
Parallel Computing on Heterogeneous Networks:
Challenges and Responses

Alexey Lastovetsky

Department of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland

E-mail: Alexey.Lastovetsky@ucd.ie

Abstract

In the paper, we analyse challenges associated with parallel programming for common
networks of computers (NoCs) that are, unlike dedicated parallel computer systems,
inherently heterogeneous and unreliable. This analysis results in description of main
features of an ideal parallel program for NoCs. We also outline some recent parallel
programming tools, which try and respond to some of the challenges.

1. Introduction

Local networks of computers (NoCs) are the most common and available parallel
architecture. Nowadays not only big businesses and organisations but also practically any
medium or small one has several computers interconnected in a local network.

In the most general case, a local network of computers consists of PCs, workstations,
shared memory multiprocessor (SMP) servers, and even distributed memory
multiprocessor supercomputers and clusters interconnected via mixed network
equipment.

At a first glance, this architecture is very similar to the distributed memory
multiprocessor (also know as MPP) architecture. Like the latter, it provides a number of
processors not sharing global main memory and interconnected via a communication
network. Therefore, the most natural model of program for NoCs is also a set of parallel
processes, each running on a separate processor and using message passing to
communicate with the others. That is, message passing is the basic programming model
for this architecture.

Due to the similarity of MPPs and NoCs, it might be expected that NoCs be as widely
used for high performance parallel computing as MPPs. In reality, NoCs are practically
not used for parallel computing. The main reason, why the huge performance potential of
millions NoCs around the world is so poorly utilised, is that parallel programming for
NoCs is much more difficult than parallel programming for MPPs.

The point is that unlike MPPs, which are designed and manufactured specifically for
high performance parallel computing, a typical NoC is a naturally developed computer
system. A NoC is a general-purpose computer system, which is developed incrementally,
for a relatively long time. As a result, NoCs are not as nicely regular or balanced for high
performance computing as MPPs. On the contrary, irregularity, heterogeneity, and
instability are their inherent features differentiating the architecture from the MPP
architecture. The very features make parallel programming for NoCs so difficult and
challenging.

There are three main sources of the difficulties. The first one is the heterogeneity of
processors. Generally speaking, in a NoC, different processors are of the different

architecture.

The second source is the communication network itself, which is typically not
designed for high performance parallel computing.

The third source is the multi-user nature of NoCs. A NoC is not a strongly centralized
computer system. It consists of relatively autonomous computers, each of which may be
used and administered independently by its users. In NoCs, different components are not
as strongly integrated and controlled as in MPPs.

In the paper we discuss the sources of difficulties and analyse programming
challenges coming from each of the sources. This analysis results in description of main
features of an ideal parallel program for NoCs. We also outline some recent parallel
programming tools, which try and respond to some of the challenges.

2. Heterogeneity of processors

2.1. Different processor speeds

An immediate implication from the fact that a NoC uses processors of different
architectures is that the processors run at different speeds. Let us see what happens when
a parallel application, which provides a good performance while running on
homogeneous MPPs, runs on the cluster of heterogeneous processors.

A good parallel application for MPPs tries to evenly distribute computations over
available processors. This very distribution ensures the maximal speedup on MPPs,
which consist of identical processors. On the cluster of processors running at different
speeds, faster processors will quickly perform their part of computations and wait for
slower ones at points of synchronisation. Therefore, the total time of computations will
be determined by the time elapsed on the slowest processor. In other words, when
executing parallel applications, which evenly distribute computations among available
processors, the heterogeneous cluster is equivalent to a homogeneous cluster that is
composed of the same number but the slowest processors.

The following simple experiment, which has been really carried out, corroborates the
statement. Two subnetworks of the same local network were used, each consisting of
four Sun workstations. The first subnetwork included identical workstations of the same
model, and was thus homogeneous. The second one included workstations of three
different models. Their relative speeds demonstrated while executing a LAPACK [1]
Cholesky factorisation routine were 1.9, 2.8, 2.8, and 7.1. As the slowest workstation
(relative performance 1.9) was shared by both clusters, the total power of the
heterogeneous cluster was almost twice that of the homogeneous one.

It might be expected that a parallel ScaLAPACK [2] Cholesky solver be executed on
the more powerful cluster almost twice as fast as on the weaker one. But in reality, it ran
practically at the same speed (~2% speedup for a 18001800× dense matrix).

Thus, a good parallel application for a NoC must distribute computations unevenly
taking into account the difference in processor speed. The faster processor is, the more
computations it must perform. Ideally, the volume of computation performed by a
processor should be proportional to its speed.

X =

A B C

Figure 1. Matrix-matrix multiplication with matrices A, B, and C unevenly
partitioned in one dimension. The area of the slice mapped to each processor
is proportional to its speed. The slices mapped onto a single processor are
shaded black. During execution, this processor requires all of matrix A (shown
shaded grey).

For example, a simple parallel algorithm implementing matrix operation BAC ×=
on a p-processor heterogeneous cluster, where A, B are dense square nn× matrices, can
be summarized as follows:

• Each element ijc in C is computed as ∑
−

=

×=
1

0

n

k
kjikij bac .

• The A, B, and C matrices are identically partitioned into p vertical slices. There is
one-to-one mapping between these slices and the processors. Each processor is
responsible for computing its C slice.

• Because all C elements require the same amount of arithmetic operations, each
processor executes an amount of work proportional to the number of elements that
are allocated to it, hence, proportional to the area of its slice. Therefore, to balance
the load of the processors, the area of the slice mapped to each processor is
proportional to its speed (see Fig. 1).

• In order to compute elements of its C slice each processor requires all elements of
the A matrix. Therefore, during the execution of the algorithm, each processor
receives from p-1 other processors all elements of their slices (shown grey in Fig.
1).

This heterogeneous parallel algorithm cannot be implemented in HPF 1.1 [3], since
the latter provides no way to specify a heterogeneous distribution of arrays across
abstract processors. But HPF 2.0 [4] addresses the problem by extending BLOCK
distribution with the ability to explicitly specify the size of each individual block
(GEN_BLOCK distribution).

For example, the following HPF program implements the above parallel algorithm to
multiply two dense square 10001000× matrices on a 4-processor heterogeneous cluster,
processors of which have relative speeds 2, 3, 5, and 10:

PROGRAM HETEROGENEOUS
INTEGER, DIMENSION(4), PARAMETER:: M=(/100, 150, 250, 500/)
REAL, DIMENSION(1000,1000):: A, B, C

!HPF$ PROCESSORS p(4)
!HPF$ DISTRIBUTE (*, GEN_BLOCK(M)) ONTO p:: A, B, C
!HPF$ INDEPENDENT

DO J=1,1000
!HPF$ INDEPENDENT

DO I=1,1000
A(I,J)=1.0
B(I,J)=2.0

END DO
 END DO
!HPF$ INDEPENDENT

DO J=1,1000
!HPF$ INDEPENDENT

DO I=1,1000
C(I,J)=0.0
DO K=1,1000

C(I,J)=C(I,J)+A(I,K)*B(K,J)
 END DO

END DO
END DO
END

In this program, the “generalized” block distribution, GEN_BLOCK, is used to map
contiguous segments of arrays A, B, and C of unequal sizes onto processors. The sizes of
the segments are specified by values of the user-defined integer mapping array M, one
value per target processor of the mapping. That is, the i-th element of the mapping array
specifies the size of the block to be stored on the i-th processor of the target processor
arrangement p. The ‘*’ in the DISTRIBUTE directive specifies that array A, B, and C are
not to be distributed along the first axis; thus an entire column is to be distributed as one
object. So, array elements A(:,1:100) , B(:,1:100) , and C(:,1:100) are
mapped on p(1) , A(:,101:250) , B(:,101:250) , and C(:,101:250) are
mapped on p(2) , A(:,251:500) , B(:,251:500) , and C(:,251:500) are
mapped on p(3) , and A(:,501:1000) , B(:,501:1000) , and C(:,501:1000)
are mapped on p(4) .

That distribution of matrices A, B, and C across processors ensures that the area of the
vertical slice mapped to each processor is proportional to the speed of the processor. Note
that this is responsibility of the programmer to explicitly specify the exact distribution of
the arrays across processors. The specification is based on the knowledge of both the
parallel algorithm and the executing heterogeneous cluster.

HPF 2.0 also allows the programmer to distribute the arrays with the
REDISTRIBUTE directive, based on a mapping array whose values are computed at
runtime. This allows writing a more portable application. But again, either the
programmer or a user of the application must explicitly specify the data distribution,
which ensures the best performance of this particular parallel algorithm on each
particular heterogeneous cluster.

Apparently, the above algorithm can be implemented in MPI [5] as well. The
corresponding MPI program will be not as simple as the HPF one because of much lower
level of the MPI’s programming model. Actually, MPI is a programming tool of the
assembler level for message passing programming. Therefore, practically all message
passing algorithms can be implemented in MPI.

Whatever programming tool is used to implement the above parallel algorithm, one
can see that the efficiency of the corresponding application strongly depends on the
accuracy of estimation of the relative speed of processors of the executing heterogeneous
cluster. Distribution of arrays and, hence, distribution of computations across the
processors are fully determined by the estimation of their relative speed. If this estimation
is not accurate enough, the load of processors will be unbalanced, resulting in poorer
execution performance.

The problem of accurate estimation of the relative speed of processors is not as easy
as it may look. Of course, if you consider two processors, which only differ in clock rate,
it is not a problem to accurately estimate their relative speed. The relative speed will be
the same for any application.

But if you consider processors of different architectures, the situation changes
drastically. Everything in the processors may be different: set of instructions, number of

instruction execution units, number of registers, structure of memory hierarchy, size of
each memory level, and so on, and so on. Therefore, the processors may demonstrate
different relative speeds for different applications. Moreover, processors of the same
architecture but different models or configurations may also demonstrate different
relative speeds on different applications.

Even different applications of the same narrow class may be executed by two
different processors at significantly different relative speeds. To avoid speculation,
consider the following experiment that has been really carried out. Three slightly
different implementations of Cholesky factorisation of a 500500× matrix were used to
estimate the relative speed of a SPARCstation-5 and a SPARCstation-20. Code

for(k=0; k<500; k++) {
 for(i=k, lkk=sqrt(a[k][k]); i<500; i++)
 a[i][k] /= lkk;
 for(j=k+1; j<500; j++)
 for(i=j; i<500; i++)
 a[i][j] -= a[i][k]*a[j][k];
}

estimated their relative speed as 10:9, meanwhile code

for(k=0; k<500; k++) {
 for(i=k, lkk=sqrt(a[k][k]); i<500; i++)
 a[i][k] /= lkk;
 for(i=k+1; i<500; i++)
 for(j=i; j<500; j++)
 a[i][j] -= a[k][j]*a[k][i];
}

as 10:14. Routine dptof2 from the LAPACK package, solving the same problem,
estimated their relative speed as 10:10.

2.2. Heterogeneity of machine arithmetic

As processors of a NoC may do floating-point arithmetic differently, there are special
challenges associated with writing numerical software on NoCs. Specifically, there are
two main issues potentially affecting the behaviour of a numerical parallel application
running on a heterogeneous NoC.

Firstly, different processors do not guarantee the same storage representation and the
same results for operations on floating point numbers.

Secondly, if a floating-point number is communicated between processors, the
communication layer does not guarantee the exact transmittal of the floating-point value.
Normally, transferring a floating point number in a heterogeneous environment includes
two conversions of its binary representation: the representation of the number on the
sender site is first converted into a machine independent representation, which is then
converted into the representation for floating point numbers on the receiver site. The two
successive conversions may change the original value, that is, the value received by the
receiver may differ from the value sent by the sender.

To illustrate the potential problems, consider the iterative solution of a system of
linear equations where the stopping criterion depends upon the value of some function, f,
of the relative machine precision, ε . A common definition of the relative machine
precision, or unit roundoff, is the smallest positive floating point value, ε , such that

1)1(>+ εfl , where fl(x) is the floating point representation of x. The test for
convergence might well include a test of the form:

if()(
2

2 εf
x

e

r

r <) goto converged;

In a heterogeneous setting the value of f may be different on different processors and
er and xr may depend upon data of different accuracies, and thus one or more processes
may converge in a fewer number of iterations. Indeed, the stopping criterion used by the
most accurate processor may never be satisfied if it depends on data computed less
accurately by other processors. If the code contains communication between processors
within an iteration, it may not complete if one processor converges before the others. In a
heterogeneous environment, the only way to guarantee termination is to have one
processor make the convergence decision and broadcast that decision.

Another problem is that overflow and underflow exceptions may occur during
floating-point representation conversions, resulting in a failure of the communication.

3. Ad hoc communication network

One can imagine a local network of heterogeneous computers, whose communication
layer is almost as good as the communication layer of the MPP architecture. Parallel
programming for such networks called in this book heterogeneous clusters faces no
specific communication-related challenges. Heterogeneous clusters are normally
designed specifically for high performance distributed computing.

At the same time, the topology and structure of the communication network in a
typical common local network of computers is determined by many different factors,
among which high performance computing is far away from being a primary one if
considered at all. The primary factors include the structure of the organisation, the tasks
that are solved on computers of the NoC, the security requirements, the construction
restrictions, the budget limitations, the qualification of technical personnel, etc.

An additional important factor is that the communication network is constantly
developing rather than fixed once and forever. The development is normally occasional
and incremental. Therefore, the structure of the communication network reflects the
evolution of the organization rather than its current snapshot.

All the factors make the common communication network far away from the ideal
MPP communication network, which is homogeneous with communication speedup and
bandwidth being balanced with the number and speed of processors.

First of all, the common communication network is heterogeneous. The speed and
bandwidth of communication links between different pairs of processors may differ
significantly.

Secondly, some of the communication links may be of low speed and/or narrow
bandwidth.

This makes the problem of optimal distribution of computations and communications
across a NoC much more difficult than across a cluster of heterogeneous processors
interconnected with a homogeneous high-performance communication network. The
additional difficulty comes from the larger size of the problem, which is now)(2nO ,

where n is the total number of processors (respectively, 2n is the total number of inter-
processor communication links).

Apart from that, due to low performance of some communication links, the optimal
distribution of computations and communications may be across some subnetwork of the
NoC, not across the entire NoC. This substantially extends the space of possible solutions
and increases the complexity of the distribution problem even further.

4. Multi-user decentralised computer system

Unlike MPPs, NoCs are not strongly centralized computer systems. A typical NoC
consists of relatively autonomous computers, each of which may be used and
administered independently by its users.

4.1. Unstable performance characteristics

The first implication from the multi-user decentralised nature of NoCs is that
computers, executing a parallel program, may be also used for other computations and
involved in other communications. In that case, the real performance of processors and
communication links can dynamically change depending on the external computations
and communications.

Therefore, a good parallel program for a NoC must be sensitive to such dynamic
variations of its workload. In such a program, computations and communications are
distributed across the NoC in accordance to the actual performance at the moment of
execution of the program.

4.2. Higher probability of resource failures

Fault tolerance is not a primary problem for parallel applications running on MPPs.
The probability of unexpected resource failures in a centralised dedicated parallel
computer system is quite small. But this probability reaches much higher figures for
NoCs. Firstly, any single computer in a NoC may be switched off or rebooted
unexpectedly for other users in the NoC. The same may happen with any other resource
in the NoC.

Secondly, not all building elements of the common NoC as well as interaction
between different elements are equally reliable.

These make fault tolerance a desirable feature for parallel applications that run on
NoCs; and the longer the execution time of the application is, the more important the
feature becomes.

The basic programming tool for distributed-memory parallel architectures, MPI, does
not address the problem. The point is that a fault-tolerant parallel program assumes a
dynamic process model. Failure of one or other process of the program should not
necessarily lead to failure of the entire program. The program may continue running even
after its set of processes has changed.

The MPI 1.1 process model is fully static. MPI 2.0 does include some support for
dynamic process control, although this is limited to the creation of new MPI process
groups with separate communicators. These new processes cannot be merged with
previously existing communicators to form intracommunicators needed for a seamless
single application model and are limited to a special set of extended collective
communications.

To date, there is no industrial fault-tolerant implementation of MPI. At the same time,
there are a few research versions of MPI suggesting different approaches to the problem
of fault-tolerant parallel programming.

The first approach to making MPI applications fault tolerant is through the use of
check pointing and roll back. This approach is that all processes of the MPI program will
flush their message queues to avoid in flight messages getting lost, and then they will all
synchronously checkpoint. At some later stage if any error occurs, the entire MPI
program will be rolled back to the last complete checkpoint and be re-started. This
approach needs the entire application to checkpoint synchronously, which, depending on
the application and its size, may become expensive in terms of time (with potential

scaling problems).

The second approach is to use “spare” processes that are utilized when there is a
failure. For example, MPI-FT [6] supports several master-slave models where all
communicators are built from grids that contain “spare” processes. To avoid loss of
message data between the master and slaves, all messages are copied to an observer
process, which can reproduce lost messages in the event of any failures. This system has
a high overhead for every message and considerable memory needs for the observer
process for long running applications. This system is not a full checkpoint system in that
it assumes any data (or state) can be rebuilt using just the knowledge of any passed
messages, which might not be the case for non-deterministic unstable solvers.

MPI-FT is an example of an implicit fault tolerant MPI. Such implementations of
MPI do not extend MPI interface itself. No specific design is needed for application
using an implicit fault tolerant MPI. The system takes full responsibility over fault
tolerant features of application. The drawback of that approach is that the programmer
cannot control fault tolerant features of the application and fine tune for better balance
between fault tolerance and performance as system and application conditions may
dictate.

Unlike MPI-FT, FT-MPI [7] is an explicit fault tolerance MPI, which extends
standard MPI’s interface and semantics. An application using FT-MPI has to be
specifically designed to take advantage of its fault tolerant features.

5. Summary of programming challenges

In summarizing challenges associated with parallel programming for NoCs, let us
describe main features of an ideal parallel program running on a NoC.

Such a program distributes computations and communications unevenly across
processors and communications links, taking into account their actual performance
demonstrated during the execution of the code of the program. The distribution is not
static and may be different not only for different NoCs but also for different executions
of the program on the same NoC, depending on the workload of its elements. The
program may find profitable to involve in computations not all available computers. In
other words, the program must be efficiently portable.

The program keeps running even if some resources in the executing network fail. In
the case of a resource failure, it is able to reconfigure itself and resume computations
from some point in the past.

The program takes into account differences in machine arithmetic on different
computers and avoids erroneous behaviour of the program that might be caused by the
differences.

6. Any response to the challenges?

Let us see how the challenges are responded. First, we outline how standard parallel
programming tools such as HPF and MPI address the highlighted challenges. Then, we
briefly introduce mpC, a dedicated programming language designed specifically for
parallel computing on heterogeneous networks of computers.

6.1. High Performance Fortran

As we have demonstrated in Section 2.1, HPF provides some basic support for
programming heterogeneous algorithms. It allows the programmer to specify uneven
distribution of data across abstract HPF processors.

At the same time, it is full responsibility of the programmer to provide a code, which
analyses the implemented parallel algorithm and the executing NoC, and calculates the
best distribution.

Another problem is that the HPF programmer cannot influence the mapping of
abstract HPF processors to computers of the NoC. HPF provides no language constructs
allowing the programmer to control better mapping of the heterogeneous algorithms to
heterogeneous clusters. The HPF programmer should rely on some default mapping
provided by the HPF compiler. The mapping cannot be sensitive to peculiarities of each
individual algorithm just because the HPF compiler has no information about the
peculiarities. Therefore, to control the mapping and take into account both the
peculiarities of the implemented parallel algorithm and the peculiarities of the executing
heterogeneous environment, the HPF programmer needs to additionally write a good
peace of quite complex code. HPF does not address the problem of fault tolerance at all.

Actually the lack of means for advising the compiler about the features of
implemented parallel algorithm that have a major impact on its execution time is the
general drawback of HPF, which makes the language difficult for compiling not only for
heterogeneous platforms but for MPPs as well.

To illustrate the associated difficulties, consider the following simple HPF program:

PROGRAM SIMPLE
REAL, DIMENSION(1000,1000):: A, B, C

!HPF$ PROCESSORS p(4,4)
!HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO p:: A, B, C
!HPF$ INDEPENDENT

DO J=1,1000
!HPF$ INDEPENDENT

DO I=1,1000
A(I,J)=1.0
B(I,J)=2.0

END DO
 END DO
!HPF$ INDEPENDENT

DO J=1,1000
!HPF$ INDEPENDENT

DO I=1,1000
C(I,J)=0.0
DO K=1,1000

C(I,J)=C(I,J)+A(I,K)*B(K,J)
 END DO

END DO
END DO
END

The program implements matrix operation BAC ×= on a 16-processor MPP, where
A, B are dense square 10001000× matrices. Figure 2 illustrates the implemented parallel
algorithm.

The PROCESSORS directive specifies a logical 44× grid of abstract processors, p.

The DISTRIBUTE directive recommends the compiler to partition each of the arrays
A, B, and C into equal-sized blocks along each of its dimension. This will result in a 44×
configuration of blocks each containing 250250× elements, one block per processor.
The corresponding blocks of arrays A, B, and C will be mapped to the same abstract
processor and, hence, to the same physical processor.

Each of the four INDEPENDENT directives in the program is applied to a DO loop
and advises the compiler that the loop does not carry any dependences and therefore its
different iterations may be executed in parallel.

X =

A B C

Figure 4.3. Matrix-matrix multiplication with matrices A, B, and C evenly
partitioned in two dimensions. The blocks mapped onto a single processor
are shaded black. During execution, this processor requires corresponding
rows of matrix A and columns of matrix B (shown shaded grey).

Altogether the directives give the compiler enough information in order to generate a
target message-passing program. Additional information is given by a general HPF rule
saying that evaluation of an expression should be performed on the processor, in the
memory of which its result will be stored.

Thus, a clever HPF compiler would be able to generate SPMD message-passing code
like that:

PROGRAM SIMPLE
REAL, DIMENSION(250,250):: A, B, C
REAL, DIMENSION(250,1000):: Arows, Bcols
INTEGER colcom, rowcom, col, row
INTEGER rank, colrank, rowrank
INTEGER err
CALL MPI_INIT(ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank);
row = rank/4
col = rank-row*4
DO J=1,250

DO I=1,250
A(I,J)=1.0
B(I,J)=2.0

END DO
 END DO

CALL MPI_COMM_SPLIT(MPI_COMM_WORLD, row, rank, rowcom, err)
CALL MPI_COMM_SPLIT(MPI_COMM_WORLD, col, rank, colcom, err)
CALL MPI_ALLGATHER(A, 40000, MPI_REAL, Arows, 62500,

 &MPI_REAL, rowcom, err)
CALL MPI_ALLGATHER(B, 40000, MPI_REAL, Bcols, 62500,

 &MPI_REAL, colcom, err)
DO J=1,250

DO I=1,250
C(I,J)=0.0
ind1=1
ind2=J
DO K=1,1000

C(I,J)=C(I,J)+Arows(I,K)*Bcols(ind1,ind2)
IF(ind1.LT.250) THEN
 ind1=ind1+1
ELSE
 ind1=1
 ind2=ind2+250
END IF

 END DO
END DO

END DO
CALL MPI_COMM_FREE(rowcom, err)
CALL MPI_COMM_FREE(colcom, err)
CALL MPI_FINALIZE(err)

END

This code is in Fortran 77 with calls to MPI routines. It is supposed to be executed by
all 16 processes making up the parallel program. Each process locally contains one

250250× block of global arrays A, B, and C of the source HPF program. A logical 44×
process grid is formed from the 16 participating processes, and each process gets its
coordinates row and col in the grid. In order to compute its block of the resulting
matrix C, the process needs blocks of matrix A from its horizontal neighbours in the 44×
process grid, and blocks of matrix B from its vertical neighbours (see Figure 2). The
necessary communication is achieved by calls to the MPI_COMM_SPLIT and
MPI_ALLGATHER routines.

The main specific optimisation performed by an HPF compiler is the minimization of
the cost of the inter-processor communication. This is not a trivial problem. It needs
profound analysis of both the source code and the executing MPP. HPF provides no
specific constructs or directives helping the compiler to solve the problem. This is one of
the reasons why HPF is considered a difficult language to compile.

For example, many real HPF compilers (i.e., the ADAPTOR HPF compiler from
GMD) will translate the above HPF program into a message-passing program, each
process of which sends its blocks of matrices A and B to all other processes. That
straightforward communication scheme guarantees that each process receives all the
elements of global arrays A and B, it needs to compute its elements of global array C. At
the same time, in many particular cases, including ours, this universal scheme involves a
good deal of redundant communications, sending and receiving data that are never used
in computation. The better a compiler is, the more accurate communication patterns it
generates to avoid redundant communications as much as possible. The above message-
passing program, generated by an imaginary clever HPF compiler, performs no
redundant communication. Each process of the program sends its blocks of matrices A
and B only to 3 other processes, not to 15 as each process of the straightforward program
does.

HPF does not address the problem of fault tolerance at all.

6.2. Message Passing Interface

As a general-purpose message-passing tool of assembler level, MPI allows the
programmer to write efficiently portable programs for NoCs. At the same time, it
provides no specific support to facilitate such programming. It is responsibility of the
programmer to write all the code making the application efficiently portable among
NoCs. In other words, every time, when programming for NoCs, a programmer must
solve the extremely difficult problem of portable efficiency from scratch. Standard MPI
also does not address the problem of fault tolerance.

6.3. mpC and HMPI

An original approach to parallel computing on heterogeneous networks that has been
proposed and implemented in the framework of the mpC language [8-9] and the HMPI
library [10] and their programming systems. In brief, this approach can be summarised as
follows:

• The programmer provides the programming system with comprehensive
information about the features of the implemented parallel algorithm that have a
major impact on the execution time of this algorithm. In other words, the
programmer provides a detailed description of the performance model of this
algorithm.

• The programming system uses the provided information to optimally map at
runtime this algorithm to the computers of the executing network. The quality
of this mapping strongly depends on the accuracy of the estimation of the actual
performance of the processors and communication links demonstrated at
runtime on the execution of this application. Therefore, the mpC programming
system employs an advanced performance model of a heterogeneous network of
computers, and the mpC language provides constructs that allow the
programmer to update the parameters of this model at runtime by tuning them to
the code of this particular application.

This approach to parallel computing on heterogeneous networks has proved its
efficiency. Many mpC and HMPI applications have been developed that efficiently solve
real-life problems on common heterogeneous networks of computers.

The mpC language in its current form addresses all the challenges associated with
writing efficiently portable programs for NoCs except for the fault tolerance.

The mpC parallel language allows the programmer to define all main features of the
implemented parallel algorithm that can have an impact on the performance of execution
of the algorithm on a heterogeneous NoC. The features include the total number of
participating parallel processes, the total volume of computations to be performed on
each of the processes, the total volume of data to be transferred between each pair of the
processes, and how exactly the processes interact during the execution of the algorithm.
The mpC programming system uses that performance model of the parallel algorithm
together with the model of the executing heterogeneous network to map the processes of
the parallel program to this network so as to ensure better execution time. The mapping is
executed at runtime; therefore its efficiency is crucial for the total execution performance
of mpC applications. The model of a heterogeneous network and the mapping algorithm
are developed to keep balance between the accuracy and efficiency.

To briefly introduce the mpC language, consider an mpC application simulating the
evolution of groups of bodies under the influence of Newtonian gravitational attraction.
Since the magnitude of interaction between bodies falls off rapidly with distance, a single
equivalent body may approximate the effect of a large group of bodies. This allows us to
solve the problem in parallel. The parallel application will use a few parallel processes,
each of which will update data characterizing a single group of bodies. Each process
holds attributes of all the bodies constituting the corresponding group as well as masses
and centres of gravity of other groups. The attributes characterizing a body include its
position, velocity and mass. The application will implement the following parallel
algorithm:

Initialisation of galaxy on host-process
Scattering groups of bodies over processes
Parallel computing masses of groups
Interchanging the masses among processes
while(1) {
 Visualization of galaxy by host-process
 Parallel computing centers of gravity
 Interchanging the centers among processes
 Parallel updating groups
 Gathering groups on host-process
}

It is assumed that at each iteration of the main loop, new coordinates of all bodies in
some fixed interval of time are calculated.

The core of the mpC application, implementing the above algorithm, is the following
description of the performance model of this algorithm:

nettype Galaxy(m, k, n[m]) {
 coord I=m;
 node { I>=0: bench*((n[I]/k)*(n[I]/k)); };
 link { I>0 : length(Body)*n[I] [I]->[0]; };
 parent [0];
 scheme {
 int i;
 par (i=0; i<m; i++) 100%%[i];
 par (i=1; i<m; i++) 100%%[i]->[0];
 };
};

Informally, it looks like a description of an abstract network of processors, which
executes the algorithm, complemented by the description of the workload of its
processors and communication links, and the description of the scenario of interaction
between the abstract processors during the algorithm execution.

The first line of the above definition introduces the name Galaxy of the type of the
abstract mpC network and a list of parameters – integer scalar parameters m and k and
vector parameter n of m integers. Next line declares the coordinate system to which
abstract processors will be related. It introduces coordinate variable I ranging from 0 to
m-1.

Next line associates abstract processors with this coordinate system and describes the
volumes of computation to be performed by each of the processors. As a unit of
measurement, the volume of computation performed by some benchmark code is used. In
this particular case, it is assumed that the benchmark code computes a single group of k
bodies. It is also assumed that i-th element of the vector parameter n is equal to the
number of bodies in the group computed by the i-th abstract processor. The number of
operations to compute one group is proportional to the number of bodies in the group
squared. Therefore, the volume of computation to be performed by the I-th virtual
processor is (n[I]/k)2 times bigger than the volume of computation performed by the
benchmark code. This line just says it.

Next line specifies volumes of data in Bodys to be transferred between the virtual
processors during execution of the algorithm. It simply says that i-th virtual processor
(i=1,…) will send attributes of all its bodies to the host-processor where they should be
visualized. Note, that this definition describes one iteration of the main loop of the
algorithm, which is a quite good approximation because practically all computations and
communications concentrate in this loop. Therefore, the total time of the execution of this
algorithm is approximately equal to the running time of a single iteration, multiplied by
the total number of iterations.

Finally, the scheme block describes how exactly virtual processors interact during
execution of the algorithm. It says that first all the virtual processors perform in parallel
100 per cent of computations that should be performed, and then all the processors,
except the host processor, send in parallel 100 per cent of data that should be sent to the
host-processor.

The most principal fragments of the rest code of this mpC application are:

void [*] main(int [host]argc, char **[host]argv)
{
 ...
 TestGroup[]=(*AllGroups[0])[];
 recon Update_group(TestGroup, TestGroupSize) ;
 {
 net GalaxyNet(NofG, TestGroupSize, NofB) g;
 …
 }
}

The recon statement uses a call of the function Update_Group with actual
parameters TestGroup and TestGroupSize to update the estimation of the performance
of the physical processors executing the application. The main part of the total volume of
computations performed by each virtual processor just falls into execution of calls to the
function Update_Group. Therefore, the obtained estimation of performances of the real
processors will be very close to their actual performances shown while executing this
program.

Next line defines the abstract network g of type GalaxyNet with the actual
parameters NofG – the actual number of groups of bodies, TestGroupSize – the size of
the test group of bodies used in the benchmark code, and NofB – an array of NofG
elements containing actual numbers of bodies in the groups. The rest computations and
communication will be performed on this abstract network.

The mpC programming system maps virtual processors of the abstract network g to
real parallel processes constituting the running parallel program. While performing the
mapping, the programming system uses, on the one hand, the information about
configuration and performance of physical processors and communication links of the
network of computers executing the program, and on the other hand, the specified
performance model of the parallel algorithm. The programming system does the mapping
at runtime and tries to minimise the total running time of the parallel program.

7. Conclusion

In this paper, we have analysed challenges associated with parallel programming
for common heterogeneous networks of computers. This analysis has resulted in the
description of the main features of an ideal parallel program for NoCs. We have taken a
look at how standard parallel programming tools, such as HPF and MPI, addresses the
programming challenges. We have also introduced the mpC language, which is the first
language specifically designed for parallel programming for heterogeneous networks of
computers. Detailed introduction to parallel computing on heterogeneous networks can
be found in [11].

8. References

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK User's Guide,
SIAM, Philadelphia, third edition, 1999.

[2] L.S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R. C. Whaley,
ScaLAPACK User's Guide, SIAM, Philadelphia, 1997.

[3] High Performance Fortran Language Specification. Version 1.1. High Performance
Standard Forum, Rice University, Houston, Texas, November 10, 1994.

[4] High Performance Fortran Language Specification. Version 2.0. High Performance
Standard Forum, Rice University, Houston, Texas, January 31, 1997.

[5] MPI: A Message-Passing Interface Standard, Message Passing Interface Forum, June
12, 1995.

[6] S.Louca, N.Neophytou, A.Lachanas, P.Evripidou, MPI-FT: Portable Fault Tolerance
Scheme for MPI, Parallel Processing Letters, 10(4), pp.371-382, 2000.

[7] G.Fagg, A.Bukovsky, J.Dongarra, HARNESS and fault tolerant MPI, Parallel
Computing 27(11), pp.1479-1496, 2001.

[8] A.Lastovetsky, D.Arapov, A.Kalinov, I.Ledovskih, A Parallel Language and Its
Programming System for Heterogeneous Networks, Concurrency: Practice and
Experience, 12(13), pp.1317-1343, 2000.

[9] A.Lastovetsky, Adaptive Parallel Computing on Heterogeneous Networks with mpC,
Parallel Computing, 28(10) , pp.1369-1407, 2002.

[10] A.Lastovetsky, R.Reddy, HMPI: Towards a Message-Passing Library for
Heterogeneous Networks of Computers, Proceedings of the 17th International
Parallel and Distributed Processing Symposium (IPDPS 2003), 22-26 April 2003,
Nice, France, CD-ROM/Abstracts Proceedings, IEEE Computer Society 2003.

[11] A.Lastovetsky, Parallel Computing on Heterogeneous Networks, John Wiley &
Sons, 423 pp, June 2003, ISBN: 0-471-22982-2.

