
Using Static Code Analysis to Improve Performance of GridRPC Applications

Oleg Girko
School of Computer Science and Informatics

University College Dublin
Dublin, Ireland

e-mail: olegs.girjko@ucdconnect.ie

Alexey Lastovetsky
School of Computer Science and Informatics

University College Dublin
Dublin, Ireland

e-mail: alexey.lastovetsky@ucd.ie

Abstract—The paper presents an approach to improve
performance of GridRPC applications by statically analysing
dynamic workflows. An extension to GridRPC API is used to
specify the region of code to apply static code analysis to,
during the compilation phase. The information collected is
then used at runtime for building a graph of dependencies
between tasks, which is analysed to assign servers to tasks in
an optimal way, minimising the time of computation and
communication. This approach handles branching and looping
correctly by building an extended dependency graph, which
covers all branches of the code.

The experimental results are provided to show that in many
practically important cases this approach leads to better
results than individual mapping of tasks or run-time task
discovery.

Keywords- Grid; GridRPC; task mapping; task scheduling;
workflows mapping

I. INTRODUCTION
GridRPC [1] is a standard API for grid computing,

promoted by Open Grid Forum. It specifies a set of functions
which can be used to start computations on remote servers
and wait for their results. There are several popular
implementations of GridRPC API, including GridSolve [2],
Ninf-G [3] and DIET [4].

The advantage of GridRPC is its simplicity. Any
application written in a modular way can be converted into a
Grid client by replacing function calls performing expensive
computations with GridRPC calls performing the same
computations remotely.

The important feature of GridRPC is that the programmer
does not have to specify a server to run a task on: the server
can be assigned by middleware. Also, unlike other RPC
implementations, GridRPC does not use client-side IDL to
build stub functions for RPC calls. All information about
remote function argument types is provided by servers at
runtime.

The simplicity of GridRPC API leads to some
limitations. Remote task calls are independent of each other,
and a server is assigned to each task call individually,
without taking other tasks into account. This can lead to non-
optimal load distribution.

Also, the client-server nature of RPC causes arguments
and results of each call being sent and received directly from
and to client. This leads to unnecessary communication

overhead in a very common case when a result of one task is
used by another task, but not directly used on the client. The
servers running both tasks can be connected by a high speed
link, so direct transfer of data would lead to much better
performance than communication through the client.

There are several approaches to improve performance of
GridRPC applications by extending GridRPC API, but they
either put strict limitations on application code, or require
using an additional description of application's performance
model.

This paper describes another approach to building
application performance model automatically by applying
static code analysis to the application's source code. This
approach does not incur additional restrictions on application
code and does not require manual efforts for describing the
performance model.

The rest of the paper is structured as follows. In Section
II, existing approaches to mapping remote tasks to servers
are discussed, with their advantages and limitations. In
Section III, the new approach using static code analysis is
presented. In Section IV, the experimental results showing
advantages of static code analysis approach over runtime
discovery are presented. In Section V, factors contributing to
speed improvement are described. Section VI concludes the
paper.

II. EXISTING APPROACHES TO MAPPING TASKS TO
SERVERS

A. Individual Mapping
Individual mapping is traditionally used by GridRPC

implementations. RPC calls are performed independently
from each other, all arguments are sent by the client, and all
results are returned to the client.

Figure 1gives an example of application using GridRPC
API. First, function handles t1, t2, t3 and p1 are
initialised for remote tasks T1_cond, T2_cond, T3_cond
and P1_cond respectively. Then two instances of remote
task T1_cond are started in parallel asynchronously: the
grpc_call_async() function starts a remote task, but
does not wait for its completion. Then the program waits for
all remote tasks completion using grpc_wait_all()
function. The remote tasks T2_cond and P1_cond are run
sequentially and synchronously: the grpc_call()
function starts a remote task and waits for its completion.
The result of the remote task P1_cond is saved in variable

p, which is used as a condition in the if statement. Both
branches of this statement run two instances of the same
T3_cond remote task in parallel and then wait for their
completion, but the input arguments for these tasks are
different.

The individual mapping works well when the client starts
remote tasks sequentially, when next task is called only after
the previous one has finished.

However, non-optimal load distribution is likely when
remote tasks are run in parallel. For example, the client can
start two tasks, a simple one and a complex one, and then
start waiting for their results. When the simple task is started
the fastest server will be allocated to this task in order to
minimise its execution time. Then, when the complex task is
started, the fastest server is already busy, and a slower server
will be allocated. If the information about the parallel remote
tasks was somehow available prior to mapping the tasks to
servers, it would be possible to assign servers in a more
optimal way: the slower server to the simpler task, the faster
server to the complex task.

Another problem with individual mapping is non-optimal
communication. A GridRPC client is usually connected to
the computational cluster via public internet, whereas servers
inside cluster are interconnected using high-speed local area
network. This means that it is much faster to transfer data
between servers than to the client and then back to the server
in the case when one remote task uses results from another
remote task. Unfortunately, the direct server-to-server
communication is impossible in the framework of the
unmodified GridRPC API.

B. Runtime Discovery: SmartGridRPC and SmartGridSolve
SmartGridSolve [5] is an extension of GridSolve

middleware. Its design was inspired by mpC programming
language [6]. It implements an extended version of GridRPC
API for C programming language called SmartGridRPC [7],
and uses runtime discovery for collective mapping of tasks to
servers and enabling server-to-server communication to
achieve improved performance.

In SmartGridSolvethe collective mapping applies to a C
block marked by agrpc_map()preprocessor directive.

Figure 2 shows an example of the same algorithm as in
Figure 1 but changed to use SmartGridRPC API. Three
regions of code are marked for collective mapping. The
reason why the whole algorithm is not marked for collective
mapping will be explained later.

Internally, the grpc_map() directive is implemented as
a while loop which executes its body block twice. The first
pass is called discovery phase. During this pass all GridRPC
calls are recorded but not executed. After the first loop pass,
the mapping takes place. The client sends the list of remote
tasks to the SmartGridSolve agent along with information
about their arguments. The agent uses this information to
build the graph of dependencies between tasks, which is sent
back to the client along with information about servers which
can perform those tasks, their performancecharacteristics and
the throughput of links between them. This information is
used by the client to map tasks to servers for optimal
computation and communication performance. The actual
computation is done on the second pass of the loop, which is
called execution phase.

The approach used in SmartGridSolve is simple and
efficient, but it puts significant restrictions onthe code inside
the block marked for collective mapping. The fact that the
code runs twice means that all side effects will happen twice
as well. Therefore, the local code should either have no side
effects, or those side effects should yield the same result
when the code is run more than once. There is a workaround
for this: a block of code can be marked with a
SmartGridRPC grpc_local() directive, making this
block be executed only during the execution phase.
However, the way fault tolerance is implemented in
SmartGridSolve does not guarantee that this block is run

grpc_function_handle_t t1, t2, t3, p1;
grpc_sessionid_t s0, s1;
grpc_function_handle_default(&t1, "T1_cond");
grpc_function_handle_default(&t2, "T2_cond");
grpc_function_handle_default(&t3, "T3_cond");
grpc_function_handle_default(&p1, "P1_cond");
grpc_map("ex_map") {
 grpc_call_async(&t1, &s0, a0, b0, c0, s, c);
 grpc_call_async(&t1, &s1, a1, b1, c1, s, c);
 grpc_wait_all();
 grpc_call(&t2, c0, c1, d, s, c);
 grpc_call(&p1, d, s, c, x,&p);
}
if (p) {
 grpc_map("ex_map") {
 grpc_call_async(&t3, &s0, c0, a0, s, c);
 grpc_call_async(&t3, &s1, c1, a1, s, c);
 grpc_wait_all();
 }
} else {
 grpc_map("ex_map") {
 grpc_call_async(&t3, &s0, c0, b0, s, c);
 grpc_call_async(&t3, &s1, c1, b1, s, c);
 grpc_wait_all();
 }
}

Figure 1. GridRPC program

Figure 2. SmartGridRPC program

grpc_function_handle_t t1, t2, t3, p1;
grpc_sessionid_t s0, s1;
grpc_function_handle_default(&t1, "T1_cond");
grpc_function_handle_default(&t2, "T2_cond");
grpc_function_handle_default(&t3, "T3_cond");
grpc_function_handle_default(&p1, "P1_cond");
grpc_call_async(&t1, &s0, a0, b0, c0, s, c);
grpc_call_async(&t1, &s1, a1, b1, c1, s, c);
grpc_wait_all();
grpc_call(&t2, c0, c1, d, s, c);
grpc_call(&p1, d, s, c, x,&p);
if (p) {
 grpc_call_async(&t3, &s0, c0, a0, s, c);
 grpc_call_async(&t3, &s1, c1, a1, s, c);
 grpc_wait_all();
} else {
 grpc_call_async(&t3, &s0, c0, b0, s, c);
 grpc_call_async(&t3, &s1, c1, b1, s, c);
 grpc_wait_all();
}

only once. If an error happened during the execution phase,
all subsequent GridRPC calls and grpc_local() blocks
would be skipped and the loop would be run once again from
the beginning, with a different mapping. This leads to
grpc_local() blocks, which were run before the
GridRPC call where an error happened, to be run once again.
Only those grpc_local() blocks which are located after
the last GridRPC call are guaranteed to be run once.

There is another important restriction on the code inside
the grpc_map() block. The workflow of the code during
discovery and execution phases should be exactly the same.
This means that all loops inside grpc_map() block should
have exactly the same number of iterations during discovery
and execution phase, and all branches should be exactly the
same as well. As a result, the flow control inside
thegrpc_map() block should be pre-determined before the
execution phase, and thus not dependent on remote task
execution results.

The violation of the restrictions on code mentioned above
can lead to disastrous results, causing a program to behave in
unexpected way. It is very easy to make a mistake and
violate those restrictions, and there is no automatic detection
of such mistakes.

An example of such violation is shown on Figure 3. The
difference between the original SmartGridRPC code on
Figure 2 and this example is that the whole algorithm is
marked for collective mapping. This will not work correctly
with runtime discovery.Flow control of the code inside the
grpc_map() block depends on the value of variable p,
which depends on the result of a remote task call. This result
is unknown during the discovery phase because GridRPC
calls are not being executed during this phase. Hence, it is
impossible to make the workflow inside the grpc_map()
block run the same way during both iterations. The only way
to make this algorithm to run correctly with SmartGridSolve
is to map both branches of the conditional statement
separately, as shown on Figure 2.

C. Static Discovery with External Description: ADL
Another approach to collective mapping is the use of

ADL [8], the Algorithm Definition Language. It uses an
extension to GridRPC API similar to pure SmartGridRPC.
The block of code for collective mapping is also specified
using a grpc_map() directive, but the code inside this
block will be run only once. The task dependency graph and
application's performance model are specified separately,
using ADL.

Figure 4 gives an example of an ADL specification for
the algorithm in Figure 3. The component section specifies
the remote tasks required for the algorithm. The OBJ section
specifies non-scalar objects used in the algorithm. The
algorithm section describes the workflow of the algorithm,
the order of remote task execution and what arguments are
involved in this execution. The specification in this example
has 5 parameters. The complexity of tasks and the workflow
of the algorithm are dependent onthe actual values of these
parameters, which are specified at runtime. For example, the
size of vectors depends on parameter s. Parameters
cndtrue and cndfalse specify the likelihood of actual
execution of each branch of the conditional statement in the
algorithm. If both of those parameters have nonzero value at
runtime, both branches are mapped as if they are executed in
parallel.

The advantage of this approach over runtime discovery is
the absence of restrictions on the code of thegrpc_map()
block. This means that it allows collective mapping of
iterative algorithms with loops having the number of

Figure 3.SmartGridRPC program with side effects

Figure 4. ADL specification

grpc_function_handle_t t1, t2, t3, p1;
grpc_sessionid_t s0, s1;
grpc_function_handle_default(&t1, "T1_cond");
grpc_function_handle_default(&t2, "T2_cond");
grpc_function_handle_default(&t3, "T3_cond");
grpc_function_handle_default(&p1, "P1_cond");
grpc_map("ex_map") {
 grpc_call_async(&t1, &s0, a0, b0, c0, s, c);
 grpc_call_async(&t1, &s1, a1, b1, c1, s, c);
 grpc_wait_all();
 grpc_call(&t2, c0, c1, d, s, c);
 grpc_call(&p1, d, s, c, x,&p);
 if (p) {
 grpc_call_async(&t3, &s0, c0, a0, s, c);
 grpc_call_async(&t3, &s1, c1, a1, s, c);
 grpc_wait_all();
 } else {
 grpc_call_async(&t3, &s0, c0, b0, s, c);
 grpc_call_async(&t3, &s1, c1, b1, s, c);
 grpc_wait_all();
 }
}

modulecndalg(int s, int c, double x,
intcndtrue, intcndfalse)
{
 component:
 task "tgtest_cond.idl"
 T1_cond,T2_cond,T3_cond,P1_cond;

OBJ:
 DOUBLE(s)a0, a1, b0, b1, c0, c1, d;
 INTEGER p;

algorithm:
 parallel {
 T1_cond:(a0, b0,@s,@c)->(c0);
 T1_cond:(a1,b1,@s,@c)->(c1);
 }
 T2_cond:(c0, c1,@s,@c)->(d);
 P1_cond:(d,@s,@c,@x)->(p);
 parallel {
 if (cndtrue)
 parallel {
 T3_cond:(a0, c0,@s,@c)->(a0);
 T3_cond:(a1,c1,@s,@c)->(a1);
 }
 if (cndfalse)
 parallel {
 T3_cond:(b0, c0,@s,@c)->(b0);
 T3_cond:(b1, c1,@s,@c)->(b1);
 }
 }
}

iterations dependent on remote task results, and conditional
algorithms with branching dependent on remote task results.
Hence, the algorithm in Figure 3works correctly when using
ADL specification in Figure 4.

The disadvantage of this approach is that it requires a
programmer to describe the mapping scenario of the
algorithm using ADL in addition to the program itself. This
means that significant additional efforts are needed to enable
more efficient mapping and to keep the program and its ADL
description in sync. If the program and ADL diverged
somehow, the mapping will be non-optimal, and there is no
way to check for this problem automatically.

III. USING STATIC CODE ANALYSIS FOR COLLECTIVE
MAPPING

The approach proposed in this paper is an attempt to
combine advantages of both pure SmartGridSolve and ADL-
enabled SmartGridSolve, while avoiding their disadvantages.
This is achieved by using static code analysis to extract from
the application code itself as much information as possible in
order to build the task dependency graph before the
execution of the application, without a separate run-time
discovery phase. Like the ADL-based approach, this
approach does not incur limitations on code side effects
imposed by pure SmartGridSolve and allows for loops and
branches.On the other hand, it does not require an
additionalspecification of the algorithm in ADL and
eliminates the problem of synchronization of the algorithm
specification with the application code.

The proposed approach is implementedas a modified
version of SmartGridSolve, providingSmartGridRPC API
with minor extensions. It accepts any GridRPC source code
with or without SmartGridRPC extensions:grpc_map()
and grpc_local() blocks.

For example, code on Figure 3 works correctly with
static code analysis approach, but there is no need to supply
this code with additional algorithm specification, like the one
presented in Figure 4.

Static analysis is applied to the source code before its
compilation to extract as much information as possible about
the algorithm. The extracted information is functionally
equivalent to ADL specification, but uses different
format.Then the code is modified to add the following stages
before the algorithm is run:

1. building application performance model;
2. building extended dependency graph;
3. using mapping heuristics.

These stages use the information collected during the static
code analysisfor making the optimal decision on task-to-
server mapping and server-to-server communication.

Static code analysis and the runtime stages are described
in details below.

A. Analysing Code To Find GridRPC Calls
The algorithm of the block for collective mapping is

analysed on the source code level using Clang [9], a frontend
for the C family of languages (C, C++, Objective C), which
is a part of LLVM [10], a toolkit for building compilers.

Clang is implemented as a modular library, allowing using it
as a toolkit for analysing C code.

First, all source code modules are parsed by Clang
generating their respective Clang-specific internal AST
(abstract syntax tree) representations.

Then, these abstract syntax trees are analysed together in
order to find blocks marked by grpc_map() directives.
These blocks are analysed for conditional statements, loops
and function calls. GridRPC function calls are being
recorded; all other function calls are analysed recursively.

Arguments of GridRPC calls are analysed across function
calls to find if they reference the same values even if they are
used deeply inside function call hierarchy. First arguments of
GridRPC calls are analysed to find the corresponding
function handle initialisation functions, and thus to find the
names of remote tasks which are run by those calls. All other
arguments are analysed and the numerical ID values are
assigned to them so that the same arguments had the same ID
values.

The analysing algorithm tries to guess the number of loop
iterations and the values of scalar GridRPC call arguments
which determine the size of other non-scalar arguments
(vectors and matrices). The warning is produced if the
algorithm is unable to guess these values. In this case the
programmer can either simplify algorithm or provide the
most likely value using grpc_likely() directive. This is
similar to specifying these values in ADL.

Also, the analysing algorithm tries to guess which branch
is executed in conditional statement if this is dependent on a
value computed outside of grpc_map() block only.
Otherwise, both branches of the conditional statement are
analysed as if they are run in parallel.

The result of this analysis is a C code with
grpc_map() blocks modified by adding static variable
declarations initialised with information collected during
static code analysis and code to build application
performance model at runtime. The information stored in
these static variables is used during runtime to build the
dependency graph for the grpc_map() block. This
information is a parameterised application performance
model, which can be used later to build actual performance
model by substituting parameters with actual runtime values.
Functionally this information is similar to algorithm
description used in ADL approach, but without the need to
write this description manually.

B. Building Application Performance Model
When the program is run, it uses the parameterised

performance model built during static code analysis and
stored in global variables to build actual application
performance model at runtime. The parameters are
substituted with actual runtime values. Then the resulting
performance model is sent to the SmartGridSolve agent for
building the extended task dependency graph.

C. Building Extended Dependency Graph
The SmartGridSolve agent uses the application

performance model to build a task dependency graph by
analysing the order of tasks to be run and their arguments.

The task A is considered dependent on task B if it is started
later than task B and uses a task B's output argument as its
input argument. The resulting task dependency graph is sent
back to the client along with a list of servers the tasks can be
run on and those servers' performance characteristics.

This stage is the same as in unmodified SmartGridSolve,
but with one important difference. The dependency graph is
extended, covering the remote tasks which can potentially be
run. It is however possible that some tasks in this
dependency graph will be skipped during the actual
algorithm execution. This can happen if there are branches in
the algorithm's code.

D. Using Mapping Heuristics
The task dependency graph is used to build a mapping

between tasks and servers the same way as SmartGridSolve
client does. The heuristic specified by
grpc_map()argument is used for this task. The optimal
mapping algorithm is NP-complete, so it is the programmer's
responsibility to choose the heuristic which produces best
results in acceptable time [11].

IV. EXPERIMENTAL RESULTS
The proposed approach based on the static code analysis

outperforms the runtime discovery approach used in
unmodified SmartGridSolve in many important cases. It
allows for applying the collective mapping to larger regions
of code when loops or branches dependent on remote task
results are present. For example, the code in Figure 3will not
work correctly with pure SmartGrisSolve, so it should be
modified to reduce the size of code regions marked for
collective mapping to contain no flow control dependent on
remote task results, leading to the code shown in Figure 2,
which produces much less optimal mapping.

To validate these performance advantages
experimentally, the algorithm in Figure 1, Figure 2 and
Figure 3 was tested using SmartGridSolve with individual
mapping, SmartGridSolve with runtime discovery and
SmartGridSolve modified for the static analysis approach

Figure 5. Experimental results

Figure 6. Task graph for the first region of code

Figure 7. Task graph for then branch of if statement

respectively.
The hardware setup used in the experiments consists of 4

heterogeneous servers with performance ranging from 422 to
531 MFlops and 1GB of memory each interconnected with
1Gbit/s Ethernet switch and a client machine which has
100Mbit/s connection to server network.

Figure 5shows the results of the experiment with input
data sizes 24, 48, 96, 192, 384 and 576 megabytes. The
average time is calculated from 10 executions for each data
size and implementation.

The experimental results show that the larger region of
code for collective mapping allowed by static code analysis
approach consistently yields better performance for all input
data sizes.

Figure 6 and Figure 7 show the task graphs generated for
two regions of code marked for collective mapping in
algorithm in Figure 2, before the conditional statement and
inside its then branch. Solid arrows show data
communications between the client and remote task and
between remote tasks. These arrows are labelledwith the
names of input and output arguments. The oval shapes
represent variables in the program. The grey squares
represent remote tasks.

Arrows between remote tasks going through a variable
represent server-to-server communication. Although it looks
like one remote task stored its result in the variable and
another remote task received its argument from this variable
in the program code, the client is not involved in this
communication, and the result is directly sent between
servers running remote tasks. Only arrows going from and to
grey diamonds represent communications involving the
client.

Figure 8 shows the task graph generated for the whole
algorithm in Figure 3. The resulting communication is much
more optimal. For example, c0 and c1 arrays are sent
directly from servers running task T1_cond to servers
running tasks T3_cond, which does not happen when
conditional statement's branches are mapped separately.
Also, arrays a0, a1, b0 and b1 are being sent to servers
running tasks T1_cond and T3_cond in parallel, further
improving communication speed.

V. FACTORS CONTRIBUTING TO SPEED IMPROVEMENT
Although the detailed analysis of speed improvement

provided by collective mapping is not given here, we did it in
another paper [12], which shows that there are three factors
contributing to it.
• The primary factor is server-to-server communication.

Computational grid usually consists of nodes connected
by high-speed local area network, whereas client
connects to the grid using low-speed Internet
connection. Direct server-to-server communication
allows avoiding sending intermediary results through
low-speed link to the client or even avoiding sending
data at all in cases when tasks run on the same server.
ADL and static code analysis approaches allow
extending theregion of code for collective mapping to
cover loops and branches, which in turn allows more
data to be covered by server-to-server communication.

• The secondary factor is better distribution of
computational resources. This factor becomes more
prominent in case of smaller data size or faster link
between client and grid. Extended regions of code for
collective mapping provided by ADL and static code

Figure 8. Task graph for the whole algorithm

analysis approaches allow to take more tasks into
account and therefore produce better mapping leading to
better distribution of computational resources.

• The tertiary factor is the direct result of server-to-server
communication: avoiding using client's memory
resources to store intermediary results. Clients are
usually just regular desktop or laptop computers,
whereas grid nodes are dedicated servers with vast
amounts of memory. Storing intermediary result on a
client just for sending to another server is not only
inefficient way of communication; it also can lead to
paging on the client, slowing down the whole algorithm.

VI. CONCLUSIONS
In this paper, we have proposed the new approach to

mapping tasks to servers in GridRPC algorithms using static
code analysis. This approach lifts restrictions on the code
imposed by the runtime discovery approach and provides
better performance by allowing mapping the whole
algorithms with flow control dependent on remote task
results, not just regions with predetermined flow control.

ACKNOWLEDGMENT
This publication has emanated from research conducted

with the financial support of Science Foundation Ireland
under Grant Number 08/IN.1/I2054.

REFERENCES
[1] K. Seymour et al., "Overview of GridRPC: A Remote Procedure Call

API for Grid Computing," Proceedings of the Third International
Workshop on Grid Computing,, Lecture notes in computer science,
vol. 2536, pp. 274-278, 2002.

[2] A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and J. Dongarra, "Recent
Developments in GridSolve," International Journal of High
Performance Computing Applications, vol. 1, no. 20, pp. 131-141,
2006.

[3] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and S. Matsuoka,
"Ninf-G: A Reference Implementation of RPC-based Programming

Middleware for Grid Computing," Journal of Grid Computing, vol. 1,
no. 1, pp. 41-51, 2003.

[4] E. Caron and F. Desprez, "DIET: A Scalable Toolbox to Build
Network Enabled Servers on the Grid," International Journal of High
Performance Computing Applications, vol. 3, no. 20, pp. 335-352,
2006.

[5] T. Brady, M. Guidolin, and A. Lastovetsky, "Experiments with
SmartGridSolve: Achieving higher performance by improving the
GridRPC model," Proceedings of the 9th IEEE/ACM International
Conference on Grid Computing (Grid2008), pp.49-56, 2008.

[6] D Arapov, A Kalinov, A Lastovetsky, A Ledovskih, and T Lewis, "A
programming environment for heterogeneous distributed memory
machines," in Proceedings of the 6th IEEE Heterogeneous Computing
Workshop (HCW`97), Geneva, Switzerland, 1997, pp. 32-45.

[7] T. Brady, J. Dongarra, M. Guidolin, A. Lastovetsky, and K. Seymour,
"SmartGridRPC: The New RPC Model for High Performance Grid
Computing," Concurrency and Computation: Practice and
Experience, vol. 18, no. 22, pp. 2467-2487, 2010.

[8] M. Guidolin, T. Brady, and A. Lastovetsky, "How Algorithm
Definition Language (ADL) Improves the Performance of
SmartGridSolve Applications," Proceedings of the 7th High-
Performance Grid Computing Workshop, Atlanta, USA, 2010.

[9] C. Lattner, "LLVM and Clang: Next Generation Compiler
Technology," in The BSD Conference, Ottawa, Canada, 2008.

[10] C. Lattner, "Introduction to the LLVM Compiler System," in XII
International Workshop on Advanced Computing and Analysis
Techniques in Physics Research, Erice, Sicily, Italy, 2008.

[11] T. Braun et al., "A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed computing
systems," Journal of Parallel and Distributed Computing, vol. 6, no.
61, pp. 810-837, 2001.

[12] M Guidolin and A Lastovetsky, "Grid-Enabled Hydropad: a Scientific
Application for Benchmarking GridRPC-Based Programming
Systems," Proceedings of the 23rd IEEE International Parallel and
Distributed Processing Symposium, Rome, Italy, 2009.

