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Abstract

The development of efficient techniques for transforming
massive volumes of remotely sensed hyperspectral data
into scientific understanding is critical for space-based Earth
science and planetary exploration. Although most available
parallel processing strategies for information extraction and
mining from hyperspectral imagery assume homogeneity
in the underlying computing platform, heterogeneous net-
works of computers (HNOCs) have become a promising
cost-effective solution, expected to play a major role in
many on-going and planned remote sensing missions. In
this paper, we develop a new morphological parallel algo-
rithm for hyperspectral image classification using HeteroMPI,
an extension of MPI for programming high-performance
computations on HNOCs. The main idea of HeteroMPI is
to automate and optimize the selection of a group of proc-
esses that executes a heterogeneous algorithm faster
than any other possible group in a heterogeneous environ-
ment. In order to analyze the impact of many-to-one (gather)
communication operations introduced by our proposed algo-
rithm, we resort to a recently proposed collective communi-
cation model. The parallel algorithm is validated using two
heterogeneous clusters at University College Dublin and a
massively parallel Beowulf cluster at NASA's Goddard
Space Flight Center.

Key words: heterogeneous parallel computing, hyperspec-
tral image processing, HeteroMPI, mathematical morphol-
ogy, performance evaluation

1 Introduction

Hyperspectral imaging identifies materials and objects in
the air, land and water on the basis of the unique reflect-
ance patterns that result from the interaction of solar energy
with the molecular structure of the material (Chang 2003).
Most applications of this technology require timely
responses for swift decisions which depend upon high
computing performance of algorithm analysis. Examples
include target detection for military and defense/security
deployment, urban planning and management, risk/haz-
ard prevention and response including wild-land fire
tracking, biological threat detection, monitoring of oil
spills and other types of chemical contamination. The
concept of hyperspectral imaging was introduced when
NASA’s Jet Propulsion Laboratory developed the Air-
borne Visible-Infrared Imaging Spectrometer (AVIRIS)
system, which covers the wavelength region from 0.4 to
2.5 µm using 224 spectral channels (see Figure 1). This
imager is able to continuously produce snapshot image
cubes of tens or even hundreds of kilometers long, each of
them with hundreds of MB in size, and this explosion in
the amount of collected information has rapidly intro-
duced new processing challenges (Plaza et al. 2006).

Although most dedicated parallel machines for remote
sensing data analysis employed by NASA and other insti-
tutions during the last decade have been chiefly homoge-
neous in nature (Dorband, Palencia, and Ranawake 2003),
computing on heterogeneous networks of computers
(HNOCs) has soon become a viable alternative to expensive
parallel computing systems (Lastovetsky 2003). These
networks enable the use of existing resources and provide
incremental scalability of hardware components. At the
same time, HNOCs can achieve high communication speed
at low cost, using switch-based networks such as ATMs, as
well as distributed service and support, especially for large
file systems.

Despite the growing interest in hyperspectral imaging
research, only a few consolidated parallel techniques for
analyzing this kind of data currently exist in the open lit-
erature. However, with the recent explosion in the amount
and dimensionality of hyperspectral data, parallel process-
ing is expected to become a requirement in most ongoing
and planned remote sensing missions. As a result, this
paper takes a necessary first step toward the development
of parallel hyperspectral imaging techniques on HNOCs.

1DEPARTMENT OF TECHNOLOGY OF COMPUTERS AND 
COMMUNICATIONS, TECHNICAL SCHOOL OF CÁCERES, 
UNIVERSITY OF EXTREMADURA, E-10071 CÁCERES, SPAIN
2HETEROGENEOUS COMPUTING LABORATORY, SCHOOL 
OF COMPUTER SCIENCE AND INFORMATICS, UNIVERSITY 
COLLEGE DUBLIN, BELFIELD, DUBLIN 4, IRELAND 
(ALEXEY.LASTOVETSKY@UCD.IE)

 at University College Dublin on October 22, 2008 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


387HETEROGENEOUS IMAGING

Although the standard MPI (Dongarra et al. 1996) has
been widely used to implement parallel algorithms for
HNOCs in the past, it does not provide specific means to
address some additional challenges posed by these net-
works, including the distribution of computations and
communications unevenly, taking into account the com-
puting power of the heterogeneous processors and the
bandwidth of the communications links. To achieve the
above goals, HeteroMPI was developed as an extension of
MPI which allows the programmer to describe the per-
formance model of a parallel algorithm in generic fashion
(Lastovetsky and Reddy 2006). This is a highly desirable
feature in hyperspectral imaging applications, in which
the main features of the underlying parallel algorithm
have an essential impact on execution performance.

In this paper, our main goal is to develop an advanced
heterogeneous parallel algorithm for hyperspectral image
processing using HeteroMPI. The paper is structured as
follows. Section 2 first describes previous efforts con-
cerned with the design of parallel hyperspectral imaging
algorithms in the literature, and then outlines the main fea-
tures of HeteroMPI. Section 3 describes the hyperspectral-
imaging algorithm considered in this study, which performs
joint spatial and spectral analysis of the data in combined
fashion, and further develops HeteroMPI-based parallel
implementations of the algorithm. Section 4 assesses the
performance of the parallel heterogeneous algorithm by

analyzing its accuracy and parallel properties on a heteroge-
neous cluster and also on a homogeneous one. This section
also evaluates the communication framework adopted for
the proposed parallel code and, in particular, the impact of
many-to-one communications on the overall perform-
ance, in light of a recently proposed collective communi-
cation model (Lastovetsky, Mkwawa, and O’Flynn 2006).
Section 5 addresses the effectiveness of the HeteroMPI-
based implementation. Finally, Section 6 concludes with
some remarks and hints at plausible future research.

2 Related Work

This section first provides an overview of previous
research in the area of parallel hyperspectral imaging. As
will be shown by our overview, most available parallel
approaches have been specifically designed for homoge-
neous clusters. In order to address the need for efficient
implementations in heterogeneous platforms, this section
also provides an outline of HeteroMPI, a heterogeneous
version of MPI that will be used to develop a new hetero-
geneous algorithm for hyperspectral image classification.

2.1 Parallel Hyperspectral Algorithms

Despite the growing interest in hyperspectral imaging,
only a few research efforts devoted to the design of paral-

Fig. 1 The concept of hyperspectral imaging using NASA/Jet Propulsion Laboratory’s AVIRIS system.
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lel implementations currently exist in the open literature.
It should be noted that some available parallel techniques
are subject to non-disclosure restrictions, mainly because
of their use in military and defense applications. How-
ever, with the recent explosion in the amount of hyper-
spectral imagery, parallel processing has now become a
requirement in most remote sensing applications.

The utilization of parallel systems hyperspectral imaging
applications has become increasingly widespread in recent
years. The idea of using COTS (commercial off-the-shelf)
computer equipment, clustered together to work as a com-
putational team (Brightwell et al. 2000), was first explored
to address the extremely high computational requirements
introduced by Earth observation applications. This strat-
egy, often referred to as Beowulf-class cluster computing,
has already offered access to greatly increased computa-
tional power, but at a low cost (commensurate with falling
commercial PC costs) in a number of remote sensing
applications (Kalluri et al. 2001; Wang et al. 2002; Le
Moigne, Campbell, and Cromp 2002; Plaza and Chang
2007). In particular, NASA is actively supporting mas-
sively parallel clusters for remote sensing studies includ-
ing those involving hyperspectral imagery. An example is
Thunderhead, a 512-processor homogeneous Beowulf
cluster at NASA’s Goddard Space Flight Center in Mary-
land (see http://thunderhead.gsfc.nasa.gov for details).
Another example is the Columbia supercomputer at NASA
Ames Research Center, a 10,240-CPU SGI Altix super-
computer, with Intel Itanium-2 processors, 20 terabytes of
total memory and heterogeneous interconnects including
InfiniBand network and 10-gigabit Ethernet.

Several hyperspectral imaging algorithms have been
implemented in the system described above using MPI as
a standard development tool. Examples include the dis-
tributed spectral-screening principal component trans-
form algorithm (S-PCT; Achalakul and Taylor 2003),
which makes use of the principal component transform
(PCT) to summarize and decorrelate the images by reduc-
ing redundancy and packing the residual information into
a small set of images, termed principal components. The
algorithm uses a standard master–slave decomposition
technique, where the master coordinates the actions of the
workers, gathers the partial results from them and provides
the final result. Another example of Beowulf cluster-based
parallel algorithm in the literature is D-ISODATA (Dhodhi
et al. 1999), designed as the first parallel approach able to
deal with the entire high-dimensional volume directly,
thereby preserving all the spectral information in the data.
It should be noted that the ISODATA classification proce-
dure is widely regarded as a benchmark for most unsuper-
vised classification algorithms (Richards and Jia 2005).

A shortcoming of both S-PCT and D-ISODATA is that
these algorithms rely on using the spectral information
alone, without taking into account the spatial arrangement

of pixels. In contrast, the hierarchical image segmentation
algorithm (HSEG; Tilton 2005) has been recently pro-
posed as a hybrid method able to use the spatial and the
spectral information in the analysis of multichannel
images. To counteract the extremely high computational
complexity of the algorithm, a computationally efficient
recursive approximation of HSEG (called RHSEG) was
first developed and later transformed into an efficient MPI-
based implementation by regularly allocating processing
tasks among available CPUs (Tilton 2007). Most recently,
a morphological approach for classification of hyper-
spectral images has been developed. The algorithm, called
automated morphological classification (AMC), takes
into account both the spatial and the spectral information
in the analysis in a combined fashion, as opposed to HSEG
which first uses spectral information to produce an initial
segmentation and then refines the segmentation using
spatial context. An MPI-based parallel version of AMC
has been developed and tested on NASA’s Thunderhead
cluster, showing parallel performance results superior to
those achieved by other parallel hyperspectral algorithms
in the literature (Plaza et al. 2006).

An important limitation in the above-mentioned paral-
lel techniques is that they assume that the number and
location of nodes are known and relatively fixed. How-
ever, the commercial availability of high-performance
networking hardware has made it possible to develop dis-
tributed parallel systems made up of networked groups of
machines distributed among different locations. Current
remote sensing applications, constrained by the ever-
growing dimensionality and size of the collected image
data, can greatly benefit from this concept of distributed
computing on HNOCs. In this regard, HeteroMPI offers
an excellent tool to develop parallel algorithms specifically
adapted to heterogeneous platforms, and also to transform
available parallel hyperspectral algorithms into efficient
implementations for these systems.

2.2 Outline of HeteroMPI

The standard MPI specification provides communication
and group constructors which allow the application pro-
grammer to create a group of processes explicitly chosen
from an ordered set (Dongarra et al. 1996). This approach
is feasible when the application is run on a homogeneous
distributed-memory computer system. However, selection
of a group for execution on HNOCs must take into
account the computing power of the heterogeneous proc-
essors and the speed/bandwidth of communication links
between each processor pair (Lastovetsky and Reddy
2006). This feature is of particular importance in applica-
tions dominated by large data volumes such as hyperspec-
tral image analysis, but is also quite difficult to accomplish
from the viewpoint of the programmer.
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The main idea of HeteroMPI is to automate and opti-
mize the selection of a group of processes that executes a
heterogeneous algorithm faster than any other possible
group. For this purpose, HeteroMPI provides a small and
dedicated definition language for the specification of
such performance model. This language is a subset of
mpC, defined by Lastovetsky (2002), and allows the pro-
grammer to explicitly define an abstract network and
distribute data, computations and communications over
the network. Then, HeteroMPI automatically maps (at
run time) the abstract network to a real execution net-
work by dynamically adapting the performance model to
specific network parameters such as the computing
power of processors or the capacities of communication
links in the real environment. By means of a compiler, the
description of a performance model is translated into a set
of functions that make up an algorithm-specific part of the
HeteroMPI runtime system. Below, we provide a brief out-
line of the most important HeteroMPI functions which
have been used to implement the proposed parallel algo-
rithm. Detailed information about these and other Heter-
oMPI functions is given in Lastovetsky and Reddy (2006).

A typical HeteroMPI application starts with the initial-
ization of the runtime system using the operation:

HeteroMPI_Init(int argc, char **argv)

This routine must be called once by all the processes run-
ning in the application. After the initialization, applica-
tion programmers can call any other HeteroMPI routines.
For instance, the following function is used to create a
group that will execute the heterogeneous algorithm
faster than any other group of processes:

HeteroMPI_Group_create(HeteroMPI_Group *gid,

    const HeteroMPI_Model *perf_model,

    const void *model_parameters,

    int param_count)

This function returns a handle gid to the group of MPI
processes. Here, perf_model encapsulates the features
of the performance model; model_parameters are
the actual parameters of the performance model; and
param_count is the total number of parameters. After
the execution of this function, the performances opt_
speeds can be obtained by using the HeteroMPI group
accessor function shown below:

HeteroMPI_Group_performances(&gid, opt_speeds)

It is important to emphasize at this point that the accu-
racy of the performance model depends heavily on the
accuracy of the estimation of the actual speeds of the
processors. For that purpose, HeteroMPI provides a func-

tion to dynamically update the estimation of processor
speeds at runtime:

HeteroMPI_Recon(HeteroMPI_Benchmarkfunction b,

const void *input_p, int num_of_parameters,

void *output_p)

where all the processors execute the benchmark function
b in parallel. This is a collective operation and must be
called by all the processes in the group associated with a pre-
defined communication universe HeteroMPI_COMM_
WORLD of HeteroMPI. A similar comment applies to the
group destructor operation provided by HeteroMPI:

HeteroMPI_Group_free(HeteroMPI_Group *gid)

where gid is the HeteroMPI handle to the group of MPI
processes. Again, this is a collective operation that must
be called by all members of this group. There are no ana-
logs of other group constructors of MPI such as the set-
like operations on groups and the range operations on
groups in HeteroMPI. This is because: 1) HeteroMPI
does not guarantee that groups composed using these
operations can execute a logical unit of parallel algorithm
faster than any other group of processes; and 2) it is rela-
tively straightforward for application programmers to
perform such group operations by obtaining the groups
associated with the MPI communicator given by the
Hetero_MPI_Get_comm operation shown below:

const MPI_Comm* HeteroMPI_Get_comm

    (const HeteroMPI_Group *gid)

which returns an MPI communicator with a communica-
tion group of MPI processes defined by gid. This is a
local operation not requiring inter-process communica-
tion. Application programmers can use this communi-
cator to call the standard MPI communication routines
during the execution of the parallel algorithm. This com-
municator can safely be used in other MPI routines. In
order to finalize the runtime system, the following opera-
tion is used:

HeteroMPI_Finalize(int exitcode)

3 Parallel Hyperspectral Algorithm

This section describes a parallel heterogeneous version of
the AMC algorithm for automated morphological analysis
of hyperspectral image data on HNOCs. The section is
organized as follows. First, we describe the standard mor-
phological algorithm. Next, we outline important aspects
of its parallel implementation such as data partitioning
and communication issues.
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3.1 Morphological Algorithm

Morphological analysis has been successfully used in pre-
vious research to analyze hyperspectral data sets (Soille
2003; Plaza et al. 2005). The morphological algorithm
selected in this work as a representative case study takes
into account both the spatial and spectral information of
the data in simultaneous fashion. Such spatial/spectral,
hybrid techniques represent the most advanced genera-
tion of hyperspectral imaging algorithms currently avail-
able. Before describing our proposed approach, let us
first denote by f a hyperspectral data set defined on an L-
dimensional (L-D) space, where N is the number of chan-
nels or spectral bands. The main idea of the algorithm is
to impose an ordering relation in terms of spectral purity
in the set of pixel vectors lying within a spatial search
window or structuring element (SE) around each image
pixel vector (Plaza et al. 2005). To do so, we first define a
cumulative distance between one particular pixel f(x, y),
where f(x, y) denotes an L-D vector at discrete spatial
coordinates (x, y) ∈ Z2, and all the pixel vectors in the spa-
tial neighborhood given by a SE denoted by B (B-neigh-
borhood) as follows:

DB[f(x, y)] = SAM[f(x, y), f(i, j)],

where (i, j) are the spatial coordinates in the B-neighbor-
hood and SAM is the spectral angle mapper (Chang 2003):

SAM(f(x, y), f(i, j)) = cos–1

Based on the distance above, we calculate the extended
morphological erosion of f by B (Plaza et al. 2002) for
each pixel in the input data scene as follows:

(f Θ B)(x, y) = arg min(i, j){DB[f(x + i, y + j)]}

where the argmin operator selects the pixel vector that is
most highly similar, spectrally, to all the other pixels in the
B-neighborhood. On the other hand, the extended morpho-
logical dilation of f by B (Plaza et al. 2002) is calculated as
follows:

(f ⊕ B)(x, y) = arg max(i, j){DB[f(x + i, y + j)]}

where the argmax operator selects the pixel vector that is
most spectrally distinct to all the other pixels in the B-
neighborhood. With the above definitions in mind, we
provide below an unsupervised classification algorithm
for hyperspectral imagery based on extended morpholog-

ical operations. One of the main features of the algorithm
above is regularity in the computations. As shown in pre-
vious work (Plaza et al. 2006), its computational com-
plexity is O(pf × pB × Imax × N), where pf is the number of
pixels in f and pB is the number of pixels in B. This
results in high computational cost in real applications.
However, an adequate parallelization strategy can greatly
enhance the computational performance of the algorithm,
as outlined in the following subsection. The inputs to our
algorithm, called automated morphological classification
(AMC), are a hyperspectral data cube f, a morphological
SE with constant size of 3 × 3 pixels, B, a number of
classes, c, and a number of iterations, Imax. The output is a
2-D matrix which contains a classification label for each
pixel vector f(x, y) in the input image. The AMC algo-
rithm can be summarized by the following steps:

1. Set i = 1 and initialize a morphological eccentric-
ity index score MEI(x, y) = 0 for each pixel.

2. Move B through all the pixels of f, defining a
local spatial search area around each f(x, y), and
calculate the maximum and the minimum pixels
at each B-neighborhood using dilation and erosion,
respectively. Update the MEI at each pixel using
the SAM between the maximum and the minimum.

3. Set i = 1 +1. If i = Imax then go to step 4. Other-
wise, replace f by its dilation using B, and go to
step 2.

4. Select the set of c pixel vectors in f with higher
associated score in the resulting MEI image and
estimate the sub-pixel abundance αi(x, y) of those
pixels at f(x, y) using the standard linear mixture
model described in (Chang 2003).

5. Obtain a classification label for each pixel f(x, y)
by assigning it to the class with the highest sub-
pixel fractional abundance score in that pixel. This
is done by comparing all estimated abundance frac-
tions {α1(x, y), α2(x, y), …, αc(x, y)} and finding
the one with the maximum value, say αi*(x, y), with 

i*
= arg .

3.2 Data Partitioning

Two types of parallelism can be exploited in hyperspec-
tral image analysis algorithms: spatial-domain parallel-
ism and spectral-domain parallelism (Plaza et al. 2006).
Spatial-domain parallelism subdivides the image into
multiple blocks made up of entire pixel vectors, and
assigns one or more blocks to each processor. Spectral-
domain parallelism subdivides the hyperspectral data
into blocks made up of contiguous spectral bands (sub-
volumes), and assigns one or more sub-volumes to each

i∑ j∑

f x y,( ) f i j,( )⋅
f x y,( ) f i j,( )⋅

------------------------------------------- 
 

max αi x y,( ){ }
 
 
 

1 i c≤ ≤
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processor. The latter approach breaks the spectral iden-
tity of the data because each pixel vector is split amongst
several processing units, and operations such as morpho-
logical erosion and dilation would need to originate from
several processors, thus requiring intensive inter-proces-
sor communication. In this work, we use spatial-domain
parallelism in order to preserve the entire spectral infor-
mation of each image pixel (see Figure 2). This is a natu-
ral approach for low-level image processing, as many
operations require the same function to be applied to a
small set of elements around each data element present in
the image data structure.

With the above ideas in mind, the main goal of our
parallelization framework for the AMC algorithm is to
use a low-level image processing-oriented approach, in
which each heterogeneous processor will be able to proc-
ess a spatial/spectral data partition locally. In previous
work, we have defined the concept of parallelizable
spatial/spectral partition (PSSP) as a hyperspectral data
partition that can be processed independently at each
processing node (Plaza et al. 2006). Here, we use the
concept of PSSP above to define a virtual processor grid
organization in which processors apply the AMC algo-
rithm locally to each partition, thus producing a set of
local classification outputs which are then combined to

form a global classification output. In order to adequately
exploit the concept of PSSP introduced above, two impor-
tant issues need to be taken into account:

1. An important issue in SE-based morphological
image processing operations is that accesses to pix-
els outside the spatial domain of the input image are
possible. This is particularly so when the SE is cen-
tered on a pixel located in the border of the original
image. In sequential implementations, it is common
practice to redirect such accesses according to a
predefined border handling strategy. In our appli-
cation, a border handling strategy is adopted when
the location of the SE is such that some of the pixel
positions in the SE are outside the input image
domain (see Figure 3). In this situation, only those
pixels inside the image domain are read for the
MEI calculation. This strategy is equivalent to the
common mirroring technique used in digital image
processing applications, but slightly faster since
fewer pixels are involved in the SE calculation.

2. Apart from the border handling strategy above, a
communication overhead is introduced when the
SE computation is split amongst several different
processing nodes (see Figure 4). It should be

Fig. 2 Example structuring element (SE)-based morphological computation performed using two processing units.

 at University College Dublin on October 22, 2008 http://hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com


392 COMPUTING APPLICATIONS

noted that Figure 4 gives a simplified view. Depend-
ing on how many adjacent PSSPs are involved in
the parallel computation of a SE, it may be neces-
sary to introduce additional communication pat-
terns. In this regard, it is important to emphasize
that the amount of redundant information intro-
duced at each partition after the communication
depends on the size of B, the SE used in the mor-
phological operations.

Our implementation of the AMC algorithm always
uses a constant 3 × 3-pixel SE through the different itera-
tions (see Section 3.1). In other words, instead of increasing
the size of the SE to consider a larger spatial neighbor-
hood, we replace the original image cube f or, equiva-

lently, the local PSSP in parallel processing, by the
resulting cube after applying a dilation operation using B
(see step 3 of the AMC algorithm). This allows us to per-
form multi-scale analysis of the data without increasing
significantly the communication overhead (Soille 2003;
Plaza et al. 2005).

One of the main challenges for the design of a hetero-
geneous version of the parallel algorithm described above
is to find an optimal mapping of PSSPs on the virtual grid
of processors such that the size of the resulting partitions is
in accordance with the computing power of heterogeneous
processors. Another challenge is to efficiently handle inter-
processor communications. These aspects will be accom-
plished through the definition of a suitable performance
model, as indicated by the following section.

Fig. 3 Border-handling strategy implemented on a PSSP when pixels lying outside the input image domain are
required for the SE-based morphological computation.

Fig. 4 Communication overhead introduced for SE-based operation split between two adjacent processing nodes.
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4 Heterogeneous Parallel 
Implementation

This section describes the heterogeneous parallel imple-
mentation of the AMC algorithm developed in the previ-
ous section using HeteroMPI. The section is organized as
follows. First, we define a performance model for the
proposed algorithm and provide a detailed description of
the core benchmark which constitutes the basis of such
performance model. Our discussion includes considera-
tions about how memory-related parameters are incorpo-
rated into the benchmark function. Then, we provide a
description of the communication framework adopted for
the parallel implementation. The section concludes with
an overview of the HeteroMPI implementation of the
AMC algorithm, outlining the most relevant aspects of
the parallel code.

4.1 Performance Model and Definition of a 
Benchmarking Function

The considered application case study is an example of a
regular problem decomposition in which the whole pro-
gram can be decomposed into a large set of small equiva-
lent programs, running in parallel and interacting via
message passing. The main idea for efficiently solving a
regular problem is to reduce it to an irregular problem,
the structure of which is determined by the irregularity of
underlying hardware rather than the irregularity of the
problem itself. In order to implement the parallel mor-
phological algorithm outlined above using HeteroMPI,
the first step is to define a performance model able to
capture the data partitioning and communication frame-
work described in the previous subsection (Valencia,
Lastovetsky, and Plaza 2006). In the following, we sum-
marize the most important fragments of the mpC-based
code that describes the adopted performance model,
which has several input parameters:

• Parameter m specifies the number samples of the data
cube.

• Parameter n specifies the number of lines.
• Parameters se_size and iter respectively denote

the size of the SE and the number of iterations exe-
cuted by the algorithm.

• Parameters p and q indicate the dimensions of the com-
putational grid (in columns and rows, respectively),
which are used to map the spatial coordinates of the
individual processors within the processor grid layout.

• Finally, parameter partition_size is an array
that indicates the size of the local PSSPs (calculated
automatically using the relative estimated computing
power of the heterogeneous processors using the
benchmark function).

algorithm amc_perf (int m, int n, int se_size, 

int iter, int p, int q, 

int partition_size[p*q]) {

coord I=p, J=q;//p is the number of columns; 

q is the number of rows

node { I>=0 && J>=0: 

benchmark*((partition_size[I*q+J]*iter);};

parent[0,0];

}

It should be noted that some of the definitions have
been removed from the code above for simplicity. How-
ever, the most representative sections are included. Key-
word algorithm begins the specification of the
performance model followed by its name and the list of
parameters. The coord section defines the mapping of
individual abstract processors performing the algorithm
onto the grid layout using variables I and J. The node
primitive defines the amount of computations that will be
performed by each processor, which depends on its spa-
tial coordinates in the grid as indicated by I and J and the
computing power of the individual processors as indicated
by partition_size, which is controlled by a bench-
mark function. Finally, the parent directive simply indi-
cates the spatial localization of the master processor.

An important consideration in the performance model
amc_perf described above is the nature of the bench-
mark function used as a baseline for the model defini-
tion. On the one hand, this function should be truly
representative of the underlying application. On the other
hand, the computations involved in such a function
should be small enough to give an accurate approxima-
tion of the processing power in a very short time (which
of course depends on the particular application). In this
work, we have adopted as benchmark the computation of
the MEI index for a 3 × 3 SE (as described in Figure 2),
which means that our benchmark function is step 2 of the
AMC algorithm described in the previous section. The
main reasons for this decision are as follows:

1. First and foremost, it should be noted that the pro-
posed AMC algorithm is based on repeatedly com-
puting step 2 (parameter Imax controls the total
number of iterations) and then assigns a classifi-
cation label based on the estimated MEI score to
each hyperspectral image pixel. Therefore, the use
of the core computations involved in step 2 are
truly representative of the algorithm.

2. Secondly, we emphasize that the computation of the
MEI index for a 3 × 3 SE prevents the inclusion into
the performance model of border-handling routines
such as those depicted in Figures 3 and 4, which are
only implemented for certain pixels and thus are not
fully representative of the algorithm’s performance.
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3. Thirdly, it should be noted that the full computa-
tion of a 3 × 3 structuring element prevents the
inclusion into the performance model of optimiza-
tion aspects, such as the possible presence in
cache memory of pixels belonging to a certain SE
neighborhood – centered, say, around a hyperspec-
tral image pixel f(x, y) – and which would also be
present in the SE neighborhoods centered around
pixels which are spatially adjacent to f(x, y) follow-
ing eight-neighbor connectivity (Plaza et al. 2006).

4. Finally, in order to properly model memory con-
siderations associated to hyperspectral imaging
applications, we assume in the computation of the
benchmark function that the amount of data allo-
cated to a single processor in the cluster is a full
AVIRIS hyperspectral cube with 614 × 512 pixels.
The amount of data produced by the instrument in
each pass is fixed (to 614 × 512 pixels with 224
spectral bands, each stored using 12 bits). Since
AVIRIS is the most advanced instrument of its
kind, we have adopted it as a highly representative
case study for the definition of the benchmark func-
tion. Therefore, our function assumes an unfavora-
ble scenario in which each processor is forced to
make use of reallocation/paging mechanisms due to
cache misses. This approach allows us to realisti-
cally model the relative speed of heterogeneous
processors by simply running a standardized core
computation in hyperspectral image processing.

With the above considerations in mind, the performance
model introduced for AMC can be regarded as generic
since it can be used to model any hyperspectral image
processing algorithm which makes use of a sliding-win-
dow approach to perform local computations in each
pixel’s neighborhood. In Section 4.2 we describe the com-
munication pattern adopted for this type of algorithm.

4.2 Communication Framework

Once a heterogeneous set of data partitions has been
obtained using the performance model described in the
previous subsection, a communication framework among
heterogeneous processors needs to be established. Fig-
ure 5 provides a graphical description of the communica-
tion framework adopted in our proposed application. As
Figure 5(a), shows, the processors are arranged in a vir-
tual grid which, in the considered example, comprises 16
heterogeneous processors allocated into a 4 × 4 processor
grid. The communication framework depicted in Figure 5
can be summarized by the following cases:

1. Processors located at the leftmost column of the
grid: these first send all their overlap borders to

processors at the column located immediately to
the right. Then, these processors wait for the
overlap borders that will be provided by proces-
sors at the column immediately to the right (see
Figure 5b).

2. Processors located at an intermediate column of
the grid: these first send all their overlap borders
to processors at the columns located immediately
to the left and to the right. Then, these processors
wait for the overlap borders that will be provided
by processors at the columns located immediately
to the left and to the right (see Figure 5c).

3. Processors located at the rightmost column of the
grid: these first wait for the overlap borders that will
be provided by processors at the column immedi-
ately to the left. Then, these processors send all their
overlap borders to processors at the column located
immediately to the left (see Figure 5d).

The heterogeneity in communication patterns addressed
above has been adopted on purpose in order to evaluate
the best possible pattern to reduce communication times.
From Figure 5, it can be seen that an alternative commu-
nication pattern may consist of having processors
located at even columns first send the overlap borders to
processors located at odd columns and then wait for the
overlap borders provided by processors at such columns,
while processors located at odd columns could first wait
for the overlap borders provided by processors located at
even columns and then send the overlap borders to proc-
essors located at even columns. Specifically, we have
adopted the proposed communication pattern above
bearing in mind the heterogeneous nature of the under-
lying hardware platform and the algorithm itself. The
idea is that each processor communicates its part of the
overlap border to the processors located at neighboring
columns. There are several reasons for the above deci-
sion:

• Firstly, the proposed communication framework simpli-
fies the parallel algorithm design and alleviates the need
to impose strong conditionals in the main loop of the
parallel code in order to estimate the size of each partic-
ular communication for each particular processor. For
instance, processor P9 in Figure 5(a) would have to send
its leftmost overlap border in chunks of different sizes to
processors P4, P5 and P6, respectively, and all these com-
munications should be based on the processing power of
each particular processor.

• Secondly, the proposed communication framework sim-
plifies and enhances dynamic reconfiguration during exe-
cution, e.g. by updating the processing power of each
processor using the HeteroMPI_Recon operation. This
way, the amount of data to be computed and/or commu-
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nicated at each heterogeneous partition can be dynami-
cally adjusted.

• Finally, although other alternatives are indeed possi-
ble, the proposed approach favors the balance of com-
munications and computations.

4.3 HeteroMPI-Based Implementation

Once a performance model for the parallel algorithm has
been defined, implementation using the standard Heter-
oMPI in Section 2 is quite straightforward (Valencia et
al. 2006), as shown by the main program below which

Fig. 5 Communication framework for the proposed AMC algorithm. (a) Assignment of data partitions to a set of heter-
ogeneous processors arranged in a 4 × 4 virtual processor grid; (b) Processors in leftmost column (column 0) first send
their overlap borders to processors in column 1 and then wait for the overlap borders of processors in that column; (c)
Processors in middle column (column 1) first send their overlap borders to processors in columns 0 and 2 and then wait
for the overlap borders of processors in those columns; (d) Processors in rightmost column (column 3) first wait for the
overlap borders of processors in column 2 and then send their overlap borders to processors in that column.
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represents the most interesting fragment of the Heter-
oMPI-based code of our parallel implementation.

As shown by the piece of code above, the HeteroMPI
runtime system is initialized using operation HeteroMPI_
Init. Then, operation HeteroMPI_Recon updates the
estimation of performances of processors. This is fol-
lowed by the creation of a group of processes using oper-
ation HeteroMPI_Group_create. The members of
this group then execute the parallel algorithm. At this
point, control is handed over to MPI. HeteroMPI and MPI
are interconnected by the operation HeteroMPI_Get_
comm, which returns an MPI communicator with commu-

nication group of MPI processes dened by gid. This is a
local operation not requiring inter-process communication.
The communicator is used to call standard MPI communi-
cation routines such as MPI_Isend and MPI_Waitall,
following the communication pattern described in Figure 5.
This is followed by freeing the group using operation
HeteroMPI_Group_free, and the finalization of the
HeteroMPI runtime system using operation Hetero-
MPI_Finalize.

To conclude this section, we emphasize that HeteroMPI
allows us to map our parallel application on a heterogene-
ous environment in accordance with the computational

main(int argc, char *argv[]){
HeteroMPI_Init(&argc,&argv);
if (HeteroMPI_Is_member(HMPI_COMM_WORLD_GROUP)){

HeteroMPI_Recon(benchmark, dims, 15, &output);
}
HeteroMPI_Group_create(&gid, &MPC_NetType_amc_perf, modelp, num_param);
if (HeteroMPI_Is_free()){

HeteroMPI_Group_create(&gid, &MPC_NetType_hpamc_rend, NULL, 0);
}
if (HeteroMPI_Is_free()){

HeteroMPI_Finalize(0);
}
if (HeteroMPI_Is_member(&gid)){

Tinit = MPI_Wtime();
Communicator = *(MPI_Comm *)HMPI_Get_comm(&gid);
if (&Communicator == NULL){

HeteroMPI_Finalize(0);
}
if (HeteroMPI_Group_coordof(&gid,&dim,&coord) == HMPI_SUCCESS){

HeteroMPI_Group_performances(&gid, speeds);
Read_image(name,image,lin,col,bands,data_type,init);
for (i=imax; i>1; i=i--){

AMC_algorithm(image,lin,col,bands,sizeofB,res);
if (coord[0] == 0) { //First column in the virtual grid
//MPI_Isend to send border to rightmost col
//MPI_Waitall to receive border from rightmost col
} else {
if (coord[0] == p-1) { //Last col in the grid
//MPI_Waitall to receive border from left col
//MPI_Isend to send border to left col
} else { //Any other case
//MPI_Isend to send border to left col
//MPI_Isend to send border to right col
//MPI_Waitall to receive border from left col
//MPI_Waitall to receive border from right col}

}
if (HeteroMPI_Is_member(&gid)){

free(image);}
HeteroMPI_Group_free(&gid);
HeteroMPI_Finalize(0);}

}
}
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resources available from every single node. As a result,
the amount of work in the AMC algorithm is distributed
unequally among heterogeneous processors to balance
load. In other words, a HeteroMPI application is like any
other MPI application and can be deployed to run in any
environment where MPI applications are used (Hetero-
MPI applications can be run in environments where
batch queuing and resource management systems are
used). However, HeteroMPI uses its own measurements
and performance models of the underlying system for
running parallel applications efficiently. In this regard, it
is important to note that the benchmark function used
to measure the processing power of the processors in
HeteroMPI_Recon is essential, mainly because a poor
estimation of the power and memory capacity of proces-
sors may result in load balancing problems (Plaza, Plaza,
and Valencia 2007). The effectiveness of our HeteroMPI-
based implementation is addressed via experiments in the
following section.

5 Experimental results

5.1 Parallel Computing Architectures

Two types of parallel computers have been used in this
work for experimental assessment: heterogeneous and
homogeneous. Table 1 shows the specifications of proc-
essors in a heterogeneous cluster composed of 11 Linux/
SunOS workstations (15 processors) at the Heterogene-
ous Computing Laboratory (HCL), University College
Dublin (UCD). From now on, we will refer to this plat-
form as HCL-1. The processors in Table 1 are intercon-
nected via 100 Mbit Ethernet communication network
with a switch enabling parallel communications among
the processors. Although this is a simple configuration, it
is also a quite typical and realistic one as well. For illus-

trative purposes, Table 1 also reports the relative speeds
of the heterogeneous processors in the cluster.

Another heterogeneous cluster designated by HCL-2
was also used in experiments (see Table 2). It is made up
of 16 nodes from Dell, IBM, and HP, with Celeron, Pen-
tium 4, Xeon, and AMD processors ranging in speeds from
1.8 to 3.6 GHz. Accordingly, architectures and parame-
ters such as Cache and Main Memory all vary. Two
machines have SCSI hard drives while the rest have SATA.
Operating Systems used are Fedora Core 4 (11 nodes)
and Debian (5). The network hardware consists of two
Cisco 24+4 port gigabit switches. Each node has two
gigabit Ethernet ports and the bandwidth of each port can
be configured to meet any value between 8 Kb/s and 1 Gb/s
(see http://hcl.ucd.ie/Hardware for additional details).
Table 2 also reports the relative speed of each processor
measured with the benchmark function (which took only
0.036 seconds to be executed in all cases).

Finally, in order to test the scalability of the proposed
parallel algorithm on a larger-scale parallel platform, we
have also experimented with Thunderhead, a 568-proces-
sor Beowulf cluster located at NASA’s Goddard Space
Flight Center (see http://thunderhead.gsfc.nasa.gov for
additional details). Thunderhead can be seen as an evolu-
tion of the HIVE (Highly Parallel Virtual Environment)
project (Dorband et al. 2003), started in 1997 to build a
homogeneous commodity cluster to be used in a wide
range of scientific applications. The system is composed
of 268 dual 2.4 GHz Intel Xeon nodes, each with 1 GB of
main memory and 80 GB of disk space. The theoretical
peak performance of the system is 2.5728 Tflops.

5.2 Hyperspectral Image Data

Figure 6(a) shows the Indian Pines AVIRIS hyperspectral
data set considered in experiments. The scene was col-

Table 1
Specifications of heterogeneous processors in HCL-1 heterogeneous cluster.

Processor
number

Name
(Processors)

Architecture 
description

CPU
(MHz)

Memory
(MB)

Cache
(KB)

Relative 
speed

0,1
2,3
4,5
6,7

Pg1cluster01(2)
Pg1cluster02(2)
Pg1cluster03(2)
Pg1cluster04(2)

Linux 2.4.18-10smp
Intel(R) XEON(TM)

1977 1024 512 70

8
9
10
11
12
13
14

csultra01(1)
csultra02(1)
csultra03(1)
csultra05(1)
csultra06(1)
csultra07(1)
csultra08(1)

SunOS 5.8
sun4u sparc
SUNW,
Ultra-5_10

440 512 2048 30
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lected by the AVIRIS sensor, and is characterized by very
high spectral resolution (224 narrow spectral bands in the
range 0.4–2.5 µm) and moderate spatial resolution (614
samples, 512 lines and 20 m pixels). It was gathered over
the Indian Pines test site in Northwestern Indiana, a
mixed agricultural/forested area, early in the growing
season. As shown by Figure 6(a), the data set represents a
very challenging classification problem. The primary
crops of the area, mainly corn and soybeans, were very
early in their growth cycle with only about 5% canopy
cover. Discriminating between the major crops under
these circumstances can be very difficult, a fact that has
made this scene a universal and extensively used bench-
mark to validate classification accuracy of hyperspectral
imaging algorithms. Fortunately, extensive ground-truth
(reference) information is available for the area. Figure
6(b) shows a ground-truth map, given in the form of a
class assignment for each labeled pixel with 30 mutually
exclusive ground-truth classes.

5.3 Assessment of the Parallel Algorithm

This section develops an extensive evaluation of the pro-
posed heterogeneous parallel AMC algorithm from the

viewpoint of classification accuracy and load balance,
using the two heterogeneous clusters at HCL/UCD. The
section concludes by analyzing the scalability of the
algorithm on the Thunderhead Beowulf cluster at NASA.

5.3.1 Study of classification accuracy The parallel
AMC algorithm was applied to the AVIRIS Indian Pines
scene in Figure 6 using a fixed, 3 × 3-pixel SE and seven dif-
ferent values for parameter Imax, which defines the number
of iterations executed by the algorithm (ranging from 1 to
7 in experiments). Table 3 shows the classification accu-
racies (in percentage of correctly classified pixels) obtained
using the seven considered numbers of iterations, along
with the single-processor execution times (in minutes)
measured in a Linux workstation with Intel Xeon processor
at 2 GHz, 1 GB of RAM and 512 KB of cache.

As shown by Table 3, the AMC algorithm was able to
achieve very high classification accuracies, especially for
Imax = 7 (above 90%), but the measured processing times
were extremely high and generally unacceptable in
remote sensing applications in which a response in (near)
real-time is often required.

Table 2
Specifications of heterogeneous processors in HCL-2 heterogeneous cluster.

Proc.
no.

Model
description

Processor
description

Operating
system

CPU
(GHz)

Mem
(MB)

Cache
(KB)

HDD
1

HDD
2

Rel. 
speed

0,1 Dell Poweredge 
SC1425

Intel 
Xeon

Fedora 
Core 4

3.6 256 2048 240 GB 
SCSI

80 GB 
SCSI

7.93

2–7 Dell Poweredge 750 Intel 
Xeon

Fedora 
Core 4

3.4 1024 1024 80 GB 
SATA

N/A 7.20

8 IBM E-server 326 AMD 
Opteron

Debian 1.8 1024 1024 80 GB 
SATA

N/A 2.75

9 IBM E-server 326 AMD 
Opteron

Fedora 
Core 4

1.8 1024 1024 80 GB 
SATA

N/A 2.75

10 IBM X-Series 306 Intel 
Pentium 4

Debian 3.2 512 1024 80 GB 
SATA

N/A 6.13

11 HP Proliant DL 320 G3 Intel 
Pentium 4

Fedora 
Core 4

3.4 512 1024 80 GB 
SATA

N/A 6.93

12 HP Proliant DL 320 G3 Intel 
Celeron

Fedora 
Core 4

2.9 1024 256 80 GB 
SATA

N/A 3.40

13 HP Proliant DL 140 G2 Intel 
Xeon

Debian 3.4 1024 1024 80 GB 
SATA

N/A 7.73

14 HP Proliant DL 140 G2 Intel 
Xeon

Debian 2.8 1024 1024 80 GB 
SATA

N/A 3.26

15 HP Proliant DL 140 G2 Intel 
Xeon

Debian 3.6 1024 2048 80 GB 
SATA

N/A 8.60
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5.3.2 Performance evaluation on the HCL-1 hetero-
geneous cluster. To investigate the parallel properties of
the considered HeteroMPI-based algorithm, it was first
implemented on the HCL-1 cluster at UCD (see Table 1).
Before reporting the timing results, we emphasize that
the relative speeds of the heterogeneous processors were
first estimated for different problem sizes (i.e. number of
iterations ranging from Imax = 1 to Imax = 7) by incorporat-

ing the core computations of the morphological algo-
rithm (as defined by our adopted benchmark function)
to the amc_perf performance model. In order for such
estimation to be accurate, it was necessary to include
memory management considerations in the benchmark
function to avoid disregarding important aspects such as
virtual memory paging and cache considerations. As men-
tioned above, in our particular implementation, we used an

Fig. 6 (a) Spectral band at 587 nm wavelength of an AVIRIS scene comprising agricultural and forest features at
Indian Pines, Indiana. (b) Ground-truth map with 30 mutually exclusive classes.

Table 3
Classification accuracies and single-processor times for the AMC algorithm.

Iterations 1 2 3 4 5 6 7

Accuracy (%) 75.23 78.43 81.94 83.99 87.95 88.79 90.02

Time (min) 9.54 19.56 27.82 37.06 46.91 54.68 64.79
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approach which assumes that each heterogeneous proces-
sor has memory capacity sufficient to work with the entire
hyperspectral data set locally. Based on previous work
(Plaza et al. 2006), this is a reasonable assumption in most
hyperspectral imaging scenarios. Further, this provides us
with a means to effectively model memory hierarchy-
related parameters by simulating a largely unfavorable
scenario in which each processor is forced to make use of
reallocation/paging mechanisms due to cache misses.

With the above assumptions in mind, Table 4 shows
the execution times (in seconds) of the HeteroMPI-based
parallel morphological algorithm in each of the proces-
sors of the heterogeneous cluster. As shown by Table 4,
the heterogeneous algorithm was able to adapt efficiently
to the heterogeneous computing environment where it
was run. In particular, one can see that the heterogeneous
algorithm executed on HCL-1 was always about eleven

times faster than the equivalent sequential algorithm exe-
cuted on a Linux workstation which is almost identical to
the csultra nodes in the considered heterogeneous cluster
(see Table 1). Most importantly, we experimentally tested
that the mean processing times in the eight Pg1cluster
processors were almost identical to the mean processing
times in the seven csultra nodes (for all considered prob-
lem sizes). This fact reveals that the slight differences in
the execution times reported in Table 4 are due to the
intrinsic characteristics of the parallel problem, and not
to platform heterogeneity which is accurately modeled
by HeteroMPI.

In order to measure load balance, Table 5 shows the
imbalance scores achieved by the parallel heterogene-
ous algorithm on the considered HNOC. The imbalance
is defined as D = Rmax /Rmin, where Rmax and Rmin are the
maxima and minima processor run times, respectively.

Table 4
Execution times (in seconds) of the HeteroMPI-based algorithm in each of the heterogeneous 
processors of HCL-1 for different numbers of iterations.

Iterations 1 2 3 4 5 6 7

0 46.86 91.25 140.69 186.46 226.06 285.51 337.49

1 47.05 90.74 141.49 183.66 228.06 288.77 328.88

2 47.32 92.15 138.23 187.38 227.75 287.96 325.31

3 47.09 92.96 134.46 180.55 226.68 274.10 317.73

4 50.01 95.57 149.55 199.20 237.06 300.94 340.53

5 50.59 94.95 148.70 197.76 235.17 309.22 345.14

6 48.32 99.48 139.15 188.48 246.55 291.75 329.67

7 48.26 91.82 143.86 191.09 246.61 294.96 333.94

8 48.90 101.28 141.44 188.25 250.61 290.83 322.06

9 50.48 98.63 152.04 200.33 238.35 304.19 358.36

10 51.07 98.48 154.39 197.50 238.12 308.83 358.06

11 46.43 92.69 139.80 180.44 227.03 274.77 321.50

12 47.12 93.24 141.40 183.85 229.87 282.43 328.16

13 46.54 92.35 137.60 184.44 231.65 288.52 315.20

14 46.85 94.47 137.70 186.32 235.26 288.67 326.25

Table 5
Load balancing rates for the HeteroMPI-based algorithm executed on HCL-1 with different numbers 
of iterations.

Iterations 1 2 3 4 5 6 7

Rmax 46.43 90.74 134.46 180.44 226.06 309.22 358.36

Rmin 51.07 101.28 154.39 200.33 250.61 274.10 315.20

D 1.09 1.11 1.14 1.11 1.10 1.12 1.13
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Therefore, perfect balance is achieved when D = 1. The
load balancing rates in Table 5 are superior to those
reported in (Plaza et al. 2006) for standard, spectral-based
hyperspectral analysis algorithms executed in homogene-
ous computing platforms.

Before concluding this subsection, we would like to
emphasize the importance of incorporating considera-
tions about memory capacity of the different nodes in the
benchmark function used to define the performance model

amc_perf. For illustrative purposes, Figure 7 shows
the values of Rmax, Rmin and D obtained on the considered
HNOC for a parallel version of the proposed algorithm in
which the benchmark function only modeled the process-
ing power of heterogeneous processors and did not take
into account memory-related parameters. The imbalance
scores are also reported for completeness. Overall, Fig-
ure 7 shows that disregarding memory considerations in
the HeteroMPI performance model results in higher
imbalance scores.

5.3.3 Performance evaluation on the HCL-2 hetero-
geneous cluster. The proposed parallel heterogeneous
algorithm has also been implemented in the HCL-2 het-
erogeneous cluster, which provides a more heterogene-
ous environment than HCL-1 for experiments. Table 6
reports the execution times (including both computations
and communications) measured at each heterogeneous
processor of the HCL-2 cluster after running the Heter-
oMPI-based version of the AMC algorithm with Imax = 1,
and considering an increasing number of spectral bands
for the 350 × 350-pixel scene (ranging from 20 bands to
the maximum number of available bands in the scene,

Fig. 7 Load-balancing rates for a parallel version of
the algorithm executed on HCL-1 without memory con-
siderations.

Table 6
Processing times (in seconds) measured at each processor of the HCL-2 cluster for an execution of 
the parallel AMC algorithm with Imax = 1 and different numbers of spectral bands in the considered 
AVIRIS hyperspectral scene.

Number of spectral bands in the hyperspectral image

Processor 20 40 60 80 100 120 140 160 180

0 3.41 5.03 6.93 9.69 11.49 14.02 16.73 19.09 21.45

1 3.46 5.32 7.05 9.16 13.33 14.02 16.74 19.09 21.46

2 3.25 5.03 6.92 9.12 13.30 13.98 16.67 19.03 21.39

3 3.27 5.10 7.17 9.34 13.34 14.03 16.74 19.11 21.47

4 3.45 5.27 7.14 9.67 13.29 13.98 16.69 19.04 21.41

5 3.45 5.31 7.16 9.69 13.32 14.01 16.72 19.10 21.46

6 3.44 5.28 7.15 9.67 13.31 13.99 16.70 19.05 21.41

7 3.46 5.32 7.17 9.70 13.34 14.03 16.74 19.11 21.47

8 3.26 5.02 6.91 9.14 13.32 13.99 16.72 19.08 21.42

9 3.24 5.01 6.91 9.12 13.29 13.97 16.67 19.02 21.39

10 3.26 5.04 6.93 9.13 13.31 14.00 16.70 19.07 21.44

11 3.24 4.98 6.90 9.10 13.28 13.95 16.65 19.00 21.37

12 2.08 2.48 2.81 3.24 3.67 12.72 16.71 19.06 21.40

13 2.09 2.64 2.99 3.35 3.67 12.71 16.68 19.04 21.42

14 2.10 2.47 2.82 3.26 3.68 12.72 16.70 19.07 21.44

15 2.09 2.47 2.81 3.24 3.66 12.71 16.68 19.05 21.40
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i.e., 180). In this example, we have considered the mini-
mum possible number of algorithm iterations in order to
reduce the ratio of computations to communications as
much as possible, and thus be able to evaluate the impact
of the communication pattern adopted for the algorithm.

As shown by Table 6, the execution times reported for
processors P12, P13, P14 and P15 are lower than those meas-
ured for processors P0 to P11 when the number of spectral
bands is 120 or below. This is partly because these proc-
essors, located at the rightmost column of a 4 × 4 virtual
processor grid, exhibit a different communication pattern
(as reported in Figure 5), i.e. these processors first wait
for the overlap borders to be provided by processors at
the column immediately to the left and then send their
overlap borders, as opposed to processors P0 to P11 which
first send their overlap borders and then wait for the over-
lap borders to be provided by neighboring processors.
Since at some point their neighbors will also be sending (at
the same time), processors P12, P13, P14 and P15 cannot start
receiving until one or several of them have finished send-
ing their messages. Thus, a sequential pattern is introduced
in communications leading to an overall increase in the
measured time as shown in Table 6.

Interestingly, when the number of bands is 120 or
higher, the execution times reported for processors P12,
P13, P14 and P15 increase significantly and a linearity of the
execution times is observed. In order to interpret this
phenomenon, we first roughly estimate the average size
of messages for our 350 × 350-pixel scene with 120 spec-
tral bands as (350/4 overlap border pixels × 120 bands ×
16 bits per value = 21,000 bytes) – the number of pixels
in a column of the image is roughly divided by 4 to
reflect our arrangement of processors into a 4 × 4 virtual
grid. As shown by Lastovetsky and O’Flynn (2007), the
probability of congestion measured for the HCL-2 cluster
for a message size of 21 KB is 100%, which explains the
escalation observed for the processing times measured
for processors P12, P13, P14 and P15 in Table 6 when the
number of spectral bands goes from 100 to 120, as well
as the linear behavior observed for all processors in
HCL-2 when the number of bands is above 120.

It should also be noted that the processing of hyper-
spectral images using the AMC algorithm and Imax = 1 for
only 120 out of 180 spectral bands represents a moder-
ately interesting case study in hyperspectral imaging
since the AMC algorithm has been shown to provide bet-
ter classification results as the number of algorithm itera-
tions is increased (see Table 3). In real applications, it is
often desirable to use the full spectral information availa-
ble in the hyperspectral data in order to be able to sepa-
rate the classes more effectively, thus improving the final
classification results. In this case, the average size of
messages for our 350 × 350 pixel scene with 180 spectral
bands can be roughly estimated as (350/4 overlap border

pixels × 180 bands × 16 bits per value = 31,500 bytes).
Therefore, we are aware that experimental results reported
in this paper can be further improved in future develop-
ments since the average size of messages used to commu-
nicate the overlap borders in our application is located
in the congestion region described by Lastovetsky and
O’Flynn (2007) and also in the range of message sizes
with high probability of congestion. However, we believe
that our results are encouraging since the achieved load
balance (from the viewpoint of both communications and
computations) is very good, in particular, for a large
number of spectral bands.

In order to further substantiate the above remark, we
need to analyze the performance of the proposed parallel
AMC algorithm using the full spectral information avail-
able and different numbers of iterations. For that purpose,
Table 7 reports the processing times (measured in sec-
onds) at each processor of the HCL-2 cluster using
1 < Imax ≤ 7 iterations and all available spectral bands (180)
in the considered AVIRIS Indian Pines scene. As shown
by Table 7, the processing times reported for the 16 proc-
essors are well balanced in all cases, as was also observed
in experiments in the HCL-1 cluster (see Tables 4 and 5).
It should be noted that both HCL-1 and HCL-2 are com-
posed of a limited number of processors and, hence,
experiments on parallel platforms with a higher number
of processing units are highly desirable.

5.3.4 Scalability analysis on the Thunderhead Beowulf
cluster. To analyze scalability issues in a larger comput-
ing platform, we provide parallel performance results of
a homogeneous version of the proposed AMC algorithm
using NASA’s Thunderhead Beowulf cluster as the base-
line computing architecture (Plaza et al. 2006). Although
results in this subsection are not indicative of the effi-
ciency of the proposed heterogeneous parallel implemen-
tation, they provide a preliminary assessment of the
scalability of a homogeneous parallel version of the AMC
algorithm in a fully homogeneous cluster. It should be
noted that the homogeneous algorithm was derived using
a standard MPI implementation (Plaza et al. 2006).

Figure 8 plots the speedups achieved by AMC (using
different values of Imax) as a function of the number of
processors on Thunderhead. For illustrative purposes, the
performance of two additional parallel hyperspectral
algorithms, S-PCT (Achalakul and Taylor 2003) and D-
ISODATA (Dhodhi et al. 1999), is also reported. Results
in Figure 8 reveal that the performance drop from linear
speedup in both S-PCT and D-ISODATA algorithms
increases significantly as the number of processors
increase. A similar effect is also observed for the proposed
AMC parallel algorithm. This comes as no surprise since
we already expected that our application would encoun-
ter performance problems in large-scale platforms when
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the number of processors is increased, a situation in which
the partition sizes decrease significantly. If for a small
number of processors the partition size fits into the area
of large messages, then an increase in the number of
processors will quickly move it into the area of medium-
sized messages, i.e. M1 < M ≤ M2. It should be noted
that M1 is a threshold below which the execution time is
always linearly proportional to the message size, while
M2 is a threshold above which a return to a deterministic
linear behavior is observed in the execution time after a
non-linear and non-deterministic behavior in between the
two thresholds (Lastovetsky and O’Flynn 2007). This may
result in a significant increase in the execution times of the
single MPI_Gather operation used to develop our
MPI-based parallel code for the homogeneous platform.
Although fine-tuning of the proposed MPI-based parallel
algorithm for efficient performance in large-scale com-
modity clusters is out of the scope of this paper, we can
address this issue by redesigning the parallel algorithm as
follows. If we replace the single MPI_Gather gather-
ing medium-sized messages by an equivalent sequence
of MPI_Gather operations, each gathering messages
with a size that fits the range of small messages, then
each medium-sized partition would be communicated as

a sequence of small-sized sub-partitions. In order to
accomplish the above-mentioned goal, we should prop-
erly calculate the number of sub-partitions m of a parti-
tion of the medium size M so that (M/m) < M1 and M/
(m – 1) > M1.

On the other hand, Figure 8 also reveals that, although
the proposed AMC algorithm introduces inter-processor
communications expected to slow down the computation
a priori, it is important to note that the measured speed-
ups tend to be higher for large values of Imax, a fact that
reveals that the proposed scheme scales better as the size
of the problem increases. As a result, we can conclude
that the dominant issue in the proposed morphological
algorithm is problem size, which makes the algorithm
very appealing for high-dimensional imaging applica-
tions. Although for a high number of nodes the speedup
graphs flatten out a little, due to the issues discussed
above, they clearly outperform those obtained for the
other tested parallel algorithms.

For comparative purposes, Table 8 reports the algo-
rithm processing times of the parallel homogeneous algo-
rithms on Thunderhead. It can be seen in the table that
the single-processor implementations of both S-PCT and
D-ISODATA require much more computation time than

Table 7
Processing times (in seconds) measured at each processor of the HCL-2 cluster for an execution of 
the parallel AMC algorithm with different numbers of iterations (Imax) and the full spectral 
information available (180 spectral bands) in the considered AVIRIS hyperspectral scene.

Number of iterations

Processor 2 3 4 5 6 7

0 42.53 63.98 84.84 107.74 130.67 145.63

1 42.59 63.88 84.80 107.68 130.71 145.64

2 42.58 63.83 84.99 107.67 130.65 145.65

3 42.56 63.77 84.74 106.42 130.72 145.64

4 42.56 62.86 84.80 107.68 130.72 145.56

5 42.49 63.84 84.85 107.74 130.59 145.58

6 42.61 63.81 84.77 107.73 130.66 144.39

7 42.60 63.97 84.95 107.74 130.67 145.56

8 42.54 63.81 83.88 107.67 130.65 145.60

9 42.52 63.82 84.79 107.70 128.88 145.52

10 42.60 63.80 84.78 107.69 130.71 145.63

11 42.53 63.84 84.84 107.71 130.64 145.61

12 42.61 63.80 84.77 107.66 130.64 145.59

13 42.52 63.88 84.77 107.69 130.63 145.59

14 42.59 63.83 84.78 107.63 130.66 145.58

15 42.59 63.88 84.95 107.73 130.70 145.58
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any of the four variations of AMC tested in experiments.
This comes as no surprise, since AMC is a windowing
type algorithm as opposed to the other tested algorithms

which involve internal synchronization steps and addi-
tional communications. Interestingly, the table also reveals
that the utilization of a high number of processors on
Thunderhead allows near real-time processing of the
considered AVIRIS scene. Since the cross-track scan line
in AVIRIS is quite fast (8.3 ms), a full image cube frame
with 512 × 614 pixels would have to be processed in
about 5 s in order to fully achieve real-time. Although we
closely approach this figure using the AMC algorithm
with Imax = 1, further work is required in order to achieve
similar results with a higher number of algorithm itera-
tions, thus leading to improved classification results.

Finally, Table 9 reports the load-balancing scores for
the best case in the sense of higher speedups (Imax = 7) of
our MPI-based implementation of the AMC algorithm in
the homogeneous cluster. As can be seen after comparing
results in Tables 5 and 7 with those in Table 9, the load-
balancing results obtained in the homogeneous platform
are not better than those reported for the two considered
heterogeneous platforms, revealing that our Heter-
oMPI-based implementation competes (in terms of load
balance and parallel efficiency) with the equivalent
homogeneous implementation of the same algorithm.
For illustrative purposes, the load-balancing scores
achieved by both S-PCT and D-ISODATA are also
reported in Table 9.

Table 8
Execution times (seconds) for parallel algorithms using different numbers of processors on 
Thunderhead.

No. of CPUs S-PCT D-ISODATA AMC (Imax = 1) AMC (Imax = 3) AMC (Imax = 5) AMC (Imax = 7)

1 41,239 49,912 1523 3265 4876 7028

4 13,521 21,330 562 1107 1563 2176

16 4314 5907 139 290 369 494

36 1759 2428 55 112 156 210

64 884 1299 29 60 86 121

100 572 865 19 39 56 79

144 392 630 13 27 39 56

196 314 444 10 21 30 42

256 265 386 6 16 22 29

Fig. 8 Scalability of the proposed AMC and other paral-
lel hyperspectral algorithms on NASA’s Thunderhead
cluster.

Table 9
Load-balancing scores for the MPI-based S-PCT, D-ISODATA and AMC (Imax = 7) on Thunderhead.

No. of CPUs 4 16 36 64 100 144 196 256

S-PCT 1.08 1.05 1.05 1.04 1.03 1.04 1.04 1.03

D-ISODATA 1.13 1.08 1.10 1.04 1.07 1.05 1.07 1.06

AMC 1.04 1.02 1.04 1.03 1.01 1.02 1.03 1.01
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Summarizing, experimental results in our study reveal
that heterogeneous algorithms offer an attractive and effi-
cient solution to the problem of extracting useful informa-
tion and knowledge from hyperspectral image data set in
distributed fashion. Contrary to common perception that
spatial/spectral information extraction algorithms are too
computationally demanding for practical use, our results
demonstrate that such combined approaches may indeed
be very appealing for parallel design and implementation,
not only because of the window-based nature of such
algorithms, but also because their communication pat-
terns can be effectively described via robust communica-
tion models. Our experimental results also revealed
several important algorithmic aspects that may be of great
importance for adapting existing hyperspectral imaging
techniques to heterogeneous platforms, which currently
represent a cost-effective parallel computing platform for
many scientific and engineering applications. We also
feel that the applicability of the proposed parallel hetero-
geneous method may extend beyond the domain of hyper-
spectral image analysis. This is particularly true for the
domains of signal processing and linear algebra applica-
tions, which include similar patterns of communication
and calculation.

6 Conclusions and Future Lines of 
Research

The aim of this paper has been the examination of paral-
lel strategies for hyperspectral analysis on heterogeneous
platforms, with the purpose of evaluating the possibility
of obtaining results in valid response times and with ade-
quate reliability in heterogeneous computing environ-
ments where these techniques are intended to be applied.
In particular, this paper provided a detailed discussion of
the effects that platform heterogeneity has on degrading
parallel performance of hyperspectral analysis algo-
rithms. To achieve the above goals, we have resorted to
HeteroMPI (a recently proposed extension of MPI for
programming high-performance computations on hetero-
geneous platforms) to develop a heterogeneous version
of a spatial/spectral morphological classification algo-
rithm, selected as a case study throughout the paper.
Another contribution of the paper has been the consid-
eration of a collective communication model in order to
evaluate the communication framework adopted by the
proposed parallel algorithm.

An interesting finding of experiments in this paper is
that spatial/spectral heterogeneous approaches offer a sur-
prisingly simple, yet effective and highly scalable solution
for hyperspectral image classification. Despite the fact
that conventional hyperspectral imaging algorithms do
not take into account the spatial information explicitly in
the computations (which has traditionally been perceived

as an advantage for the development of parallel imple-
mentations), experimental results in this work suggest
that the proposed HeteroMPI-based parallel algorithm is
effective in terms of workload distribution, load-balanc-
ing rates, required inter-processor communications, and
execution times. Our experimental results also revealed
important algorithmic aspects that may be of great impor-
tance for designing and adapting existing high-perform-
ance hyperspectral imaging applications (mostly developed
in the context of homogeneous computing platforms) to
fully heterogeneous computing environments, which are
currently the tool of choice in many remote sensing and
Earth exploration missions. Combining this readily avail-
able computational power with latest-generation sensor
and parallel processing technology may introduce sub-
stantial changes in the systems currently used by NASA
and other agencies for exploiting the sheer volume of
Earth and planetary remotely sensed data collected on a
daily basis.

Our future work will be mainly directed towards the
integration of the collective communication model
described by Lastovetsky and O’Flynn (2007) with our
proposed HeteroMPI-based code (i.e. using the model to
redesign our parallel implementation). We will also pursue
the implementation of parallel hyperspectral imaging
algorithms on other massively parallel and distributed
computing architectures, including grid computing envi-
ronments. Finally, we are also working towards specialized
hardware implementations of hyperspectral imaging algo-
rithms on field programmable gate arrays (FPGAs) and
graphics processing units (GPUs), which may allow us to
fully accomplish the goal of real-time processing of hyper-
spectral imagery, with potential applications in onboard
hyperspectral data compression and analysis.
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