
Received September 22, 2018, accepted October 22, 2018. Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2018.2878271

Performance Optimization of Multithreaded 2D
Fast Fourier Transform on Multicore Processors
Using Load Imbalancing Parallel
Computing Method
SEMYON KHOKHRIAKOV, RAVI REDDY MANUMACHU , AND ALEXEY LASTOVETSKY
School of Computer Science, University College Dublin, Dublin 4, D04 V1W8 Ireland

Corresponding author: Ravi Reddy Manumachu (ravi.manumachu@ucd.ie)

This work was supported by the Science Foundation Ireland under Grant 14/IA/2474.

ABSTRACT Fast Fourier transform (FFT) is a key routine employed in application domains such as
molecular dynamics, computational fluid dynamics, signal processing, image processing, and condition
monitoring systems. Its performance on modern multicore platforms is therefore of paramount concern to
the high-performance computing community. The inherent complexities in these platforms such as severe
resource contention and non-uniform memory access, however, pose formidable challenges. We study the
performance profiles of multithreaded 2D FFTs provided in three highly optimized packages, FFTW-2.1.5,
FFTW-3.3.7, and IntelMath Kernel Library (IntelMKL) FFT, on amodern Intel Haswell multicore processor
consisting of 36 cores. We show that all the three routines exhibit drastic performance variations, and hence,
their average performances are considerably lower than their peak performances. The ratios of average-to-
peak performance for the 2D FFT routines from the three packages are 40%, 30%, and 24%. We conclude
that improving the average performance of 2D FFT on modern multicore processors by the removal of
performance variations constitutes a tremendous research challenge. To address this challenge, we propose
two novel optimization methods, PFFT-FPM and PFFT-FPM-PAD, specifically designed and implemented
for 2D FFT. Themethods employmodel-based parallel computing using a load-imbalancing technique. They
take as inputs, the discrete 3D functions of the performance of the processors against problem size, compute
2D DFT of a complex signal matrix of size N × N using p abstract processors, and output the transformed
signal matrix. Based on our experiments on amodern Intel Haswell multicore server consisting of 36 physical
cores, the average and maximum speedups observed for PFFT-FPM using FFTW-3.3.7 are 1.9× and 6.8×,
and the average and maximum speedups observed using Intel MKL FFT are 1.3× and 2×. The average and
maximum speedups observed for PFFT-FPM-PAD using FFTW-3.3.7 are 2× and 9.4×, and the average and
maximum speedups observed using Intel MKL FFT are 1.4× and 5.9×.

INDEX TERMS Data partitioning, fast Fourier transform, load balancing, multicore, performance
optimization.

I. INTRODUCTION
Fast Fourier transform (FFT) is a key routine employed in
application domains such as molecular dynamics, computa-
tional fluid dynamics, signal processing, image processing,
and condition monitoring systems [1]–[5]. It is so fundamen-
tal that hardware vendors provide libraries containing 1D, 2D,
and 3D FFT routines highly optimized for their processors.
For example, Intel Math Kernel library (Intel MKL) [6] pro-
vides extensively optimized FFT routines for Intel processors,

cuFFT [7] for Nvidia CUDA GPUs, and clFFT [8] for AMD
processors.

The theoretical computational complexity and arith-
metic intensity of 2D FFT lie between those for highly
memory-bound and highly compute-bound routines. For a
2D FFT of complex input and output, its computational
complexity is O(N 2

× log2N), which lies between those for
highly memory-bound applications (O(N 2) for matrix-vector
multiplication MxV of a dense matrix N × N) and highly

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1

https://orcid.org/0000-0001-9181-3290
https://orcid.org/0000-0001-9460-3897

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

compute-bound applications (O(N 3) for matrix-matrix mul-
tiplication MxM of two dense N × N matrices). Its arith-
metic intensity (IA) (IA =

#flops
#memory accesses = O(log2N)) lies

between those for highly memory-bound applications (IA for
MxV is 1) and highly compute-bound applications (IA for
MxM is N). Code tuning techniques such as multithreading,
Fused Multiply-Add (FMA), SIMD acceleration using spe-
cialized instruction sets such as SSE2, AltiVec, etc. are used
to optimize it for different processor architectures.

The performance of FFT, therefore, on modern multi-
core platforms is of paramount concern to the high perfor-
mance computing community. To address the twin concerns
of increasing performance and high energy efficiency, mod-
ern multicore platforms manifest tight integration of cores
contending for shared on-chip resources such as Last Level
Cache (LLC) and interconnect (For example: Intel’s Quick
Path Interconnect [9], AMD’s Hyper Transport [10]), lead-
ing to severe resource contention and non-uniform memory
access (NUMA). These inherent complexities however pose
significant challenges to FFT achieving good performance on
these platforms.

To elucidate the challenges, we use three multithreaded
FFT applications for comparison written using the pack-
ages FFTW-2.1.5, FFTW-3.3.7, and Intel MKL FFT. The
packages, FFTW-2.1.5 and FFTW-3.3.7, are open-source.
Hardware vendor libraries [6], [7] offer optimized implemen-
tations of the FFTW interface for their processors.

We obtain the performance profiles (speed functions) for
the applications executing on a modern Intel Haswell multi-
core server consisting of 2 sockets of 18 physical cores each
(specification shown in Table 1). All the FFT applications
compute a 2D-DFT of complex signal matrix of size N × N
using 36 threads. We do not use any special environment
affinity variables during the execution of the application.
The total number of problem sizes N × N experimented is
around 1000 with N ranging from 128 to 64000 with a step
size of 64, {128, 192, . . . , 64000}. The FFTW-3.3.7 pack-
age is installed with multithreading, SSE/SSE2, AVX2, and
FMA (fused multiply-add) optimizations enabled. For Intel
MKL FFT, we do not use any special environment variables.

TABLE 1. Specification of the Intel Haswell server used to construct the
performance profiles.

The performance profiles are shown for only one plan-
ner flag, FFTW_ESTIMATE. We have performed experi-
ments with two other planner flags, {FFTW_MEASURE,
FFTW_PATIENT}.The execution times for these flags how-
ever are prohibitively larger compared to FFTW_ESTIMATE
and severe variations are present. The long execution times
are due to the lengthy times to create the plans because
FFTW_MEASURE tries to find an optimized plan by com-
puting several FFTs whereas FFTW_PATIENT considers a
wider range of algorithms to find a more optimal plan.

In the graphs showing speed functions, the speed of exe-
cution of a 2D-DFT of complex signal matrix of size N × N
is equal to 5.0∗N 2

∗log2(N
2)

t , where t is the time of execution of
the 2D-DFT.

We will be referring frequently to width of performance
variations in a performance profile. It is the difference of
speeds between two subsequent local minima (s1) and max-
ima (s2) as shown below:

variation(%) =
|s1 − s2|
min(s1, s2)

× 100 (1)

To make sure the experimental results are reliable,
we follow a statistical methodology described in Appendix B,
supplemental. Briefly, for every data point in the functions,
the automation software executes the application repeatedly
until the samplemean lies in the 95% confidence interval with
precision of 0.025 (2.5%). For this purpose, we use Student’s
t-test assuming that the individual observations are indepen-
dent and their population follows the normal distribution.
We verify the validity of these assumptions using Pearson’s
chi-squared test. The speed/performance values shown in the
graphical plots throughout this work are the sample means.

Figure 1a, 1b show the performance profiles of FFTW
2.1.5 versus FFTW 3.3.7. Following are the key observations:

• The width of performance variations in FFTW-3.3.7 is
considerably greater than that for FFTW-2.1.5.

• The peak performance of FFTW-2.1.5 is 17841
MFLOPs (N = 2816) whereas that for FFTW-3.3.7 is
16989MFLOPs (N = 8000). The average performances
of FFTW-2.1.5 and FFTW-3.3.7 are 7033 MFLOPs and
5065 MFLOPs. The ratio of average to peak perfor-
mances of FFTW-2.1.5 and FFTW-3.3.7 are 40% and
30%.

• FFTW-2.1.5 is better than FFTW-3.3.7 by around 38%
(on an average). There are 529 problem sizes (out
of 1000) where the performance of FFTW-2.1.5 is better
than FFTW-3.3.7.

Figures 2a, 2b present the performance comparisons
between FFTW-2.1.5 and Intel MKL FFT. The most impor-
tant observations are as follows:
• The peak performance of FFTW-2.1.5 is 17841
MFLOPs (N = 2816) whereas that for Intel MKL FFT
is 39424 MFLOPs (N = 1792). The ratio of average to
peak performances of FFTW-2.1.5 and Intel MKL FFT
are 40% and 24%.

2 VOLUME 6, 2018

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

FIGURE 1. (a). Performance profiles of 2D-FFT computing 2D-DFT of size N × N using FFTW-2.1.5 and FFTW-3.3.7. The
executions of 2D-FFT applications employ 36 threads on a Intel multicore server consisting of two sockets of 18 cores
each. (b). The average speeds of FFTW-2.1.5 vs FFTW-3.3.7.

• The average performance of Intel MKL FFT is
around 9572 MFLOPs versus 7033 MFLOPs for
FFTW-2.1.5. So, on an average, Intel MKL FFT
is 36% better than FFTW-2.1.5. Despite Intel MKL
FFT demonstrating better average performance than
FFTW-2.1.5, its width of variations is considerably
greater than that for FFTW-2.1.5. The variations of
Intel MKL FFT fill the picture. This is the reason

why Intel MKL FFT demonstrates comparatively
poorer average performance despite its higher peak
performance.

• There are 162 problem sizes (out of 1000) where
FFTW-2.1.5 is better than Intel MKL FFT.

Figures 3a, 3b present the performance comparisons
between FFTW-3.3.7 and Intel MKL FFT. The crucial obser-
vations are as follows:

VOLUME 6, 2018 3

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

FIGURE 2. (a). Performance profiles of 2D-FFT computing 2D-DFT of size N × N using FFTW-2.1.5 and Intel MKL FFT. The
executions of 2D-FFT applications employ 36 threads on a Intel multicore server consisting of two sockets of 18 cores
each. (b). The average speeds of FFTW-2.1.5 and Intel MKL FFT.

• The peak performance of FFTW-3.3.7 is 16989
MFLOPs (N = 8000) whereas that for Intel MKL
FFT is 39424 MFLOPs (N = 1792). The average
performance of FFTW-3.3.7 is 5065 MFLOPs and Intel
MKL FFT is 9572 MFLOPs. The ratio of average to

peak performances of FFTW-3.3.7 and Intel MKL FFT
are 30% and 24%.

• Intel MKL FFT, on an average, is 89% faster than
FFTW-3.3.7. There are 199 problem sizes (out of 1000)
where FFTW-3.3.7 performs better than IntelMKLFFT.

4 VOLUME 6, 2018

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

FIGURE 3. (a). Performance profiles of 2D-FFT computing 2D-DFT of size N × N using FFTW-3.3.7 and Intel MKL FFT. The
executions of 2D-FFT applications employ 36 threads on a Intel multicore server consisting of two sockets of 18 cores
each. (b). The average speeds of FFTW-3.3.7 and Intel MKL FFT.

• The width of variations for Intel MKL FFT is noticeably
greater than that for FFTW-3.3.7.

To remove the variations and therefore to improve the aver-
age performance of 2D-DFT computation, we regard three
solution approaches:
• Optimization through source code analysis and tuning:
It requires source code modification. It lacks portability
if one employs architecture-specific optimizations.

• Optimization using solutions to larger problem
sizes with better performance: This is a portable

approach. A performance model is however required
that given workload size N to solve will output the
problem size Nl(> N) that is then used for padding. The
2D DFT is computed for Nl . While programmatically
extending 1D arrays logically is easy, it is not the case for
2D arrays such as matrices and multidimensional arrays.

• Optimization using model-based parallel computing: In
the current era of multicores where processors have
abundant number of cores, one can partition the work-
load between identical multithreaded routines (abstract

VOLUME 6, 2018 5

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

processors) and execute them in parallel. The start-
ing step in this approach is to partition the workload
evenly between the identical multithreaded routines by
using load balanced distribution. Then, the workload
is unevenly distributed using data partitioning algo-
rithms that take as input realistic and accurate perfor-
mance models of computation (output from the starting
step) and that minimize the total execution time of the
parallel execution of the 2D DFT computation. It is
portable when the performance models of computation
used in the data partitioning algorithms do not use
architecture-specific parameters.

We describe these approaches in detail in Appendix C,
supplemental.

We propose two novel optimization methods, PFFT-FPM
and PFFT-FPM-PAD, specifically designed and imple-
mented to remove the variations and therefore to improve
the average performance of the 2D FFT on modern multi-
core processors. The methods employ model-based parallel
computing using load imbalancing technique. Unlike load
balancing methods, the methods provide optimal solutions
(workload distributions) that may not load-balance the appli-
cation in terms of execution time. They can be employed as
nodal optimization techniques to construct a 2D FFT routine
highly optimized for a dedicated target multicore platform.

The first method PFFT-FPM adopts the third solution
approach and is a model-based parallel computing solution
employing functional performance models (FPMs). The sec-
ond method PFFT-FPM-PAD is an extension of the first.
It combines the second and third approaches where the FPMs
are used to determine the lengths of the paddings. Both
methods take as inputs, discrete 3D functions of performance
of the processors against problem size, compute 2D DFT of a
complex signal matrix of size N ×N using p abstract proces-
sors, and output the transformed signal matrix. We demon-
strate tremendous speedups for both these methods over the
basic versions offered in FFTW-3.3.7 and Intel MKL FFT.

Our main contributions are the following:
• We demonstrate the challenges posed by inherent com-
plexities in modern multicore platforms such as severe
resource contention and NUMA to 2D FFT achieving
good performance on these platforms. To highlight the
challenges, we study the performance profiles of mul-
tithreaded 2D FFT provided in three highly optimized
packages, FFTW-2.1.5, FFTW-3.3.7, and Intel MKL
FFT on a modern Intel Haswell multicore processor
consisting of thirty-six cores. We show that all the three
routines demonstrate drastic performance variations and
that their average performances therefore are consider-
ably lower than their peak performances.

• We propose two portable optimization methods specifi-
cally designed and implemented to remove the variations
and to improve the average performance of 2D FFT
on modern multicore processors. We report tremendous
speedups of these methods over the basic FFT routines
provided in the packages FFTW-3.3.7 and Intel MKL

FFT. We show that using these methods improves the
average performance of FFTW-3.3.7 over the unopti-
mized FFTW-2.1.5 by 42% and the average performance
of Intel MKL FFT over the unoptimized FFTW-2.1.5 by
24% (over and above the 36% of unoptimized Intel
MKL FFT).

We organize the rest of the paper as follows. Section 3
presents our two optimization methods. Section 4 contains
the experimental results. Section 5 concludes the paper.

II. 2D-DFT: MODEL-BASED PARALLEL
COMPUTING SOLUTIONS
In this section, we start with description of the sequen-
tial 2D-FFT algorithm using the row-column decomposition
method. Next, we explain the parallel 2D-FFT algorithm
based on the sequential 2D-FFT algorithm and that uses load
balancing technique. Then, we present our two optimization
methods, PFFT-FPM and PFFT-FPM-PAD that employ load
imbalancing technique.

A. SEQUENTIAL 2D-FFT ALGORITHM
We describe here the sequential algorithm for computing the
DFT on a two-dimensional point discrete signal M of size
N × N . We call M the signal matrix where each element
M[i][j] is a complex number. The definition of 2D-DFT of
M is below:

M[k][l] =
N−1∑
i=0

N−1∑
j=0

M[i][j]× ωkiN × ω
lj
N

ωN = e−
2π
N , 0 ≤ k, l ≤ N − 1

The total number of complex multiplications required to
compute the 2D-DFT is 2(N 4). The row-column decom-
position method reduces this complexity by computing the
2D-DFT using a series of 1D-DFTs, which are implemented
using a fast 1D-FFT algorithm. The method consists of two
phases called the row-transform phase and column-transform
phase. Figure 4 depicts the method, which is mathematically
summarized below:

M[k][l] =
N−1∑
i=0

N−1∑
j=0

M[i][j]× ωkiN × ω
lj
N

=

N−1∑
i=0

ωkiN × (
N−1∑
j=0

M[i][j]× ωljN)

=

N−1∑
i=0

ωkiN × (M̃[i][l])

=

N−1∑
i=0

(M̃[i][l])× ωkiN

ωN = e−
2π
N , 0 ≤ k, l ≤ N − 1

It computes a series of ordered 1D-FFTs on the N rows
of x. That is, each row i (of length N) is transformed via a

6 VOLUME 6, 2018

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

FIGURE 4. PFFT-LB performing 2D-DFT of signal matrix M of size N × N (N = 16) using four identical processors. Each processor gets four rows
each. (a). Each processor performs series of row 1D-FFTs locally indicated by dotted arrows. (b). Matrix M is transposed. (a). Each processor performs
series of row 1D-FFTs locally indicated by dotted arrows. (d). Matrix M is transposed again. It is the output of PFFT-LB.

fast 1D-FFT to X̃ [i][l],∀l ∈ [0,N − 1]. The total cost of
this row-transform phase is2(N 2 log2 N). Then, it computes
a series of ordered 1D-FFTs on the N columns of X̃ . The
column l of X̃ is transformed to X [k][l],∀k ∈ [0,N−1]. The
total cost of this column-transform phase is 2(N 2 log2 N).
Therefore, by using the row-column decomposition

method, the complexity of 2D-FFT is reduced from 2(N 4)
to 2(N 2 log2 N).

B. PFFT-LB: PARALLEL 2D-FFT ALGORITHM USING
LOAD BALANCING
The parallel 2D-FFT algorithm is based on the sequential
2D-FFT row-column decomposition method and is executed
using p identical abstract processors, {P1, . . . ,Pp}. To aid
clear exposition, we assume N is divisible by p. The rows
of the complex matrix x are partitioned equally between the p
processors where each processor gets Np rows. The other input
to the algorithm is the signal matrixM. The output from the
algorithm is the transformed signal matrix M. All the FFTs
that we discuss in this work are considered in-place.
PFFT-LB consists of four steps:
Step 1. 1D-FFTs on rows: Processor Pi executes sequen-

tial 1D-FFTs on rows (i− 1)× N
p + 1, . . . , i× N

p .
Step 2. Matrix Transposition: Transpose the matrixM.
Step 3. 1D-FFTs on rows: Processor Pi executes sequen-

tial 1D-FFTs on rows (i− 1)× N
p + 1, . . . , i× N

p .
Step 4. Matrix Transposition: Transpose the matrixM.
The computational complexity of Steps 1 and 3 is

2(N
2

p log2 N). The computational complexity of

Steps 2 and 4 is 2(N
2

p). Therefore, the total computational

complexity of PFFT-LB is 2(N
2

p log2 N).
The algorithm is illustrated in the Figure 4.

C. PFFT-FPM: PERFORMANCE OPTIMIZATION USING
FPMS AND LOAD IMBALANCING
We describe here our first novel optimization method
called PFFT-FPM that takes 3D functional performance

models (FPMs) as input and that employs load imbalancing
parallel computing technique.
PFFT-FPM is executed using p identical abstract proces-

sors, {P1, . . . ,Pp}. The inputs to PFFT-FPM are the number
of available abstract processors, p, the number of rows of
the signal matrix, N , the speed functions of the abstract
processors, S, and the user-input tolerance ε. The output from
PFFT-FPM is the transformed signal matrixM.

The discrete speed function of processor Pi is given by
Si = {si(x1, y1), . . . , si(xm, ym)}) where si(x, y) represents the
speed of execution of x number of 1D-FFTs of length y by the
processor i. The speed is equal to 5.0×x×y×log2(y)

t , where t is
the time of execution of x number of 1D-FFTs of length y.

It consists of following main steps:
Step 1. Partition rows:
1a. Plane intersection of speed functions: Speed func-

tions S are sectioned by the plane y = N . A set of p curves on
this plane are produced which represent the speed functions
against variable x given parameter y is fixed.
1b. Are speed functions identical?: ∃(xk ,N), 1 ≤ k ≤

m, (
maxpi=1 si(xk ,N)−minpi=1 si(xk ,N)

minpi=1 si(xk ,N)
> ε), go to Step 1d. Other-

wise, go to Step 1c. If there exists a (xk ,N), the speed func-
tions are not considered identical. To determine if the speed
functions are identical, the difference between the maximum
and minimum speeds for a point (xk ,N) is calculated and
compared with tolerance ε.

1c. Partition rows using POPTA: Construct a speed func-
tion Savg = {savg,i(x)},∀i ∈ [1,m], where savg,i(x) =

p∑p
j=1

1
sj(x,N)

. Each speed savg,i(x) in the function is the average

of the speeds {s1(x,N), · · · , sp(x,N)}. POPTA [11] is then
invoked using this speed function as an input to obtain an
optimal distribution of the rows, d .
1d. Partition rows using HPOPTA: HPOPTA [12] is

invoked using the p speed curves as input to obtain an optimal
distribution of the rows, d .

Step 2. 1D-FFTs on rows: Processor Pi executes
sequential 1D-FFTs on its rows given by {

∑i−1
k=1 d[i] +

1, · · · ,
∑i

k=1 d[i]}.

VOLUME 6, 2018 7

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

FIGURE 5. PFFT-FPM performing 2D-DFT of signal matrix M of size N × N (N = 16) using four abstract processors. Each processor gets different
number of rows given by the data distribution, d = {5, 3, 2, 6}. (a). Each processor performs series of row 1D-FFTs locally indicated by dotted arrows.
(b). Matrix M is transposed. (a). Each processor performs series of row 1D-FFTs locally indicated by dotted arrows. (d). Matrix M is transposed again.
It is the output of PFFT-FPM.

Step 3. Matrix Transposition: Transpose the matrixM.
Step 4. 1D-FFTs on rows: Same as Step 2.
Step 5. Matrix Transposition: Same as Step 3.
The method is illustrated in the Figure 5 for four abstract

processors solving 2D-DFT of size N × N (N = 16).
The data partitioning algorithms POPTA and HPOPTA

are described in detail in [11] and [12]. Briefly, POPTA
determines the optimal data distribution for minimization of
time for themost general performance profiles of data parallel
applications executing on homogeneous multicore clusters.
One of its inputs is a speed function of the processors involved
in its execution since they are considered identical. HPOPTA
is the extension of POPTA for heterogeneous clusters of
multicore processors. The inputs to it are the p different speed
functions of the p processors involved in its execution. Unlike
load balancing algorithms, these algorithms output optimal
solutions that may not load-balance an application in terms
of execution time. The output from the data partitioning algo-
rithms is the data distribution of the rows, d = {d1, · · · , dp}.
Figures 6a, 6b illustrate the data partitioning algorithm

employed in PFFT-FPM for two abstract processors solving
2D-DFT of size N × N where N = 24704 using Intel MKL
FFT on a Intel multicore server. The speed functions shown
are segments of the full functions (given in Appendix E,
supplemental). Each abstract processor consists of 18 threads.
Figure 6a shows a plane y = N = 24704 intersecting the two
speed functions S = {S1, S2} producing two curves, one for
each group showing speed versus x given y = N = 24704.
One can see that the two curves are not identical (hetero-
geneous). That is, there are points where the speeds differ
from each other by more than 5% (ε = 0.05). We input the
speed functions to HPOPTA, which determines the optimal
partitioning of rows, (d[1], d[2]) = (11648, 13056), where
each row is of length N = 24704.

D. PFFT-FPM-PAD: PERFORMANCE OPTIMIZATION USING
PADDING DETERMINED FROM FPMs
In this section, we present PFFT-FPM-PAD, an extension
of PFFT-FPM where the partitions (problem sizes) are
padded (extended) by lengths determined from the FPMs.

The inputs and the outputs of this method are the same
as those for PFFT-FPM. The data partitioning algorithms
invoked in PFFT-FPM-PAD are the same as those employed
in PFFT-FPM. But the series of 1D-FFTs are performed
locally on rows whose length is extended (padded with
zeroes) by an extent determined from the FPM of the pro-
cessor. The determination of the length of padding is a local
computation and is specific to an abstract processor. That is,
the lengths can be different for different processors. In some
cases, there is no necessity for padding and therefore the
length of the padding is zero.
PFFT-FPM-PAD consists of following main steps:
Step 1. Partition rows: This step is the same as that for

the Algorithm PFFT-FPM.
Step 2. 1D-FFTs on padded rows: Processor Pi executes

sequential 1D-FFTs on its rows in M given by d[i]. The
length of each row N is padded to Npadded . It is determined
as follows using the FPM, Si = si(x, y):

Npadded = argmin
V∈(N ,ym]

(
d[i]× V
si(d[i],V)

<
d[i]× N
si(d[i],N)

)

The argument V ranges from problem size yN+1 to ym
in the speed function s(x, y). The ratio x×y

si(x,y)
gives the

execution time of problem size x × y. Essentially we
select the point (problem size) (d[i], yopt) in the range
{(d[i], yN+1), . . . , (d[i], ym)} that has better execution time
than the point (d[i],N).Npadded is set to the problem size yopt .
If no such point is found, the padding length is set to 0 and
Npadded will be equal toN . The elements in the padded region
M[∗, c],∀c ∈ [yN+1,Npadded] are set to 0.
Step 3. Matrix Transposition: The matrixM (excluding

the padded region) is transposed.
Step 4. 1D-FFTs on padded rows: The lengths of the

paddings already determined in Step 2 are reused. Proces-
sor Pi executes sequential 1D-FFTs on its padded rows.

Step 5. Matrix Transposition: Same as Step 3.
All the steps of PFFT-FPM-PAD are the same as

PFFT-FPM except the determination of the lengths of the
paddings. Figures 7a, 7b illustrate how they are determined
from the FPMs for two abstract processors solving 2D-DFT

8 VOLUME 6, 2018

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

FIGURE 6. (a). Speed functions of two abstract processors, each a group of 18 threads. Each group executes 2D-DFT of size
x × y using Intel MKL FFT on a Intel multicore server consisting of two sockets of 18 cores each. The plane y = N = 24704
intersects the speed functions. (b). Each intersection produces two curves for the two groups showing speed versus x
keeping y = N = 24704. Application of HPOPTA to determine optimal distribution of rows provides the partitioning,
(d [1] = x1 = 11648, d [2] = x2 = 13056).

of size N × N where N = 24704 using Intel MKL FFT
on a Intel multicore server. The speed functions shown are
segments of the full functions (given in Appendix E, sup-
plemental). Each abstract processor consists of 18 threads.
Figure 7a shows two planes x1 = 11648 and x2 = 13056
intersecting the two speed functions S = {S1, S2} produc-
ing two curves, one for each group showing speed versus y
keeping x constant. The padded lengths (Npadded,1,Npadded,2)
corresponding to x1 and x2 are determined from the curves
and are equal to 24960.

III. SHARED MEMORY IMPLEMENTATIONS OF PFFT-FPM
AND PFFT-FPM-PAD
In this section, we describe two shared memory implementa-
tions of PFFT-FPM, one using Intel MKL FFT and the other
using FFTW-3.3.7.
The inputs to the implementation are the signal matrix M

of size N × N , the number of abstract processors (groups)
p, the speed functions represented by a set S containing
problem sizes and speeds, and number of threads in each
abstract processor (group) represented by t . The output is

VOLUME 6, 2018 9

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

FIGURE 7. (a). Speed function for group1 intersected by the plane x1 = 11648. Speed function for group2 intersected by the
plane x2 = 13056. (b). Each intersection produces a curve for the group showing speed versus y keeping x constant. The
lengths of padding for the two groups, Npadded , is the same and is equal to 24960.

the transformed signal matrix M (considering that we are
performing in-place FFT).

Algorithm 1 shows the pseudocode of the algorithm. The
first step (Line 1) is to determine the partitioning of rows
by invoking the routine PARTITION. The partitioning routine
checks if the variation of the speeds for each data point is
less than or equal to user-input tolerance ε (Algorithm 2,
Line 3). If a point exists for which the variation exceeds ε,
then we determine the distribution of the rows using the

data partitioning algorithm HPOPTA [12] (Line 5). If all the
variations are less than or equal to ε, we determine the average
of the speeds for each data point (Line 7). The averaged speed
function is then input to POPTA [11] to determine the data
partitioning of the rows (Line 9). The data distribution is
output in the array, d = {d1, · · · , dp}.

Then the routine PFFT_LIMB is invoked to execute the
basic steps 1-4 of PFFT-LB (Line 3). These are series of
row 1D-FFTs (Algorithm 3, Lines 2-4), parallel transpose

10 VOLUME 6, 2018

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

Algorithm 1 Parallel Algorithm Computing 2D-DFT of Sig-
nal Matrix M of Size N × N Employing Functional Perfor-
mance Models (FPMs)
1: procedure PFFT-FPM(N ,M, p,S, t)
Input:

M, Signal matrix of size N × N ,N ∈ Z>0
Number of abstract processors, p ∈ Z>0
Functional performance model (speed functions) repre-
sented by,
S = {S1, . . . , Sp},
Si = {(xi[q][r], si[q][r]) | i ∈ [1, p], q, r ∈

[1,m], xi[q][r] ∈ Z>0, si[q][r] ∈ R>0}
User tolerance, ε ∈ R>0

Output:
M, Signal matrix of size N × N ,N ∈ Z>0

2: d ← Partition(N , p,S, ε, d)
3: pfft_limb(p, d,N ,M)
4: returnM
5: end procedure

Algorithm 2 Data Partitioning of Rows of Signal Matrix M
of Size N × N Using the FPMs
1: procedure Partition(N , p,S, ε, d)
Input:

N , Number of rows in the signal matrix, N ∈ Z>0
Number of abstract processors, p ∈ Z>0
Functional performance model (speed functions) repre-
sented by,
S = {S1, . . . , Sp},
Si = {(xi[q][r], si[q][r]) | i ∈ [1, p], q, r ∈

[1,m], xi[q][r] ∈ Z>0, si[q][r] ∈ R>0}
User tolerance, ε ∈ R>0

Output:
Optimal partitioning of the rows of the signal matrix, d =
{d1, . . . , dp}, di ∈ Z>0,∀i ∈ [1, p]

2: for point ← 1,m do
3: rdiff ←

maxpi=1 si[point][N]−minpi=1 si[point][N]
minpi=1 si[point][N]

4: if (rdiff > ε) then
5: return HPOPTA(N , p, S, d)
6: end if
7: Savg[point]←

p∑p
i=1

1
si[point][N]

8: end for
9: return POPTA(N , p, Savg, d)

10: end procedure

(Line 5), series of row 1D-FFTs (Lines 6-8), and parallel
transpose (Line 9).

Each processor performs the series of row 1D-FFTs locally
using the routine 1D_ROW_FFTS_LOCAL. The number of
row 1D-FFTs performed by processor Pi is given by first

Algorithm 3 Parallel Algorithm Computing 2D-DFT of Sig-
nal MatrixM of Size N × N
1: procedure PFFT_LIMB(p, d,N ,M)
Input:

M, Signal matrix of size N × N ,N ∈ Z>0
Number of abstract processors, p ∈ Z>0

Output:
M, Signal matrix of size N × N ,N ∈ Z>0

2: for proc← 1, p do
3: 1D_ROW_FFTS_LOCAL(proc, dproc,N ,M)
4: end for
5: Parallel_Tranpose(M)
6: for proc← 1, p do
7: 1D_ROW_FFTS_LOCAL(proc, dproc,N ,M)
8: end for
9: Parallel_Tranpose(M)
10: returnM
11: end procedure

Algorithm 4 Intel MKL Implementation of PFFT_LIMB
Using FFTW Interface Employing Two Groups (p = 2) of
t Threads Each
1: procedure PFFT_LIMB_INTEL_MKL(id, d,N ,M)
Input:

M, Signal matrix of size N × N ,N ∈ Z>0
Workload distribution, d = {d1, d2}, d1, d2 ∈ Z>0

Output:
M, Signal matrix of size N × N ,N ∈ Z>0

2: fftw_init_threads()
3: fftw_plan_with_nthreads(t)
4: #pragmaompparallelsectionsnum_threads(2)
5: #pragmaompsection
6: 1d_row_ffts_local(1, d1,N ,M)
7: #pragmaompsection
8: 1d_row_ffts_local(2, d2,N ,M)
9: Tranpose(M)
10: #pragmaompparallelsectionsnum_threads(2)
11: #pragmaompsection
12: 1d_row_ffts_local(1, d1,N ,M)
13: #pragmaompsection
14: 1d_row_ffts_local(2, d2,N ,M)
15: Tranpose(M)
16: fftw_cleanup_threads()
17: returnM
18: end procedure

argument, di. Algorithm 6 illustrates the implementation of
this routine using FFTW interface.

The implementations of PFFT-FPM-PAD are simi-
lar to those for PFFT-FPM except that the routine
1D_ROW_FFTS_LOCAL_PADDED determines the length
of the padding from the FPMs using the function

VOLUME 6, 2018 11

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

Algorithm 5 FFTW Implementation of PFFT_LIMB
Employing Two Groups (p = 4) of t Threads Each
1: procedure PFFT_LIMB_FFTW(d,N ,M)
Input:

M, Signal matrix of size N × N ,N ∈ Z>0
Workload distribution, d = {d1, d2, d3, d4}, di ∈
Z>0,∀i ∈ [1, 4]

Output:
M, Signal matrix of size N × N ,N ∈ Z>0

2: fftw_init_threads()
3: fftw_plan_with_nthreads(t)
4: #pragmaompparallelsectionsnum_threads(4)
5: #pragmaompsection
6: 1d_row_ffts_local(1, d1,N ,M)
7: #pragmaompsection
8: 1d_row_ffts_local(2, d2,N ,M)
9: #pragmaompsection

10: 1d_row_ffts_local(3, d3,N ,M)
11: #pragmaompsection
12: 1d_row_ffts_local(4, d4,N ,M)
13: Tranpose(M)
14: #pragmaompparallelsectionsnum_threads(4)
15: #pragmaompsection
16: 1d_row_ffts_local(1, d1,N ,M)
17: #pragmaompsection
18: 1d_row_ffts_local(2, d2,N ,M)
19: #pragmaompsection
20: 1d_row_ffts_local(3, d3,N ,M)
21: #pragmaompsection
22: 1d_row_ffts_local(4, d4,N ,M)
23: Tranpose(M)
24: fftw_cleanup_threads()
25: returnM
26: end procedure

Determine_Pad_Length before executing the series of row
1D-FFTs.

A. SHARED MEMORY IMPLEMENTATIONS OF PFFT-FPM
We now describe the shared-memory implementations of the
routine PFFT_LIMB for Intel MKL FFT and FFTW-3.3.7 on
a Intel Haswell server containing 36 physical cores (Table 1).

The input parameters (p, t) used during the execution of
PFFT-FPM and PFFT-FPM-PAD are obtained from the best
load-balanced configuration observed experimentally.

1) INTEL MKL FFT
For the implementation using Intel MKL FFT, we use two
groups of 18 threads each, (p = 2, t = 18). From our
experiments, this pair is the best amongst the following com-
binations: {(4, 9), (6, 6), (9, 4), (12, 3)}, experimentally.

The routine PFFT_LIMB_INTEL_MKL shows the imple-
mentation of PFFT_LIMB using the FFTW interface.

Algorithm 6 Series of x Row 1D-FFTs Using FFTW Inter-
face Function fftw_Plan_Many_dft
1: procedure 1D_ROW_FFTS_LOCAL(id, x,N ,M,flag)
Input:

Processor identifier, id ∈ Z>0
Problem size x ∈ Z>0
M, Signal matrix of size N × N ,N ∈ Z>0

Output:
M, Signal matrix of size N × N ,N ∈ Z>0

2: rank ← 1; howmany← x; s← N ;
3: idist ← N ; odist ← N ; istride← 1;
4: ostride← 1; inembed ← s; onembed ← s;
5: plan← fftw_plan_many_dft(rank, s, howmany,

M, inembed, istride, idist,
M, onembed, ostride, odist,
FFTW_FORWARD,FFTW_ESTIMATE)

6: fftw_execute(plan)
7: fftw_destroy_plan(plan)
8: returnM
9: end procedure

Algorithm 7 Series of x Row 1D-FFTs Using FFTW Inter-
face Function fftw_Plan_Many_dft. Each Row Is Padded to
Npadded
1: procedure 1D_ROW_FFTS_LOCAL_PADDED(

id, x,N ,M)
Input:

Processor identifier, id ∈ Z>0
Problem size x ∈ Z>0
M, Signal matrix of size N × N ,N ∈ Z>0
Functional performance model (speed functions) repre-
sented by,
S = {S1, . . . , Sp},
Si = {(xi[q][r], si[q][r]) | i ∈ [1, p], q, r ∈

[1,m], xi[q][r] ∈ Z>0, si[q][r] ∈ R>0}
Output:

M, Signal matrix of size N × N ,N ∈ Z>0

2: Npadded ← Determine_Pad_Length(id, x,N ,S)
3: rank ← 1; howmany← x; s← Npadded ;
4: idist ← Npadded ; odist ← Npadded ; istride← 1;
5: ostride← 1; inembed ← s; onembed ← s;
6: plan← fftw_plan_many_dft(rank, s, howmany,

M, inembed, istride, idist,
M, onembed, ostride, odist,
FFTW_FORWARD,FFTW_ESTIMATE)

7: fftw_execute(plan)
8: fftw_destroy_plan(plan)
9: returnM
10: end procedure

Lines 2-3 sets the number of threads to use during the exe-
cution of a 1D-FFT. Lines 4-8 show the execution of row
1D-FFTs by the two abstract processors (groups of 18 threads

12 VOLUME 6, 2018

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

each) in parallel. Line 9 contains the fast transpose of the sig-
nal matrix. Lines 10-14 show the execution of row 1D-FFTs
by the two abstract processors (groups of 18 threads each) in
parallel. Line 15 contains invocation of the fast transpose.

We present the transpose routine using blocking in the
supplemental (Appendix D).

2) FFTW
For the implementation using FFTW-3.3.7, we use four
groups of 9 threads each, (p = 4, t = 9).
From our experiments, this pair is the best amongst
the following combinations: {(2, 18), (6, 6), (9, 4), (12, 3)},
experimentally.

The routine PFFT_LIMB_FFTW shows the implementa-
tion of PFFT_LIMB. Lines 2-3 sets the number of threads
to use during the execution of a 1D-FFT. Lines 4-12 show
the execution of row 1D-FFTs by the four abstract processors
(groups of 9 threads each) in parallel. The only thread-safe
routine in FFTW is fftw_execute. All the other routines such
an plan creation (fftw_plan_many_dft) and plan destruction
(fftw_destroy_plan) must be called from one thread at a time.
Line 13 contains the fast transpose of the signal matrix.
Lines 14-22 show the execution of row 1D-FFTs by the four
abstract processors (groups of 9 threads each) in parallel.
Line 15 contains invocation of the fast transpose.

We present the transpose routine using blocking in the
supplemental (Appendix D).

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we present our experimental results that
demonstrate the performance improvements provided by
PFFT-FPM and PFFT-FPM-PAD. Our experimental plat-
form is a Intel Haswell server containing 36 physical cores
(Table 1).

We use two packages, FFTW-3.3.7 and Intel MKL FFT,
for the implementations of the methods. We could not opti-
mize FFTW-2.1.5 since the implementation of series of row
1D-FFTs is poor using fftw_threads compared to the imple-
mentation of fftw_plan_many_dft in FFTW-3.3.7 and Intel
MKL FFT. We compare the speedups of optimized FFTW-
3.3.7 and Intel MKL FFT with the unoptimized FFTW-2.1.5.

The FFTW-3.3.7 package is installed with multithreading,
SSE/SSE2, AVX2, and FMA (fused multiply-add) opti-
mizations enabled. For Intel MKL FFT, we do not use
any special environment variables. We experiment with
three planner flags, {FFTW_ESTIMATE, FFTW_MEASURE,
FFTW_PATIENT}. The experimental results are shown for
only one planner flag, FFTW_ESTIMATE. The execution
times for these flags however are prohibitively larger com-
pared toFFTW_ESTIMATE and severe variations are present.
The long execution times are due to the lengthy times to
create the plans because FFTW_MEASURE tries to find
an optimized plan by computing several FFTs whereas
FFTW_PATIENT considers a wider range of algorithms to
find a more optimal plan. In our future work, we will present

the speedups obtained by PFFT-FPM and PFFT-FPM-PAD
using these planner flags in a technical report.

The input parameters (p, t), where p is the number of
processes and t is the number of threads, used during the
execution of PFFT-FPM and PFFT-FPM-PAD are obtained
from the best load-balanced configuration observed experi-
mentally. For the implementations using FFTW-3.3.7, we use
four groups of 9 threads each, (p = 4, t = 9) since
this pair performs the best among the following combi-
nations: {(2, 18), (6, 6), (9, 4), (12, 3)}. For the implementa-
tions using Intel MKL FFT, we use two groups of 18 threads
each, (p = 2, t = 18) since this is the best combination
found experimentally among the following combinations:
{(4, 9), (6, 6), (9, 4), (12, 3)}.
The full speed functions constructed for Intel MKL FFT

and FFTW-3.3.7 are shown in the Appendix E, supplemental.
To make sure the experimental results are reliable, we auto-
mated the construction of speed functions. Appendix B
describes in detail the automation procedure. The inputs to
the procedure are the FFT application and the application
parameters (p, t ,M), and the set of problem sizes. The output
is the set of discrete speed functions, S = {S1, . . . Sp}, one for
each abstract processor. The set of problem sizes (x, y) used
for the construction of speed functions are {(x, y) | 128 ≤
x ≤ y, 128 ≤ y ≤ 64000, x mod 128, y mod 128} =
{128 × 128, 128 × 256, 256 × 256, · · · , 64000 × 64000}.
All the abstract processors build a data point ((x, y), si(x, y))
in their speed functions simultaneously. That is, all of them
execute the same problem size x × y in parallel to determine
the speed si(x, y) in their speed functions. For large problem
sizes (for example: {(x, y) | 128 ≤ x ≤ 64000, y = 64000),
all the data points (x, y) can not be built due to main memory
constraint. Therefore, the speed functions are constructed
until permissible problem size.

For each data point in the speed functions, the procedure
executes the application repeatedly until the sample mean
lies in the 95% confidence interval with precision of 0.025
(2.5%). For this purpose, we use Student’s t-test assuming
that the individual observations are independent and their
population follows the Normal distribution. We verify the
validity of these assumptions using Pearson’s chi-squared
test.

The time to build the full speed functions can be expen-
sive. This takes into account the fact that for each data
point, statistical averaging is performed to determine its
sample mean. One approach is to build partial speed
functions [13], [14]. These are input to the data partition-
ing algorithm [11], which would return sub-optimal work-
load distributions (but better than load balanced solution)
to be used in PFFT-FPM and PFFT-FPM-PAD. To build
a partial speed function, data points in the neighborhood
of homogeneous distribution, di = n

p ,∀i ∈ [1, p], are
constructed until the allowed user-input execution time is
exceeded. We aim to research further into methods to reduce
the construction times of speed functions in our future
work.

VOLUME 6, 2018 13

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

FIGURE 8. Speedup of PFFT-FPM and PFFT-FPM-PAD against the basic
FFTW-3.3.7 executed using 36 threads.

FIGURE 9. Speedup of PFFT-FPM-PAD against the basic
FFTW-3.3.7 executed using 36 threads.

To demonstrate the performance improvements of the
solutions determined by PFFT-FPM and PFFT-FPM-PAD,
we report the average and maximum speedups over to the
basic FFT versions (that employ one group of 36 threads in
their execution). For PFFT-FPM, we calculate the speedup
as follows: Speedup = tbasic

tpfft−fpm
, where tbasic is the execu-

tion time obtained using the basic FFT version (Intel MKL
FFT or FFTW-3.3.7) and tpfft−fpm is the execution time
obtained using PFFT-FPM. For PFFT-FPM-PAD, we deter-
mine the speedup as follows: Speedup =

tbasic
tpfft−fpm−pad

,
where tpfft−fpm−pad is the execution time obtained using
PFFT-FPM-PAD.

A. PFFT-FPM AND PFFT-FPM-PAD USING FFTW-3.3.7
Figure 8 shows the speedups of PFFT-FPM and PFFT-FPM-
PAD over basic FFTW-3.3.7 which computes the 2D-DFT
using one group consisting of 36 threads. Each data point
in the speed functions involves a complex 2D-DFT of size
N ×N . Figure 9 shows the speedup of PFFT-FPM-PAD. The
average andmaximumperformance improvements are 2x and
9.4x.

Figure 10 shows the execution times of PFFT-FPM and
PFFT-FPM-PAD versus basic FFTW-3.3.7. In the supple-
mental (Appendix E), we show in separate plots the execution

FIGURE 10. Execution times of PFFT-FPM and PFFT-FPM-PAD against the
basic FFTW-3.3.7 executed using 36 threads.

FIGURE 11. Speedups of PFFT-FPM and PFFT-FPM-PAD against the basic
Intel MKL FFT executed using 36 threads.

times of PFFT-FPM and PFFT-FPM-PAD versus basic
FFTW-3.3.7. For problem sizes in the range (N > 33000),
while the speedups are still good (6x for FFTW-3.3.7), major
variations still remain.

B. PFFT-FPM AND PFFT-FPM-PAD USING INTEL MKL FFT
Figure 11 compares the speedups PFFT-FPM and
PFFT-FPM-PAD over basic Intel MKL FFT which com-
putes the 2D-DFT using one group consisting of 36 threads.
Figure 12 shows the speedups of PFFT-FPM-PAD. The aver-
age and maximum speedups are 1.4x and 5.9x.

Figure 13 shows the execution times of PFFT-FPM and
PFFT-FPM-PAD versus basic Intel MKL FFT. In the supple-
mental (Appendix E), we show in separate plots the execution
times of PFFT-FPM and PFFT-FPM-PAD versus basic Intel
MKL FFT . For problem sizes in the range (N > 33000),
while the speedups are still good (2x for Intel MKL FFT),
the variations are still significant.

C. OPTIMIZED FFTW-3.3.7 AND INTEL MKL FFT VERSUS
UNOPTIMIZED FFTW-2.1.5
Finally, we compare how the optimized FFTW-3.3.7 and
Intel MKL FFT using PFFT-FPM-PAD fares with respect to
unoptimized FFTW-2.1.5.

14 VOLUME 6, 2018

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

FIGURE 12. Speedup of PFFT-FPM-PAD against the basic Intel MKL FFT
executed using 36 threads.

FIGURE 13. Execution times of PFFT-FPM and PFFT-FPM-PAD against the
basic Intel MKL FFT executed using 36 threads.

Figure 14 shows the speedup of FFTW-3.3.7 using
PFFT-FPM-PAD versus unoptimized FFTW-2.1.5. One can
see that in the range of problem sizes (N < 15000), FFTW-
2.1.5 performs better than FFTW-3.3.7. There are problem
sizes in the range (N > 30000) again where it is better. The
average performances of FFTW-3.3.7 and FFTW-2.1.5 are
7297 MFLOPs and 7033 MFLOPs. The average speedup
of FFTW-3.3.7 over FFTW-2.1.5 is 1.2x. Our optimizations
have improved the average performance of FFTW-3.3.7 over
FFTW-2.1.5 by 42%.

Figure 15 shows the speedup of Intel MKL FFT using
PFFT-FPM-PAD versus unoptimized FFTW-2.1.5. The aver-
age performances of Intel MKL FFT and FFTW-2.1.5 are
11170 MFLOPs and 7033 MFLOPs (Intel MKL FFT
being 60% better). There are around 91 problem sizes
(majority of them closer to the end of the figure) where
FFTW-2.1.5 exhibits better performance than Intel MKL
FFT. Our optimizations have improved the average perfor-
mance of Intel MKL FFT over FFTW-2.1.5 by 24% (over and
above the 36% of unoptimized Intel MKL FFT). The average
speedup of FFTW-3.3.7 over FFTW-2.1.5 is 1.7x.

D. SUMMARY
We summarize the results below. The improvements to aver-
age to peak performance ratio is equal to the improvements

FIGURE 14. Speedup of optimized FFTW-3.3.7 (using PFFT-FPM-PAD) over
unoptimized FFTW-2.1.5. The average speedup is 1.2x.

FIGURE 15. Speedup of optimized Intel MKL FFT (using PFFT-FPM-PAD)
over unoptimized FFTW-2.1.5. The average speedup is 1.7x.

for average performance since the peak performance has
remained unchanged.

• For problem sizes in the range (0 < N ≤ 10000),
the speedups provided by PFFT-FPM and PFFT-FPM-
PAD for Intel MKL FFT are not significant. This is
because the variations (performance drops) are not
remarkable.

• For problem sizes in the range (10000 < N ≤ 33000),
the speedups are good.
For FFTW-3.3.7, the average and maximum speedups
provided by PFFT-FPM are 2.7x and 6.8x and those
provided by PFFT-FPM-PAD are 3x and 9.4x.
For IntelMKLFFT, the average andmaximum speedups
provided by PFFT-FPM are 1.4x and 2x and those
provided by PFFT-FPM-PAD are 2.7x and 5.9x. The
variations (performance drops) are virtually removed.

• For problem sizes in the range (N > 33000),
the speedups are good but major variations still remain.
The variations are more severe for Intel MKL FFT.
We aim to find solutions to remove them in our future
work.

VOLUME 6, 2018 15

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

• The variations of performance are greater in the Y direc-
tion in the speed functions (Appendix E, supplemental).
This is the reason why PFFT-FPM-PAD performs better
than PFFT-FPM since it is able to exploit well the
variations.

• The average speeds/performances of PFFT-FPM using
FFTW-3.3.7 and Intel MKL FFT are 7041 MFLOPs and
10818 MFLOPs. So, Intel MKL FFT is on an average
54% better than FFTW-3.3.7. There are 135 problem
sizes (out of 1000) where FFTW-3.3.7 performs better
Intel MKL FFT.

• The average speeds/performances of PFFT-FPM-
PAD using FFTW-3.3.7 and Intel MKL FFT are
7297 MFLOPs and 11170 MFLOPs. So, Intel MKL
FFT is on an average 53% better than FFTW-3.3.7.
There are 81 problem sizes (out of 1000) where FFTW-
3.3.7 performs better than Intel MKL FFT.

• The optimized FFTW-3.3.7 and Intel MKL FFT
using PFFT-FPM-PAD demonstrate average perfor-
mance improvements of 42% and 24% over FFTW-
2.1.5. There are problem sizes where FFTW-2.1.5 still
performs better than FFTW-3.3.7 and Intel MKL FFT.

V. RELATED WORK
In this section, we review parallel solutions proposed for
performance optimization of FFT on both homogeneous and
heterogeneous platforms. We survey load-balancing algo-
rithms employed for performance optimization of FFT and
other scientific applications on modern multicore platforms.
Finally, we present an overview of the latest efforts addressing
the variations using load imbalancing algorithms on modern
high performance computing platforms.

A. PARALLEL FFT SOLUTIONS FOR HOMOGENEOUS AND
HETEROGENEOUS PLATFORMS
There are works that present parallel FFTs for distributed
memory architectures. Averbuch and Gabber [15] present
a parallel version of the CooleyTukey FFT algorithm for
MIMD multiprocessors and demonstrate efficiency of 90%
on a message-passing IBM SP2 computer.

Chen et al. [16] analyze the optimization challenges and
opportunities of both 1D and 2D FFT including prob-
lem decomposition, load balancing, work distribution, and
data-reuse together with the exploiting of the C64 architecture
features on the IBM Cyclops-64 chip architecture.

Almeida and Moreno [17] consider parallelization of
the bidimensional FFT-2D on heterogeneous system using
master-slaves approaches.

Dmitruk et al. [18] use a 1D domain decomposition algo-
rithm for performance improvement of 3D real FFT. They
present techniques for reducing the cost of communications
in the communication-intensive transpose operation of their
algorithm.

Ayala and Wang [19] propose a parallel FFT implemen-
tation based on 2D domain decomposition and they demon-
strate scalability of their solution on extreme scale computers.

Jung et al. [20] introduce two schemes based on the volu-
metric decomposition for the optimization of hybrid (MPI+
OpenMP) parallelization schemes of 3D FFT. In one scheme
1d_Alltoall, they apply five 1D all-to-all communications
among fewer processors and in another, two 1D all-to-all
communication and one 2D communication (2d_Alltoall).
They state that both schemes show good performance and
scalability in 3D FFT calculations.

Song and Hollingsworth [21] present a scalable method for
parallel 3-D FFT that exploits computation-communication
overlap. Their method employs non-blockingMPI collectives
in the 2D decomposition method for parallel 3D FFT.

We now review research works that have proposed
optimized FFT implementations for GPU platforms.
Chen et al. [22] present optimized FFT implementations for
GPU clusters. Gu et al. [23] propose out-of-card imple-
mentations for 1D, 2D, and 3D FFTs on GPUs. Wu and
Jaja [24] present optimized multi-dimensional FFT imple-
mentations on CPUGPU heterogeneous platforms where
the input signal matrix is too large to fit in the GPU
global memory. Naik and Kusur [25] demonstrate good per-
formance improvement of FFT on their heterogeneous cluster
compared to a homogeneous cluster.

B. PARALLEL FFT LIBRARIES
The Fastest Fourier Transform in theWest (FFTW) [26], [27]
is a software library for computing discrete Fourier trans-
forms (DFTs). It provides routines utilizing threads for par-
allel one- and multi-dimensional transforms of both real and
complex data, and multi-dimensional transforms of real and
complex data for parallel machines supporting MPI.

Pekurovsky [28] presents a library P3DFFT, which
computes fast Fourier transforms (FFTs) in three dimen-
sions by using two-dimensional domain decomposition.
Li and Laizet [29] provide an to perform three-dimensional
distributed FFTs using MPI. OpenFFT [30] is an open
source parallel package for computing multi-dimensional
Fast Fourier Transforms (3-D and 4-D FFTs) of both real and
complex numbers of arbitrary input size.

The Intel Math Kernel library (Intel MKL) [6] provides
an interface for computing a discrete Fourier transform
in one, two, or three dimensions with support for mixed
radices. It provides DFT routines for single-processor
or shared-memory systems, and for distributed-memory
architectures.

C. LOAD BALANCING ALGORITHMS FOR PERFORMANCE
OPTIMIZATION ON MULTICORE PLATFORMS
Load balancing is a widely used method for performance
optimization of scientific applications on parallel platforms.
There are different classifications of it: static or dynamic,
centralized or distributed, and synchronous or asynchronous.

Static algorithms use a priori information about the paral-
lel application and platform [31], [32]. They are particularly
useful for applications where data locality is important
because they do not require data redistribution. These

16 VOLUME 6, 2018

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

algorithms however are unsuitable for non-dedicated plat-
forms, where load changes with time.

Dynamic algorithms balance the load by moving
fine-grained tasks between processors during the execu-
tion [33]–[35]. They often use static partitioning for their
initial step due to its provably near-optimal communication
cost, bounded small load imbalance, and lesser scheduling
overhead.

In the non-centralized load balancing algorithms, at some
point of computation, each processor find neighbors that
are less loaded than itself and redistributes data between
them [36], [37]. In centralized algorithms, there is a central-
ized load balancer that decides when to distribute data based
on global load information [38], [39].

The synchronous algorithm means that for each processor
to balance its load at time t + 1, a processor needs to have
the load of its neighbor at time t [40]. In other words, there
is time-synchronization between all processors. In an asyn-
chronous algorithm, the time synchronization is absent [41].

The most advanced load balancing algorithms use func-
tional performance models (FPMs), which are application-
specific and represent the speed of a processor by continuous
function of problem size but satisfying some assumptions
on its shape [31], [42]. These FPMs capture accurately the
real-life behavior of applications executing on nodes consist-
ing of uniprocessors (single-core CPUs).

D. LOAD IMBALANCING ALGORITHMS FOR
PERFORMANCE OPTIMIZATION ON HPC PLATFORMS
Lastovetsky et al. [43], [44] study the variations in
performance profile for a real-life data-parallel sci-
entific application, Multidimensional Positive Definite
Advection Transport Algorithm (MPDATA), on a Xeon
Phi co-processor. This is the first work where the
load-imbalancing technique is applied to distribute the work-
load unevenly minimizing the computation time of its par-
allel execution. It does not propose a general partitioning
algorithm for arbitrary p.

References [11], [12], and [45] are theoretical works that
present novel data partitioning algorithms for minimization
of time and energy of computations for the most general
performance and energy profiles of data-parallel applications
executing on homogeneous and heterogeneous multicore
clusters.

We propose in this work novel performance optimiza-
tion methods specifically designed and implemented for a
real-life multithreaded application (2D-DFT) on multicore
processors.

VI. CONCLUSION
Fast Fourier transform (FFT) computation is so fundamental
that hardware vendors provide libraries offering optimized
routines for it for their processors. Its performance on latest
multicore platforms is therefore of paramount concern to the
high performance computing community. The inherent com-
plexities in these platforms such as severe resource contention

and non-uniform memory access (NUMA) however pose
formidable challenges.

We demonstrated the challenges by studying three highly
optimized multithreaded 2D FFT packages, FFTW-2.1.5,
FFTW-3.3.7, and Intel MKL FFT on a modern Intel Haswell
multicore processor consisting of thirty-six cores. In sum-
mary, we showed that for the routines from the three pack-
ages, the average performance can be considerably lower
than their peak performance due to drastic variations in their
performance profiles. The percentage ratios of average to
peak performance for FFTW-2.1.5, FFTW-3.3.7, and Intel
MKL FFT are 40%, 30% and 24%. Therefore, we conclude
that improving the average performance of the FFT routines
on modern multicore processors by removal of variations is
an important research challenge.

We proposed two novel optimizationmethods,PFFT-FPM
and PFFT-FPM-PAD, specifically designed and imple-
mented to address the challenge. They employ parallel com-
puting based on load imbalancing technique and are portable.
The methods take as inputs, discrete 3D functions of per-
formance against problem size of the processors, compute
2D-DFT of a complex signal matrix of size N × N using p
abstract processors, and output the transformed signal matrix.
They can be employed as nodal optimization techniques to
construct a 2D FFT routine highly optimized for a dedicated
target multicore platform.

We performed our experiments on a modern Intel Haswell
multicore server consisting of two sockets of 18 physical
cores each. The average and maximum speedups observed
for PFFT-FPM using FFTW-3.3.7 are 1.9x and 6.8x and
the average and maximum speedups observed using Intel
MKL FFT are 1.3x and 2x. The average and maximum
speedups observed for PFFT-FPM-PAD using FFTW-3.3.7
are 2x and 9.4x and the average and maximum speedups
observed using Intel MKL FFT are 1.4x and 5.9x.We showed
that PFFT-FPM-PAD improves the average performance of
FFTW-3.3.7 over the unoptimized FFTW-2.1.5 by 42% and
the average performance of Intel MKL FFT over the unop-
timized FFTW-2.1.5 by 24% (over and above the 36% of
unoptimized Intel MKL FFT). The improvements to aver-
age to peak performance ratio is equal to the improvements
for average performance since the peak performance has
remained unchanged.

The software implementations of the methods presented in
this work are at [46].

In our future work, we would research into solution meth-
ods for removing the major variations that still remain for
very large problem sizes. We plan to apply and extend our
methods for fast computation of 3D DFT. We would also
develop extensions of the methods for homogeneous and
heterogeneous clusters of multicore nodes.

APPENDIX A
SUPPLEMENTAL MATERIAL
The following materials supplement the main manuscript:

VOLUME 6, 2018 17

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

• Experimental methodology followed to construct the
speed functions illustrated in the main manuscript.

• Three solution approaches for the optimization of 2D-
DFT computation (by removal of performance varia-
tions).

• Helper routines used in the methods, PFFT-FPM and
PFFT-FPM-PAD.

• Additional material to supplement the discussion in the
experimental results.

APPENDIX B
EXPERIMENTAL METHODOLOGY TO BUILD
THE SPEED FUNCTIONS
We followed the methodology described below to make sure
the experimental results are reliable:
• The server is fully reserved and dedicated to these exper-
iments during their execution. We also made certain
that there are no drastic fluctuations in the load due to
abnormal events in the server by monitoring its load
continuously for a week using the tool sar. Insignificant
variation in the load was observed during this monitor-
ing period suggesting normal and clean behavior of the
server.

• An application during its execution is bound to the
physical cores using the numactl tool.

• To obtain a data point in the speed function, the appli-
cation is repeatedly executed until the sample mean lies
in the 95% confidence interval with precision of 0.025
(2.5%). For this purpose, we use Student’s t-test assum-
ing that the individual observations are independent and
their population follows the normal distribution. We ver-
ify the validity of these assumptions using Pearson’s
chi-squared test.Whenwemention a single number such
as floating-point performance (inMFLOPs or GFLOPs),
we imply the sample mean determined using the Stu-
dent’s t-test.
The function MeanUsingTtest , shown in Algorithm 8,
determines the sample mean for a data point. For each
data point, the function repeatedly executes the applica-
tion app until one of the following three conditions is
satisfied:
1) The maximum number of repetitions (maxReps) is

exceeded (Line 3).
2) The sample mean falls in the confidence interval

(or the precision of measurement eps is achieved)
(Lines 13-15).

3) The elapsed time of the repetitions of applica-
tion execution has exceeded the maximum time
allowed (maxT in seconds) (Lines 16-18).

So, for each data point, the function MeanUsingTtest
returns the sample mean mean. The function Measure
measures the execution time using gettimeofday
function.

• In our experiments, we set the minimum and max-
imum number of repetitions, minReps and maxReps,
to 10 and 100000. The values of maxT , cl, and eps are

Algorithm 8 Function Determining the Mean of an Experi-
mental Run Using Student’s t-Test
1: procedureMeanUsingTtest(app,minReps,maxReps,

maxT , cl, accuracy,
repsOut, clOut, etimeOut, epsOut,mean)

Input:
The application to execute, app
The minimum number of repetitions, minReps ∈ Z>0
The maximum number of repetitions, maxReps ∈ Z>0
The maximum time allowed for the application to run,
maxT ∈ R>0
The required confidence level, cl ∈ R>0
The required accuracy, eps ∈ R>0

Output:
The number of experimental runs actually made,
repsOut ∈ Z>0
The confidence level achieved, clOut ∈ R>0
The accuracy achieved, epsOut ∈ R>0
The elapsed time, etimeOut ∈ R>0
The mean, mean ∈ R>0

2: reps← 0; stop← 0; sum← 0; etime← 0
3: while (reps < maxReps) and (!stop) do
4: st ← measure(TIME)
5: Execute(app)
6: et ← measure(TIME)
7: reps← reps+ 1
8: etime← etime+ et − st
9: ObjArray[reps]← et − st
10: sum← sum+ ObjArray[reps]
11: if reps > minReps then
12: clOut ← fabs(gsl_cdf_tdist_Pinv(cl, reps −

1))
× gsl_stats_sd(ObjArray, 1, reps)
/ sqrt(reps)

13: if clOut × reps
sum < eps then

14: stop← 1
15: end if
16: if etime > maxT then
17: stop← 1
18: end if
19: end if
20: end while
21: repsOut ← reps; epsOut ← clOut × reps

sum
22: etimeOut ← etime; mean← sum

reps
23: end procedure

3600, 0.95, and 0.025. If the precision of measurement
is not achieved before the completion of maximum num-
ber of repeats, we increase the number of repetitions
and also the allowed maximum elapsed time. Therefore,
we make sure that statistical confidence is achieved
for all the data points that we use in our performance
profiles.

18 VOLUME 6, 2018

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

APPENDIX C
PERFORMANCE OPTIMIZATION OF FAST FOURIER
TRANSFORM ON MULTICORE PROCESSORS: SOLUTION
APPROACHES
In this section, we describe in detail the three solution
approaches for the optimization of 2D-DFT computation (by
removal of performance variations). We discuss the advan-
tages and disadvantages of each approach.

A. OPTIMIZATION THROUGH SOURCE CODE ANALYSIS
AND TUNING
This is typically the first approach adopted to improve
the performance of an application. It has following
disadvantages:
• If the code is finely tuned to a specific vendor architec-
ture, its portability to other vendor architectures suffers.

• Most high quality codes are proprietary and therefore
their sources are not available for inspection and tuning.
For example: BLAS, FFT packages that are part of Intel
MKL library.

• It requires source code modification. Since the highly
optimized packages such as FFTW are written with
many man-years of effort for different generations of
hardware, any source code change may entail extensive
testing to ensure old functionality is not broken. There-
fore, it is a specialized skill practiced by code tuning
experts and is time consuming.

B. OPTIMIZATION USING SOLUTIONS TO LARGER
PROBLEM SIZES WITH BETTER PERFORMANCE
Supposing we are solving a problem where the size of the
matrix is N . In this approach, the solution to a larger problem
size (Nl > N), which has better execution time thanN , is used
as solution for N . The common approach is to pad the input
matrix to increase its problem size from N to Nl and zero
the contents of the extra padded areas. It is also a technique
that is widely used in different flavors (restructuring arrays,
aggregation) to minimize cache conflict misses [47]–[50].
It requires no source code modification of the optimized
package.

While it is a portable approach, it also has some disadvan-
tages.
• A performance model is necessary that given N
as input will output the problem size Nl to be
used for padding. In this work, we use functional
performance models (FPMs) that will provide this
information.

• While programmatically extending 1D arrays logically
is easy, it is not the case for 2D arrays such as matri-
ces and multidimensional arrays. One inexpensive tech-
nique is to locally copy the input signal matrix of size
N to a work matrix of size Nl , compute 2D-DFT of
the work matrix and copy the relevant content back to
the signal matrix. One drawback however is the extra
memory used for the work matrix.

FIGURE 16. Transpose of square matrix of size n× n using blocking.

C. OPTIMIZATION USING MODEL-BASED
PARALLEL COMPUTING
Finally, we propose the third approach, which employs par-
allel computing. In the current era of multicores where pro-
cessors have abundant number of cores, one can partition the
workload between identical multithreaded routines (abstract
processors) and execute them in parallel.

The starting step in this approach is to partition the work-
load evenly between the identical multithreaded routines
by using load balanced distribution. Then, the workload is
unevenly distributed using data partitioning algorithms that
take as input realistic and accurate performance models of
computation output from the starting step and that minimize
the total execution time of the parallel execution of the 2D
DFT computation. The models must not employ parameters,
which are architecture-specific (For example: performance
monitoring events (PMCs)). This would compromise the
portability of this approach.

VOLUME 6, 2018 19

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

FIGURE 17. Full speed function of FFTW-3.3.7.

FIGURE 18. Full speed function of Intel MKL FFT.

Its advantages are:
• It is portable when the performance models of computa-
tion used in the data partitioning algorithms do not use
architecture-specific parameters.

• It does not require source code modification of the opti-
mized package.

• The programming effort is less time-consuming,
which is to distribute the workload between identical
already optimized and well-tested multithreaded rou-
tines (abstract processors) and execute them in parallel.

We propose in this work two methods, PFFT-FPM and
PFFT-FPM-PAD. The first method adopts the third approach

20 VOLUME 6, 2018

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

FIGURE 19. Speedup of PFFT-FPM against the basic FFTW-3.3.7.

FIGURE 20. Speedup of PFFT-FPM against the basic Intel MKL FFT.

and is a model-based parallel computing solution employing
functional performance models (FPMs). The second is an
extension of the first method. It combines the third approach
with the second approach where the lengths of the paddings
are determined from the FPMs.

APPENDIX D
HELPER ROUTINES INVOKED IN PFFT-FPM AND
PFFT-FPM-PAD
The following routine, hcl_transpose_block, performs
in-place transpose of a complex 2D square matrix of size
n × n. We use a block size of 64 in our experiments as it
is found to be optimal.

APPENDIX E
EXPERIMENTAL RESULTS: ADDITIONAL MATERIAL
D. FULL SPEED FUNCTIONS USING FFTW-3.3.7 AND
INTEL MKL FFT
Figures 17 and 18 show the full speed functions of FFTW-
3.3.7 and Intel MKL FFT.

E. EXECUTION TIMES OF PFFT-FPM AND PFFT-FPM-PAD
The Figure 19 shows the speedup ofPFFT-FPM. The average
and maximum speedups are 1.9x and 6.8x. Figure 20 shows

FIGURE 21. Execution times of PFFT-FPM against the basic FFTW-3.3.7.

FIGURE 22. Execution times of PFFT-FPM-PAD against the basic
FFTW-3.3.7.

FIGURE 23. Execution times of PFFT-FPM against the basic Intel MKL FFT.

the speedups of PFFT-FPM. The average and maximum
speedups are 1.3x and 2.4x.

Figure 21 shows the execution times of PFFT-FPM only
versus basic FFTW-3.3.7. Figure 22 shows the execution
times of PFFT-FPM-PAD only versus basic FFTW-3.3.7.

VOLUME 6, 2018 21

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

FIGURE 24. Execution times of PFFT-FPM-PAD against the basic Intel MKL
FFT.

Figure 23 shows the execution times of PFFT-FPM only
versus basic Intel MKL FFT. Figure 24 shows the execution
times of PFFT-FPM-PAD only versus basic Intel MKL FFT.

REFERENCES
[1] W. Chu and B. Champagne, ‘‘A noise-robust FFT-based auditory spectrum

with application in audio classification,’’ IEEE Trans. Audio, Speech,
Language Process., vol. 16, no. 1, pp. 137–150, Jan. 2008.

[2] A. Sapena-Bañó, M. Pineda-Sanchez, R. Puche-Panadero,
J. Martinez-Roman, and D. Matić, ‘‘Fault diagnosis of rotating electrical
machines in transient regime using a single stator current’s FFT,’’ IEEE
Trans. Instrum. Meas., vol. 64, no. 11, pp. 3137–3146, Nov. 2015.

[3] M. Kang, J. Kim, L. M. Wills, and J.-M. Kim, ‘‘Time-varying and
multiresolution envelope analysis and discriminative feature analysis for
bearing fault diagnosis,’’ IEEE Trans. Ind. Electron., vol. 62, no. 12,
pp. 7749–7761, Dec. 2015.

[4] M. Naoues, D. Noguet, L. Alaus, and Y. Louët, ‘‘A common operator
for FFT and FEC decoding,’’ Microprocess. Microsyst., vol. 35, no. 8,
pp. 708–715, 2011.

[5] J. P. Barbosa et al., ‘‘A high performance hardware accelerator for dynamic
texture segmentation,’’ J. Syst. Archit., vol. 61, no. 10, pp. 639–645, 2015.

[6] Intel Corporation. (2018). Intel MKL FFT—Fast Fourier Transforms.
[Online]. Available: https://software.intel.com/en-us/mkl/features/fft

[7] cuFFT. (2018).Optimized FFT Routines for NVIDIA Graphics Processors.
[Online]. Available: https://docs.nvidia.com/cuda/cufft/index.html

[8] clFFT. (2018). Optimized FFT Routines for AMD Graphics Processors.
[Online]. Available: https://gpuopen.com/compute-product/clfft/

[9] (2008). Intel Quickpath Interconnect. [Online]. Available: https://en.
wikipedia.org/wiki/Intel_QuickPath_Interconnect

[10] AMDHT. (2001). Hypertransport. [Online]. Available: https://en.
wikipedia.org/wiki/HyperTransport

[11] A. Lastovetsky and R. Reddy, ‘‘New model-based methods and algorithms
for performance and energy optimization of data parallel applications on
homogeneous multicore clusters,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 28, no. 4, pp. 1119–1133, Apr. 2017.

[12] H. Khaleghzadeh, R. R. Manumachu, and A. Lastovetsky, ‘‘A novel data-
partitioning algorithm for performance optimization of data-parallel appli-
cations on heterogeneous HPC platforms,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 10, pp. 2176–2190, Oct. 2018.

[13] D. Clarke, A. Lastovetsky, and V. Rychkov, ‘‘Dynamic load balancing
of parallel computational iterative routines on highly heterogeneous HPC
platforms,’’ Parallel Process. Lett., vol. 21, pp. 195–217, Jun. 2011.

[14] A. Lastovetsky, R. Reddy, V. Rychkov, and D. Clarke. (2011). ‘‘Design
and implementation of self-adaptable parallel algorithms for scientific
computing on highly heterogeneous HPC platforms.’’ [Online]. Available:
https://arxiv.org/abs/1109.3074

[15] A. Averbuch and E. Gabber, ‘‘Portable parallel FFT for MIMD multipro-
cessors,’’ Concurrency, Pract. Exper., vol. 10, no. 8, pp. 583–605, 1998.

[16] L. Chen, Z. Hu, J. Lin, and G. R. Gao, ‘‘Optimizing the fast fourier
transform on amulti-core architecture,’’ inProc. IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), Mar. 2007, pp. 1–8.

[17] F. Almeida and L. M. Moreno, ‘‘Parallel FFT-2D in heterogeneous sys-
tems,’’ in Proc. 23rd Multi-Conf. Appl. Inform. Int. Conf. Parallel Distrib.
Comput. Netw. (IASTED), Innsbruck, Austria, Feb. 2005, pp. 551–558.

[18] P. Dmitruk, L.-P. Wang, W. Matthaeus, R. Zhang, and D. Seckel, ‘‘Scal-
able parallel FFT for spectral simulations on a Beowulf cluster,’’ Parallel
Comput., vol. 27, no. 14, pp. 1921–1936, 2001.

[19] O. Ayala and L.-P.Wang, ‘‘Parallel implementation and scalability analysis
of 3D fast fourier transform using 2D domain decomposition,’’ Parallel
Comput., vol. 39, no. 1, pp. 58–77, 2013.

[20] J. Jung, C. Kobayashi, T. Imamura, and Y. Sugita, ‘‘Parallel implemen-
tation of 3D FFT with volumetric decomposition schemes for efficient
molecular dynamics simulations,’’ Comput. Phys. Commun., vol. 200,
pp. 57–65, Mar. 2016.

[21] S. Song and J. K. Hollingsworth, ‘‘Computation–communication overlap
and parameter auto-tuning for scalable parallel 3-D FFT,’’ J. Comput. Sci.,
vol. 14, pp. 38–50, May 2016.

[22] Y. Chen, X. Cui, and H. Mei, ‘‘Large-scale FFT on GPU clusters,’’ in Proc.
24th ACM Int. Conf. Supercomput. (ICS), 2010, pp. 315–324.

[23] L. Gu, J. Siegel, and X. Li, ‘‘Using GPUs to compute large out-of-card
FFTs,’’ in Proc. Int. Conf. Supercomput. (ICS), 2011, pp. 255–264.

[24] J. Wu and J. JaJa, ‘‘Optimized FFT computations on heterogeneous plat-
forms with application to the Poisson equation,’’ J. Parallel Distrib. Com-
put., vol. 74, no. 8, pp. 2745–2756, 2014.

[25] V. H. Naik and C. S. Kusur, ‘‘Analysis of performance enhancement
on graphic processor based heterogeneous architecture: A CUDA and
MATLAB experiment,’’ in Proc. Nat. Conf. Parallel Comput. Technol.
(PARCOMPTECH), Feb. 2015, pp. 1–5.

[26] FFTW. (2018). Fastest Fourier Transform in the West. [Online]. Available:
http://www.fftw.org/

[27] PFFTW. (2018). Parallel FFTW. [Online]. Available:
http://www.fftw.org/fftw2_doc/fftw_4.html

[28] D. Pekurovsky, ‘‘P3DFFT: A framework for parallel computations of
fourier transforms in three dimensions,’’ SIAM J. Sci. Comput., vol. 34,
no. 4, pp. C192–C209, 2012.

[29] N. Li and S. Laizet, ‘‘2DECOMP and FFT—A highly scalable 2D decom-
position library and FFT interface,’’ in Proc. Cray User Group Conf., 2010,
pp. 1–13.

[30] T. V. T. Duy and T. Ozaki, ‘‘A decomposition method with minimum
communication amount for parallelization of multi-dimensional FFTs,’’
Comput. Phys. Commun., vol. 185, no. 1, pp. 153–164, 2014.

[31] A. Lastovetsky and R. Reddy, ‘‘Data partitioning with a functional perfor-
mance model of heterogeneous processors,’’ Int. J. High Perform. Comput.
Appl., vol. 21, no. 1, pp. 76–90, 2007.

[32] Y. Ogata, T. Endo, N. Maruyama, and S. Matsuoka, ‘‘An efficient, model-
based CPU-GPU heterogeneous FFT library,’’ in Proc. IEEE Int. Symp.
Parallel Distrib. Process. (IPDPS), Apr. 2008, pp. 1–10.

[33] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, ‘‘Merge: A pro-
gramming model for heterogeneous multi-core systems,’’ ACM SIGOPS
Oper. Syst. Rev., vol. 42, no. 2, pp. 287–296, 2008.

[34] G. Quintana-Ortı, F. D. Igual, E. S. Quintana-Ortí, and
R. A. Van de Geijn, ‘‘Solving dense linear systems on platforms
with multiple hardware accelerators,’’ ACM SIGPLAN Notices, vol. 44,
no. 4, pp. 121–130, 2009.

[35] C. Augonnet, S. Thibault, and R. Namyst, ‘‘Automatic calibration of
performance models on heterogeneous multicore architectures,’’ in Proc.
Eur. Conf. Parallel Process. Springer, 2009, pp. 56–65.

[36] G. Cybenko, ‘‘Dynamic load balancing for distributed memory multipro-
cessors,’’ J. Parallel Distrib. Comput., vol. 7, no. 2, pp. 279–301, Oct. 1989.

[37] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, ‘‘Dynamic load balanc-
ing and efficient load estimators for asynchronous iterative algorithms,’’
IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 4, pp. 289–299, Apr. 2005.

[38] R. L. Cariño and I. Banicescu, ‘‘Dynamic load balancing with adaptive
factoring methods in scientific applications,’’ J. Supercomput., vol. 44,
no. 1, pp. 41–63, 2008.

[39] J. A.Martínez, E.M. Garzón, A. Plaza, and I. García, ‘‘Automatic tuning of
iterative computation on heterogeneous multiprocessors with ADITHE,’’
J. Supercomput., vol. 58, no. 2, pp. 151–159, Nov. 2011.

[40] J. Bahi, R. Couturier, and F. Vernier, ‘‘Synchronous distributed load bal-
ancing on dynamic networks,’’ J. Parallel Distrib. Comput., vol. 65, no. 11,
pp. 1397–1405, 2005.

22 VOLUME 6, 2018

S. Khokhriakov et al.: Performance Optimization of Multithreaded 2D FFT

[41] F. Liu, Y. Chen, andW. S.Wong, ‘‘An asynchronous load balancing scheme
for multi-server systems,’’ in Proc. IEEE Annu. Ubiquitous Comput., Elec-
tron. Mobile Commun. Conf. (UEMCON), Oct. 2016, pp. 1–7.

[42] A. Lastovetsky and R. Reddy, ‘‘Data partitioning with a realistic perfor-
mance model of networks of heterogeneous computers,’’ in Proc. 18th Int.
Parallel Distrib. Process. Symp. (IPDPS), Santa Fe, NM, USA, Apr. 2004,
p. 104.

[43] A. L. Lastovetsky, L. Szustak, and R. Wyrzykowski, ‘‘Model-based opti-
mization of MPDATA on Intel Xeon Phi through load imbalancing,’’
CoRR, Jul. 2015.

[44] A. Lastovetsky, L. Szustak, and R.Wyrzykowski, ‘‘Model-based optimiza-
tion of EULAG kernel on Intel Xeon Phi through load imbalancing,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 787–797, Mar. 2017.

[45] R. Reddy and A. Lastovetsky, ‘‘Bi-objective optimization of data-parallel
applications on homogeneous multicore clusters for performance and
energy,’’ IEEE Trans. Comput., vol. 64, no. 2, pp. 160–177, Feb. 2017.

[46] S. Khokhriakov and R. Reddy. (2018). HCLFFT: Software Library for
Performance Optimization of 2D Discrete Fourier Transform on Multicore
Processors. [Online]. Available: https://git.ucd.ie/manumachu/hclfft.git

[47] K. Ishizaka, M. Obata, and H. Kasahara, ‘‘Cache optimization for coarse
grain task parallel processing using inter-array padding,’’ in Proc. Int.
Workshop Lang. Compil. Parallel Comput. Springer, 2003, pp. 64–76.

[48] P. Zhao, S. Cui, Y. Gao, R. Silvera, and J. N. Amaral, ‘‘Forma: A framework
for safe automatic array reshaping,’’ ACM Trans. Program. Lang. Syst.,
vol. 30, no. 1, p. 2, Nov. 2007.

[49] C. Hong et al., ‘‘Effective padding of multidimensional arrays to avoid
cache conflictmisses,’’ inProc. 37th ACMSIGPLANConf. Program. Lang.
Design Implement. (PLDI), 2016, pp. 129–144.

[50] P. Jiang and G. Agrawal, ‘‘Efficient SIMD and MIMD parallelization
of hash-based aggregation by conflict mitigation,’’ in Proc. Int. Conf.
Supercomput. (ICS), 2017, pp. 24:1–24:11.

SEMYON KHOKHRIAKOV received the bache-
lor’s and master’s degrees in physics from Udmurt
State University, Russia, in 2011 and 2013,
respectively. He is currently a Ph.D. Researcher
with the Heterogeneous Computing Laboratory,
School of Computer Science, University College
Dublin. His main research interests include perfor-
mance and energy consumption optimization on
homogeneous and heterogeneous platforms, paral-
lel/distributed computing, models, and algorithms.

RAVI REDDY MANUMACHU received the
B.Tech. degree from IIT Madras in 1997 and
the Ph.D. degree from the School of Computer
Science and Informatics, University College
Dublin, in 2005. His main research interests
include high-performance heterogeneous comput-
ing, parallel computational fluid dynamics and
finite-element analysis, complexity theory, and
cryptography.

ALEXEY LASTOVETSKY received the Ph.D.
degree from the Moscow Aviation Institute
in 1986 and the D.Sc. degree from the Russian
Academy of Sciences in 1997. He has authored
over a 100 technical papers in refereed jour-
nals, edited books, and international conferences.
He has authored the monographs Parallel Com-
puting on Heterogeneous Networks (Wiley, 2003)
and High Performance Heterogeneous Computing
(Wiley, 2009). His main research interests include

algorithms, models, and programming tools for high-performance heteroge-
neous computing.

VOLUME 6, 2018 23

	INTRODUCTION
	2D-DFT: MODEL-BASED PARALLEL COMPUTING SOLUTIONS
	SEQUENTIAL 2D-FFT ALGORITHM
	PFFT-LB: PARALLEL 2D-FFT ALGORITHM USING LOAD BALANCING
	PFFT-FPM: PERFORMANCE OPTIMIZATION USING FPMS AND LOAD IMBALANCING
	PFFT-FPM-PAD: PERFORMANCE OPTIMIZATION USING PADDING DETERMINED FROM FPMs

	SHARED MEMORY IMPLEMENTATIONS OF PFFT-FPM AND PFFT-FPM-PAD
	SHARED MEMORY IMPLEMENTATIONS OF PFFT-FPM
	INTEL MKL FFT
	FFTW

	EXPERIMENTAL RESULTS AND DISCUSSION
	PFFT-FPM AND PFFT-FPM-PAD USING FFTW-3.3.7
	PFFT-FPM AND PFFT-FPM-PAD USING INTEL MKL FFT
	OPTIMIZED FFTW-3.3.7 AND INTEL MKL FFT VERSUS UNOPTIMIZED FFTW-2.1.5
	SUMMARY

	RELATED WORK
	PARALLEL FFT SOLUTIONS FOR HOMOGENEOUS AND HETEROGENEOUS PLATFORMS
	PARALLEL FFT LIBRARIES
	LOAD BALANCING ALGORITHMS FOR PERFORMANCE OPTIMIZATION ON MULTICORE PLATFORMS
	LOAD IMBALANCING ALGORITHMS FOR PERFORMANCE OPTIMIZATION ON HPC PLATFORMS

	CONCLUSION
	OPTIMIZATION THROUGH SOURCE CODE ANALYSIS AND TUNING
	OPTIMIZATION USING SOLUTIONS TO LARGER PROBLEM SIZES WITH BETTER PERFORMANCE
	OPTIMIZATION USING MODEL-BASED PARALLEL COMPUTING
	FULL SPEED FUNCTIONS USING FFTW-3.3.7 AND INTEL MKL FFT
	EXECUTION TIMES OF PFFT-FPM AND PFFT-FPM-PAD

	REFERENCES
	Biographies
	SEMYON KHOKHRIAKOV
	RAVI REDDY MANUMACHU
	ALEXEY LASTOVETSKY

