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Abstract

Analytical predictive communication models play an impor-
tant role in the optimization of communication operations in
scientific applications running on computational clusters.
The effectiveness of this model-based optimization strongly
depends on the accuracy of the estimation of the parame-
ters of these models. The task of accurate estimation of the
model is particularly challenging for heterogeneous com-
munication models that use a much larger number of point-
to-point parameters than their homogeneous counterparts.
One particular challenge occurs when the number of point-
to-point parameters describing communication between a
pair of processors becomes larger than the number of inde-
pendent point-to-point communication experiments tradi-
tionally used for estimation of the parameters. In this paper,
we address this and other related issues and propose an
approach that allows us to design a set of communica-
tion experiments sufficient for the accurate and efficient
estimation of the parameters of a heterogeneous commu-
nication performance model. The experiments on hetero-
geneous clusters demonstrate the accuracy and efficiency
of the proposed solution.

Key words: heterogeneous cluster, heterogeneous commu-
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1 Introduction

A programming system for high performance computing
on heterogeneous platforms, such as mpC (Lastovetsky
2002), HeteroMPI (Lastovetsky and Reddy 2006), or Grid-
Solve (Arnold, Casanova, and Dongarra 2002), strongly
relies on the performance model of the executing platform,
which is used for prediction of the execution time of dif-
ferent configurations of the application in order to find the
optimal one. The prediction includes computation and
communication costs and depends on the accuracy of esti-
mation of parameters of the model. In this paper, we deal
with assessing the parameters of communication per-
formance models of heterogeneous clusters based on a
switched network, which are arguably the most common
platform for parallel computing.

Traditionally, communication performance models for
high performance computing are analytical and built for
homogeneous clusters. The basis of these models is a
point-to-point communication model characterized by a
set of integral parameters, having the same value for each
pair of processors. The execution time of other operations
(which are, in fact, collective), is expressed as a combi-
nation of the point-to-point parameters, and is analytically
predicted for different message sizes and numbers of proc-
essors involved. The core of this approach is the choice of a
point-to-point model that is the most appropriate to the tar-
geted platform, allowing for easy and natural expression of
different algorithms of collective operations. For homoge-
neous clusters, the point-to-point parameters are found sta-
tistically from communication experiments between any
two processors. Typical experiments include sending and
receiving messages of different sizes, with the communica-
tion execution time being measured on one side.

A homogeneous communication model can be applied
to a cluster of heterogeneous processors by averaging
values obtained for every pair of processors. In this case,
the heterogeneous cluster will be treated as homogeneous
in terms of the performance of communication operations.
If some processors or links in the heterogeneous cluster
significantly differ in performance, predictions based on
the homogeneous communication model may become
inaccurate. More accurate performance models would not
average the point-to-point communication parameters. In
this paper, we show that the use of such heterogeneous
communication models in model-based optimization of
MPI collective operations on heterogeneous clusters does
improve their performance.

While more accurate, the heterogeneous models have a
significantly larger number of parameters. This results in
a higher cost of their estimation. In particular, when applied
to the heterogeneous communication model, the statistical
methods of finding the point-to-point parameters, tradi-
tionally used in the case of homogeneous communication
models, require a significantly larger number of measure-
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ments. For our target architecture, which is a heterogene-
ous cluster based on a switched network, we can address
this problem by performing most of the communication
experiments in parallel, using the fact that the network
switches provide no-contention point-to-point communi-
cations, appropriately forwarding packets between sources
and destinations.

A heterogeneous communication performance model,
LMO, has recently been proposed to allow for easy and
intuitive expression of the execution time of collective
operations (Lastovetsky, Mkwawa, and O’Flynn 2006;
Lastovetsky and O’Flynn 2007). Unfortunately, this goal
can only be achieved by introducing more point-to-point
parameters than it is possible to estimate with help of the
standard point-to-point communication experiments. The
estimation of such communication models is a new and
non-trivial problem. This paper proposes a solution to this
problem. The idea is to introduce additional collective
communication experiments involving more than two
processors. To make use of the results of these additional
independent experiments, we propose to extend the het-
erogeneous point-to-point communication model by a
model of these collective operations and use this extended
model to obtain additional independent equations for the
estimated parameters.

This paper is organized as follows. Section 2 outlines
related work on the estimation of the homogeneous com-
munication performance models for homogeneous plat-
forms and their use for optimization of communication.
In Section 3, we discuss and compare different approaches
to communication performance models for heterogene-
ous clusters. We conclude that while the advanced heter-
ogeneous models are the best option for model-based
optimization of communications, the task of estimation
of these models is particularly challenging and cannot be
solved by traditional methods. In Section 4, we propose
our approach to accurate and efficient estimation of the
parameters of these models. In Section 5, we apply this
approach to estimation of a particular heterogeneous com-
munication model. Section 6 presents the experimental
results that demonstrate the accuracy and efficiency of the
proposed solution. In Section 7, we show the results of
the model-based optimization of collective communica-
tion operations for parallel matrix multiplication on a
heterogeneous cluster.

2 Communication Models for
Homogeneous Platforms: Estimation and
Use

In this section, we discuss how the point-to-point parame-
ters of traditional communication performance models are
estimated for homogeneous platforms. In this case, the
parameters will be the same for any pair of processors.

Therefore, to estimate them, communication experiments
between any two processors will be sufficient.

The Hockney model (Hockney 1994) estimates the
execution time of point-to-point communication as
o+ M, where a is the latency, [ is the bandwidth, and
M 1is the message size. There are two ways to obtain a
statistically reliable estimation of the Hockney parame-
ters:

1. To perform two series of roundtrips: with empty
messages (to get the latency parameter from the
average execution time), and with non-empty
ones (to get the bandwidth).

2. To perform a series of roundtrips with messages
of different sizes and use results in a linear regres-
sion which fits the execution time into a linear
combination of the Hockney parameters and a
message size.

The LogP model (Culler et al. 1993) predicts the time
of network communication for small fixed-sized messages
in terms of the latency, L, the overhead, o, the gap per mes-
sage, g, and the number of processors, P. The latency, L, is
an upper bound on the time to transmit a message from its
source to destination. The overhead, o, is the time period
during which the processor is engaged in sending or
receiving a message. The gap, g, is the minimum time
between consecutive transmissions or receptions; it is
the reciprocal value of the end-to-end bandwidth between
two processors, so that the network bandwidth can be
expressed as L/g. According to LogP, the time of point-to-
point communication can be estimated by L + 20. In
Culler et al. (1996), the estimation of the LogP parame-
ters is presented, with the sending, o, and receiving, o,,
overheads being distinguished. The set of communica-
tion experiments used for estimation of the LogP param-
eters is as follows:

* To estimate the sending overhead parameter, o, a small
number of messages are sent consecutively in one direc-
tion. The averaged sending time measured on the sender
side will approximate o,.

* The receiving overhead, o,, is found directly from the
time of receiving a message in the roundtrip. In this
experiment, after completion of the send operation, the
sending processor waits for some time, sufficient for
the reply to reach the receiving processor, and only
then posts a receive operation. The execution time of
the receive operation is assumed to approximate o,.

* The latency is found from the execution time of the
roundtrip with small messages L = RTT/2 — o, - o,.

* To estimate the gap parameter, g, a large number of mes-
sages are sent consecutively in one direction. The gap is
estimated as g = T,/n, where n is a number of messages
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and 7, is the total execution time of this communication
experiment measured on the sender processor. The
number of messages is chosen to be large to ensure that
the point-to-point communication time is dominated by
the factor of bandwidth rather than latency. This experi-
ment, also known as a saturation, reflects the nature of
the gap parameter but takes a long time.

In contrast to the Hockney model, LogP is not designed
for communications with arbitrary messages, but its exten-
sion LogGP model (Alexandrov et al. 1997), takes into
account the message size by introducing the gap per byte
parameter, G. The point-to-point communication time is
estimated by L + 20 + (M — 1)G. The gap per byte, G, can
be assessed in the same way as the gap parameter of the
LogP model, saturating the link with large messages of
size M: G = L0/

M

In the PLogP (parameterized LogP) model (Kielmann,
Bal, and Verstoep 2000), all parameters except for latency
are piecewise linear functions of the message size, and the
meaning of parameters slightly differs from LogP. The
meaning of latency, L, is not intuitive; rather it is a constant
that combines all fixed contribution factors such as copying
to/from the network interfaces and the transfer over the net-
work. The send, o(M), and receive, o,(M), overheads are
the times that the source and destination processors are
busy for the duration of communication. They can be
overlapped for sufficiently large messages. The gap,
g(M), is the minimum time between consecutive trans-
missions or receptions of messages of a given size M.
The gap is assumed to cover the overheads: g(M) = o,(M)
and g(M) = o,(M). According to the PLogP model, the
point-to-point execution time is equal to L + g(M) for the
message of M bytes. This model is adaptive in nature: the
number and location of breaks of piecewise linear func-
tions are determined during its construction, the total
number of parameters may become too large. The esti-
mation of the PLogP parameters includes the following
experiments:

* The overheads o(M) and o,(M) are measured directly
from the time of sending/receiving a message of M bytes

M
in the roundtrips i #; J, consisting of a single

sending of the message of M bytes from processor i to

0
processor j and a single zero reply, and i T’ Js

consisting of an empty send and non-empty reply. For
each message size, these tests are initially run a small
number of times. They are repeated as many times as
the statistical parameters, which determine the confi-
dence interval likely to include the parameters, require.
These experiments are performed for multiple message

sizes, which are selected adaptively. For example, if
the o (M,) is not consistent with the linearly extrapo-
lated value based on o (M, _,) and o,(M, _,), then another
measurement is performed for the message size M| =
(M, + M,_,)/2, and the o (M) is estimated.

* To assess the gap parameter, the saturation for each mes-
sage size has to be performed. The authors of PLogP
suggested a less time-consuming indirect method of
finding the gap parameter, which requires only one satu-
ration experiment to estimate g(0) and single round-
trips with requests M > 0 and empty replies to estimate
g(M). As the execution time of such a roundtrip is
RTT(M) =L + g(M) + L + g(0), g(M) will be expressed
as follows g(M) = RTT(M) — RTT(0) + g(0).

* The latency is found as L = RTT(0)/2 — g(0).

In our experiments on various clusters, we observed
that the estimates of the gap obtained by the indirect
method could be several times less accurate than the
value obtained by the direct method. Moreover, the gap
values found with the optimized technique are often less
than send/receive overheads for small and medium mes-
sages, which contradicts the assumption that g(M) = o (M)

and g(M) =2 o, (M).

One application of communication performance mod-
els is the optimization of MPI collective operations. Tra-
ditionally, the research on optimization of collective
communications focuses on the analysis of such collec-
tive communication operations that allow for many dif-
ferent algorithms to be implemented via point-to-point
communications on different tree topologies. The goal is
to find the optimal algorithm for each particular network
configuration with respect to the prediction provided by
the communication performance model.

Thakur, Rabenseifner, and Gropp (2005) used the Hock-
ney model to estimate the communication performance
of different algorithms of collective operations. For a
particular collective operation they suggested switching
between algorithms to choose the fastest one for each
given message size and number of processors. Kielmann
et al. (1999) used the PLogP model to find an optimal
algorithm for collective operations on clusters connected
by a wide area network. The design of their algorithms of
collective operations is based on intra- and inter-cluster
graphs of processors; they switch between different shapes
of graphs for different message sizes to get the best pre-
diction of execution time. Pjesivac-Grbovic et al. (2007)
applied the Hockney, LogP/LogGP, and PLogP models
to different algorithms and topologies for barrier, broad-
cast, reduce, and all-to-all operations. They showed that
the estimations provided by the traditional models might
differ from the observed communication execution times,
resulting in non-optimal switch between algorithms, and
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presented the decision functions based on empirical data
obtained from excessive measurements of the execution
time of different algorithms.

All these approaches were applied to homogeneous
platforms. They considered a fixed set of commonly used
algorithms for each collective with a predetermined form
of communication trees. The heterogeneous communica-
tion performance models can provide another approach
to the model-based optimization: the building of optimal
communication trees by using the prediction of the exe-
cution time for each link.

Bhat, Prasanna, and Raghavendra (2003) and Hatta
and Shibusawa (2000) used a heterogeneous Hockney
model to build the optimal communication trees for broad-
cast and gather. They applied different heuristics based on
the Hockney prediction on either the whole or some of its
parameters, for example, “broadcast: fastest node first”
(selection of the node, the average latency with which is
minimal), “broadcast, gather: fastest edge first/last”
(selection of the communication for which the estimation
of the execution time is the smallest), “gather: widest
bandwidth last” (selection of the communication with the
maximum bandwidth) and so on. The authors of these
works used the heterogeneous Hockney extension just
for relative estimation of the point-to-point communica-
tions but did not build models of collective operations.
To the best of the authors’ knowledge, there are no publi-
cations on the modeling of MPI collective operations on
heterogeneous clusters.

3 Communication Performance Models
for Heterogeneous Clusters

Heterogeneous computational clusters with MPI as the
principle programming system have become a popular
platform for parallel computing. Unfortunately, many
MPI-based applications that were originally designed for
homogeneous platforms do not demonstrate the same per-
formance on heterogeneous ones and require optimiza-
tion. The optimization of parallel applications is typically
based on the performance models of heterogeneous clus-
ters, which are used for prediction of the execution time
of different configurations of the application, including its
computation and communication costs. The optimization
of communications, in particular MPI collective opera-
tions, is an important aspect of the optimization of paral-
lel applications. The model-based optimization can
significantly improve the performance of collective oper-
ations on both homogeneous and heterogeneous plat-
forms (Kielmann et al. 1999; Hatta and Shibusawa 2000;
Bhat et al. 2003; Thakur et al. 2005; Pjesivac-Grbovic et
al. 2007).

There are two main approaches to modeling the per-
formance of communication operations on heterogeneous

clusters. The first is to apply traditional homogeneous
communication performance models to heterogeneous
clusters. In this case, the parameters of the models are
estimated for each pair of processors and the average
values for all pairs are then used in modeling. The sec-
ond approach is to use dedicated heterogeneous models,
where different pairs of heterogeneous processors are
characterized by different parameters. In this section, we
compare these two approaches and show that while not
that simple in use, heterogeneous communication models
are more accurate and outperform their homogeneous
counterparts in the model-based optimization of commu-
nication operations on heterogeneous clusters.

The number of parameters is the principle difference
between the homogeneous and heterogeneous models. A
homogeneous model uses a small number of the average
parameters that are applied to any pair of processors,
whereas in heterogeneous models, different pairs of proc-
essors are characterized by different parameters, making
the total number of parameters needed to describe an n-
processor heterogeneous cluster of the order of O(r?).

The small number of parameters is an obvious advan-
tage of the homogeneous models over the heterogeneous
ones. It allows the expression of the execution time of
any communication operation by a simple compact for-
mula, which is independent of the processors involved in
the operation. For example, with the homogeneous Hock-
ney model the execution time of the binomial (minimum
spanning tree) algorithm of scatter/gather can be approxi-
mated by the following formula: (log,n)a+ (n— 1)BM,
where M is the size of the receive (scatter) and send
(gather) buffers. In each sub-tree, the largest messages
are sent first (scatter) or received last (gather). The for-
mula includes parallel (constant contributions in sub-
trees of the same height) and sequential (accumulated
variable contributions) parts. The binomial communica-
tion tree for 16 participating processors is shown in Fig-
ure 1. The nodes of the tree represent the processors. The
arcs represent the logical communication links between
the processors. Given 16 data blocks are to be scattered/
gathered, each arc is marked by the number of blocks
communicated over the corresponding link during the
execution of the algorithm. According to the formula, the
variable contributions are accumulated for all links,
while the constant contributions are taken once for all
sub-trees of the same height: C,, k=1, ..., 4.

We extend the Hockney model for heterogeneous
clusters and introduce different parameters o; and Bu
for different pairs of processors. We assume symmetric
communications, 0; = 0, Bl-j = Bji, which is natural for
the switched network. For the execution time of the bino-
mial scatter/gather, we suggest the following formula,
recursively applying to the sub-trees:
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Fig. 1 The binomial communication tree for scatter (gather) involving 16 processors. The nodes represent the proc-
essors. Each arc represents a logical communication link and is marked by the number of data blocks communi-

cated over this link.

T(k) = o, +B,2" "M+ max7.(k—1) (1)
where £ is an order of the sub-tree (starts with log,n — the
whole tree), r is a root processor of the sub-tree (0, for
the whole tree), and s is a root of a sub-sub-tree with the
highest order (8, for the whole tree in Figure 1). T.(k — 1)
is the execution time of the sub-tree ¢ of order k — 1 from
the set C, _,. For the tree in Figure 1, C; consists of two
sub-trees, with roots 0 and 8.

The execution times of sending/receiving of the largest
block in each sub-tree are summed (sequential part). As
communications in the sub-trees of the same height are
performed in parallel, the formula includes maximums
and recursion. For eight participating processors with the
root 0 the formula will look as follows:

(0 + B M)
0L02+2ﬁ02M+max{ o+ Po

(O3 + B3 M)
Oy + 4PosM + max 2)
(Olys + B45M)}

Olyg + 2B4sM + max
* Pu {(0‘67 + B M)

One can see that the formula for the homogeneous Hock-
ney model is a special case of this formula. If all the
point-to-point parameters are the same, then in the case
of eight processors it will be rewritten as:

o+4BM+ o +2BM+ o+ M

=~log,80 + (8 — 1)pM ©)

While simpler in use, the homogeneous models are less
accurate. When some processors or links in the heteroge-
neous cluster significantly differ in performance, predic-
tions based on the homogeneous models may become
quite inaccurate.

Accuracy. The use of the homogeneous models for mini-
mization of the communication cost of the application
will often result in a solution that is far away from the
optimal. Being more accurate, the heterogeneous models
have the potential to significantly outperform the homo-
geneous ones in the model-based optimization of com-
munication operations on heterogeneous clusters. To
demonstrate this advantage of the heterogeneous models,
we conducted the following experiments on a 16-node
heterogeneous cluster (the specification of each of the
seven node types of the cluster is given in Table 1).

First, we found the parameters of the homogeneous
Hockney model of this cluster: oo =177 ps, B =0.0219 ps/
B. The execution time of the binominal scatter predicted
by this model will be the same independent of which
processor will be the root of the operation and how the
remaining processors will be mapped to the nodes of the
communication tree. Therefore, given the root is fixed,
according to the homogeneous Hockney model, any
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Table 1

Specification of the 16-node heterogeneous cluster.

Node Lo Number of
Model oS Processor Front side bus nodes of the
type Cache
type

1 Dell Poweredge SC1425 FC4 3.6 Xeon 800 MHz 2MB 2

2 Dell Poweredge 750 FC4 3.4 Xeon 800 MHz 1MB 6

3 IBM E-server 326 Debian 1.8 AMD Opteron 1 GHz 1 MB 2

4 IBM X-Series 306 Debian 3.2P4 800 MHz 1 MB 1

5 HP Proliant DL 320 G3 FC4 3.4 P4 800 MHz 1 MB 1

6 HP Proliant DL 320 G3 FC4 2.9 Celeron 533 MHz 256 KB 1

7 HP Proliant DL 140 G2 Debian 3.4 Xeon 800 MHz 1 MB 3

Table 2

Parameters for links between the seven types of nodes specified in Table 1. The first value, ¢, is

measured in us, the second, 3, in us/B.

Node type 1 2 3 4 5 6 7

1 248 244 121 493 126 156 121
0.0224 0.0232 0.0211 0.0360 0.0220 0.0218 0.0207

2 243 117 493 118 118 118
0.0211 0.0196 0.0331 0.0198 0.0209 0.0196

3 812 498 888 961 665
0.0190 0.0306 0.0192 0.0196 0.0188

4 X 496 496 497
0.0305 0.0302 0.0300

5 X 125 993
0.0201 0.0194

6 X 107
0.0199

7 728
0.0190

mapping of the remaining processors will be equally
optimal.

Then, we found the parameters of the heterogeneous
Hockney model of this cluster. Table 2 presents these
parameters for the links between different types of the
nodes (the first value, o, is measured in s, the second, j3,
in us/B). Because of the symmetry of communications,
we present only a half of the matrix. The “X” indicates
that there is only one node of the corresponding type. We
fixed a root processor (Dell Poweredge SC1425, 3.6 Xeon,
800 MHz, 2 MB) and used the heterogeneous Hockney
model to predict the execution time of the binomial scat-
ter for different mappings of the remaining processors to
the nodes of the tree. Our calculations showed that for

some mappings the difference in the execution time
exceeded 30%. The same results were obtained for the
binomial gather. That is, for this cluster, the use of the
heterogeneous Hockney model instead of the homogene-
ous one has the potential to improve the performance of
the collective communication operations.

To validate these calculations, we conducted experi-
ments for two different mappings of the processors to the
nodes of the binomial tree with the fixed root processor.
Both methods are based on a difference in the size of mes-
sages to be passed between the nodes in the binomial tree.
The idea of the first mapping is to send larger blocks via
faster links. Another, pessimistic, mapping uses the slowest
links for large blocks. The speed of each link is estimated
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Fig. 2 The execution time of the binomial scatter (a) and gather (b) for two different mappings of the processors of
the 16-node heterogeneous cluster to the nodes of the binomial communication tree.

by the heterogeneous Hockney model. Starting with the
sub-trees of the highest order, C, (k =log,n — L 1),
through which larger messages are passed, we recur-
sively choose their roots by comparing the Hockney

predictions o,; + B,,ka (i=1,...,n-1, i#r) for all
okm
. . . . n .
point-to-point communications r ————— i (scatter)

orr # i (gather), where the source, r, is a root
of the parent sub-tree (the first r is a root of the whole
tree, which is given as an argument of the scatter or
gather operation). Figure 2 shows the results of the
experiments with these mappings of processors. The
algorithm that we used in the experiments does not return
the best mapping of the processors to the nodes of the
binomial tree. We only presented this algorithm for illus-
tration purposes.

Estimation cost. As we have shown, the heterogeneous
models are more accurate than the homogeneous ones
but more complicated in use. In particular, algorithms of
the optimization of collective communication operations
based on the heterogeneous models will be of much
higher complexity than their homogeneous counterparts.
Do the heterogeneous models also come at a much higher
cost of the estimation of their parameters? The answer is
“no.” Indeed, the cost of the estimation of the model is
determined by the number of communication experi-
ments that need to be conducted to collect enough data
for accurate approximation of its parameters. The number

of parameters in a heterogeneous communication model of
an n-processor heterogeneous cluster will be proportlonal
to the number of links, Cn, that is, of the order of O(n’ ).
Given the model is linear, the number of independent
communication experiments required to obtain enough
data for accurate estimation of the parameters will be
proportional to the number of the parameters, that is, of
the order of O(n ). Parameters of a homogeneous model
of the heterogeneous cluster are obtained by averaging the
corresponding parameters for every pair of processors.
Therefore, the number of communication experiments
required to estimate the parameters of the homogeneous
model will be proportlonal to the number of pairs, C,
that is, of the order of O(n ) Thus, the number of com-
munication experiments required for the accurate estima-
tion of both homogeneous and heterogeneous models
will be of the same order, O(n ).

The cost of the accurate estimation of a communica-
tion model of the heterogeneous cluster may be quite sig-
nificant as it typically involves multiple repetitions of the
same communication experiments and statistical process-
ing of their results in order to obtain a reliable approxi-
mation of the parameters. At the same time, the cost of
the estimation can be significantly reduced if the hetero-
geneous cluster can simultaneously execute several inde-
pendent communications involving non-overlapping sets
of processors without degradation of their performance.
In this case, the parallel execution of the non-overlapping
communication experiments does not affect the experi-
mental results and can be used for acceleration of the
estimation procedure. Our primary target heterogeneous
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platform, a heterogeneous cluster based on a single
switch, is of that type. The optimization technique can be
very efficient. For example, in our experiments on the
16-node heterogeneous cluster, the parallel estimation of
the heterogeneous Hockney model with the confidence
level 95% and relative error 2.5% took only 5 sec, while
its serial estimation with the same accuracy took 16 sec.
Both experiments give the same values of the parameters.

Design of communication experiments. The basis of any
estimation method is the set of independent communica-
tion experiments used to obtain data sufficient to calcu-
late the parameters of the analytical communication
model of the heterogeneous cluster. Design of such a set is
not an issue for a traditional homogeneous model. In this
case, the parameters of the model are estimated for each
pair of processors using the traditional point-to-point com-
munication experiments as described in Section 2, and the
average values for all pairs are then used in modeling.

The design of this set is also straightforward for a het-
erogeneous extension of a traditional homogeneous model.
The heterogeneous Hockney model and the heterogene-
ous LogGP model are of this type. Such a heterogeneous
model is obtained by straightforward extension of the
base homogeneous model such that the communication
parameters characterizing each pair of processors can be
found from the set of point-to-point experiments described
in Section 2.

The design of communication experiments becomes
an issue for some original heterogeneous communication
models, such as the LMO model. The traditional models
use a small number of parameters to describe communi-
cation between any two processors. The number of these
parameters and their use in the model are always defined
in a way that allows for their accurate estimation with a
set of point-to-point communication experiments between
these two processors. The price to pay is that such a tradi-
tional point-to-point communication model is not intui-
tive. The meaning of its parameters is not clear. Different
sources of the contribution to the execution time are arti-
ficially and non-intuitively mixed and spread over a
smaller number of parameters. This makes the models
difficult to use for accurate modeling of collective com-
munications. For example, the Hockney model uses only
two parameters to describe communication between two
processors. The parameters accumulate contributions of
the participating processors and the communication layer
into the constant and variable delays respectively. In
order to model, say, the linear (flat free) algorithm of
scatter on a switched cluster in an intuitive way, we need
separate expressions for the contribution of the root proc-
essor, the communication layer and each of the receiving
processors. Otherwise, we cannot express the serializa-
tion of outgoing messages on the root processor followed

by their parallel transmission over the communication
layer and parallel processing on the receiving processors.
The use of the Hockney model as it is results in either
ignoring the serialization or ignoring the parallelization.
In the former case the predictions will be too optimistic,
while in the latter the predictions will be too pessimistic.
In both cases, they are not accurate. While using more
parameters, the LogGP model faces the same problem
because it does not separate the contribution of the proc-
essors and the communication layer into the variable
delay. The traditional way to cope with this problem is to
use an additional (and non-intuitive) fitting parameter,
which will make the overall model even less clear. While
this approach can somehow work for homogeneous mod-
els, it becomes hardly applicable to heterogeneous models.
The point is that a heterogeneous model would need multi-
ple fitting parameters making it fully impractical.

The alternative approach is to use original point-to-
point heterogeneous models, such as LMO, that allow for
easy and intuitive expression of the execution time of
collective communication operations. The analytical for-
mula for scatter and gather on heterogeneous clusters
provided by the LMO model will be discussed in Section 5.
While easy and intuitive in use, these models encounter a
new, challenging, problem. The problem is that the number
of point-to-point parameters describing communication
between a pair of processors becomes larger than the
number of independent point-to-point communication
experiments traditionally used for estimation of the param-
eters. In this paper, we address this challenge and pro-
pose an approach to design of the set of communication
experiments sufficient for the accurate and efficient esti-
mation of the parameters of such heterogeneous commu-
nication performance models.

4 Estimation of Parameters of
Heterogeneous Communication
Performance Models

In brief, in order to estimate the point-to-point parame-
ters of a heterogeneous model when the total number of
these parameters makes the point-to-point experiments
insufficient, we propose to use additional independent
communication experiments involving more than two
processors. In more detail, the approach can be summa-
rized as follows:

e As the point-to-point communication experiments
do not provide sufficient data for the estimation of the
parameters, some particular collective experiments
between small numbers of processors (in our experi-
ments, between three processors) are introduced. To
make use of the results of these additional experiments,
the heterogeneous point-to-point performance model is
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extended by an analytical model of these particular
collective operations with their execution time expressed
via the point-to-point parameters.

e Then, a system of equations with the point-to-point
parameters as unknowns and the execution times of
the communication experiments as a right hand side is
built and solved.

* Since more than two processors are participating in
these additional experiments, the execution time should
be measured by an appropriate timing method that pro-
vides a reasonable balance between the accuracy and
efficiency. We propose to measure the execution time of
the collective experiments on the sender side. This
method has been proven fast and quite accurate for col-
lective operations on a small number of processors.

* The additional collective communication experiments
should be designed very carefully in order to avoid the
irregularities in the execution time of the used collec-
tive operations. We suggest performing a preliminary
test of the collective operations for different message
sizes to identify the regions of irregularities and avoid
the use of message sizes from these regions.

* For reliable estimation of the parameters, we use mul-
tiple repetitions of the experiments and the statistical
analysis of their results.

As the efficiency of the estimation is an important issue,
especially if the model is supposed to be estimated at
runtime, we employ the following optimization tech-
niques in the design of the experiments:

* If the target platform is a switched heterogeneous clus-
ter, we will use parallel execution of the non-overlap-
ping experiments.

» If we use, say, triplets of processors for the collective
experiments, then a separate system of equations can
be built and solved for each triplet. In any complete set
of the collective experiments, all processors will par-
ticipate in more than one triplet. Therefore, the value of
some parameters can be found from different independ-
ent experiments and hence from different independent
systems of equations. We propose to use these redun-
dant values in the statistical analysis to reduce the
number of repetitions of the computational experi-
ments needed for reliable estimation of the parameters.

In the next section, we apply this approach to the het-
erogeneous communication performance model LMO.

5 The LMO Model and Estimation of Its
Parameters

In this section, we describe the heterogeneous communica-
tion performance model LMO (Lastovetsky et al. 2006)

and the design of communication experiments required
to estimate its parameters on heterogeneous clusters.
Like most of the point-to-point communication mod-
els, its point-to-point parameters represent the communi-
cation time by a linear function of the message size.
The execution time of sending a message of M bytes
from processor i to processor j in a heterogeneous clus-

ter i —— j is estimated by C, + Mt, + Ci+ Mt + g—/l
where C,, C; are the fixed processing delays; #,, #; are th/e
delays of processing of a byte; and [3;; is the transmission
rate. The delay parameters, which are attributed to each
processor, reflect the heterogeneity of the processors. The
transmission rates correspond to each link and reflect the
heterogeneity of communications; for networks with a
single switch, it is realistic to assume f; = ;.

In terms of the Hockney model, C; + C; = o and Mt; +

Mt + M_ BM. In comparison with the Hockney model,
! Bij

ours reflects the heterogeneity of processors by introduc-

ing different fixed and variable delays. The parameters o

of the Hockney model for i J>J M k, and

k—2 5 point-to-point communications can be used
to find fixed processing delays:

110 C; o
011 | G [=] op “
101 C; Oy

Unfortunately, the data are insufficient to determine vari-
able processing delays and transmission rates, as we have
n + C. unknowns but only C. equations.

In terms of the LogP/LogGP model, the sum of the
fixed processing delays C; + C; could be equal to L + 20

or L+ 20— G, and Mt; + Mtj + BA! = MG. Similarly to the
ij

Hockney model, the fixed processing delays could be
found from every three point-to-point communications,

110 C; (L+20-G)y
011 C |=| (L+20-G)y Q)
101 C, (L+20-G)y

but it is not sufficient to find the other parameters.

To estimate the parameters of such a model, an
approach with roundtrip point-to-point experiments is not
enough. For a network consisting of n processors, there

will be 2n + C. unknowns: n fixed processing delays, n

. . 2 . .
variable processing delays, and C, transmission rates.
The execution time of the roundtrip, namely sending M,
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- .M ;
bytes and receiving M, bytes between nodes i —><M‘ Js

is equal to:

M
T,(M\,M,) = (Ci+Mlt,-+ Ci+ Mt + B—l)
ij

+ (C,» +Myt;+ C; + Myt; + %)
1

The roundtrip experiments will give us only C. equa-

tions. Therefore, the first challenge we face is to find a

set of experiments that gives a sufficient number of inde-

pendent linear equations, whose variables represent the
unknown point-to-point parameters.

First, we measure the execution time of the roundtrips

with empty messages between each pair of processors

(6)

i<j(C experiments). The fixed processing delays can
be found from 7;(0) = 2C; + 2C; solved for every three
0

roundtrips i J>J _ k, k i(i<
j<k):

T;(0)=2C;+2C;

T,(0)=2C;+2C, @)

T.(0) = 2C, +2C;

Since C, can be found from the systems for different j and k,

it makes sense to take C, as an average of W =

Ci _, values obtained from all the different systems of

equations.

In order to find the remaining n + C: parameters, we
might use the roundtrips with non-empty message, but it

would give us only c linearly independent equations.
Instead, we use the additional experiments, which include
communications from one processor to two others and
backward, and express the execution time of the commu-
nication experiments in terms of the heterogeneous point-
to-point communication performance model. As will be
shown below, the set of point-to-point and point-to-two
communication experiments is enough to find the fixed
processing delay and transmission rates, but there is one
more important issue to be addressed. The point-to-two
experiments are actually a particular combination of lin-
ear (flat tree) scatter and gather. The linear scatter and
gather operations may have some irregular behavior on
the clusters based on a switched network, especially if the
MPI software stack includes the TCP/IP layer. Therefore,
the message sizes for the additional experiments have to
be carefully selected to avoid these irregularities.

We observed the leap in the execution time of linear
scatter for large messages and the non-deterministic esca-
lations of the execution time of linear gather for medium-
sized messages. In Figure 3, typical graphs of the com-
munication execution time are shown. These phenomena
occur for any number of processors (even for three), with
the thresholds constant and the values/frequencies of esca-
lations dependent on number of processors. It prompted us
to introduce the particular threshold parameters to catego-
rize the message size ranges where distinctly different
behavior of the collective MPI operations is observed, and
to apply different formula for these regions to express
the execution time with the heterogeneous point-to-point
parameters. The scatter performance in Figure 3(a) is pre-
sented on a smaller scale to emphasize the leap in the com-
munication execution time. The execution time of scatter
is less than the execution time of gather; the linear parts
of their graphs have different slopes.

Scatter

Execution time

Message size

(a)

Execution time

Gather
M, M,

]

Message size

(b)

Fig. 3 The execution time of scatter (a) and gather (b) against the message size. The scales of the execution time

axes are different.
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Let us consider how the LMO model can be used to
express the execution time of linear scatter and gather in
an intuitive way. The execution time is expressed with the
help of the point-to-point parameters of the LMO model
(analytical part) and some extra parameters that reflect the
irregularities observed on a switched cluster (empirical
part). The estimated time of scattering messages of size M
from node O to nodes 1, 2, ..., n is given by:

(e
n(Co+tocM)+maxs C,+tM+—7+ M<S
I<i<n Bo:

®)
Boi

n(Cy + tyM) + Z[C,+ LM + MJ M>S

i=1

where C,, 1, C,, and ¢, are the fixed and variable process-
ing delays on the source node and destinations. The
threshold parameter, S, corresponds to the leap in the
execution time, separating small and large messages. It is
a constant that may vary for different combinations of
clusters and MPI implementations. The sequential part of
this formula, n(C, + t,M), is related to the root processor,
which consecutively processes the messages to be sent to
the rest n — 1 processors. The maximum reflects the par-
allel transmissions followed by the parallel processing on
the receivers. Therefore, this formula conforms with the
features of network switches, which parallelize the mes-
sages addressed to different processors. The large mes-
sages, in contrast, are serialized, which is expressed by
the sum of point-to-point contributions.

For the gather operation, we separate small, medium,
and large messages by introducing parameters M, and
M,. Like S, these parameters depend on the particular
cluster and MPI implementation. For example, on the 16-
node heterogeneous cluster specified in Table 1, we
observed M, =4 KB, M, =65 KB for LAM 7.1.3 and M, =
3 KB, M, = 125 KB for MPICH 1.2.7. For small mes-
sages, M < M|, the execution time has a linear response
to the increase of message size. Thus, the execution time
for the many-to-one communication is estimated by:

n(C0+t0M)+max{Ci+t,-M+ M}+ M ©)
1

<i<n BOi

where K, = const is a fitting parameter for correction of
the slope. For large messages, M > M,, the execution
time resumes a linear predictability with increasing mes-
sage size. Hence, this part is similar in design but has a
different slope of linearity that indicates greater values
due to overheads:

M

(n—=1)(Cy+t,M) + i[Cﬁ M+ B,

i=1

J+ M (10)

The additional parameter ¥, = const is a fitting con-
stant for correction of the slope. For medium messages,
M, <M< M,, we observed a small number of discrete
levels of escalation, that remain constant as the message
size increases.

Thus, following the models of scatter and gather, in
our experiments we gather zero-sized messages in order
to avoid the non-deterministic escalations. For scatter,
the message size M is taken as less than the value of the
threshold parameter S. The wrong selection of the mes-
sage size can make the estimation of the point-to-point
parameters inaccurate, which is shown in Figure 3(a).

In order to find variable processing delays, #, and
transmission rates, B,_-/., we measure the execution time of

M
the C. experiments i #5 Jj (i <), the roundtrips with
M
empty replies, and the C experiments i #5 Jk(i<j
< k), where the source processor sends the messages of
the same size to two processors and receives zero-sized

M
messages from them. In i #; J, k communica-

tion, the contribution of the source node in the execu-
tion time will be 4C;+2Mt. The total time of
transmission and processing on the destinations will be
equal to the maximal value among the destination proc-

€ssors max{[ZCj + Mt + g—/l} (ZCk + Mt + BMJ} Thus,
ij ik

the execution time T,(M) of one-to-two communications
with root i can be expressed by:

T(M) = 4C; +2Mt,

+ max{[ZCj +Mt; + g—/l} [2Ck + M1, + BM]}(U)
ij ik

M . .
Let 1; denote 2C;+ M1; + B— Removing the maximum
ij

and rewriting the equation, we get:

_T(M)-4C;-2C,;

2+t + — = s TG>T
Bij M (12)
1 T,(M)-4C,-2C

2t,+tk+m= i LT

Both alternatives, less the equations for the point-to-point
M M
roundtrips with empty reply i 5 jandi 5 k,

will give us the expression for the variable processing
delay:
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T(M) - Ty(M) - 2C,

. TS,
= M (13)
T(M)-T.,(M)-2C.
(M) }(}()  ast

where T; (M) and T, (M) are the execution times of the
roundtrlps The inequalities can be simplified by adding
2C; + M, to both sides; the condition T; > T, will become
Tij(m > T,(M). For the communications with other roots
j # ik, k # i,j, there will be similar
expressions for 7; and #;:

T(M _T.[,M —2C,'
/M) 1,\/1( ) <, TJI(M)>TJ/<(M)

J(M) — z&( L2261 oy s T

T (M) — T (M) —2C
D= TD =26 ) > T (0)

Iy = T M) =T.(M)-2C "
(M) - ;‘14( L2 ) > T

We assume B, =3, therefore, T,(M) > T,(M). All we
need is to compare the values of T (M), T w(M), Ty(M)
and select the equations that sat1sfy the conditions.

Then, the transmission rates can be expressed as Bi =
ij

T,(M)-2C,-2C;

i(M) = 2C; - 2€; —t;—t;. Thus, we have six equations

M E

with three conditions. For example, if T;(M) > T, (M),

T (M) > Ty (M), T, (M) > T, (M) then the system of equa-

tions will look as follows:

_ T(M) - Ty(M) - 2C;
’ M
= LM) - Ti(M) - 2C;
/ M
_ (M) - Tu(M) - 2C,
M 16
1 _T-26-2¢ (16)
By M L
1 _Tu(M-2C-2C
Bi M s
1 _ Tu(M)-2C,-2C,
= — b=t
L B M

If i <j < k, there will be 3C) one-to-two experiments.
The variable processing delays, ¢, can be obtained from
C;_, different triplets, the processor i takes part in, and
can be averaged. The transmission rates {3, can be aver-
aged from n — 2 values.

The design described in this section is optimal in terms
of the execution time taken for estimation of the point-to-
point parameters. The total execution time depends on:

¢ the number of measurements (2Ci one-to-one and 3C,31
one-to-two measurements),

* the execution time of every single measurement (fast
roundtrips between 2 and 3 processors) and

* the complex1ty of calculations (3C, comparisons,
12C; simple formulae for calculation of the values of
the parameters of the model, and 2n + C: averagings).

As the parameters of our point-to-point model are
found in a small number of experiments, they can be sen-
sitive to the inaccuracies of measurement. Therefore, it
makes sense to perform a series of the measurements for
one-to-one and one-to-two experiments and to use the
averaged execution times in the corresponding linear
equations.

Minimization of the total execution time of the experi-
ments is another issue that we address. The advantage of
the proposed design is that these series do not have to be
lengthy (typically, up to 10 in a series) because all the
parameters have been already averaged with the process
of their finding.

The procedure of the estimation of the point-to-point
parameters is preceded by the estimation of the threshold
parameters. These parameters are used to select the mes-
sage size for the one-to-two communication experiments
and to adjust the prediction of the execution time of col-
lective operations. To estimate the threshold parameters,
we use the scatter and gather benchmarks for different
message sizes. The data rows for scatter and gather con-
sist of the message sizes taken with some stride and the
measured execution time {M, T}, M'*' =M + stride.
Typical data rows for heterogeneous clusters based on a
switched network are shown in Figure 3. One can see that:

* The execution time of scatter can be approximated by
the piecewise linear function with one break that cor-
respond to the threshold parameter S to be found (Fig-
ure 3a).

» The execution time of gather has the regions of linear-
ity for small, M < M, and large, M > M,, messages
(Figure 3b) and can also be approximated by the two
linear functions.

To find the threshold parameters, we use the algorithm
proposed by Bai and Perron (2003) and implemented in
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the statistical package Strucchange (Zeileis et al. 2002). It
considers the statistical linear models with multiple struc-
tural changes and uses dynamic programming to identify
optimal partitions with different numbers of segments.
The algorithm allows us to locate the break in the execu-
tion time of scatter, S, and the range of large messages for
gather, M,. Then we perform the linear regression of the
execution time of gather on this range to estimate the
slope correction parameter, k,, that is used to adjust the
prediction of many-to-one execution time for large mes-
sages. The linear regression gives us two values ¢, and c;:
T =cy+ c;M,M > M,. The slope correction parameter, k,,

. ' 1
is found as follows: x, = ¢, - ti+—1.

To separate small and large messages for the gather
data row, we use the following algorithm. First, we find the
minimum message size for which the escalation of the exe-
cution time is observed M, = M, k = min{i|T'*'/T' > 10}.
The escalation is defined as the difference between the
execution times, measured for two neighboring message
sizes in the row, that has a 10 times scale of magnitude.
Then, an additional gather benchmark is performed for

the messages M < M" taken with the stride two times less
than in the previous benchmark. The new data row

(M, T}, M'*' = M’ + stride/2 is used in the next iteration
of the algorithm to find more accurate value of M. This
is repeated until the stride reaches 1 byte. After M, is
found, the linear regression on the last data row is per-
formed to obtain the linear parameters for the small mes-
sages, T'=cy+c,M, M<M,, and to calculate the slope

n-1 1
Ky = cp—maxqt;+5 ¢ .
i=1 Bo:

6 Experimental Evaluation

In this section, we present the experimental results dem-
onstrating that the proposed technique allows us to esti-
mate the parameters of the heterogeneous point-to-point
communication model accurately and efficiently. By the
example of parallel matrix multiplication, we show that
the model-based optimization of collective operations
can significantly improve the performance of MPI appli-
cations. We carried out the experiments with various
MPI implementations and different clusters. This paper
presents the experimental results obtained on the 16-node
heterogeneous cluster described in Section 3.

We measured the execution time of point-to-point
communications on a 16-node heterogeneous cluster and
compared it with the predictions provided by the hetero-
geneous LogGP, PLogP, and LMO models. For the meas-
urements, we used the MPIBIib, the MPI benchmarking

library, which provides accurate and efficient bench-
marking of MPI communication operations (Lastovet-
sky, O’Flynn, and Rychkov 2008). The LogGP and PLogP
parameters were found for all pairs of processors with
help of the logp_mpi library (Kielmann et al. 2000). In
Figure 4, the results for one pair are shown. The linear
predictions provided by the LogGP and LMO models are
almost the same and acceptably accurate for small and
medium sized messages. The PLogP point-to-point model
is piecewise linear. It includes a large amount of empiri-
cal data stored in the functional parameters, and reflects
the deviations of the execution time from the linear pre-
dictions.

All point-to-point models considered in this paper use
a large number of measurements and very simple compu-
tations. Therefore, the measurements are the most time-
consuming part in the finding of the parameters of these
models. In Table 3, the number of measurements is esti-
mated for each model and the time they take on the 16-
node heterogeneous cluster is shown.

In Table 3, we compare the measurement costs of the
point-to-point models of a heterogeneous cluster. For a
cluster of n processors there will be C: single point-to-
point communications. The parameters of the Hockney
model for a single point-to-point communication are found
by linear regression of k execution times of the roundtrips
with different message sizes. Larger k provides a more
accurate prediction. The execution time of each measure-
ment depends on the message size. In our experiments, we
used 10 message sizes ranging from O to 100 kb.

Estimation of the PLogP parameters for each pair of
processors includes:

* s experiments on saturating the link by empty mes-
sages, the ith experiment of which consists of 2' send-
ings, and

M 0
* 2mr experiments on i (0—3 J and i? J

roundtrips, where:
e r is the number of roundtrips required to obtain
more accurate send and receive overheads (the aver-

M
aged execution time of the roundtrips i <0—} jis

also used for estimation of g(M)), and

* m is the number of message sizes, necessary for
accurate piecewise linear approximation of the exe-
cution time of point-to-point communication.

The numbers s, r, and m are found experimentally and
can be different for different pairs of processors. In for-
mulae in Table 3 that estimate the total number of meas-
urements, we use the averaged values of s, r, and m. The
saturation experiments take much more time than single
roundtrips as they include up to 2° sendings. The direct
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Fig. 4 Comparison of the predictions of the point-to-point models for a single point-to-point communication.

Table 3

Measurement costs of heterogeneous models on 16-node heterogeneous cluster.

Communication model

Number of measurements

Execution time, s

Hetero-Hockney kC? 0.17
Hetero-LogGP 3sC? +2rC? -

Hetero-PLogP sC? +2mrC? or msC? + 2mrC? (direct) 63.11
LMO k,C?Z + k,C? + k,3C? 0.33

measurements of the gap for each message size require
(m — 1)s more experiments.

The LogGP model requires three saturation processes
with message of 0, 1, and M bytes to estimate the gaps
per message/byte and two roundtrips with the message of
1 byte to estimate the send/receive overheads. The execu-
tion time of the estimation of the parameters is omitted
because they were found via the PLogP parameters as
described in Kielmann et al. (2000).

The accuracy in our heterogeneous communication
point-to-point model is achieved by averaging the execu-
tion times in:

* a series of the k, measurements for each of C; empty
roundtrips,

* a series of the k; measurements for each of C; non-
empty roundtrips, and

. 3
* aseries of the k, measurements for each of 3C, one-to-
two communications.

In our experiments, no more than 10 measurements in
a series were needed to achieve the acceptable accuracy.

We showed that the LMO model provides the accepta-
ble accuracy and can be efficiently estimated on hetero-
geneous clusters. In the next section we consider how
this model can be applied to the optimization of collec-
tive communications in parallel applications.

7 Model-Based Optimization of Parallel
Applications on Heterogeneous Clusters

The use of advanced intuitive heterogeneous communi-
cation models for optimization of communication opera-
tions has a potential to improve their performance (and
hence the performance of the corresponding applica-
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Fig. 5 (a) Matrix operation C = A x B with matrices A, B, and C. Matrices A and C are horizontally sliced such that
the number of elements in the slice is proportional to the speed of the processor. (b) Serial matrix multiplication A, x
B of dense matrix A, of size n, x n and dense matrix B of size n x n to estimate the absolute speed of processor 2.

tions) on heterogeneous computational clusters. How-
ever, utilization of this potential is conditioned by the
ability to accurately and efficiently estimate the parame-
ters of these models. Given the parameters are estimated
inaccurately, implementation of the optimization algo-
rithms in applications running on heterogeneous clusters
will not have a positive effect on their performance. In
this paper, we have proposed an efficient solution to the
problem of accurate estimation of the parameters of the
advanced heterogeneous communication performance
models. This gives us an opportunity to apply the models
to the optimization of MPI collective operations on heter-
ogeneous clusters.

In this section, we show that the use of the heterogene-
ous communication models can significantly improve the
performance of parallel applications on heterogeneous
clusters. As a sample application, we use parallel matrix
multiplication, a simple but important linear algebra ker-
nel representative for many real-life scientific applica-
tions. We use the LMO heterogeneous communication
performance model for optimization of the MPI broad-
cast, scatterv, and gatherv collective operations used in
this application. The analytical prediction of the execu-
tion time with this model is used for the optimal mapping
of the heterogeneous processors to the nodes of the corre-
sponding communication trees. We compare the perform-

ance of the parallel application using the optimized versions
of these collective operations against the one using their
native MPI implementations.

Our sample application is based on the master—slave
paradigm. The master process distributes the data between
the slave processes, coordinates the computations, and
collects the result. This type of parallel application is
often used in practice, for example, in processing of a
large amount of image data collected from the hyperspec-
tral sensors on airborne/satellite platforms (Plaza et al.
2006). Our application multiplies two dense square matri-
ces, C =A x B, and employs a simple heterogeneous parallel
algorithm based on one-dimensional matrix partitioning
(see, for example, Lastovetsky and Reddy 2007). As shown
in Figure 5, the matrices A and C are horizontally sliced
such that the number of elements in a slice is proportional
to the speed of the processor owning the slice. All the
processors contain all the elements of matrix B. We
assume a one process per processor configuration. With this
one-dimensional partitioning, our application performs:
(1) irregular scatter of matrix A, (2) broadcast of matrix B,
(3) parallel multiplications, and (4) irregular gather of
matrix C.

We ran this application on the heterogeneous cluster
(see Section 3 for specifications) in two modes. The first
uses native MPI collective operations. The second uses
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Table 4
Matrix multiplication on 16-node
heterogeneous cluster.

Matrix size, With native With optimized
Nx N collectives, s collectives, s
1000 0.80 0.65
2000 5.51 5.02
3000 16.61 11.05
4000 74.29 64.79
5000 221.00 188.72
6000 494.24 394.65

our implementation of these operations optimized for the
cluster. The optimization is based on the LMO model of
the cluster, whose parameters were estimated using the
presented techniques. The results of these experiments
are given in Table 4. One can see that the performance of
the application was improved by up to 20% as a result of
the optimization of communications.

We are not going into detail of the optimization
algorithms, which is a subject of another independent
research paper. The main idea is to use non-flat commu-
nication trees and to perform their optimal mapping
based on the analytical predictions of the LMO model.
The native scatterv and gatherv are traditionally imple-
mented using a flat tree (in all known MPI implemen-
tations). They are exposed to the escalations of the
execution time similarly to their regular counterparts,
scatter and gather. The use of the non-flat trees allowed
us to eliminate these escalations. The optimal mapping of
these trees allowed us to significantly reduce the execu-
tion time of these operations (up to 40% compared with
their native counterparts). The native broadcast is imple-
mented by the binomial algorithm. Our version uses the
LMO model for optimal mapping of the nodes of the
broadcast communication tree onto the processors of the
cluster.

8 Conclusion

In this paper, we have described an efficient technique
for accurate estimation of parameters of the point-to-
point communication performance model of heterogene-
ous clusters based on a switched network. This technique
includes a relatively small number of measurements of
the execution time of one-to-one and one-to-two round-
trip communications for some particular message sizes
and solution of simple systems of linear equations. The
accuracy of estimation is achieved by careful selection of
message sizes and averaging the values of the parame-

ters. The efficiency and accuracy of the proposed tech-
nique were validated experimentally. The performance
gains due to the use of the model for optimization of MPI
collective operations were demonstrated for the parallel
matrix multiplication application.
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