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The paper overviews the state of the art in design and implementation of data parallel scientific

applications on heterogeneous platforms. It covers both traditional approaches originally designed

for clusters of heterogeneous workstations and the most recent methods developed in the context

of modern multicore and multi-accelerator heterogeneous platforms.
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Introduction

High performance computing systems become increasingly heterogeneous and hierarchical.

A typical compute node integrates multiple (possibly heterogeneous) cores as well as hardware

accelerators such as Graphics Processing Units. The integration is often hierarchical. The mo-

tivation behind such complicated architecture is to make these systems more energy efficient.

The energy consideration is paramount as future large-scale cluster infrastructures will have to

have hundreds of thousands of compute nodes to solve Exascale problems and would not be

energy sustainable if nodes of traditional architecture were used. Future large-scale systems will

exhibit multiple forms of architectural and non-architectural heterogeneity as well as mean-time-

to-failure of minutes. How to develop parallel applications and software that efficiently utilize

highly heterogeneous and hierarchical computing and communication resources, while scaling

them towards Exascale, maintaining a sustainable energy footprint, and preserving correctness

are highly challenging and open questions.

Heterogeneous parallel computing is the area that emerged in 1990s to address the chal-

lenges posed by ever increasing heterogeneity and complexity of the HPC platforms. This paper

overviews the development of heterogeneous parallel computing technologies as they followed the

evolution of heterogeneous HPC platforms from simple single-switched heterogeneous clusters

of (uniprocessor) workstations to modern hierarchical clusters of heterogeneous hybrid nodes. It

mainly focuses on the design of fundamental data partitioning algorithms supporting the devel-

opment of data parallel applications able to automatically tune to the executing heterogeneous

platform achieving optimal performance (and energy) efficiency. Data parallel applications are

the main target of parallel computing technologies because they dominate the scientific and

engineering computing domain, as well as the emerging domain of large-scale (”Big”) data an-

alytics.

Optimization of data parallel applications on heterogeneous platforms is typically achieved

by balancing the load of the heterogeneous processors and minimizing the cost of moving data

between the processors. Data partitioning algorithms solve this problem by finding the optimal

distribution of data between the processors. They typically require a priori information about the

parallel application and platform. Data partitioning is not the only technique used for load bal-

ancing. Dynamic load balancing, such as task queue scheduling and work stealing [5, 9, 26, 39–41]

balance the load by moving fine-grained tasks between processors during the calculation. Dy-

namic algorithms do not require a priori information about execution but may incur significant
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communication overhead on distributed-memory platforms due to data migration. At the same

time, dynamic algorithms often use static data partitioning for their initial step to minimize

the amount of data redistributions needed. For example, in the state-of-the-art load balanc-

ing techniques for multi-node, multicore, and multi-GPU platforms, the performance gain is

mainly due to better initial data partitioning. It was shown that even the static distribution

based on simplistic performance models (single values specifying the maximum performance of

a dominant computational kernel on CPUs and GPUs) improves the performance of traditional

dynamic scheduling techniques by up to 250% [44]. In this overview we focus on parallel scien-

tific applications, where computational workload is directly proportional to the size of data, and

dedicated HPC platforms, where: (i) the performance of the application is stable in time and is

not affected by varying system load; (ii) there is a significant overhead associated with data mi-

gration between computing devices; (iii) optimized architecture-specific libraries implementing

the same kernels may be available for different computing devices. On these platforms, for most

scientific applications, static load balancing algorithms outperform dynamic ones because they

do not involve data migration. Therefore, for the type of applications and platforms we focus

on, data partitioning is the most appropriate optimization technique.

One very important aspect of optimization of parallel applications on distributed-memory

heterogeneous platforms – optimization of their communication cost, is not covered in this paper.

A recent analytical overview of methods for optimization of collective communication operations

in heterogeneous networks can be found in [21].

1. Optimization of parallel applications on heterogeneous

clusters of workstations

1.1. Data partitioning algorithms based on constant performance models

Since the late 1990s, when the first pioneering works in the field were published, the design of

heterogeneous parallel algorithms has made a significant progress. At that time, the main target

platform for the heterogeneous parallel algorithms being developed was a heterogeneous cluster

of workstations, and the simplest possible performance model of this platform was used in the al-

gorithm design. Namely, it was seen as a set of independent heterogeneous (uni)processors, each

characterized by a single positive number representing its speed. The speed of the processors

can be absolute or relative. The absolute speed of the processors is understood as the number

of computational units performed by the processor per one time unit. The relative speed of the

processor can be obtained by the normalization of its absolute speed. While this performance

model has no communication-related parameters, it still allows for optimization of the commu-

nication cost through the minimization of the amount of data moved between processors. This

model is also known as Constant Performance Model, or CPM.

Using the CPM, a fundamental problem of optimal distribution of independent equal units

of computation over a set of heterogeneous processors was formulated and solved in [7]. The

algorithm [7] solving this problem is of complexity O(p2) and only needs relative speeds. This

algorithm is a basic building block in many heterogeneous parallel and distributed algorithms.

This is typical in the design of heterogeneous parallel algorithms that the problem of dis-

tribution of computations in proportion to the speed of processors is reduced to the problem

of partitioning of some mathematical objects, such as sets, matrices, graphs, etc. Most of the

CPM-based algorithms designed so far have been aimed at numerical linear algebra. For exam-
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ple, the problem of LU factorization of a dense matrix A was reduced to the problem of optimal

mapping of its column panels a1, . . . , an to p heterogeneous processors, and the latter problem

was further reduced to the problem of partitioning of a well-ordered set (whose elements repre-

sent the column panels). Two efficient algorithms solving this partitioning problem have been

proposed — the Dynamic Programming (DP) algorithm [7, 10] and the Reverse algorithm [34].

The latter is more suitable for extension to more complex heterogeneous performance models.

Other algorithms of partitioning of well-ordered sets, e.g. [6], do not guarantee the return of an

optimal solution.

As matrices are probably the most widely used mathematical objects in scientific computing,

most of data-partitioning studies deal with them. Matrix partitioning problems occur during the

design of parallel linear algebra algorithms for heterogeneous platforms. A typical heterogeneous

linear-algebra algorithm is designed as a modification of its homogeneous prototype, and its

design is eventually reduced to the problem of optimally partitioning a matrix over heterogeneous

processors. From the partitioning point of view, a dense matrix is an integer-valued rectangular.

Therefore, if we are only interested in an asymptotically optimal solution (which is typically

the case), the problem of its partitioning can be reduced to a problem of the partitioning of a

real-valued rectangle.

In a general form, the related geometrical problem has been formulated as follows [8]: Given

a set of p processors P1, P2, ..., Pp, the relative speed of each of which is characterized by a

positive constant, si, partition a unit square into p rectangles so that:

• there is a one-to-one mapping between the rectangles and the processors;

• the area of the rectangle allocated to processor Pi is equal to si;

• the partitioning minimizes the sum of half-perimeters of the rectangles.

This formulation is motivated by the SUMMA matrix multiplication algorithm [23] and

aimed at balancing the load of the processors and minimization of the total volume of data

communicated between the processors. Fig. 1 shows one iteration of the heterogeneous SUMMA

algorithm assuming that matrices A, B and C are identically partitioned into rectangular sub-

matrices. At each iteration of the main loop, pivot block column of matrix A and pivot block

row of matrix B are broadcast horizontally and vertically, then all processors update their own

parts of matrix C in parallel. The blocking factor b is a parameter used to adjust the granularity

of communications and computations [13], whose optimal value can be found experimentally.

Figure 1. Heterogeneous parallel matrix multiplication

This geometrical partitioning problem is NP-complete [8], but many restricted and prac-

tically important versions of this problem have been efficiently solved. The least restrictive is

probably the column-based problem looking for an optimal partitioning, the rectangles of which

make up columns as illustrated in Fig. 2. An algorithm of the complexity O(p3) was proposed

in [8]. More restricted forms of the column-based geometrical partitioning problem have also
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been addressed. The pioneering result in the field was a linear algorithm [27] additionally as-

suming that the number of columns c in the partitioning and the number of rectangles in each

column are given. A column-based partitioning with the same number of rectangles in each

column is known as a grid-based partitioning. An algorithm of the complexity O(p3/2) solving

the grid-based partitioning problem was proposed in [29].

P
1

P
12

P
8

P
2

P
7

P
10

P
6

P
9

P
11

P
3

P
5

P
4

 

Figure 2. Column-based partitioning of the unit square into 12 rectangles. The rectangles of the

partitioning form three columns

A partitioning whose rectangles make both columns and rows is known as a Cartesian

partitioning. It is attractive from the implementation point of view because of its very simple and

scalable communication pattern. However, the related partitioning problems are very difficult

and very little has been achieved in addressing them so far [7].

More recent research [19, 20] challenged the optimality of the rectangular matrix parti-

tioning. Using a specially developed mathematical technique and five different parallel matrix

multiplication algorithms, it was proved that the optimal partition shape can be non-rectangular,

and the full list of optimal shapes for the cases of two and three processors was identified. Fig. 3

shows these for the case of three processors. The performance model used in this work combined

the CPM and the Hockney communication model [24]. These results have a potential to signif-

icantly improve the performance of matrix computations on platforms that can be modeled by

a small number of interconnected heterogeneous abstract processors, such as hybrid CPU/GPU

nodes and clusters of clusters.

Figure 3. The candidate partition shapes previously identified as potentially optimal three

processor shapes. Processors P,R, and S are in white, grey, and black, respectively. (1) Square

Corner (2) Rectangle Corner (3) Square Rectangle (4) Block 2D Rectangular (5) L Rectangular

(6) Traditional 1D Rectangular

Significant work has been done in partitioning algorithms for graphs, which are then ap-

plied to sparse matrices and meshes, the mathematical objects widely used in many scien-

tific applications, e.g. computational fluid dynamics. Algorithms implemented in ParMetis [28],
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SCOTCH [12], JOSTLE [45] reduce the number of edges between the target subdomains, aiming

to minimize the total communication cost of the parallel application. Algorithms implemented

in Zoltan [11], PaGrid [4] try to minimize the execution time of the application. All these graph

partitioning libraries use performance models combining the CPM and the Hockney model. The

models have to be provided by the users.

1.2. Data partitioning algorithms based on functional performance models

The CPM can be a sufficiently accurate approximation of the performance of heterogeneous

processors executing a data parallel application if: (i) the processors are general-purpose and

execute the same code, (ii) the local tasks are small enough to fit in the main memory but large

enough not to fully fit in the processor cache. However, if we consider essentially heterogeneous

processors using different code to solve the same task locally, or allow the tasks to span different

levels of memory hierarchy on different processors, then the relative speed of the processors

can significantly differ for different task sizes. In these situations, the CPM becomes inaccurate,

and its use can lead to highly imbalanced load distribution [16]. To address this challenge, a

functional performance model (FPM) [35, 37, 38] was proposed. The FPM represents the speed

of a processor by a function of problem size. It is built empirically and integrates many important

features characterizing the performance of both the architecture and the application. The speed

is defined as the number of computation units processed per second. The computation unit can

be defined differently for different applications. The important requirement is that its size (in

terms of arithmetic operations) should not vary during the execution of the application. One

FLOP is a simplest example of computation unit.

The fundamental problem of optimal distribution of n independent equal units of com-

putation between p heterogeneous processors represented by their speed functions was formu-

lated, and very efficient geometrical algorithms (of complexities O(p2 log2 n) and O(p log2 n))

solving this problem under different assumptions about the shape of the speed functions were

proposed [31, 35]. These algorithms are based on the following observation. Let the speed of

processor Pi be represented by continuous function si(d) = d
ti(d)

, where ti(d) is the execution

time for processing of d computation units on the processor Pi. Then the optimal solution of

this problem, which balances the load of the processors, will be achieved when all processors

execute their work within the same time: t1(d1) = ... = tp(dp). This can be expressed as:

d1
s1(d1)

= ... =
dp

sp(dp)
, where d1 + d2 + ... + dp = n (1)

The solution to these equations, d1, ..., dp, can be represented geometrically by intersection of

the speed functions with a line passing through the origin of the coordinate system as illustrated

in Fig. 4

The geometrical algorithms proceed as follows. As any line passing through the origin and

intersecting the speed functions represents an optimum distribution for a particular problem

size, the space of solutions of the problem (1) consists of all such lines. The two outer bounds

of the solution space are selected as the starting point of algorithm. The upper line represents

the optimal data distribution xu1 , ..., x
u
p for some problem size nu < n, nu = xu1 + ... + xup , while

the lower line gives the solution xl1, ..., x
l
p for nl > n, nl = xl1 + ... + xlp. The region between two

lines is iteratively bisected as shown in Fig. 5.
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Figure 4. Optimal distribution of computational units showing the geometric proportionality of

the number of computation units to the speeds of the processors

Figure 5. Geometrical data partitioning algorithm. Line 1 (the upper line) and line 2 (the lower

line) represent the two initial outer bounds of the solution space. Line 3 represents the first

bisection. Line 4 represents the second one. The dashed line represents the optimal solution

At the iteration k, the problem size corresponding to the new line intersecting the speed

functions at the points xk1, ..., x
k
p is calculated as nk = xk1 + ...+ xkp. Depending on whether nk is

less than or greater than n, this line becomes a new upper or lower bound. Making nk close to n,

this algorithm finds the optimal partition of the given problem x1, ..., xp: x1 + ... + xp = n. The

geometrical algorithms will always find a unique optimal solution if the speed functions satisfy

the following assumptions:

1. On the interval [0, X], the function is monotonically increasing and concave.

2. On the interval [X,∞], the function is monotonically decreasing.

Extensive experiments with many scientific kernels on different workstations have demon-

strated that, in general, processor speed can be approximated, within some acceptable degree

of accuracy, by a function satisfying these assumptions.

Another algorithm [43] significantly relaxes the restrictions on the shape of speed functions

but does not always guarantee the globally optimal solution. This algorithm assumes that the
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Akima spline interpolation [1] is used to approximate the speed function. Then it formulates the

problem of optimal data partitioning in the form of a system of non-linear equations and applies

multidimensional solvers to numerical solution of this system. The algorithm is iterative and

always converges in a finite number of iterations returning a solution that balances the load of

the processors. The number of iterations depends on the shape of the functions. In practice, the

number can be as little as 2 iterations for very smooth speed functions and up to 30 iterations

when partitioning in regions of rapidly changing speed functions. For illustration, Fig. 6 shows

speed function approximations used in the geometrical algorithms and in the algorithm based

on the multidimensional solvers.

 

Figure 6. Speed function for non-optimized Netlib BLAS: the piecewise approximation satisfying

the restriction of monotonicity (left), and the Akima spline interpolation (right)

These algorithms have been successfully employed in different data-parallel kernels and

applications and significantly outperformed their CPM-based counterparts [2, 15, 16, 18, 25, 34].

Algorithms that require full FPMs as input to find the optimal partitioning can be used

in applications developed for execution on the same stable platform multiple times. In this

case, the cost of building the FPMs for the full range of problem sizes will be insignificant

in comparison with the accumulated gains due to the optimal parallelization. However, these

algorithms cannot be employed in self-adaptable applications that are supposed to discover the

performance characteristics of the executing heterogeneous platform at run-time. To address

that type of application, a new class of partitioning algorithms was proposed [36]. They do not

need the FPMs as input. Instead, they run on the processors executing the application and

iteratively build partial approximations of their speed functions until they become sufficiently

accurate to partition the task of the given size with the required precision. For example, if

we want to distribute n units of computation between p heterogeneous processors using the

geometrical data partitioning, but the speed functions si(x) of the processors are not known a

priori, we will proceed as follows. The first approximations of the partial speed functions, s̄i(x),

are created as constants s̄i(x) = s0i = si(n/p) as illustrated in Fig. 7(a). At the iteration k,

the piecewise linear approximations s̄i(x) are improved by adding the points (dki , s
k
i ), Fig. 7(b).

Namely, let {(d(j)i , s
(j)
i )}mj=1, d

(1)
i < . . . < d

(m)
i , be the experimentally obtained points of s̄i(x)

used to build its current piecewise linear approximation, then

1. If dki < d
(1)
i , then the line segment (0, s

(1)
i )→ (d

(1)
i , s

(1)
i ) of the s̄i(x) approximation will be

replaced by two connected line segments (0, ski ))→ (dki , s
k
i ) and (dki , s

k
i )→ (d

(1)
i , s

(1)
i );

2. If dki > d
(m)
i , then the line (d

(m)
i , s

(m)
i ) → (∞, s

(m)
i ) of this approximation will be replaced

by the line segment (d
(m)
i , s

(m)
i )→ (dki , s

k
i ) and the line (dki , s

k
i )→ (∞, ski );
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3. If d
(j)
i < dki < d

(j+1)
i , the line segment (d

(j)
i , s

(j)
i )→ (d

(j+1)
i , s

(j+1)
i ) of s̄i(d) will be replaced

by two connected line segments (d
(j)
i , s

(j)
i )→ (dki , s

k
i ) and (dki , s

k
i )→ (d

(j+1)
i , s

(j+1)
i ).

(a) (b)
Figure 7. Construction of partial speed functions using linear interpolation.

After adding the new data point (dji , s
j
i ) to the partial speed function s̄i(x), we verify that

the shape of the resulting piecewise linear approximation satisfies the above assumptions, and

update the value of sji when required. Namely, to keep the partial speed function increasing and

convex on the interval [0, X], we ensure that sj−1
i ≤ sji ≤ sj+1

i and
sj−1
i −sj−2

i

dj−1
i −dj−2

i

≥ sji−sj−1
i

dj
i−dj−1

i

≥ sj+1
i −sji

dj+1
i −dj

i

.

The latter expression represents non-increasing tangent of the pieces, which is required for the

convex shape of the piecewise linear approximation. On the interval [X,∞], we ensure that

sj−1
i ≥ sji ≥ sj+1

i for monotonously decreasing speed function.

This approach has proved to be very efficient in practice, typically converging to the optimal

solution after a very few iterations [16].

While some other non-constant performance models of heterogeneous processors such as the

unit-step functional model [22], the functional model with limits on task size [32] and the band

model [30] have been proposed and used for the design of heterogeneous algorithms, they did

not go beyond some preliminary studies as they appeared to be not suitable for practical use in

high-performance heterogeneous scientific computing due to a variety of reasons.

1.3. Implementation of heterogeneous data partitioning algorithms

It is important to note that the effectiveness of the data partitioning algorithms presented

in this section strongly depends on how accurately the performance models employed in these

algorithms are reflecting the real performance of the data parallel applications on the executing

platforms. Unfortunately many algorithms, especially CPM–based, come without a method for

estimation of the employed performance model, leaving this task to the user. Therefore the use

of these algorithms as well as tools straightforwardly employing these algorithms is a challenging

task. The graph partitioning libraries [4, 11, 12, 28, 45] give us examples of such tools.

At the same time, some algorithm designers include the method of construction of the em-

ployed performance model in the definition of the algorithm. Such algorithms are easy to use and

compare. The estimation method helps to understand: (i) the meaning of the model parameters

leaving no room for interpretation, and (ii) the assumptions made about the application and

the target platform better. According to this approach, model-based algorithms will be different

even if they only differ in the method of model construction. Such algorithms can be found
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in [15, 16, 35, 43]. For example, [15] proposes a two-dimensional matrix partitioning algorithm

designed for heterogeneous SUMMA (see Fig. 1). The definition of this algorithm specifically

stipulates that the FPMs of the processors will be built using the computational kernel perform-

ing one update of the submatrix Ci with the portions of pivot block column Ai and pivot block

row Bi: Ci+ =Ai ×Bi as shown in Fig. 8.

Figure 8. The computational kernel

Moreover, it proposes to use one-dimensional FPMs by combining the height mi and width

ni parameters into one parameter, area di = mi × ni, measured in b× b blocks, and to only use

square areas in benchmarking, m = n =
√
d, for 0 < d ≤ M ×N . Then it is partitioned using

a one-dimensional FPM-based algorithm to determine the areas of the rectangles that should

be partitioned to each processor. The CPM-based algorithm [8] is then applied to calculate the

optimum shape and ordering of the rectangles so that the total volume of communication is

minimized.

The algorithm described above makes the assumption that a benchmark of a square area

will give an accurate prediction of computation time of any rectangle of the same area, namely

s(x, x) = s(x/c, c.x). However, in general this does not hold true for all c (Fig. 9(a)). Fortunately,

in order to minimise the total volume of communication the algorithm [8] arranges the rectangles

so that they are as square as possible. It has been verified experimentally [15] by partitioning

a medium sized square dense matrix using the new algorithm for 1 to 1000 nodes from the

Grid’5000 platform (incorporating 20 unique nodes), and plotted the frequency of the ratio

m : n in Fig. 9(c). Fig. 9(b), showing a detail of Fig. 9(a), illustrates that if the rectangle is

approximately square the assumption holds.

The efficiency of the FPM-based data-parallel applications strongly depends on the accuracy

of the evaluation of the speed function of each heterogeneous processor. It is a challenging

problem that requires: (i) carefully designed experiments to accurately and efficiently measure

the speed of the processor for each problem size; (ii) appropriate interpolation and approximation

methods which use the experimental points to construct an accurate speed function of the given

shape. A software tool, FuPerMod, helping the application programmer solve these problems has

been recently developed and released [17]. FuPerMod also provides a number of heterogeneous

data partitioning algorithms for sets, ordered sets and matrices, both CPM-based and FPM-

based. It does not provide graph-partitioning algorithms though. Graph-partitioning algorithms

are provided by a number of libraries such as ParMetis [28], SCOTCH [12], JOSTLE [45],

Zoltan [11], PaGrid [4]. While the partitioning algorithms implemented in these libraries use

performance models, the libraries provide no support for their construction.

2. Optimization of parallel applications on hybrid multicore

and multi-accelerator heterogeneous platforms

Thus, the traditional heterogeneous performance models and data partitioning algorithms

and applications are designed for platforms whose processing elements are independent of each

Heterogeneous Parallel Computing: from Clusters of Workstations to Hierarchical...

78 Supercomputing Frontiers and Innovations



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1:40 1:20 1:1 20:1 40:1

S
p
e
e
d
 (

G
F

L
O

P
S

)

Ratio m:n

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1:1.4 1:1.2 1:1 1.2:1 1.4:1

S
p
e
e
d
 (

G
F

L
O

P
S

)

Ratio m:n

(b)

5.0⋅10
3

1.0⋅10
4

1.5⋅10
4

2.0⋅10
4

1:1.4 1:1.2 1:1 1.2:1 1.4:1

F
re

q
u
e
n
c
y

Ratio m:n

(c)
Figure 9. Showing speed against the ratio of the sides of the partitioned rectangles. Lines connect

rectangles of equal area. The centerline at 1 : 1 represents square shape. In general speed is not

constant with area (a). However when the ratio is close to 1 : 1, speed is approximately constant

(b). (c) Shows the frequency distribution of the ratio of m : n using the new partitioning

algorithm for 1 to 1000 machines (incorporating 20 unique hardware configurations)

other. In modern heterogeneous multicore and multi-accelerator compute nodes, however, pro-

cessing elements are coupled and share system resources. In such platforms, the speed of one

processing element often depends on the load of others due to resource contention. Therefore,

they cannot be considered independent, and hence their associated performance models cannot

be considered and built independently. This makes the traditional models, methods of their

evaluation and algorithms no longer applicable to the new platforms.

This problem was recently addressed in [46] [47] [48]. In this work, the authors do not

study how to develop computational kernels for individual computing devices used in hybrid

heterogeneous platforms, such as multicore CPUs or GPUs. They assume that such kernels are

available for the use in parallel applications on these platforms. While being very challenging

and important, this problem has attracted significant attention of the HPC research community

and many important kernels have been ported to modern multicores and GPUs. Instead, they

focus on a wide open problem of optimal data distribution between kernels of the data-parallel

application assuming that the configuration of the application is fixed. Finding the optimal

configuration of the application is another challenge to be addressed, which is out of the scope of

this work. The authors however give few basic empirical rules that, they believe, lead to optimal

configurations. For example, never run a NUMA-unaware multi-threaded computational kernel

across multiple NUMA nodes. Use instead multiple instances of this kernel, one per NUMA

node.

A multicore and multi-GPU system, which the main target architecture in this work, is

modeled by a set of heterogeneous abstract processors determined by the configuration of the
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parallel application. Namely, a group of processing elements executing one computational kernel

of the application will make a combined processing unit and will be represented in the model by

one abstract processor. For example, if a single-threaded computational kernel is used, then each

CPU core executing this kernel will be represented in the model by a separate abstract processor.

If a multi-threaded computational kernel is used, then each group of CPU cores executing the

kernel will make a combined processing unit represented in the model by one abstract processor.

A GPU is usually controlled by a host process running on a dedicated CPU core. This process

instructs the GPU to perform computations and handles data transfers between the host and

device memory. In the case of a single-GPU computational kernel, the GPU and its dedicated

CPU core will make a combined processing unit represented by an abstract processor. If a multi-

GPU computational kernel is used in the application, the GPUs and their dedicated CPU core

will make a combined processing unit represented by one abstract processor.

Figure 10. Performance modeling on a GPU-accelerated multicore server of NUMA architecture:

single-threaded and single-GPU computational kernels executed

Figure 11. Performance modeling on a GPU-accelerated multicore server of NUMA architecture:

multi-threaded and multi-GPU computational kernels executed; two GPUs handled by a single

dedicated CPU core

Figures 10 and 11 illustrate this approach showing a GPU-accelerated multicore server of

NUMA architecture executing a parallel application in two different configurations. The config-

uration shown in Fig. 10 is based on the single-threaded and single-GPU computational kernels.

It consists of ten processes running the CPU kernels on ten cores of both NUMA nodes, and

two processes running the GPU kernels on accelerators and their dedicated cores on the second

NUMA node. The configuration in Fig. 11 is based on the multi-threaded and multi-GPU com-

putational kernels. It consists of one process running the 6-thread CPU kernel on one NUMA

node, one process running the 5-thread CPU kernel on another NUMA node, and one process

running the GPU kernel on the GPUs and their single dedicated core. All processing elements in

these diagrams are enumerated. Each number indicates the combined processing unit to which
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the processing element belongs. For example, in the first configuration, the cores in NUMA node

0 make six processing units, and each GPU with its dedicated CPU core in NUMA node 1 make

a combined processing unit.

In the first configuration, the cores in NUMA node 0 execute six identical processes and are

modeled by six abstract processors. These cores are tightly coupled and share memory, therefore,

they cannot be considered independent. On the other hand, this group of processing elements is

relatively independent of other processing elements of the server. Therefore, their performance

should be measured simultaneously in a group but can be measured separately from the others.

In the second configuration, these six cores execute one process and modeled as one combined

processing unit. Its performance can be measured separately from other processing elements of

the server.

Next steps are to build functional performance models of the abstract processors and perform

model-based data partitioning in order to balance the workload between the combined processing

units represented by these abstract processors.

In order to build the performance models of the abstract processors, the performance of the

processing units representing these processors has to be measured. To measure the performance

of the processing units accurately, they are grouped by the shared system resources, so that

the resources be shared within each group but not shared between groups. The performance of

processing units in a group is measured when all processing units in the group are executing

some workload simultaneously, thereby taking into account the influence of resource contention.

To prevent the operating system from migrating processes excessively, processes are bound to

CPU cores. Processes are synchronized to minimize the idle computational cycles, aiming at the

highest floating point rate for the application. Synchronization also ensures that the resources

will be shared between the maximum number of processes. To ensure the reliability of the results,

measurements are repeated multiple times, and average execution times are used.

One important empirical rule used in this work is that when looking for the optimal distri-

bution of the workload, only the solutions that evenly distribute the workload between identical

CPU processing units are considered. This simplification significantly reduces the complexity of

the data partitioning problem. It is based both on the authors’ extensive experiments that have

shown no evidence that uneven distribution between identical processing units could speed up

applications, and on the absence of such evidence in literature. Therefore, identical processing

units that share system resources will be always given the same amount of workload during

performance measurements.

To account for different configurations of the application, three types of functional perfor-

mance models for CPU cores are defined:

1. s(x) approximates the speed of a uniprocessor executing a single-threaded computational

kernel. The speed s(x) = x/t, where x is the number of computation units, and t is the

execution time.

2. sc(x) approximates the speed of one of c CPU cores all executing the same single-threaded

computational kernel simultaneously. The speed sc(x) = x/t, where x is the number of

computation units executed by each CPU core, and t is the execution time.

3. Sc(x) approximates the collective speed of c CPU cores executing a multi-threaded compu-

tational kernel. The speed Sc(x) = x/t, where x is the total number of computation units

executed by all c CPU cores, and t is the execution time. Sc(cx)/c is used to approximate

the average speed of a CPU core.
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Figure 12. Speed functions of a CPU core built in different configurations
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Figure 13. Speed functions of a GPU processing unit built in different configurations

Fig. 12 shows speed functions of a CPU core built in different configurations on a server,

consisting of eight NUMA nodes connected by AMD HyperTransport(HT) links, with 6 cores

and 16 GB local memory each. The server is equipped with a NVIDIA Tesla S2050 server, which

consists of two pairs of GPUs. Each pair is connected by a PCIe switch and linked to a separate

NUMA node by a PCIe bus.

Similarly, three types of functional performance models for GPUs are defined as follows:

1. g(x) approximates the speed of a combined processing unit made of a GPU and its dedicated

CPU core that execute a single-GPU computational kernel, exclusively using a PCIe link.

The speed g(x) = x/t, where x is the number of computation units, and t is the execution

time.

2. gd(x) approximates the speed of one of d combined processing units, each made of a GPU and

its dedicated CPU core. All processing units execute identical single-GPU computational

kernels simultaneously. The speed gd(x) = x/t, where x is the number of computation units

executed by each GPU processing unit, and t is the execution time.

3. Gd(x) approximates the speed of a combined processing unit made of d GPUs and their

dedicated CPU core that collectively execute a multi-GPU computational kernel. The speed

Gd(x) = x/t, where x is the total number of computation units processed by all d GPUs,

and t is the execution time. Gd(dx)/d is used to approximate the average speed of a GPU.
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Fig. 13 shows the speed functions of a combined GPU processing unit built in different

configurations on the same server.

From these experiments we can see that depending on the configuration of the application

the speed of individual cores and GPUs can vary significantly. Therefore, to achieve optimal dis-

tribution of computations it is very important to build and use speed functions which accurately

reflect their performance during the execution of the application. This work also reveals that the

speed of GPU can depend on the load of CPU cores, which should be also taken into account

during the partitioning step. Experiments with linear algebra kernels and a CFD application

validated the efficiency of the proposed approach.

At the same time, this work has demonstrated the importance of proper configuration

of the application. For example, Fig. 14 demonstrates the impact of NUMA mapping on the

performance of a GPU processing unit, comprised of a CPU core and a GPU of Tesla S2050

deployed in the experimental server. g1(x) is built by executing one single-GPU gemm kernel,

which uses exclusively the data link and the memory of a local or remote NUMA node. g2(x) is

built by executing two single-GPU kernels simultaneously on two GPU units that share the PCIe

link and the memory of the same NUMA node, local or remote. In the remote configuration,

the GPU units also share an extra HT link to the remote NUMA node. Speed function g2(x) is

also built in the configuration when two dedicated CPU cores are located on different NUMA

nodes, which is denoted as local + remote. In this case, the processing units share PCIe but do

not share memory.

The difference between speed functions g1(x) and g2(x) reflects the performance degradation

due to the contention for PCIe, HT and memory. Significant difference is observed for large

problem sizes when many data transfers are required. Communication overhead between NUMA

nodes can be estimated by the difference between g1(x) in local and remote configurations. The

combined effect of both phenomena is reflected by the g2(x) functions in different configurations.

Multilevel hierarchy in modern heterogeneous clusters represents another challenge to be

addressed in the design of data partitioning algorithms. One solution, a hierarchical matrix

partitioning algorithm based on realistic performance models at each level of hierarchy, was

recently proposed in [14]. To minimize the total execution time of the application it iteratively

partitions a matrix between nodes and partitions these sub-matrices between the devices in a

node. This is a self-adaptive algorithm that dynamically builds the performance models at run-

time and it employs an algorithm to minimize the total volume of communication. This algorithm
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Figure 14. Speed functions of a GPU processing unit built in different configurations
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allows scientific applications to perform load balanced matrix operations with nested parallelism

on hierarchical heterogeneous platforms. Large scale experiments on a heterogeneous multi-

cluster site incorporating multicore CPUs and GPU nodes have shown that this hierarchical

algorithm outperforms all other state–of–the–art approaches and successfully load balance very

large problems.

3. Programming tools

In the past, the main platform used for non-trivial heterogeneous parallel computing (as op-

posed to volunteer computing, such as the seti@home project) has been a heterogeneous cluster of

workstations. MPI is a standard programming model for this platform. However, the implemen-

tation of real-world heterogeneous parallel algorithms in an efficient and portable form requires

much more than just the code implementing the algorithm for each legal combination of its input

parameters. Extra code should be written to find optimal values of some parameters (say, the

number of processes and their arrangement in a multi-dimensional shape) or to accurately esti-

mate the others (such as relative speeds of the processors). This extra code may account for at

least 95% of all code in common cases. Therefore, for the implementation of heterogeneous par-

allel algorithms on this platform, a small number of programming tools was developed. mpC [3]

is the first programming language designed for heterogeneous parallel computing. It facilitates

the implementation of heterogeneous parallel algorithms by automating the development of the

routine code, which comes in two forms: (i) application specific code generated by a compiler

from the specification of the implemented algorithm provided by the application programmer;

(ii) universal code in the form of run-time support system and libraries. HeteroMPI [33] is an

extension of MPI inspired by mpC. It allows the programmer to re-use the available MPI code

when developing applications for heterogeneous clusters of workstations. Both mpC and Het-

eroMPI have been used for development of a wide range of real-life applications. HeteroMPI was

also the instrumental tool for implementation of Heterogeneous ScaLAPACK [42], a version of

ScaLAPACK optimized for heterogeneous clusters of workstations.

Modern and future heterogeneous HPC systems necessitate the synthesis of multiple pro-

gramming models in the same code. This will be a result of the use of multiple heterogeneous

many-core devices for accelerating code, as well as the use of both shared- and distributed-

address spaces in the same code to cope with heterogeneous memory hierarchies and forms of

communication. Synthesizing multiple programming models in the same code in a way that

would provide a good balance of performance, portability and programmability, is far from

trivial. Despite long-standing efforts to program parallel applications with hybrid programming

models (e.g. MPI/OpenMP) and some recent developments in programming models for hybrid

architectures (e.g. OpenCL), it is still a long way towards solutions that would satisfy the HPC

community.

This work was conducted with the financial support of Science Foundation Ireland, Grant

08/IN.1/I2054.
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