available parallelization in Open-

FOAM is either: MPI on multi-core, or GPU on multi-GPU. Figure 4.2 presents the

available ways to accelerate the linear solver kernel. Although both OpenFOAM CG

and Cufflink CG implement the same algorithm, the code structure can not be com-

bined to produce the hybrid code due to deadlock.

Figure 4.1: Performance of Cufflink CG and OpenFOAM CG. icoFoam has been used
to benchmark both solvers, while solving the pressure field of 3D cavity test case.

As shown in Figure 4.1, icoFoam has been executed to benchmark the OpenFOAM

48

CG linear solver and Cufflink CG. The test case is a lid-driven cavity flow over a 3D

cubic mesh. We measured the total execution time of the whole case. We observed

that Cufflink CG converges slower than OpenFOAM CG, although the precision in

both linear solvers is double precision. A closer look at the Cufflink CG code, there

are many memory copy from host to device and vice versa.

Figure 4.2: Available parallel code of CG integrated in OpenFOAM. Cufflink provides
only multi-GPU code, and OpenFOAM provides only multi-core code. Both solvers
can not be combined because of the different communication scheme.

The first solution algorithm proposed in this thesis is the hybrid conjugate gradi-

ent, which solves the system of linear equations derived from the partial differential

equations using the original conjugate gradient method on heterogeneous hybrid plat-

forms efficiently. Besides developing the hybrid conjugate gradient solver, which is an

engineering problem, there are two main challenges that have been also addressed in

this work: how to distribute the data across highly heterogeneous devices, which is

addressed in Section 4.3, and how to minimize the synchronization points. The latter

challenge is addressed by implementing the pipeline conjugate gradient algorithm,

which is an alternative algorithm of the conjugate gradient method [3]. Accordingly,

49

the second proposed solver is the pipeline conjugate gradient, which has been imple-

mented in three versions: GPGPU only, MPI only, and hybrid MPI+GPGPU.

4.1 Hybrid Conjugate Gradient

The main idea is to distribute the computation across heterogeneous devices some of

them being GPUs and run the computation in parallel. All the processors employ

a process-level parallelism using MPI and each MPI-process, which is connected to

a GPU, accelerates the computation using CUDA. Those processors, which are not

connected to a GPU run the computation locally.

From the development point of view, the hybrid conjugate gradient has been im-

plemented and designed as a set of functions, which mimics the original design in

OpenFOAM and the same linking interfaces as in Cufflink. However, the communi-

cation scheme is hybrid, and, has been redesigned from scratch. Figure 4.3 sketches

the design and implementation of the hybrid Conjugate Gradient solver.

We used CUSP and Thrust library for implementing CUDA kernels. Figure 4.3

shows the computational flow on the CPU and on the GPU. It started by decompos-

ing the computational domain into p subdomains using OpenFOAM decomposePar

function, which invokes the selectable domain decomposition method to decompose

the mesh according to a given number of subdomains. This step is considered as a

pre-processing step and requires input from the user such as the number of subdo-

mains, and the domain decomposition method. As mentioned earlier, OpenFOAM

provides four types of domain decomposition methods (DDM): Simple, Hierarchical,

METIS, and SCOTCH. The last two support static load balancing partitioning algo-

50

rithms, which minimize the communications between neighbors.

The application repeatedly invokes the linear solver, which is, in our case, the

hybrid CG. The number of CPUs and GPUs involved in the execution may vary dur-

ing the parallel execution, e.g., 2 GPUs + 6 CPUs. The communication scheme of

one iteration requires three global communications and one point-to-point communi-

cation between neighboring subdomains. The matrix is derived from the discretized

equation, sparse, and of the dimension of the number of finite volumes. In case of

decomposed computational domain, the local matrix row dimension is number of cells

within the subdomain. The hybrid CG solver supports common sparse matrix stor-

age formats, which are: coordinate (COO), compressed sparse row (CSR) and hybrid

(HYB), and, it is selectable by the user.

As shown in Figure 4.2, the available implementations of CG in OpenFOAM are:

the OpenFOAM CG, which is parallelized using MPI, and Cufflink CG, which is par-

allelized using GPGPU. Although both codes implement the original CG algorithm,

their CG functions can not be combined directly due to different communication

schemes, which could cause deadlock at some stages. For instance, collecting infor-

mation about the parallel interfaces causes deadlock, because, there is a delay in the

Cufflink code due to copying the data from host to device. Therefore, it is impossible

to combine the two codes to solve the problem on two subdomains correctly. We im-

plemented the conjugate gradient method to be able to run in multi-core/multi-GPU

platform.

Let us consider a computational domain that has been decomposed into two sub-

domains. Our platform is a dual-core socket connected to one GPU device. A con-

figuration file, which is given, selects processor with rank 0 to be accelerated. At

51

the start of the linear solver phase, OpenFOAM interface lduMatrix [1] contains the

coefficient matrix, the vector b, and mesh related information. The matrix storage

consists of three arrays: lower diagonal, diagonal, and upper diagonal matrix. This

object will be passed to the hybrid CG solver and initialize it. According to the given

configuration file, each MPI process makes a decision to call the CUDA kernel or the

CPU kernel. In this example processor p0 will call the CUDA kernel, whereas, pro-

cessor p1 will call the CPU kernel. During the initialization phase of CUDA kernel,

the required data is copied from the host to device. At the beginning, both ker-

nels collect information about the processor boundaries (parallel interfaces) such as

neighbors ranks and volume of data required to be send/receive to/from neighboring

using point-to-point communication between adjacent subdomains. The procedure

flow continues as shown in Figure 4.3.

The user may provide a configuration file, which contains the information about

the processors, their location with respect to each other, and which socket is connected

to which GPU. This file will be used by the hybrid solver to bind the computations

to the processor according to its location and accelerate the processor that is nearby

the GPU. This step is important to allocate the data to the processor in a hardware-

aware topology that adequately map communicating processes onto the processors of

the platforms.

52

Figure 4.3: Design and implementation of the hybrid Conjugate Gradient solver,
showing the steps executed on CPUs on the left (in blue), and, the steps executed on
GPUs on the right (in green), and the coordination presents through black arrows.

53

4.2 Hybrid Pipeline Conjugate Gradient

We implemented the pipeline conjugate gradient algorithm, which is motivated by

the formerly mentioned work of Ghysels and VanRoose [3]. It can be considered as

a communication start up reducing algorithmic improvement of the original method.

The pipeline conjugate gradient minimizes the global communication to only one col-

lective communication per loop body instead of three. It offers opportunity of better

scalability, however, at the price of extra computations, which are relatively cheaper.

Figure 4.4 sketches the design and implementation of the hybrid Pipeline Conjugate

Gradient solver. It shows the computational flow on the CPU and on the GPU.

The pipeline conjugate gradient has been designed and implemented in three

versions: GPGPU/CUDA, MPI, and hybrid MPI+GPGPU/CUDA. The algorithm,

which is listed in Algorithm 2, requires one reduction operation per iteration, which is

during the computation of λ and δ. The MPI only implementation stores the matrix

as OpenFOAM lduMatrix format, which stores the matrix in three arrays: lower,

diagonal, and upper matrix storage. As the matrix is symmetric only the lower is

stored. We implemented the linear algebra operations in our library with cache block-

ing mechanism, that is why we did not use OpenFOAM operations.

The GPGPU pipeline conjugate gradient has been implemented in CUDA. This

version of pipeline CG consists of code to be run on a host CPU, and CUDA kernel

that consists of lines of code to be run on GPU device. The CUDA initialization

block in Figure 4.4 begins communicating with other subdomains in order to collect

information about the parallel interfaces between processor boundaries. After that,

the host prepares the required data to be delivered to the device. We used Thrust

storages and the copy function to send the data from host to device and conversely

from device to host. The procedure flow continues as listed in Algorithm 2. The inner

54

implementation of the linear algebra operations is based on CUSP library. It supports

common sparse matrix storage formats, which are: coordinate (COO), compressed

sparse row (CSR) and hybrid (HYB), and, it is selectable by the user.

The hybrid pipeline CG combines the MPI pipeline CG and CUDA pipeline CG

kernels. There are two phases in Algorithm 2: outside loop phase, and the loop phase.

The loop phase is more important than the other one, because it iterates several times.

The first communication inside the loop is a single MPI Allreduce that compute the

sums of the global lambda and gamma. It is followed by matrix-vector multiplica-

tion, which requires talking with neighboring subdomains to update the processor

boundary. The point-to-point communication can be between two hosts, two CPUs

kernel, or hybrid. These communications require data movements between host and

device that can be overlapped with local computations of the parallel interfaces. This

optimization has been implemented in order to reduce the cost of communication and

data movements. The procedure flow continues as listed in Figure 4.4. The inner

implementation is combination of the other two implementations functions i.e. MPI

pipeline CG and CUDA pipeline CG.

All the three pipeline conjugate gradient solvers and the hybrid conjugate gradient

solver have been compiled and integrated into OpenFOAM as a dynamic library.

55

Figure 4.4: Design and implementation of the Hybrid Pipeline Conjugate Gradient
solver; interpreted as in Figure 4.3.

56

4.3 Heterogeneous Decomposition

In the case of the hybrid solver, an even distribution of the data is out of the question,

because it will cause workload imbalance between the accelerated computation using

GPGPU and the sequential computations. The main idea behind the heterogeneous

decomposition is to adequately partition and assign the subdomains to the proces-

sors in proportion to their performance. Also, the technique should take into account

minimizing the communications, so as to minimize inter-processor communications

and network congestion.

As described in previous sections, OpenFOAM provides static load balancing dur-

ing the decomposition process through some third-party library, that is, METIS,

ParMETIS [46], SCOTCH or PtSCOTCH [47] prior to running the program. METIS

and SCOTCH both allow the user to provide a constant number per processor that

represents the percentage of data to be computed by this processor. However, neither

library provides any methods or algorithms to compute this percentage for balanced

workload. It is up to the user to supply these indicators.

In a nutshell, the heterogeneous decomposition combines the performance model

and the METIS/SCOTCH library. It estimates the relative speed of each compute de-

vice in the target platform by running the computational kernel on evenly distributed

subdomains, and measures the execution time per processor. Then, it computes the

speed of each processor, and builds the performance model of the application. The

output of this step is vector of numbers representing the computational volume per-

processor accordance to its speed. Hence, the load of the processor will be balanced

if the number of computations performed by each processor is accordance to its speed

on execution the kernel. After that, the percentage will be provided as an input to

METIS/SCOTCH to re-decompose the data.

57

Let’s assume the hybrid conjugate gradient solver is the computational kernel to

be optimized using the heterogenous decomposition. The input is a square sparse

matrix Ai, which contains ni × ni elements, where ni is number of cells allocated to

processor pi. Each CG iteration requires one matrix-vector multiplication, two dot

products, and several scalar multiplications and vector additions. Number of non-

zeros in Ai is ni +2Fi, where Fi is number of faces in the subdomain i that represents

number of the off-diagonal elements. As in [86, 13], the computational complexity

of CG kernel is O(ni + 2Fi). In other words, the number of operations to process

one non-zero element of this matrix can be considered as a constant, therefore, the

amount of computation to process matrix Ai is proportional to number of non-zeros

that is, ni + 2Fi. As mentioned before, the matrix is given as an input from Open-

FOAM matrix interface, with the number of cells and number of faces stored in the

matrix object. A simple example of OpenFOAM matrix is shown in Figure 4.5 that

illustrates a coefficient matrix, which has been formed from a 2D cubic mesh consist-

ing of 4 hexahedra cells. The cell with the lower label is called the owner of the face

that the face area vector is constructed in such a way that it points outwards the

owner cell [56].

Figure 4.5: Example of simple 2D mesh and its corresponding coefficient matrix

The speed si of processor pi during computing the CG kernel is ni + 2Fi divided

by the execution time T , which can be formulated in Equation 4.1. Then, the relative

58

speed ri is computed according to Equation 4.2. After that, the new assigned number

of cells to be allocated at processor pi is computed using Equation 4.3. This vector

of p numbers will be passed as argument to METIS/SCOTCH API to re-decompose

the computational domain correspondingly.

si(ni) =
ni + 2Fi

T (ni)
(4.1)

ri(ni) =
si(ni)∑
p si(ni)

(4.2)

ni,new = N ∗ ri(ni) (4.3)

The following diagram shows the heterogeneous decomposition.

Figure 4.6: Design of the heterogeneous decomposition

METIS and SCOTCH both are designed to find minimum internal boundaries be-

tween subdomains, hence less communications between processors. Combining their

design with the performance model that reflects the ability of each processor to com-

pute with respect to other processors will obtain a balanced workload and minimal

communications partitioning. However, the CFD applications may consists of differ-

59

ent computational kernels, which requires more auto-tuning using the heterogenous

decomposition that time constraints do not allow for here. This step is noted for

future work, and the current implementation is a stepping stone towards balancing

computational kernels across highly heterogenous devices. In this work, we try to op-

timize the most computational intensive phase in the application, and show how this

optimization can accelerate the whole applications. However, more enhancements are

possible to increase the effectiveness of the decomposition. These enhancements are

noted as future work.

One more challenge to be addressed is to allocate the data to the processor in

a hardware-aware topology that adequately map communicating processes onto the

processors of the platforms. The user may provide a configuration file, which contains

the information about the processors and their location with respect to each other and

which socket is connected to which GPU. This file will be used by the hybrid solver

to bind the computation to the processor according to its location and accelerate the

processor that is nearby the GPU.

4.4 Summary

This chapter presents the design and implementation of the hybrid solvers and the

heterogeneous decomposition. The motivation behind the hybrid solver is to include

the CPUs in the computation with GPUs that is, MPI+GPGPU. The hybrid ap-

proach has been designed and implemented for the conjugate gradient method and

the pipeline conjugate gradient method. A better decomposition is essential in the

case of the hybrid solver. Therefore, we proposed the heterogeneous decomposition

method. This method is implemented on top of METIS and SCOCH that are shipped

with OpenFOAM as third-libraries. The main idea is to balance the computation by

60

decomposing the data using METIS/ SCOTCH with performance model that reflects

each processor capability. The heterogenous decomposition and the hybrid solvers

have been integrated and linked into OpenFOAM.

61

Chapter 5

Evaluation

This chapter presents the main experimental results obtained in our work. The pre-

vious chapter discusses the design of the proposed code optimizations. There are four

optimizations to be evaluated, which are: the hybrid conjugate gradient solver, the

hybrid pipeline conjugate gradient solver, the heterogeneous decomposition, and the

pipeline conjugate gradient GPU and MPI only solvers.

5.1 Experimental Platforms

Our library is implemented in C and C++ and plugged into OpenFOAM accordingly.

Our version of OpenFOAM is OpenFOAM-ext1.6. The experimental platforms are

Tesla machine and HCL cluster. The platforms are described as follows.

• Tesla: It is a single node consisting of two sockets; each socket is connected

to GPU device. One socket has 6 dual cores Intel Xeon CPU X5670 @ 2.93GHz.

Figure 3.1 shows the topology of the platform by invoking lstopo command that ren-

ders the topology of the machine [63]. Table 3.1 shows the GPU device characteristics.

• HCL cluster: A comprehensive description from the HCL cluster [61] wiki is

quoted here. “The HCL cluster is heterogeneous in computing hardware and network

62

ability. Nodes are from Dell, IBM, and HP, with Celeron, Pentium 4, Xeon, and

AMD processors ranging in speeds from 1.8 to 3.6Ghz. Accordingly architectures and

parameters such as Front Side Bus, Cache, and Main Memory all vary. Operating

System used is Debian with Linux kernel 2.6.32.” [61] Diagram 5.1 shows a schematic

of the cluster.

Figure 5.1: Diagram shows the underlying architecture topology of HCL cluster

5.2 Test Cases

• 3D lid-driven cavity flow case: The lid-driven cavity flow [2] test case con-

tains the solution of a laminar, isothermal and incompressible flow within a

63

three-dimensional unstructured cubic geometry using the icoFoam solver. The

top boundary of the cube is moving wall that moves in the x direction, whereas

the rest are static walls.

• 3D heat equation case [2]: The heat equation test case is solved over a

three-dimensional unstructured cubic geometry using the laplacianFoam.

The number of cells in the mesh varies from 500,000 to 2,000,000 cells, generated

using the OpenFOAM mesh utility blockMesh [1]. In this utility, we choose hexahedra

as the cell type.

5.3 Results and Discussions

We benchmarked both OpenFOAM conjugate gradient, which is parallelized using

MPI, and Cufflink conjugate gradient, which is implemented using CUDA. The bench-

mark is the 3D lid-driven cavity flow case on cubic mesh consisting of 1,000,000 cells.

The case is solved using icoFoam running for 8 time-steps on Tesla. Figure 4.1 shows

the result of parallel execution of the icoFoam solver for several problem sizes. Num-

ber of processors used is bound to number of available GPUs on Tesla machine, which

are two GPUs. The precision used in the computation of the 3D cavity test case is

double-precision. The conjugate gradient method called to solve the pressure field.

According to Figure 4.1 the performance gap between the CPU and the GPU solvers

is not significant. This means that CPUs are good to be included in the computation

with GPUs in a hybrid approach.

5.3.1 Pipeline Conjugate Gradient Solvers

We implemented three variations of the pipeline conjugate gradient: hybrid Pipeline

CG, CUDA Pipeline CG on GPU, and MPI Pipeline CG (CPU only). Figure 5.2

64

shows the performance of CUDA Pipeline CG and Cufflink CG on Tesla machine

using 2 GPUs, and 2 hosts. The benchmark is solving system of linear equations that

has been derived from 3D heat equation test case for several problem sizes. Using two

GPUs with 2 hosts is a realistic environment to use on Tesla machine for both Cuf-

flink CG and CUDA Pipeline CG, because, both solvers are for cluster of multi-GPU.

Moreover, Figure 5.3 shows the speed-up of both CUDA Pipeline CG and Cufflink

CG over the sequential execution of CG on Tesla machine for several problem sizes.

The CUDA Pipeline CG consistently outperforms the Cufflink CG. The main point

behind this speed-up is that Pipeline CG offers less communications, therefore, less

data movements.

Figure 5.2: Performance comparison of the Cufflink CG and CUDA Pipeline CG
(2GPUs and 2Hosts) on Tesla Machine.

65

Figure 5.3: Speed-up comparison of the Cufflink CG and CUDA Pipeline CG (2GPUs
and 2Hosts) relative to sequential CG on Tesla Machine.

Figure 5.4 shows the speed-up of the parallel MPI Conjugate Gradient provided

by OpenFOAM and MPI Pipeline CG over the OpenFOAM sequential CG. This test

case has been parallelized using 2 processors on Tesla machine. On the other hand,

Figure 5.5 shows the performance comparison between OpenFOAM MPI CG and

MPI Pipeline CG parallelized using 24 processors.

Figure 5.4: Speed-up comparison of the OpenFOAM Parallel CG and Parallel Pipel-
ing CG (MPI only) using 2 processors on Tesla Machine, relative to sequential CG.

66

Figure 5.5: Performance comparison of the OpenFOAM Parallel CG and Parallel
PipeCG (MPI only) using 24 processors on Tesla Machine

5.3.2 Heterogeneous Decomposition Results

We tested the heterogeneous decomposition on HCL cluster using OpenFOAM CG

linear-solver called from icoFoam 20 time-steps (MPI only). The HCL cluster pro-

vides a heterogeneous platform that consists of processors with different performance.

The objective of this test is to measure the effectiveness of the heterogeneous decom-

position.

Figure 5.6: Total execution time comparison of the heterogeneous decomposition
and the original decomposition for running parallel icoFoam 20 time-steps that calls
OpenFOAM CG linear-solver on HCL cluster.

67

Figure 5.7: Total execution time comparison of the SCOTCH heterogeneous decom-
position and the original decomposition for running parallel icoFoam 20 time-steps
that calls OpenFOAM CG linear-solver on HCL cluster.

Figure 5.8: Total execution time comparison of the METIS heterogeneous decompo-
sition and the original decomposition for running parallel icoFoam 20 time-steps that
calls OpenFOAM CG linear-solver on HCL cluster.

The HCL cluster multiple levels of heterogeneity are: processors with different

speed and different memory. The experiments involved 12 heterogeneous processors

with the fastest processor being 25% faster than the slowest one. The heterogeneous

decomposition is compared against the decomposition obtained by providing equal

weights to the partitioner for all the subdomain, as shown in Figure 5.6. Figure 5.7

shows the comparison between the heterogenous SCOTCH decomposition against the

SCOTCH one. Figure 5.8 shows around 25% improvement in heterogenous METIS

against the non-modified one. Moreover, the heterogeneous decomposition is com-

pared against equal decomposition on Tesla machine. This test uses the hybrid CG,

68

which solves a system of linear equations derived from 3D heat equation for several

problem sizes. The computational domain has been decomposed into two subdomains

using SCOTCH decomposition method. One subdomain has been computed on a

GPU, but the other one on a CPU. Figure 5.9 shows that the heterogenous SCOTCH

decomposition provides consistent improvement of the total execution time around

25%.

Figure 5.9: Total execution time comparison of the SCOTCH heterogeneous decom-
position and the original decomposition for running parallel Hybrid CG linear-solver
on Tesla Machine.

Figure 5.10: Total execution time comparison of the SCOTCH heterogeneous decom-
position and the original decomposition for running parallel Hybrid PipeCG linear-
solver on Tesla Machine.

69

5.3.3 Hybrid Solvers Results

Figure 5.11: Performance comparison of OpenFOAM parallel CG, hybrid CG and
hybrid pipeline CG on different problem size running on Tesla machine

Figure 5.11 compares hybrid CG and hybrid pipeline CG against OpenFOAM MPI

CG. The test case that has been used is solving the system of linear equations derived

form 3D heat equation for several problem sizes. The computational domain has been

decomposed into 24 subdomains. The hybrid solvers accelerate the computations us-

ing 22 cores and 2-GPUs, 2-hosts. The average speed-up of hybrid CG against the

OpenFOAM parallel CG is 1.7x, and hybrid pipeline CG provides 2x speed-up, as

shown in Figure 5.11.

By optimizing only the CG linear solver, we manage to accelerate the whole ex-

ecution of the application. We examine the speed-up and performance gain from

optimizing the conjugate gradient solver on the end-to-end computation of the se-

lected solvers: icoFoam and laplacianFoam. Figure 5.12 shows the speed-up of the

laplacianFoam using different linear solvers over the sequential execution of laplacian-

Foam. The linear solvers are MPI Conjugate Gradient supported by OpenFOAM,

70

CUDA Conjugate Gradient supported by Cufflink, MPI Pipeline Conjugate Gradi-

ent, and CUDA Pipeline Conjugate Gradient. From the figure, the average speed-up

provided by OpenFOAM MPI CG using 2 processors is around 1.4x. Cufflink CG

shows 1.28x average speed-up. The MPI Pipeline CG using 2 processors shows 1.68x

average speed-up. The fastest one was the CUDA Pipeline CG, which shows 2.02x

average speed-up. Furthermore, Figure 5.13 shows the speed-up of the total exe-

cution time of laplacianFoam against Cufflink GPU CG execution time. The two

solvers are: hybrid CG and hybrid pipeline CG. The computational domain has been

decomposed several times for different number of subdomain. Therefore number of

processors, which is noted in the figure as P, varies from 2 to 8. From the figure, 2

subdomains shows the best configuration of the machine.

Figure 5.12: Speed-up of the execution time of different parallel run over the sequen-
tial execution of laplacianFoam

71

Figure 5.13: Speed-up of the execution time of different parallel run over the lapla-
cianFoam calling Cufflink CG

Figure 5.14 shows the speed-up of the icoFoam using different linear solvers over

the sequential execution of icoFoam. The linear solvers are CUDA Conjugate Gra-

dient supported by Cufflink, MPI Pipeline Conjugate Gradient, and CUDA Pipeline

Conjugate Gradient. The test case that has been used is the 3D cavity case for several

mesh sizes. The computational domain has been decomposed into two subdomains.

Figure 5.15 shows the speed-up of the icoFoam using the two versions of hybrid linear

solvers over the Cufflink CG execution of icoFoam. It provides better performance

when increasing number of processors, which is noted as P in the figure. The hybrid

solvers provides better speed-up than the others in the case of icoFoam.

72

Figure 5.14: Speed-up of the execution time of different parallel run over the sequen-
tial execution of icoFoam

Figure 5.15: Speed-up of the execution time of different parallel run over the icoFoam
calling Cufflink CG

73

5.4 Summary

This chapter evaluates the suggested optimizations. The experiments carried out on

two local platforms, i.e., Tesla machine and HCL cluster. The heterogeneous decom-

position provides a consistent speed-up. Moreover, the pipeline CG CUDA imple-

mentation outperforms Cufflink CG, as well as the pipeline CG MPI implementation

has better performance than OpenFOAM Parallel CG. Both MPI Pipeline Conjugate

Gradient and CUDA Pipeline Conjugate Gradient are called by icoFoam to solve the

pressure, and by laplacianFoam to solve the temperature on different mesh size.

We evaluated both the hybrid CG and hybrid pipeline CG solvers using array of

problem sizes and test cases. The first one is the impact of the heterogeneous de-

composition on both hybrid solvers, and it shows consistent performance gain around

25%. The second one is to compare it with the OpenFOAM Parallel CG on Tesla

architecture allocating all the resources i.e. 24 cores and 2 GPU devices. The hybrid

solvers overcome the parallel OpenFOAM CG. The third and final test is to show the

improvement of the whole package hybrid solvers and heterogeneous decomposition

on the total execution time of the selected solvers: icoFoam and laplacianFoam. This

optimizations provide good speed-up, however, it should be considered as a stepping

stone towards better hybrid heterogenous solvers. The following chapter list the fu-

ture work and concludes this thesis.

74

Chapter 6

Concluding Remarks

This thesis proposes optimizations aimed at better utilization of the modern comput-

ing platforms. We picked OpenFOAM as a CFD package, and studied two solvers

as our research target: icoFoam, which is an incompressible flow solver, and, lapla-

cianFoam, which solves the Laplace equation for a passive scalar. The paralleliza-

tion of OpenFOAM is based on process-level parallelization using MPI. It scales well

on homogenous systems, but executes at an inadequate percentage of per-processor

performance without special attention to the architecture layout, which is complex,

hybrid and heterogenous. Therefore, this approach is bound to expend large amount

of hardware resources. On the other hand, Cufflink uses the GPU to accelerate the

linear solvers, but, it is bound to number of GPU devices available in the platform. In

other words, Cufflink does not support hybrid computations. From the benchmarking

result of Cufflink and OpenFOAM using icoFoam solver, the gap between the CPU

performance and GPU during the end-to-end computations is not that significant.

Therefore, the allocated processors (CPUs) in the platform is good enough to be in-

cluded in the computation side by side with accelerator.

According to the analysis of the selected solvers, the most time consuming phase

is the sparse linear algebraic kernel. Therefore, a hybrid parallel Conjugate Gradi-

ent (CG) linear solver has been designed and implemented. In highly heterogeneous

75

architecture, we deploy multi-level parallelism, which uses MPI between each com-

pute nodes and accelerates the sparse linear algebraic kernels in CUDA architectures

asynchronously. A load-balancing step is applied by using heterogeneous domain de-

composition method, which decomposes the computations in proportion to the speeds

of each computing node and takes into account minimizing the communications. The

heterogenous decomposition combines the performance model and METIS/SCOTCH

libraries. In addition, we designed and implemented the pipeline conjugate gradient

solver as an algorithmic improvement, which aims at minimizing the collective com-

munications, and accelerate it using the hybrid MPI+CUDA as well as CUDA and

MPI only implementations.

The experimental results show around four times speed-up of laplacianFoam and

icoFoam. Also, the pipeline conjugate gradient implementation on multi-GPU out-

performs the CUDA conjugate gradient, which is supported by Cufflink library.

6.1 Future Research Work

This work can be seen as a stepping stone towards optimized hybrid heterogenous

OpenFOAM-based applications. The work presented in this thesis can be extended in

the following directions. First, applying the hybrid model to a preconditioned conju-

gate gradient solver. Second, implementing the hybrid model on other linear solvers,

such as algebraic multi-grid solver. Third, employing a dynamic load-balancing algo-

rithm, which adaptively balances the workload during the run-time, by memory-aware

work stealing.

76

REFERENCES

[1] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial approach to com-

putational continuum mechanics using object-oriented techniques,” Computers

in Physics, vol. 12, no. 6, pp. 620 – 631, Nov 1998.

[2] (2013) OpenFOAM. http://www.openfoam.com/.

[3] P. Ghysels and W. Vanroose, “Hiding global synchronization latency

in the preconditioned conjugate gradient algorithm,” Parallel Computing,

2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0167819113000719

[4] D. P. Combest and J. Day, “Cufflink: a library for linking numerical methods

based on cuda c/c++ with openfoam.” 2011, version 0.1.0. [Online]. Available:

http://cufflink-library.googlecode.com

[5] N. Bell and M. Garland, “CUSP: Generic parallel algorithms for sparse

matrix and graph computations,” 2010, version 0.1.0. [Online]. Available:

http://cusp-library.googlecode.com

[6] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Kne-

pley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Web page,” 2013,

http://www.mcs.anl.gov/petsc.

[7] J. R. Stewart and H. C. Edwards, “A framework approach for developing

parallel adaptive multiphysics applications,” Finite Elem. Anal. Des., vol. 40,

no. 12, pp. 1599–1617, 2004. [Online]. Available: http://dx.doi.org/10.1016/j.

finel.2003.10.006

[8] W. Bangerth, T. Heister, G. Kanschat, L. Heltai, M. Kronbichler, M. Maier,

B. Turcksin, and T. Young, “Deal.II: A finite element differential equations,”

http://www.openfoam.com/
http://www.sciencedirect.com/science/article/pii/S0167819113000719
http://www.sciencedirect.com/science/article/pii/S0167819113000719
http://cufflink-library.googlecode.com
http://cusp-library.googlecode.com
http://dx.doi.org/10.1016/j.finel.2003.10.006
http://dx.doi.org/10.1016/j.finel.2003.10.006

77

http://www.dealii.org/.

[9] H. Meuer, E. Stonhmaier, J. Dongarra, and H. Simon, “Top 500 supercomputer

sites,” 2013. [Online]. Available: http://www.top500.org

[10] E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, S. Thibault, and

S. Tomov, “QR factorization on a multicore node enhanced with multiple GPU

accelerators,” in Proceedings of IPDPS 2011, Anchorage, AK, October 2010.

[11] H. Ltaief, S. Tomov, R. Nath, P. Du, and J. Dongarra, “A Scalable High

Performant Cholesky Factorization for Multicore with GPU Accelerators,” in

High Performance Computing for Computational Science VECPAR 2010, ser.

Lecture Notes in Computer Science, J. Palma, M. Dayd, O. Marques, and

J. Lopes, Eds. Springer Berlin Heidelberg, 2011, vol. 6449, pp. 93–101.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-19328-6 11

[12] L. Buatois, G. Caumon, and B. Levy, “Concurrent number cruncher: a GPU im-

plementation of a general sparse linear solver,” International Journal of Parallel,

Emergent and Distributed Systems, vol. 24, no. 3, pp. 205–223, 2009.

[13] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse matrix solvers on the

GPU: conjugate gradients and multigrid,” in ACM Transactions on Graphics

(TOG), vol. 22, no. 3. ACM, 2003, pp. 917–924.

[14] M. Ament, G. Knittel, D. Weiskopf, and W. Strasser, “A Parallel Preconditioned

Conjugate Gradient Solver for the Poisson Problem on a Multi-GPU Platform,”

in Parallel, Distributed and Network-Based Processing (PDP), 2010 18th Eu-

romicro International Conference on, 2010, pp. 583–592.

[15] A. Cevahir, A. Nukada, and S. Matsuoka, “High performance conjugate gradient

solver on multi-GPU clusters using hypergraph partitioning,” Computer Science-

Research and Development, vol. 25, no. 1-2, pp. 83–91, 2010.

[16] Y. Liu, X. Liu, and E. Wu, “Real-time 3D fluid simulation on GPU with complex

obstacles,” in Computer Graphics and Applications, 2004. PG 2004. Proceedings.

12th Pacific Conference on. IEEE, 2004, pp. 247–256.

http://www.top500.org
http://dx.doi.org/10.1007/978-3-642-19328-6_11

78

[17] T. Tomczak, K. Zadarnowska, Z. Koza, M. Matyka, and Â. Miros law, “Com-

plete PISO and SIMPLE solvers on Graphics Processing Units,” arXiv preprint

arXiv:1207.1571, 2012.

[18] S. Tarsa, T.-H. Lin, and H. Kung, “Performance gains in conjugate gradient

computation with linearly connected gpu multiprocessors,” USENIX HotPar,

vol. 12.

[19] Z. Jamshidi and F. Khunjush, “Optimization of OpenFOAM’s linear solvers

on emerging multi-core platforms,” in Communications, Computers and Signal

Processing (PacRim), 2011 IEEE Pacific Rim Conference on, 2011, pp. 824–829.

[20] A. Kalinov and A. Lastovetsky, “Heterogeneous Distribution of Computations

While Solving Linear Algebra Problems on Networks of Heterogeneous Comput-

ers,” in Proceedings of the 7th International Conference on High Performance

Computing and Networking Europe (HPCN‘99), ser. Lecture Notes in Computer

Science, vol. 1593, Springer. Springer, 1999, pp. 191–200.

[21] A. Kalinov and A. Lastovetsky, “Heterogeneous Distribution of Computations

Solving Linear Algebra Problems on Networks of Heterogeneous Computers,”

Journal of Parallel and Distributed Computing, vol. 61, pp. 520–535, 2001.

[22] R. Reddy and A. Lastovetsky, “HeteroMPI + ScaLAPACK: Towards a ScaLA-

PACK (Dense Linear Solvers) on Heterogeneous Networks of Computers,” in

Proceedings of the 13th IEEE International Conference on High Performance

Computing (HiPC 2006), ser. Lecture Notes in Computer Science, vol. 4297,

Springer. Bangalore, India: Springer, 18-21 Dec 2006 2006, pp. 242–253.

[23] L. S. Blackford, J. Choi, A. Cleary, A. Petitet, R. C. Whaley, J. Demmel,

I. Dhillon, K. Stanley, J. Dongarra, S. Hammarling, G. Henry, and

D. Walker, “ScaLAPACK: A Portable Linear Algebra Library for Distributed

Memory Computers - Design Issues and Performance,” in Proceedings of the

1996 ACM/IEEE Conference on Supercomputing, ser. Supercomputing ’96.

Washington, DC, USA: IEEE Computer Society, 1996. [Online]. Available:

http://dx.doi.org/10.1145/369028.369038

http://dx.doi.org/10.1145/369028.369038

79

[24] A. Lastovetsky and R. Reddy, “HeteroMPI: Towards a Message-Passing Library

for Heterogeneous Networks of Computers,” Journal of Parallel and Distributed

Computing, vol. 66, pp. 197–220, 2006.

[25] A. DeFlumere, A. Lastovetsky, and B. Becker, “Partitioning for Parallel Matrix-

Matrix Multiplication with Heterogeneous Processors: The Optimal Solution,”

in 21st International Heterogeneity in Computing Workshop (HCW 2012), IEEE

Computer Society. Shanghai, China: IEEE Computer Society, May 21, 2012

2012.

[26] J. Dongarra and A. L. Lastovetsky, High performance heterogeneous computing.

John Wiley & Sons, 2009, vol. 78.

[27] A. Lastovetsky and J. Twamley, “Towards a Realistic Performance Model for

Networks of Heterogeneous Computers,” in Proceedings of IFIP TC5 Workshop,

World Computer Congress, August 22-27 2004, Toulouse, France, ser. High Per-

formance Computational Science and Engineering, Springer. Springer, 2005,

pp. 39–58.

[28] A. Lastovetsky, R. Reddy, and R. Higgins, “Building the Functional Performance

Model of a Processor,” in Proceedings of the 21st Annual ACM Symposium on

Applied Computing (SAC 2006), ACM. Dijon, France: ACM, April 23-27 2006

2006.

[29] A. Lastovetsky and R. Reddy, “Data Partitioning with a Realistic Performance

Model of Networks of Heterogeneous Computers with Task Size Limits,” in

Proceedings of the Third International Symposium on Parallel and Distributed

Computing/Third International Workshop on Algorithms, Models and Tools for

Parallel Computing on Heterogeneous Networks (ISPDC/HeteroPar’04), IEEE

Computer Society Press. Cork, Ireland: IEEE Computer Society Press, 5-7

July 2004 2004, pp. 133–140.

[30] A. Lastovetsky and R. Reddy, “Data Partitioning with a Functional Performance

Model of Heterogeneous Processors,” International Journal of High Performance

Computing Applications, vol. 21, pp. 76–90, 2007.

80

[31] A. Lastovetsky and R. Reddy, “Data Partitioning for Multiprocessors with Mem-

ory Heterogeneity and Memory Constraints,” Scientific Programming, vol. 13,

pp. 93–112, 2005.

[32] A. Lastovetsky and R. Reddy, “Data distribution for dense factorization on com-

puters with memory heterogeneity,” Parallel Computing, vol. 33, pp. 757–779,

Dec 2007.

[33] A. Lastovetsky and R. Reddy, “Two-dimensional Matrix Partitioning for Paral-

lel Computing on Heterogeneous Processors Based on their Functional Perfor-

mance Models,” in 7th International Workshop on Algorithms, Models and Tools

for Parallel Computing on Heterogeneous Platforms (HeteroPar 2009), Lecture

Notes in Computer Science, vol. 6043, Springer. Delft, Netherlands: Lecture

Notes in Computer Science, vol. 6043, Springer, 25/9/2009, pp. 112–121.

[34] A. Lastovetsky and R. Reddy, “Distributed Data Partitioning for Heterogeneous

Processors Based on Partial Estimation of their Functional Performance Mod-

els,” in 7th International Workshop on Algorithms, Models and Tools for Paral-

lel Computing on Heterogeneous Platforms (HeteroPar 2009), Lecture Notes in

Computer Science, vol. 6043, Springer. Delft, Netherlands: Lecture Notes in

Computer Science, vol. 6043, Springer, 25/9/2009 2010, pp. 91–101.

[35] D. Clarke, A. Lastovetsky, and V. Rychkov, “Dynamic Load Balancing of Parallel

Computational Iterative Routines on Highly Heterogeneous HPC Platforms,”

Parallel Processing Letters, vol. 21, pp. 195–217, Jun 2011.

[36] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data Partitioning on Heterogeneous

Multicore Platforms,” in 2011 IEEE International Conference on Cluster Com-

puting (Cluster 2011), IEEE Computer Society. Austin, Texas, USA: IEEE

Computer Society, Sept 26-30 2011, pp. 580–584.

[37] Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data Partitioning on Heteroge-

neous Multicore and Multi-GPU Systems Using Functional Performance Mod-

els of Data-Parallel Applications,” in 2012 IEEE International Conference on

Cluster Computing (Cluster 2012), Beijing, China, 24-28 September 2012, pp.

191–199.

81

[38] V. Rychkov, D. Clarke, and A. Lastovetsky, “Using Multidimensional Solvers

for Optimal Data Partitioning on Dedicated Heterogeneous HPC Platforms ,” in

Proceedings of the 11th International Conference on Parallel Computing Tech-

nologies (PaCT-2011), LNCS 6873, Springer. Kazan, Russia: Springer, Septem-

ber 19-23 2011, pp. 332–346.

[39] D. Clarke, A. Lastovetsky, and V. Rychkov, “Column-Based Matrix Partition-

ing for Parallel Matrix Multiplication on Heterogeneous Processors Based on

Functional Performance Models,” in 9th International Workshop on Algorithms,

Models and Tools for Parallel Computing on Heterogeneous Platforms (Het-

eroPar’2011), Lecture Notes in Computer Science 7155, Springer. Bordeaux,

France: Lecture Notes in Computer Science 7155, Springer, August 29, 2011

2012, pp. 450–459.

[40] D. Clarke, A. Ilic, A. Lastovetsky, and L. Sousa, “Hierarchical Partitioning Algo-

rithm for Scientific Computing on Highly Heterogeneous CPU + GPU Clusters,”

in 18th International European Conference on Parallel and Distributed Comput-

ing (Euro-Par 2012), Lecture Notes in Computer Science 7484, Springer. Rhodes

Island, Greece: Lecture Notes in Computer Science 7484, Springer, 27-31 August

2012, pp. 489–501.

[41] B. Chetverushkin, N. Churbanova, A. Lastovetsky, and M. Trapeznikova, “Par-

allel simulation of oil extraction on heterogeneous networks of computers,” in

Proceedings of the 1998 Conference on Simulation Methods and Applications

(CSMA’98), Society for Computer Simulation. Orlando, Florida, USA: Society

for Computer Simulation, November 1-3 1998, pp. 53–59.

[42] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith, “High-performance

parallel implicit CFD,” Parallel Computing, vol. 27, no. 4, pp. 337–362, 2001.

[43] Y. Liu, “Hybrid parallel computation of openfoam solver on multi-core cluster

systems,” p. 90, 2011.

[44] P. Dagnaa and J. Hertzerb, “Evaluation of Multi-threaded OpenFOAM

Hybridization for Massively Parallel Architectures,” Tech. Rep. [Online].

Available: http://www.prace-ri.eu/IMG/pdf/wp98.pdf

http://www.prace-ri.eu/IMG/pdf/wp98.pdf

82

[45] J. Jgerskpper and C. Simmendinger, “A Novel Shared-Memory Thread-Pool

Implementation for Hybrid Parallel CFD Solvers,” in Euro-Par 2011 Parallel

Processing, ser. Lecture Notes in Computer Science, E. Jeannot, R. Namyst,

and J. Roman, Eds. Springer Berlin Heidelberg, 2011, vol. 6853, pp. 182–193.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-23397-5 18

[46] G. Karypis and V. Kumar, “MeTis: Unstructured Graph Partitioning and Sparse

Matrix Ordering System, Version 5.0,” http://www.cs.umn.edu/∼metis, Univer-

sity of Minnesota, Minneapolis, MN, 2013.

[47] C. Chevalier and F. Pellegrini, “PT-Scotch: A Tool for Efficient Parallel Graph

Ordering,” Parallel Comput., vol. 34, no. 6-8, pp. 318–331, Jul. 2008. [Online].

Available: http://dx.doi.org/10.1016/j.parco.2007.12.001

[48] M. Papadrakakis, G. Stavroulakis, and A. Karatarakis, “A new era in

scientific computing: Domain decomposition methods in hybrid CPUGPU

architectures,” Computer Methods in Applied Mechanics and Engineering,

vol. 200, no. 1316, pp. 1490 – 1508, 2011. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0045782511000235

[49] C. Augonnet, S. Thibault, and R. Namyst, “StarPU: a Runtime System

for Scheduling Tasks over Accelerator-Based Multicore Machines,” INRIA,

Rapport de recherche RR-7240, Mar. 2010. [Online]. Available: http:

//hal.inria.fr/inria-00467677

[50] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU: a unified

platform for task scheduling on heterogeneous multicore architectures,” Concur-

rency and Computation: Practice and Experience, vol. 23, no. 2, pp. 187–198,

2011.

[51] G. Mudalige, M. Giles, I. Reguly, C. Bertolli, and P. H. J. Kelly, “Op2: An active

library framework for solving unstructured mesh-based applications on multi-core

and many-core architectures,” in Innovative Parallel Computing (InPar), 2012,

2012, pp. 1–12.

[52] J. H. Ferziger and M. Perić, Computational methods for fluid dynamics. Springer

Berlin, 1996, vol. 3.

http://dx.doi.org/10.1007/978-3-642-23397-5_18
http://www.cs.umn.edu/~metis
http://dx.doi.org/10.1016/j.parco.2007.12.001
http://www.sciencedirect.com/science/article/pii/S0045782511000235
http://www.sciencedirect.com/science/article/pii/S0045782511000235
http://hal.inria.fr/inria-00467677
http://hal.inria.fr/inria-00467677

83

[53] M. Beaudoin and H. Jasak, “Development of a generalized grid interface for tur-

bomachinery simulations with OpenFOAM,” in Open Source CFD International

Conference. Berlin, Germany, 2008, pp. 4–5.

[54] J. D. Anderson, Computational fluid dynamics. McGraw-Hill New York, 1995,

vol. 206.

[55] F. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous

incompressible flow of fluid with free surface,” Physics of fluids, vol. 8, p. 2182,

1965.

[56] H. Jasak, “Error analysis and estimation for the finite volume method with appli-

cations to fluid flows,” Ph.D. dissertation, Imperial College London (University

of London), 1996.

[57] J. R. Shewchuk, “An introduction to the conjugate gradient method without the

agonizing pain,” Pittsburgh, PA, USA, Tech. Rep., 1994.

[58] D. Clarke, A. Ilic, A. Lastovetsky, V. Rychkov, L. Sousa, and Z. Zhong, Design

and optimization of scientific applications for highly heterogeneous and hierarchi-

cal HPC platforms using functional computation performance models, ser. Wiley

Series on Parallel and Distributed Computing. Wiley-Interscience, 2013.

[59] J. Hoberock and N. Bell, “Thrust: A parallel template library,” 2010, version

1.3.0. [Online]. Available: http://www.meganewtons.com/

[60] D. Clarke, Z. Zhong, V. Rychkov, and A. Lastovetsky, “Fupermod: A framework

for optimal data partitioning for parallel scientific applications on dedicated het-

erogeneous hpc platforms,” in Parallel Computing Technologies. Springer, 2013,

pp. 182–196.

[61] (2013) HCL cluster. http://hcl.ucd.ie/wiki/index.php/HCL cluster.

[62] (2013) Paraver: Performance Analysis Tools. http://www.bsc.es/

computer-sciences/performance-tools/paraver.

http://www.meganewtons.com/
http://hcl.ucd.ie/wiki/index.php/HCL_cluster
http://www.bsc.es/computer-sciences/performance-tools/paraver
http://www.bsc.es/computer-sciences/performance-tools/paraver

84

[63] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,

S. Thibault, and R. Namyst, “hwloc: a generic framework for managing hard-

ware affinities in HPC applications,” in Parallel, Distributed and Network-Based

Processing (PDP), 2010 18th Euromicro International Conference on. IEEE,

2010, pp. 180–186.

[64] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool to visualize

and analyze parallel code,” in Proceedings of WoTUG-18: Transputer and occam

Developments, vol. 44, 1995, pp. 17–31.

[65] S. S. Shende and A. D. Malony, “The TAU parallel performance system,” Inter-

national Journal of High Performance Computing Applications, vol. 20, no. 2,

pp. 287–311, 2006.

[66] K. Fürlinger and D. Skinner, “Capturing and visualizing event flow graphs of

mpi applications,” in Euro-Par 2009–Parallel Processing Workshops. Springer,

2010, pp. 218–227.

[67] D. E. Culler, J. P. Singh, and A. Gupta, Parallel computer architecture: a hard-

ware/software approach. Gulf Professional Publishing, 1999.

[68] C. Xavier and S. Iyengar, Introduction to Parallel Algorithms, ser. A

Wiley interscience publication. Wiley, 1998. [Online]. Available: http:

//books.google.ie/books?id=W3Ld65MnwgkC

[69] C. D. Polychronopoulos, “Parallel programming and compilers,” 1988.

[70] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman, MPI:

the complete reference. MIT press, 1995.

[71] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Houston, J. Owens,

M. Segal, M. Papakipos, and I. Buck, “Gpgpu: General-purpose computation

on graphics hardware,” in Proceedings of the 2006 ACM/IEEE Conference on

Supercomputing, ser. SC ’06. New York, NY, USA: ACM, 2006. [Online].

Available: http://doi.acm.org/10.1145/1188455.1188672

http://books.google.ie/books?id=W3Ld65MnwgkC
http://books.google.ie/books?id=W3Ld65MnwgkC
http://doi.acm.org/10.1145/1188455.1188672

85

[72] A. Abdelfattah, J. Dongarra, D. Keyes, and H. Ltaief, “Optimizing memory-

bound numerical kernels on gpu hardware accelerators,” July 2012.

[73] R. Farber, CUDA application design and development. Access Online via Else-

vier, 2011.

[74] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative ap-

proach. Elsevier, 2012.

[75] A. Lastovetsky, “Heterogeneity in parallel and distributed computing,” Journal

of Parallel and Distributed Computing, vol. 73, pp. 1523–1524, 2013.

[76] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel

Programming with the Message-passing Interface, ser. Scientific and engineering

computation. MIT Press, 1999, no. v. 1. [Online]. Available: http:

//books.google.ie/books?id=xpBZ0RyRb-oC

[77] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,

V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine et al., “Open mpi: Goals,

concept, and design of a next generation mpi implementation,” in Recent Ad-

vances in Parallel Virtual Machine and Message Passing Interface. Springer,

2004, pp. 97–104.

[78] I. Buck, “GPU computing with nvidia cuda,” in SIGGRAPH, vol. 7, 2007, p. 6.

[79] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron, “A

performance study of general-purpose applications on graphics processors using

CUDA,” Journal of parallel and distributed computing, vol. 68, no. 10, pp. 1370–

1380, 2008.

[80] D. Kirk, “NVIDIA CUDA software and GPU parallel computing architecture,”

in ISMM, vol. 7, 2007, pp. 103–104.

[81] C.-T. Yang, C.-L. Huang, and C.-F. Lin, “Hybrid CUDA, OpenMP, and MPI

parallel programming on multicore GPU clusters,” Computer Physics Commu-

nications, vol. 182, no. 1, pp. 266–269, 2011.

http://books.google.ie/books?id=xpBZ0RyRb-oC
http://books.google.ie/books?id=xpBZ0RyRb-oC

86

[82] A. Lastovetsky, R. Reddy, V. Rychkov, and D. Clarke, “Design and implemen-

tation of self-adaptable parallel algorithms for scientific computing on highly

heterogeneous hpc platforms,” no. arXiv:1109.3074, 09/2011 2011.

[83] D. Clarke, A. Lastovetsky, and V. Rychkov, “Dynamic load balancing of par-

allel computational iterative routines on platforms with memory heterogene-

ity,” in Europar 2010 / Heteropar’2010, Lecture Notes in Computer Science

6586, Springer. Ischia-Naples, Italy: Lecture Notes in Computer Science 6586,

Springer, 31/08/2010 2011, pp. 41–50.

[84] M. M. Baskaran and R. Bordawekar, “Optimizing sparse matrix-vector multi-

plication on GPUs using compile-time and run-time strategies,” IBM Reserach

Report, RC24704 (W0812-047), 2008.

[85] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication on

CUDA,” NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, Tech.

Rep., 2008.

[86] Y. Saad, Iterative Methods for Sparse Linear Systems: Second Edition.

Society for Industrial and Applied Mathematics, 2003. [Online]. Available:

http://books.google.ie/books?id=Uoe7xBOhS5AC

[87] D. E. Keyes, L. C. McInnes, C. Woodward, W. D. Gropp, E. Myra, M. Pernice,

J. Bell, J. Brown, A. Clo, J. Connors, E. Constantinescu, D. Estep, K. Evans,

C. Farhat, A. Hakim, G. Hammond, G. Hansen, J. Hill, T. Isaac, X. Jiao, K. Jor-

dan, D. Kaushik, E. Kaxiras, A. Koniges, K. Lee, A. Lott, Q. Lu, J. Mager-

lein, R. Maxwell, M. McCourt, M. Mehl, R. Pawlowski, A. Peters, D. Reynolds,

B. Riviere, U. Rüde, T. Scheibe, J. Shadid, B. Sheehan, M. Shephard, A. Siegel,

B. Smith, X. Tang, C. Wilson, and B. Wohlmuth, “Multiphysics simulations:

Challenges and opportunities,” International Journal of High Performance Com-

puting Applications, vol. 27, pp. 4–83, 2013.

[88] W. D. Gropp and D. E. Keyes, “Domain decomposition on parallel computers,”

Impact Comput. Sci. Eng., vol. 1, pp. 421–439, 1989.

http://books.google.ie/books?id=Uoe7xBOhS5AC

	Copyright
	Abstract
	Acknowledgements
	List of Abbreviations
	List of Symbols
	List of Figures
	List of Tables
	Introduction
	Background
	Related Work
	OpenFOAM CFD Package
	icoFoam
	laplacianFoam
	Linear Solvers

	Summary

	Parallel Computing in OpenFOAM
	OpenFOAM in Parallel
	Domain Decomposition Methods

	Cufflink Library
	Performance Analysis and Results
	Summary

	Hybrid Heterogeneous Solver
	Hybrid Conjugate Gradient
	Hybrid Pipeline Conjugate Gradient
	Heterogeneous Decomposition
	Summary

	Evaluation
	Experimental Platforms
	Test Cases
	Results and Discussions
	Pipeline Conjugate Gradient Solvers
	Heterogeneous Decomposition Results
	Hybrid Solvers Results

	Summary

	Concluding Remarks
	Future Research Work

	References

