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Abstract

Over the past decade, the design of microprocessors has been shifting to a new model
where the microprocessor has multiple homogeneous processing units, aka cores, as
a result of heat dissipation and energy consumption issues. Meanwhile, the demand
for heterogeneity increases in computing systems due to the need for high performance
computing in recent years. The current trend in gaining high computing power is to in-
corporate specialized processing resources such as manycore Graphic Processing Units
in multicore systems, thus making a computing system heterogeneous.

Maximum performance of data-parallel scientific applications on heterogeneous plat-
forms can be achieved by balancing the load between heterogeneous processing ele-
ments. Data parallel applications can be load balanced by applying data partitioning
with respect to the performance of the platform’s computing devices. However, load
balancing on such platforms is complicated by several factors, such as contention for
shared system resources, non-uniform memory access, limited GPU memory and slow
bandwidth of PCIe, which connects the host processor and the GPU.

In this thesis, we present methods of performance modeling and performance mea-
surement on dedicated multicore and multi-GPU systems. We model a multicore and
multi-GPU system by a set of heterogeneous abstract processors determined by the con-
figuration of the parallel application. Each abstract processor represents a processing
unit made of one or a group of processing elements executing one computational kernel
of the application. We group processing units by shared resources, and measure the per-
formance of processing units in each group simultaneously, thereby taking into account
the influence of resource contention. We investigate the impact of resource contention,
and the impact of process mapping on systems of NUMA architecture on the perfor-
mance of processing units. Using the proposed method for measuring performance, we
built functional performance models of abstract processors, and partition data of data
parallel applications using these performance models to balance the workload.

We evaluate the proposed methods with two typical data parallel applications, namely
parallel matrix multiplication and numerical simulation of lid-driven cavity flow. Exper-
imental results demonstrate that data partitioning algorithms based on functional perfor-
mance models built using proposed methods are able to balance the workload of data
parallel applications on heterogeneous multicore and multi-GPU platforms.
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Chapter 1

Introduction

1.1 Motivation

Over the past six decades, the field of scientific computing has undergone significant
changes, including the architecture of underlying platforms and the programming mod-
els. The introduction of vector computer systems marked the beginning of modern su-
percomputing in 1970s. In 1980s, performance was increased primarily by improved
chip technologies and by producing shared-memory multiprocessor systems, sometimes
referred to as symmetric multiprocessors (SMPs); In 1990s, massively parallel proces-
sors (MPPs), which employ a large number of interconnected off-the-shelf processors
to perform computations in parallel, became the focus of interest and eventually dom-
inated the top-end of high performance computing. Starting from the beginning of the
20th century, computer clusters became increasingly popular and displaced MPPs a few
years later as the dominant type of parallel platforms ever since, as a result of conver-
gence of a number of computing trends including the availability of low cost micropro-
cessors, high speed networks, and software for high performance distributed computing.
Programming models for these platforms have also evolved over this time. Whereas
most machines relied on custom APIs for messaging and loop-based parallelism, current
models standardize these APIs across platforms. Message passing libraries such as MPI,
thread libraries such as POSIX threads, and directive based models such as OpenMP are
widely accepted as standards, and have been ported to a variety of platforms.

Computational physics applications have been the primary drivers in the develop-
ment of parallel computing over the last 30 years [42]. Applications are often defined by
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1.1 Motivation Chapter 1

a set of partial differential equations (PDEs). Attention was focused on the discretiza-
tion of PDEs and the solution of the linear and nonlinear equations generated by dis-
cretization. Significant efforts have been made to facilitate the development of scientific
applications for traditional homogeneous parallel platforms such as SMPs and MPPs.
Take dense linear algebra as an example, which is heavily used in scientific computing.
At the lowest level, BLAS [85], a set of subroutines that perform common linear algebra
operations such as vector scaling and matrix product, has been standardized. Highly op-
timized implementations have been developed by hardware vendors and other authors,
like ACML (AMD Core Math Library) [1] and GotoBLAS [52, 53], and are widely used
as building blocks in higher-level software packages. At a higher level, LAPACK [4],
a set of routines for solving systems of linear equations and linear least squares and for
implementing associated matrix factorizations such as LU, QR decomposition and so
on, has been developed based on BLAS and become the de facto standard for numerical
linear algebra on shared-memory multiprocessor systems with a memory hierarchy. At
the highest level, ScaLAPACK [28] (or Scalable LAPACK) has extended LAPACK to
run on parallel distributed-memory systems. A significant number of software packages
have been developed and tuned for solving specific domain problems based on various
basic numerical software libraries as above. Similarly, with parallel computing becom-
ing increasingly popular, many well-tuned software packages have also been developed
to advance the state-of-the-art in various other scientific disciplines and engineering for
widespread parallel platforms.

The mainstream of traditional HPC platforms, including symmetric multiprocessors,
massively parallel processors, and computer clusters, is commonly homogeneous. How-
ever, the demand for heterogeneity increases in computing systems due to the need for
high performance computing in recent years. The design of microprocessors has been
shifting to a new model where the microprocessor has multiple homogeneous process-
ing units, aka cores, as a result of heat dissipation and energy consumption issues. In
the multicore approach a handful of conventional powerful cores are integrated on the
same die, whereas in the manycore approach a significant number of simple and less
powerful cores are commonly used focusing more on the execution throughput of par-
allel applications. The current trend in gaining high computing power is to incorporate
specialized processing resources such as Graphic Processing Units (GPUs) in multicore
systems, thus making a computing system heterogeneous. This allows a designer to

2
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use multiple types of processing elements, each able to perform the tasks that it is best
suited for. Furthermore, the heterogeneity in modern computing systems gradually goes
down to the chip level where formerly discrete components becomes integrated parts of
a system-on-chip. For example, the AMD Fusion Accelerated Processing Unit (APU)
integrates processors and graphics on the same die. In summary, modern HPC plat-
forms have been becoming increasingly heterogeneous and hierarchical, which can be
exemplified by multicore clusters enhanced with specialized accelerators.

Highly heterogeneous and hierarchical HPC platforms, where multicore processors
are coupled with graphics processing units (GPUs), have been widely used in high per-
formance computing as one approach to continuing performance improvement while
managing the new challenge of energy efficiency. Over recent years, critical scien-
tific software has been gradually ported to multicore and GPU architectures. Although
some legacy software packages and programming languages could be used directly, the
introduction of multicores in HPC resulted in redesign of some critical software pack-
ages and significant refactoring of some existing parallel applications. For example,
the parallel linear algebra for scalable multicore architectures (PLASMA) [3] project
has been started aiming to create software frameworks to facilitate application develop-
ment across a range of multicore architectures. It introduces new algorithms redesigned
to maximize data reuse in the cache levels in multicore systems; and relies on run-
time scheduling of parallel tasks to fulfill the cores instead of the fork-join paradigm
used in legacy LAPACK package. To facilitate development of general-purpose appli-
cations on GPUs, new programming models, such as Brook+ [19], CUDA [97, 96],
and OpenCL [72], were created. A large number of algorithms and specific applica-
tions have been successfully ported to GPUs claiming substantial speedup over their
optimized CPU counterparts. The transition from traditional homogeneous platforms
to modern hybrid ones is challenging in the aspect of efficient utilization of the het-
erogeneous hardware and existing optimized software. There has emerged some pro-
gramming and execution environments for hybrid platforms over recent years, such as
Merge [87], StarPU [7], MAGMA [3]. However, more effort still needs to be invested
into the research on efficient utilization of hybrid platforms, including efficient workload
distribution and load balancing across heterogeneous processing elements.

The standard parallel architectures support a variety of decomposition strategies,
such as decomposition by tasks and decomposition by data. Data decomposition is a

3
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powerful and commonly used method for deriving concurrency in parallel scientific ap-
plications that operate on large data structures such as matrices and graphs. Firstly the
data on which the computations are performed is partitioned, then this data partition-
ing is used to induce a partitioning of the computations into tasks. Once a computation
has been decomposed into tasks, these tasks are mapped onto processes to be executed
in parallel with the objective that all tasks complete in the shortest amount of elapsed
time. For example, on traditional homogeneous parallel platforms, in algorithms that
use dense matrices and have structured and regular interaction patterns, the matrices are
usually partitioned into a large number of small blocks of the same size; then, these
blocks are distributed among processes in a round-robin manner in order to alleviate
the load imbalance problem and incur a lower volume of inter-process interaction, also
known as block-cyclic distribution. In numerical simulations of physical phenomenon,
the problem domain is commonly discretized and represented by a mesh of elements,
each generally associated with the same amount of computation. Then, the mesh is par-
titioned into a number of parts (each assigned to a process) such that each part contains
roughly the same number of vertices in order to balance the load, and the number of
edges that cross partition boundaries is minimized aiming at low interaction overheads.

On heterogeneous parallel platforms, computation (data) should be partitioned and
distributed in proportion to the speed of processors in order to balance the load. Com-
putation performance models are used by application developers to estimate speed of
processors. One approach is to build an analytical performance model based on static
analysis. An analytical performance model provides insights into the performance bot-
tlenecks of parallel applications, and can be used to estimate speed for simple appli-
cations, but may not be sufficient for complex applications. A simplistic performance
model that has been used extensively in a variety of parallel algorithms sees a heteroge-
neous network of computers as a set of interconnected processors each is characterized
by a single positive constant representing its speed. But in reality, processor speed is
application dependent, and it may vary with change of size of the problem to be solved,
especially when problem sizes exceed the main memory and cause paging. To represent
the performance more accurately, the functional performance model has been proposed,
which represent the speed of processor as a continuous function of problem size, taking
into account both processor heterogeneity and memory heterogeneity [84]. However,
currently this type of performance model is only applicable to a heterogeneous network

4
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of uniprocessor computers.
Highly heterogeneous multicore platforms, possibly enhanced with hardware ac-

celerators, have become the mainstream in high performance computing. Maximum
performance of data-parallel scientific applications on such platforms can be achieved
by balancing the workload between heterogeneous processing elements. Data partition-
ing is a method of static load balancing widely used on distributed-memory platforms,
which relies on accurate performance models of processors for generating balanced par-
titioning of workload. In this thesis, we use data partitioning to balance data-parallel
scientific applications. However, on our target platforms, the data partitioning is compli-
cated by several factors, including contention for shared system resources, non-uniform
memory access, and so on, which have not been addressed in related works [84, 31]. In
this work, we study and provide solutions for the performance modeling and data parti-
tioning for modern heterogeneous parallel platforms [133, 134]. A software framework
for facilitating data partitioning on heterogeneous platforms is also presented [34].

1.2 Project Scope

The platforms we target are dedicated highly heterogeneous modern HPC platforms
composed of a variety of multicore nodes, and possibly enhanced by hardware accelera-
tor GPUs. The processor cores in a particular multicore node are identical, but multicore
processors in a cluster may not be identical due to the different architecture of cores,
and/or different on-chip communication mechanisms, and so on, leading to processor
heterogeneity. Besides, in a multicore node of NUMA architecture, the performance is
dependent on the distance between the processor core and the memory bank where the
data are stored. Another property of the target platforms is that the memory capacity of
multicore nodes in a cluster may not be identical, leading to memory heterogeneity. An-
other source of memory heterogeneity is that the GPU memory is significantly smaller
than the main memory of the CPU host in hybrid CPU-GPU computing systems.

In this thesis, we target data-parallel scientific applications such as dense linear al-
gebra, digital image processing, computational fluid dynamics. These applications are
characterized by divisible computational workload, which is proportional to the size of
data. Static distribution methods are usually used for such applications on distributed-
memory platforms due to low communication cost and less scheduling overhead. Con-

5
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siderable efforts have been made over recent years to port critical scientific software to
both multicore and GPU architectures. This often required re-engineering of the ex-
isting parallel applications and development of new programming models, tools and
algorithms. Therefore, we do not focus on developing new algorithms or low-level
optimization of existing algorithms for target platforms, but reuse the existing highly
optimized code for development of scientific software for heterogeneous parallel plat-
forms and apply data partitioning based on performance models to balance the load in
order to achieve high performance.

Scientific parallel applications are mainly written using MPI, therefore, we focus on
load balancing of MPI parallel implementations on heterogeneous distributed-memory
platforms. The integration of multiple processing cores onto the same silicon die has be-
come the de-facto processor design, which make all computers shared memory parallel
computers. At this level of parallelism, both MPI implementations and multithreaded
OpenMP implementations are considered. For the GPU programming, currently we
only experiment with CUDA implementations, but experiments with OpenCL imple-
mentations could be included as part of the future work. To sum up, on heterogeneous
multicore clusters, both the MPI programming model and the hybrid MPI+OpenMP
programming model are taken into consideration. In cases when GPUs are used as
hardware accelerators, the hybrid MPI+CUDA programming model is used where the
GPUs are handled by host MPI processes running on the dedicated CPU cores.

1.3 Data Partitioning on Modern Heterogeneous HPC Platforms

Heterogeneous multiprocessor systems, where multicore processors are coupled with
graphics processing units (GPUs), have been widely used in high performance comput-
ing as one approach to continuing performance improvement while managing the new
challenge of energy efficiency. Data parallel scientific applications can be load balanced
by applying data partitioning with respect to the performance of a heterogeneous plat-
form’s computing devices.

Data partitioning algorithm based on functional performance models (FPMs) was
originally designed and proved to be accurate for heterogeneous network of uniproces-
sors. Optimal distribution of computations between heterogeneous processors is typi-
cally based on their individual performance models. However, data partitioning on mul-
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ticore and multi-GPU systems is complicated by several factors, such as contention for
shared system resources, non-uniform memory access (NUMA), limited device memory
and slow bandwidth of PCIe, which connects the host processor and the device, etc.

In multicore or GPU-accelerated multicore systems, the speed of one processing el-
ement may depend on the load of others due to resource contention, therefore, they can-
not be considered independent and their speed cannot be measured separately. In this
work, we propose to model a multicore or GPU-accelerated multicore system by a set
of abstract processors determined by the configuration of the parallel application. Each
abstract processor represents a processing unit made of one or a group of processing
elements executing a computational kernel of the application. To measure the perfor-
mance accurately, we propose to group processing units by shared system resources, so
that system resources are shared within each group but not between groups. The perfor-
mance of processing units in a group is measured when all processing units in the group
are executing some workload simultaneously, thereby taking into account the influence
of resource contention. For example, processing units that share memory or PCIe link
are grouped together.

Using the proposed method for measuring performance, the speed of processing
units are measured for a number of problem sizes to build their functional performance
models. These performance models can be used in FPM-based data partitioning algo-
rithms to balance the workload on heterogeneous multicore platforms or heterogeneous
multicore and multi-GPU platforms.

1.4 Domain Decomposition of Computational Fluid Dynamics

Applications on Modern Heterogeneous HPC Platforms

Computational Fluid Dynamics (CFD) is the analysis of systems involving fluid flow,
heat transfer, and associated phenomena such as chemical reactions by means of computer-
based numerical simulation. Over the past few decades, computational fluid dynamics
has become a practical cornerstone of most fluid and mechanical engineering applica-
tions, such as aerodynamics of aircraft and vehicles.

CFD simulations commonly require a significant amount of computing resources for
accurate solutions, especially for complex simulation scenarios such as transonic or tur-
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bulent flows. With high performance computing platforms, faster and better solutions
can be achieved. Parallelization of numerical simulations of fluid dynamics is an at-
tractive research topic from the very beginning in this area. Parallel computing in CFD
simulations is usually based on domain decomposition, which is essentially data paral-
lelism. The current trend in gaining high computing power is to incorporate specialized
processing resources such as GPUs in multicore systems, thus making a computing sys-
tem heterogeneous. Many efforts have been invested in improving the performance of
parallel CFD simulations on homogeneous computing systems, but more is required for
heterogeneous multicore and multi-GPU platforms.

In this work, using the proposed performance modeling and performance measure-
ment methods on GPU-accelerated multicore systems, we build functional performance
models of the platform’s processing units executing the linear equation solvers of the
CFD application. Then, we apply FPM-based data partitioning to balance the work-
load of the CFD application on heterogeneous multicore and multi-GPU platforms to
speedup the simulation. Experimental results demonstrate that data partitioning algo-
rithms based on proposed methods are able to balance the workload and deliver good
performance for such complex applications on target platforms.

1.5 A Software Framework for Data Partitioning on Heteroge-

neous Platforms

It is challenging to apply data partitioning for parallel scientific applications on hetero-
geneous platforms. The computation should be partitioned and distributed to heteroge-
neous processing elements in proportion to their relative speed in order to balance the
workload. Therefore, it requires accurate and efficient benchmarking methods to obtain
processor speed, appropriate interpolation methods to predict processor performance
and build computation performance models, and data partitioning algorithms that can
yield high quality partitioning.

To this end, a software framework, Fupermod, has been developed to meet the above
challenges. The software framework consists of a library and a set of tools. The library
implements the main functionality, which can be integrated into applications. The li-
brary is made up of five modules: process configuration, performance measurement,
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model construction, static data partitioning, dynamic data partitioning and load balanc-
ing. The tools, which are developed based on the library, are used in different phases of
a model-based data partitioning procedure.

In the software framework, algorithms for benchmarking and constructing computa-
tion performance models are implemented. The library provides well-defined function
interfaces for invoking these algorithms. A standalone executable tool with the same
functionality is also implemented as well. The performance models can be built ei-
ther in advance to be used in static data partitioning, or at runtime during dynamic
data partitioning or dynamic load balancing. A set of general-purpose data partitioning
algorithms based on computation performance models are implemented. Similarly, the
library releases related function interfaces for invoking these algorithms, and standalone
tools used to generate high quality partitioning are also provided. The software frame-
work support a wide range of heterogeneous platforms, such as heterogeneous network
uniprocessor or multicore computers, GPU-accelerated hybrid platforms. It is designed
to be extensible in that new measurement techniques for new types of hardware can be
added and other computation performance models and data partitioning algorithms can
be included. The software framework also includes some use cases such as heteroge-
neous matrix multiplication and Jacobi solver, and some wrappers of CBLAS routines
and memory management for heterogeneous processing elements.

1.6 Contributions

The contributions of this thesis are as follows:

• We propose methods of performance modeling of dedicated multicore or GPU-
accelerated multicore systems. A multicore or GPU-accelerated multicore system
is modeled by a number of abstract processors, each representing a processing
unit made of one or a group of processing elements executing a computational
kernel of the application. We build functional performance models of abstract
processors, and partition data using these performance models.

• We propose methods for accurate performance measurement on dedicated multi-
core or GPU-accelerated multicore systems. The processing units of a multicore
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or GPU-accelerated multicore system are grouped by shared resources. Perfor-
mance of processing units in each group are measured simultaneously rather than
separately, thereby taking into account the influence of resource contention.

• We propose a procedure for performance measurement of the parallel MPI appli-
cation on a heterogeneous multicore cluster. The default communicator is split so
that there is one per multicore node. Performance measurement is synchronized
on each multicore node. To ensure the reproducibility and reliability of the results,
we bind processes to processing elements and repeat experiments multiple times.

• From analysis of functional performance models built in different configurations,
we reveal the impact of resource contention on the performance of CPU and GPU
processing units, and the impact of process mapping on GPU-accelerated systems
of NUMA architecture on the performance of the GPU processing unit.

• We evaluate the proposed performance modeling and performance measurement
methods with a fundamental data parallel applications, namely, parallel matrix
multiplication. Experimental results demonstrate that data partitioning algorithms
based on functional performance models of abstract processors, each represent-
ing one or a group of processing elements, are able to balance the workload on
heterogeneous multicore or GPU-accelerated multicore platforms.

• We apply the FPM-data partitioning to a complex CFD application, namely nu-
merical simulation of lid-driven cavity flow. Using proposed performance mod-
eling and measurement methods, we built functional performance models of the
platform’s processing units executing the linear equation solvers of the CFD test
case, and decompose the solution domain based on these performance models.
Experimental results demonstrate that data partitioning algorithms based on pro-
posed methods are able to balance the workload on heterogeneous multicore or
GPU-accelerated multicore platforms.

The technical contributions of this work are as follows:

• We implement the out-of-core single-GPU and multi-GPU gemm computational
kernels, and investigate a set of optimization techniques.
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• We extend the software framework, Fupermod, to heterogeneous multicore clus-
ters and heterogeneous GPU-accelerated multicore platforms, including the code
refactoring on process configuration, performance measurement, and the develop-
ment of wrappers for memory operations and for the execution of linear algebra
routines on hybrid GPU-accelerated multicore systems. In addition, during the
use of the framework, several bugs have been found and fixed.

1.7 Thesis Structure

The thesis is structured as follows. In Chapter 2, we describe the background and re-
lated work, where the existing platforms for high performance heterogeneous comput-
ing, the programming models for existing HPC platforms, and existing work on per-
formance modeling and model-based data partitioning on heterogeneous platforms are
overviewed. In Chapter 3, we present methods of performance modeling and data par-
titioning on heterogeneous cluster of multicore nodes, which extends the previous work
on heterogeneous uniprocessor clusters. In Chapter 4, we present methods of perfor-
mance modeling and data partitioning on multicore and multi-GPU platforms, and eval-
uate the proposed methods with parallel matrix multiplication on both a single hybrid
multicore server and a GPU-accelerated multicore cluster. In Chapter 5, we evaluate the
proposed methods of performance modeling and performance measurement with a com-
plex computational fluid dynamics application, and analyzed the experimental results.
In Chapter 6, we outline the software framework, Fupermod, which is designed to facil-
itate the performance modeling and data partitioning of parallel scientific applications
on heterogeneous platforms. Chapter 7 concludes the thesis.
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Chapter 2

Background and Related Work

In this chapter, first, the existing platforms for high performance heterogeneous comput-
ing are reviewd. Next, the programming models for developing parallel applications on
heterogeneous HPC platforms are overviewed. Then, the general matrix multiplication
routine is briefly reviewed. Last, the existing work on performance modeling and data
partitioning on heterogeneous platforms is reviewed.

2.1 Modern Heterogeneous HPC Platforms

Microprocessors based on a single processing unit (CPU) drove performance increases
and cost reductions in computer applications for more than two decades. However, due
to heat dissipation and energy consumption issues, the design of microprocessors has
been shifting to a new model where the microprocessor has multiple processing units
known as cores [61]. There are two main approaches to such microprocessor design,
namely multicore and many-core. The multicore approach integrates a few existing
superscalar cores into a single microprocessor, seeking to keep the execution speed of
sequential programs. The many-core approach uses a large number of simple smaller
cores and is specially oriented to the execution throughput of parallel programs. This
approach can be exemplified by the Graphical Processing Unit (GPU) and the Field-
Programmable Gate Array (FPGA).

Heterogeneity has become a common attribute of high performance computing plat-
forms. Currently, the dominant type of HPC platforms are computer clusters. However,
this type of HPC platforms is naturally heterogeneous. The processors in a cluster may
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be heterogeneous in terms of architecture, model, and configuration. Moreover, the com-
munication network may have a heterogeneous structure. For example, the computers
in a cluster may be connected by network links of different transmission speed.

The demand for heterogeneity in computing systems increases partially due to the
need for high performance computing in recent years. The current trend in gaining
high computing power is to incorporate specialized processing resources such as GPUs
in multicore systems, thus making a computing system heterogeneous [18]. Extensive
research has been carried out on general purpose GPU computing [25, 112], and hybrid
CPU-GPU computing [19, 101, 100, 24, 88, 59] over recent years. A large number of
algorithms and specific applications have been successfully ported to GPUs claiming
substantial speedup over their optimized CPU counterparts [94]. In [121], the trends
leading to the idea of hybrid CPU-GPU systems is highlighted and a set of techniques
that can be used to effectively program such systems are presented in the context of
dense linear algebra. In[120], a set of dense linear algebra solvers, namely Cholesky,
LU, and QR factorizations, for GPU-accelerated hybrid systems are presented. Large-
scale GPU clusters are gaining popularity in the scientific computing community. In
[73], the authors present their experiences in deploying two GPU clusters at NCSA,
give data on performance and power consumption, and outline solutions for hardware
reliability testing, security, job scheduling and resource management.

Several high-level programming systems for heterogeneous GPU-accelerated multi-
core platforms have been developed. Qilin [88] automatically generates code and uses
adaptive mapping for performance tuning. During the training run, Qilin executes the
program at different input sizes on CPUs and GPUs separately, and build performance
models to determine workload partitioning between CPUs and GPUs. Peppher [14] em-
ploys component implementation variants of performance-critical parts of applications
tailored to different architectures, and relies on the compiler and runtime system to se-
lect and schedule component tasks on available computing resources. PetaBricks [102],
an implicitly parallel language and compiler, uses an empirical autotuning approach
to search the space of possible implementations at installation time to construct poly-
algorithms that combine many different algorithmic techniques to obtain better perfor-
mance. Other heterogeneous programming systems with similar functionality include
Merge [87], StarPU [6], and Elastic Computing [126].

The heterogeneity in modern computing systems gradually goes down to the chip
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level, as the increase in chip area and the further scaling of fabrication technologies al-
low for formerly discrete components to be integrated parts of a system-on-chip. For
example, the IBM Cell Broadband Engine chooses a heterogeneous chip multiprocess-
ing architecture consisting of one Power Processor Element (PPE) and eight Synergistic
Processor Elements (SPEs) [54, 55]. The PPE delivers system-wide services, such as
virtual memory management, threading scheduling and other operation system services.
The SPE implements a data-parallel computing architecture based on SIMD RISC com-
puting and explicit data transfer management. The AMD Fusion Accelerated Processing
Unit (APU) integrates integrates a few general-purpose x86 processor cores and one in-
tegrated programmable vector-processing Graphic core on the same die [17]. The AMD
APU aims to strike a balance between performance and power, and optimize perfor-
mance for different workload classes, e.g. CPU centric and graphic centric. Extensive
research has been conducted on such heterogeneous system-on-chip multicore proces-
sors in high performance computing community [45, 113, 50, 40, 37, 38], and has proven
its promising future in the HPC community.

Heterogeneous architectures, either standard multicore CPU enhanced with special-
ized resources such as GPUs and FPGAs, or heterogeneous system-on-chip such as
IBM Cell and AMD Fusion APU, are of continuous interest in the HPC world. It is
challenging and promising, and still requires more effort to fully explore the power of
such heterogeneous architectures.

2.2 Parallel Programming Models

Just as there are several different classes of parallel hardware, so too are there several dis-
tinct models of parallel programming. Currently, the OpenMP [99] is the most widely
accepted parallel programming model for shared-memory systems, and the MPI [92]
is the dominant programming model for distributed-memory systems. Modern HPC
platforms usually employ both shared- and distributed-memory architectures. For ex-
ample, a multicore cluster consists of a number of shared-memory multicore nodes
connected by network links. Combining the OpenMP and MPI offers an approach
to exploit the hierarchical parallelism inherent in the applications or the underlying
hardware [23]. Considerable work has gone into studying this hybrid programming
model [105, 106, 107, 114, 123].
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In the hybrid MPI+OpenMP programming model, one may invoke one or more MPI
processes on a multicore node, each further invoking multiple threads on processor cores
using OpenMP. To get good performance, it is important to take into account the hard-
ware topology, intra-node MPI communication, and network saturation [106]. Optimal
thread-core affinity could lead to less inter-node communication which impacts the ap-
plication performance. Depending on the inter-node, intra-node, and intra-socket band-
widths, rank orderings should be chosen accordingly. The number of MPI processes or
OpenMP threads for communication should be chosen carefully in order to saturate the
network connection of a node.

Modern HPC platforms present high heterogeneity due to the additional specialized
resources such as GPUs. In the early stage, languages such as Brook [19] and Cg [89]
were used for programming on the GPU-accelerated computing systems. At present,
CUDA [97] is the widely used programming model for NVIDIA GPUs. The CUDA
programming model assumes that the computing system consists of a host (CPU) and
one or multiple devices (GPU), which maintain their own memory spaces respectively.
In this programming model, the programmer needs to allocate memory on the device and
transfer the input data from the host memory to the allocated device memory in order to
execute a kernel on a device. After device execution, the programmer needs to transfer
the result from the device memory back to the host memory and free the device memory
that is no longer needed. The CUDA runtime system provides application programming
interface (API) functions to perform these activities. More recently, the industry has
worked together on the OpenCL standard [72] for programming a heterogeneous col-
lection of CPUs, GPUs and other discrete computing devices organized into a single
platform. OpenCL is designed to target not only GPUs but also other accelerators, such
as multi-core CPUs. Thus, it can support both data-based parallelism, and task-based
parallelism, which are well suited for GPUs and CPUs architectures respectively.

For hybrid CPU+GPU platforms, parallel programming models for CPUs such as
OpenMP and MPI, and programming models for GPUs such as CUDA and OpenCL
can be used together to explore the computing power of such hybrid platforms [16, 41,
56, 73, 108, 130]. For example, in [65], OpenMP has been used to generate as much
data as possible (data preprocessing) to feed the GPU. In [56], OpenMP has been used
to support multi-GPU parallelism. That is, multiple CPU worker threads are allocated
by OpenMP instructions, and each thread manages one GPU. In [41], the author used a
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OpenMP-CUDA solution that runs on a loosely-coupled GPU cluster to triangulate and
render large molecular datasets with a significantly large number of atoms.

To parallelize programs in GPU clusters, a natural method is to combine CUDA with
MPI. This hybrid programming model is becoming an important choice for various HPC
applications where MPI works as the data distributing mechanism and the CUDA/GPU
as the local computing engine [16, 108]. Most hybrid CUDA+MPI code is written
in a hierarchical way. Namely, at a high level, the program is structured as several
MPI tasks to execute on nodes of the GPU cluster. In each MPI task, the parts which
enrich data parallelism are moved to the GPU to execute. To get good performance
on multi-GPU nodes of NUMA architecture, it is important to take into account the
impact of process affinity on the application performance, because GPUs have different
memory bandwidth to the host CPU cores depending on what CPU socket the GPU
control process is running on [73].

2.3 A Brief Review of the General Matrix Multiply Routine

General matrix-matrix multiply (gemm) is a fundamental linear algebra routine from the
level-3 Basic Linear Algebra Subprograms (BLAS) [43]. High performance of other
level-3 BLAS routines, such as symmetric matrix-matrix multiply (symm), symmetric
rank-k update (syrk), and triangular matrix-matrix multiply (trmm), are generally at-
tained by casting the bulk of computation in terms of a general matrix-matrix multiply
(gemm) [68]. The BLAS subroutines have been successfully used as building blocks for
several higher-level math programming languages and libraries, including LAPACK [4]
and ScaLAPACK [28].

Highly optimized BLAS implementations, each including a optimized gemm rou-
tine, have been developed by hardware vendors, such as Intel MKL [63] and AMD
ACML [1] libraries, and by other researchers, such as GotoBLAS [52] and ATLAS [127]
libraries. In the optimized gemm implementations, the matrices are generally partitioned
into smaller blocks, taking into account the size of caches and bandwidth between differ-
ent memory layers of the computing system. Then the general gemm is decomposed into
multiple calls to some basic kernels, such as general block-panel multiply (gebp), gen-
eral panel-block multiply (gepb), and general panel-panel product (gepdot), which oper-
ate on the small matrix blocks stored in the caches. The gemm routine is designed so that
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the required data movements between memory layers are optimally amortized [52, 57].
Generally, the gemm routine should be tuned for different architectures. In [127], an ap-
proach for automatic generation and optimization of the BLAS routines for computing
systems with deep memory hierarchies is proposed.

With the advert of multicore and GPU architectures, gemm routines optimized for
such architectures have been proposed. In [110], the matrix multiplication is recursively
decomposed into a large number of smaller matrix multiplication tasks. These tasks are
then mapped and scheduled to cores by a task administration library, and are executed
by multiple threads in parallel. Multithreaded versions of the gemm routine are also
available from hardware vendors such as the Intel and AMD. They can be used straight-
forwardly on multicore systems. Extensive work has been conducted on developing
high performance gemm routines for GPUs. In [124], a set of benchmarks are designed,
which are used to reveal the bottlenecks and structure of the GPU. Based on bench-
marks, a high performance hand-tuned gemm routine is developed. In [93], the above
algorithm is improved for more advanced NVIDIA Fermi GPUs with extended memory
hierarchy and memory sizes. In [75], an approach for auto-tunning the gemm routine for
NVIDIA Fermi GPUs is proposed. Vendor-optimized BLAS implementations including
the gemm routines are also available, such as the clBLAS library [2] designed for AMD
GPUs and the cuBLAS library [95] designed for NVIDIA GPUs.

2.4 Data Partitioning on Heterogeneous Platforms

Dividing a computation into smaller computations, and assigning them to different pro-
cessors for parallel execution are the two key steps in the design of parallel algorithms
[74]. Data decomposition is a powerful and commonly used method for deriving con-
currency in algorithms that operate on large data structures. In this method, the decom-
position of computations is done in two steps. In the first step, the data on which the
computations are performed is partitioned, and in the second step, this data partitioning
is used to induce a partitioning of the computations into tasks.

Once a computation has been decomposed into tasks, these tasks are mapped onto
processes with the objective that all tasks complete in the shortest amount of elapsed
time. In order to achieve a small execution time, the overheads of executing the tasks
in parallel should be minimized. For a given decomposition, the two major sources
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of overhead are load imbalance and inter-process communication. These two objectives
often conflict with each other, and finding a good mapping is a nontrivial problem. Map-
ping techniques used in parallel algorithms can be broadly classified into two categories:
static and dynamic.

Static mapping techniques, such as those based on data partitioning [98, 84, 88],
distribute the tasks among processes prior to the execution of the algorithm. Static algo-
rithms are particularly useful for applications where data locality is important because
they do not require data redistribution. However, these algorithms are unable to bal-
ance on non-dedicated platforms, where load changes with time, and for applications
with non-deterministic workload. Dynamic mapping techniques, such as task queue
scheduling and work stealing [62, 87, 6, 7, 103, 104], distribute the work among pro-
cesses during the execution of the algorithm. While algorithms that make use of static
mapping are in general easier to design and program, algorithms that require dynamic
mapping are usually more complicated.

Dynamic mapping techniques do not require a priori information about execution
but may incur significant communication overhead on distributed memory platforms
due to data migration. Dynamic algorithms often use the static data partitioning for
their initial step to minimize the amount of data redistributions needed. For example, in
the state-of-the-art load balancing techniques for multi-node, multicore, and multi-GPU
platforms, the performance gain is mainly due to better initial data partitioning. It was
shown that the static distribution based on a simplistic performance model improves the
performance of traditional dynamic scheduling techniques by up to 250% [115].

2.4.1 Performance Models of Processors

The performance models of processors are important for solving data partitioning prob-
lems. One approach to prediction is to build an analytical performance model based on
static analysis. Indeed, such models [66, 128, 60, 8, 132] are useful to provide insights
into the performance bottlenecks of parallel applications on CPU or GPU architectures,
and can be used to estimate the execution time of applications for simple applications.
However, it is unlikely to be sufficient for more complex applications.
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Constant Performance Model

Heterogeneity is one of the main sources of performance programming issues [131]. The
immediate and most important performance-related implication from the heterogeneity
of processors is that the processors run at different speeds. The simplest performance
model, capturing this feature and abstracting from the others, sees a heterogeneous net-
work of computers as a set of interconnected processors, each of which is characterized
by a single positive constant representing its speed.

The performance of a processor can be calculated theoretically or measured by
benchmark suites. The peak performance provided by manufacturer is perhaps the sim-
plest measure of the processor performance. While the peak performance is theoretical
and rarely achieved by real applications due to on-chip bandwidth and latency, it can be
used as initial values in adaptive data partitioning algorithms [129]. As an alternative
to theoretical estimations, benchmarks may be executed to characterize the performance
of a processor, such as SPEC [49] for general-purpose CPUs and Parboil [117] for GPU
architectures. As heterogeneous computing systems consisting of both multicore and ac-
celerators (e.g., GPU, FPGA) become increasingly popular, benchmark suites targeting
such systems are developed, like Rodinia [24] and SHOC [39].

In data partitioning the typical representations of performance are processor weight,
relative speed, or normalized speed of the set of processors, which are essentially the
same and assume the performance is constant for all problem sizes. Based on the relative
speed, the workload is proportionally divided between processors so that the computa-
tion of their respective work will complete at the same time as expected. Often data
partitioning algorithms assume that the relative speed is provided [10, 36, 67, 44]. Oth-
erwise, users are required to use self-defined benchmark routines to calculate the relative
speed for optimal distribution of computation between processing elements. In [88], a
database that provides execution-time projection for all programs it has ever executed
is maintained. In [129], a similar framework is implemented, but the performance is
obtained adaptively using a history of performance measurements.

The constant performance model (CPM) assumes that the relative speed of hetero-
geneous processors is constant and does not depend on the size of the computational
task solved by the processors. In reality, the relative speed changes due to processor
heterogeneity and memory heterogeneity [84]. Thus, the constant performance model is
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not accurate and realistic. As processor architectures become more heterogeneous, their
performance as problem size increases becomes more difficult to approximate and this
necessitates a more detailed general model of performance than constant performance
model. In order to address these issues, the Functional Performance Model (FPM) has
been proposed in [84] which represents the performance of a processor as a continuous
function of problem size. It is built empirically and integrates many important features
characterizing the performance of both the architecture and the application.

Functional Performance Model

Under the functional performance model (FPM) [84], the speed of each process is rep-
resented by a continuous function of problem size. The speed is defined as the number
of computation units performed by the process per one time unit.

The computation unit is defined as the smallest amount of work that can be given to a
process. The model is application specific. In particular, this means that the computation
unit can be defined differently for different applications. The important requirement is
that the computation unit must not vary during the execution of the application. All units
require the exact same number of arithmetic calculations and have the same data storage
requirements. An arithmetical operation and the matrix update C =C+A×B, where A,
B, and C are r× r matrices of the fixed size r, give us examples of computation units.

The problem size is understood as a set of one, two or more parameters character-
izing the amount and layout of data stored and processed during the execution of the
computational task. The number and the semantics of the problem size are problem- or
even application-specific. It is assumed that the amount of stored data will increase with
the increase of any of the problem size parameters.

Some assumptions are made about the shape of the function. Namely, it is assumed
that along each of the task size variables, either the function is monotonically decreas-
ing or there exists point x such that on the interval [0,x] the function is monotonically
increasing, concave, and any straight line coming through the origin of the coordinate
system intersects the graph of the function in no more than one point, and on the interval
[x,∞) the function in monotonically decreasing. Figure 2.1 shows the functional perfor-
mance models of heterogeneous processors from Grid5000. As we can see, the relative
speed can be seen constant only in a small range of problem sizes [29].
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Figure 2.1: Speeds of multiplication of two square N×N matrices observed on hetero-
geneous processors of Grid5000 [29]. The shaded area indicates the range of problem
sizes where the relative speed can be seen constant.

Data partitioning on heterogeneous platforms requires detailed knowledge of the
performance of the specific applications executed on targeted platforms. The functional
performance model is a general solution to providing this performance information.
In [83, 58] the construction of the functional performance model has been described.
Application of such performance models in various scenarios has resulted in increased
performance when using heterogeneous resources. This has been demonstrated for data
partitioning [78, 79, 84, 80, 82, 81, 32, 33, 31, 34] and task scheduling [58].

2.4.2 Data Partitioning Based on Performance Models

In this section, we describe data partitioning algorithms based on the constant perfor-
mance model and functional performance model respectively.

CPM-based Data Partitioning

Under the constant performance model, each processor in a heterogeneous platform is
represented by a positive constant. Two important parameters of the model include,
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p, the number of the processors, and, S = s1,s2, . . . ,sp, the speeds of the processors.
The speed can be either absolute or relative. The absolute speed of a processor is
understood as the number of computation units performed by the processor per one time
unit. The relative speed can be obtained by the normalization of its absolute speed so
that ∑

p
i=1 = 1.

In a general form, a typical partitioning problem with a constant performance model
of heterogeneous processors can be formulated as follows [77, 76]. Given a set of p pro-
cessors P1,P2, . . . ,Pp, the speed of each processor is characterized by a positive constant
si. Partition a mathematical object (e.g., set, matrix, graph) of the size n (the number
of element in a set or matrix, or nodes in a graph) into p subobjects (e.g., subset, sub-
matrix, subgraph) of the same type so that (1) there is one-to-one mapping between the
partitions and the processors; (2) the size ni of each partition is approximately propor-
tional to the speed of the processor owning the partition, ni/si ≈ const, assuming the
volume of computation is proportional to the size of the mathematical object, and the
notion of proportionality is supposed to be defined for each particular problem. (3) the
partitioning may need to satisfy some additional restrictions on the relationship between
the partitions or minimize some functionals used to estimate each partitioning.

CPM-based data partitioning has been used in many applications. In [11], the ma-
trix is partitioned into a two-dimensional grid based on a constant performance model
so that the workload is balanced and the total volume of communication is minimized.
[70] provides another solution to optimal partitioning of matrix between heterogeneous
processors without taking communication overhead between processors into account. In
[80], the problem of LU factorization of a dense matrix on a heterogeneous platform is
reduced to the problem of partitioning a well-ordered set with a constant performance
model of a heterogeneous platform. In [86, 47, 90], the speeds of processors in het-
erogeneous platforms are represented by positive constants for dynamic load balancing
of iterative computational applications with the constant performance model updated
iteratively. In [12, 13], parallel algorithms using nonrectangular partitioning based on
constant performance models can outperform their counterparts based on the rectangular
one, if the number of heterogeneous processors is small.
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FPM-based Data Partitioning

The problem of data partitioning using functional performance models was formulated
in [84] as follows. A total problem size n is given as the number of computation units
to be distributed between p (p� n) processes P1, . . . ,Pp. The speeds of processors are
represented by positive continuous functions of problem size s1(x), . . . ,sp(x) : si(x) =

x/ti(x), where ti(x) is the execution time of processing x units on the processor i. Speed
functions are defined at [0,n]. The output of the algorithm is a distribution of computa-
tion units, d1, . . . ,dp, so that d1+d2+ . . .+dp = n. Load balancing is achieved when all
processors complete their work at the same time: t1(d1) ≈ t2(d2) ≈ . . . ≈ tp(dp). This
can be expressed as: 

d1

s1(d1)
≈ d2

s2(d2)
≈ . . .≈

dp

sp(dp)

d1 +d2 + . . .+dp = n

(2.1)

The solution of these equations can be represented geometrically by intersection of the
speed functions with a line passing through the origin of the coordinate system, as shown
in Figure 2.2 for p = 4.

Figure 2.2: Optimal data distribution showing the geometric proportionality of the num-
ber of chunks to the speed of the processor [84]

The geometrical algorithm solving this data partitioning problem, as illustrated in
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Figure 2.3, was proposed in [84] and can be summarized as follows. Any line pass-
ing through the origin and intersecting the speed functions represents an optimum dis-
tribution for a particular problem size. Therefore, the space of solutions of the data
partitioning problem consists of all such lines. The two outer bounds of the solution
space are selected as the starting point of algorithm. The upper line, U , represents the
optimal data distribution du

1 , . . . ,d
u
p for some problem size nu < n, nu = du

1 + . . .+ du
p,

while the lower line, L, gives the solution dl
1, . . . ,d

l
p for nl > n, nl = dl

1 + . . .+dl
p. The

region between two lines is iteratively bisected by new lines Bk. At the iteration k, the
problem size corresponding to the new line intersecting the speed functions at the points
dk

1, . . . ,d
k
p is calculated as nk = dk

1 + . . .+ dk
p. Depending on whether nk is less than or

greater than n, this line becomes a new upper or lower bound. Making nk close to n, this
algorithm finds the optimal partition of the given problem d1, . . . ,dp: d1 + . . .+dp = n.
Correctness proof and complexity analysis of this algorithm are presented in [84].

Functional performance models are built empirically by benchmarking the kernel
for a range of problem sizes. The accuracy of the model depends on the number of
experimental points used to build it. Despite the kernel being lightweight, building the
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Figure 2.3: Two steps of the iterative geometrical data partitioning algorithm. The
dashed line O represents the optimal solution. (a) Upper line U and lower line L rep-
resent the two initial outer bounds of the solution space. Line (B1) represents the first
bisection. (b) Line B1 becomes line L. Solution space is again bisected by line B2,
which, in the next step will become line U . Through this method the partitioner con-
verges on the optimal solution [84].
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full model can be very expensive. The applicability of FPMs built for the full range of
problem sizes is limited to parallel applications executed many times on stable in time
heterogeneous platforms. In this case, the time of construction of the full FPMs can
become very small compared to the accumulated performance gains during the multi-
ple executions of the optimized application. However, this approach is not suitable for
applications that will be run a small number of times on a given platform, for example,
in grid environments, where different processors are assigned for different runs of the
application. Such applications should be able to optimally distribute computations be-
tween the processors of the executing platform assuming that this platform is different
and a priori unknown for each run of the application.

Partial estimates of the full speed functions can be built dynamically at application
run-time to a sufficient level of accuracy to achieve load balancing [81, 32, 30]. We refer
to these approximations as partial functional performance models. The partial FPMs are
based on a few points connected by linear segments and estimate the real functions in
detail only in the relevant regions: s̄i(x) ≈ si(x), 1 ≤ i ≤ p, ∀x ∈ [a,b]. Both the partial
models and the regions are determined at runtime.

The algorithm to build the partial FPMs is iterative and alternates between (i) bench-
marking the kernel on each process for a given distribution of workload and (ii) repar-
titioning the data. At each iteration, the current distribution d1, . . . ,dp is updated, con-
verging to the optimum, while the partial models s̄1(x), . . . , s̄p(x) become more detailed.
Initially the workload is distributed evenly between all processes. Then the algorithm
iterates as follows:

1. The time to execute the kernel for the current distribution is measured on each pro-
cess. If the difference between timings is less than some ε , the current distribution
solves the load balancing problem and the algorithm stops.

2. The speeds are calculated from the execution times and the points (di,si) are added
to the corresponding partial models s̄i(x). (Figure 2.4 (b, d, f)).

3. Using on the current partial estimates of the speed functions, the FPM-based par-
titioning algorithm calculates a new distribution. (Figure 2.4 (a, c, e)).

This algorithm allows for efficient load balancing and suitable for use in self-adaptable
applications, which run without a priori information about the heterogeneous platform.
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Figure 2.4: Steps of the partial FPM-based data partitioning algorithm illustrated using
four heterogeneous processors [81].
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Chapter 3

Data Partitioning on Heterogeneous Multicore
Platforms

Data partitioning is a method of static load balancing widely used on distributed-memory
platforms. Data partitioning algorithms rely on accurate performance models of proces-
sors. One approach is to represent the processor speed by a positive constant, which is
known as constant performance model. The fundamental assumptions of data partition-
ing algorithms based on constant performance models are that (i) the absolute speed of
processing elements does not depend on the size of a computational task, and therefore,
can be represented by a constant; (ii) the processing elements are independent of each
other, and thus, their speed can be measured separately. However, these assumptions
become invalid in the following situations:

1. the partitioning of the problem results in tasks fitting into different levels of mem-
ory hierarchy;

2. processing elements switch between different codes to solve the same computa-
tional problem;

3. processing elements contend for shared system resources with each other.

Data partitioning algorithms based on functional performance models (FPMs) were
originally designed and proved to be accurate for heterogeneous network of unipro-
cessors [84]. The functional performance model represents the processor speed by a
function of problem size. It is built empirically, and integrates many important features
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characterizing the performance of both the architecture and the application. Neverthe-
less, this performance model is only applicable in situations (1) and (2).

In this chapter, we focus on the optimal data distribution of data parallel scientific
applications on heterogeneous multicore platforms. Data parallel applications are char-
acterized by divisible computational workload, such as dense linear algebra and compu-
tational fluid dynamics. The computational workload is proportional to the size of data.
Maximum performance of data parallel scientific applications on a heterogeneous multi-
core platforms can be achieved by balancing the load between heterogeneous processing
elements. In order to distribute workload between heterogeneous processing elements
optimally, we use data partitioning algorithms. On multicore systems, the speed of one
CPU core may depend on the load of others due to resource contention (situation 3),
therefore, they cannot be considered independently and their speed cannot be measured
separately. We propose methods of performance modeling and performance measure-
ment on multicore systems, and extend the FPM-based data partitioning algorithms to
heterogeneous clusters of multicore computers.

3.1 Performance Modeling of Multicore Systems

In this work, we propose to model a multicore system by a number of abstract proces-
sors. Each abstract processor represents a processing unit made of one or a group of CPU
cores executing one computational kernel of the parallel application. In scientific appli-
cations, both single- and multi-threaded computational kernels are commonly used. If a
single-threaded computational kernel is used, on each CPU core one process executes a
computational kernel, then each CPU core will be modeled by an abstract processor. If
a multi-threaded kernel is available, one master process executes a computational kernel
on multiple CPU cores with multiple threads. Then each group of CPU cores executing
a computational kernel make a combined processing unit, and will be modeled as an ab-
stract processor. The master process is supposed to handle the placement and execution
of threads, and workload distribution between threads.

On a multicore platform, a parallel application allows for various configurations, de-
pending on the computational kernel used in the application and their mapping to CPU
cores. For example, on a multicore node, if multi-threaded computational kernel is used,
multiple kernels could be executed with each on a group of CPU cores of different num-
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ber, leading to heterogeneous processing units. Nevertheless, in this work, we assume
a parallel application will be configured following a set of simple rules, which we be-
lieve lead to efficient configurations: (i) all CPU cores of each multicore node will be
utilized. (ii) if a multi-threaded computational kernel is used, each group of CPU cores
that share resources will only execute a single such computational kernel. Thus, each
group of CPU cores that share resources makes a combined processing unit, and will
be represented by one abstract processor. In this way, CPU processing units that share
system resources will always be identical.

The performance of CPU processing units are measured for a wide range of prob-
lem sizes to build their functional performance models, which will be used as the input
of FPM-based data partitioning algorithms. To measure the performance of processing
units accurately, we propose to group processing units by shared resources so that the
resources are shared within each group but not shared between groups. The performance
of processing units in a group are measured when all processing units in the group are
executing some workload simultaneously, thereby taking the influence of resource con-
tention into account. Since no evidence has been found in experiment or in literature to
prove that uneven distribution of workload to identical processing units could speed up
parallel applications, processing units that share system resources are assigned the same
amount of workload during performance measurement. This simplification reduces the
complexity of data partitioning problem. Performance measurements of the processing
units that share system resources are synchronized. With the same amount of workload,
measurements will be completed with roughly the same amount of elapsed time, which
realistically simulates resource contention. Performance models of processing units that
are built separately do not reflect their actual performance during the execution of the
application. Consequently, any load balancing decision based on these performance
models will not be accurate.

Figure 3.1 shows a multicore server of NUMA architecture executing a parallel ap-
plication in two different configurations. In Figure 4.1(a), one process executes one
single-threaded computational kernel on each CPU core. Therefore, each CPU core
is modeled by an abstract processor representing a CPU processing unit made of one
core. As the CPU cores of a NUMA node are tightly coupled and share memory, they
cannot be considered independent. To measure the performance accurately, the CPU
cores of each NUMA node are grouped together. The performance of the CPU cores
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(a) (b)

Figure 3.1: Performance modeling on a multicore server of NUMA architecture with (a)
a single-threaded kernel executed on each core; (b) a multi-threaded kernel executed on
each NUMA node, one thread per core

of a NUMA node are measured simultaneously. As NUMA nodes are relatively inde-
pendent, the performance of the CPU cores of different NUMA nodes can be measured
separately. In Figure 4.1(b), one process executes one multi-threaded computational
kernel on six cores of each NUMA node with multiple threads. Therefore, each NUMA
node is modeled by an abstract processor representing a combined processing unit made
of six CPU cores, and their performance can be measured separately.

In order to build the functional performance models, the performance of the CPU
processing units is measured for a wide range of problem sizes. During performance
measurement, to prevent the operating system from migrating processes excessively,
processes are bound to CPU cores. Processes are synchronized to minimize the idle
computational cycles, aiming at the highest floating point rate for the application. Syn-
chronization also ensures that the resources will be shared between the maximum num-
ber of processes, generating the highest memory traffic. To ensure the reliability of
measurements, measurements are repeated multiple times, and the average execution
times are used. We find the confidence interval and stop the measurements if the sample
mean lies in the interval with the confidence level 95%. In this work, for simplicity, we
use Student’s t-test, assuming that the individual observations are independent and their
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population follows the normal distribution.
Three types of functional performance models for CPU cores are defined as follows:

1. s(x) approximates the speed of a uniprocessor executing a single-threaded com-
putational kernel. The speed s(x) = x/t, where x is the number of computation
units, and t is the execution time.

2. sc(x) approximates the speed of one of c CPU cores all executing the same single-
threaded computational kernel simultaneously. The speed sc(x) = x/t, where x is
the number of computation units executed by each CPU core, and t is the execu-
tion time.

3. Sc(x) approximates the collective speed of c CPU cores executing a multi-threaded
computational kernel. The speed Sc(x) = x/t, where x is the total number of com-
putation units executed by all c CPU cores, and t is the execution time. Sc(cx)/c

is used to denote the average speed of a CPU core.

Figure 3.2 shows speed functions of a CPU core built in different configurations on
Pluto, specified in Table 3.1. Pluto consists of eight identical NUMA nodes, with 6
cores and 16 GB local memory each. Speed functions s1(x), s6(x), and s12(x) are built
by executing a single-threaded ACML gemm kernel per CPU core on only one CPU
core, on six CPU cores of a NUMA node, and on twelve CPU cores of two NUMA
nodes respectively. Speed functions S6(6x)/6 and S12(12x)/12 approximate the average
speed of a CPU core when executing a multi-threaded ACML gemm kernel on one and
two NUMA nodes respectively. We can see that s6(x) is clearly lower than s1(x), which
indicates extensive resource contention between CPU cores of the same NUMA node.
At the same time, there is no difference between s6(x) and s12(x), which indicates no
contention between CPU cores of different NUMA nodes. Therefore, the performance
model of the CPU cores of a NUMA node can be built separately from other CPUs.
S12(12x)/12 is lower than S6(6x)/6 due to inappropriate use of the multi-threaded ker-
nel, which is NUMA-unaware by its design.

Table 3.1: Specifications of the Pluto server pluto.icl.utk.edu
Architecture Core Clock Number of Cores Memory Size

AMD Opteron 6172 2.1 GHz 8×6 cores 8×16 GB
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Figure 3.2: Speed functions of a CPU core built in different configurations

Thus we can conclude that depending on the configuration of the application the
speed of individual CPU cores can vary significantly. Therefore, to achieve optimal
distribution of computations it is very important to build and use speed functions which
accurately reflect the performance of CPU cores during the execution of the application.

3.2 Performance Measurement on Multicore Platforms

To build functional performance models of multicore nodes of a heterogeneous multi-
core cluster, we design a benchmarking procedure that allows us to measure the exe-
cution time accurately on multicore nodes simultaneously. For simplicity, we present
the benchmarking procedure for parallel MPI applications configured to run with one
process per CPU core, as illustrated in Figure 3.3.

Existing performance benchmarks can be categorized into two groups: synthetic
benchmarks that measure the sustainable memory bandwidth considering that most sci-
entific applications are memory-intensive and insufficient memory bandwidth is the
main factor affecting the performance [91]; floating-point kernels of typical numerical
methods that are very important for computational science and engineering[15]. In this
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work, the computational kernel of the parallel application, which includes contributions
from both arithmetic and memory operations, is used for performance benchmark.

During the performance benchmark, each process is bound to a CPU core. This can
improve performance if the operating system is placing processes suboptimally. For ex-
ample, it might oversubscribe some multi-core processor sockets, leaving other sockets
idle; this can lead processes to contend unnecessarily for common resources. Process
binding can also keep the operating system from migrating processes excessively, re-
gardless of how optimally those processes were placed to begin with. Automatic and
explicit techniques for memory affinity management improve access to shared memory,
especially on multicore systems of NUMA architecture. In this work, we do not use
any explicit memory management techniques but rely on operating systems and MPI
implementations.

The benchmarking procedure is summarized as follows:

1. The default communicator that contains all processes is split into multiple intra-
node MPI communicators so that there is one intra-node communicator per multi-
core node. The workload is partitioned evenly between nodes; then, the workload
assigned to each node is further partitioned evenly between CPU cores.

2. A barrier synchronizes the processes within each node.

3. The execution time of the routine is measured on each CPU core.

4. Statistical analysis of all time measurements observed so far for the given problem
size is performed.

5. If all intra-node processes get statistically reliable results, the speed of CPU cores
is calculated. Otherwise, more repetitions are repeated (GOTO 2).

In the benchmarking procedure, one MPI process is executed on each CPU core, there-
fore, there is a one-to-one mapping between CPU cores and abstract processors. Perfor-
mance measurements are synchronized on each multicore node. With the same amount
of workload, measurements will be completed with roughly the same amount of elapsed
time, which realistically simulates resource contention. To ensure the reliability of mea-
surements, measurements are repeated multiple times, and the average execution times
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Figure 3.3: Benchmarking procedure on a heterogeneous cluster of multicores

are used. We find the confidence interval and stop the measurements if the sample mean
lies in the interval with the confidence level 95%.

3.3 Heterogeneous Parallel Matrix Multiplication

In this section, we present a fundamental data-parallel application that will be used
in experiments, namely, the column-based heterogeneous modification [33] of the two-
dimensional blocked matrix multiplication [27]. It was originally designed for heteroge-
neous network of uniprocessors. It takes the functional performance models of heteroge-
neous processors as input, partitions the matrices using the FPM-based data partitioning
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(a)

(b)

Figure 3.4: Heterogeneous parallel column-based matrix multiplication. (a) One step of
the algorithm. (b) Computational kernel.

algorithm, and then performs the blocked matrix multiplication using vendor-optimized
gemm kernels.

Parallelism in this application is achieved by slicing the matrices, with a one-to-one
mapping between slices and processes. For efficiency and scalability, the application
uses two-dimensional slicing of the matrices. The general solution for finding the op-
timum matrix partitioning for a set of heterogeneous processors has been shown to be
NP-complete [11]. By applying a column-based matrix partitioning restriction, an al-
gorithm with polynomial complexity can be used to find optimum partitioning [69]. In
this algorithm each process is responsible for calculations associated with a rectangular
submatrix. These rectangles are arranged into columns and the area of the rectangles is
proportional to the speed of the processing unit upon which the process is running, as
shown in Figure 3.4(a). A communication minimizing algorithm proposed in [11] uses
this column-based partitioning and finds the shape and ordering of these rectangles such
that the total volume of communication for parallel matrix multiplication is minimized.

In this application, matrices A, B and C are partitioned over a two dimensional ar-
rangement of heterogeneous processes so that the area of each rectangle is proportional
to the speed of the process that handles the rectangle. Without loss of generality we work
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with square N×N matrices and we assume that N is a multiple of the blocking factor
b. Dense matrices A, B and C are partitioned into p submatrices where p is the number
of processes. The application consists of n = N/b iterations. At each iteration pivot
column of matrix A and pivot row of matrix B are broadcast horizontally and vertically
respectively. The pivot column and row move horizontally and vertically respectively
with each iteration. Figure 3.4(a) shows one iteration. If a process owns part of the pivot
column, then it will broadcast its part of the pivot column horizontally. If a process owns
part of the pivot row, then it will broadcast its part of the pivot column vertically. At
each iteration, each process will receive its parts of the pivot column and pivot row into
a buffers Ab and Bb, and update the rectangle it handles, Cb, by performing gemm oper-
ation. So the whole matrix C is updated in parallel by all processes updating their own
parts. The partitioning algorithm used in this application arranges the submatrices to
be as square as possible in order to minimize the total volume of communications and
balancing the computations on the heterogeneous platform [33]. The blocking factor b

is a parameter of the application and used to adjust the granularity of communications
and computations [27]. The optimal value of this parameter depends on the architecture
of platform and the implementation of the gemm routine, and is found experimentally.

The absolute speed of the processor is defined as the total number of computations
executed by this processor during the application divided by the total execution time.
In order to measure the speed more efficiently, we make an assumption that the to-
tal execution time of the application can be approximated by multiplying the number
of iterations of the application, n, with the execution time of a single run of the com-
putational kernel. As shown in Figure 3.4(b), the computational kernel performs one
update of the submatrix Cb with the portions of pivot column Ai

b and pivot row Bi
b:

Cb+ = Ai
b×Bi

b. Therefore, this speed is estimated more efficiently by measuring just
one run of the kernel. This kernel is implemented on top of the gemm routine of the
Basic Linear Algebra Subprograms (BLAS). Having the same memory access pattern
as the whole application, it reflects the whole computational workload. The problem
size of the speed function of a process is represented by the area of the rectangle it
handles. However, there are infinite number of rectangles of different shapes but of the
same size, and the speed of process when handling these rectangles could be different.
Since the partitioning algorithm used in this application arranges the submatrices to be
as square as possible, for simplicity, speed functions are built with benchmarking only
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square matrices. In this chapter, we focus on data partitioning with respect to computa-
tional performance of processing unit. To this end, we do not model the communication
between processing units. Instead, the shape and ordering of the submatrices assigned
to processes are arranged so that the total communication volume is minimized [33].

3.4 Experimental Results

In this section, the proposed performance modeling and performance measurement meth-
ods are evaluated with parallel matrix multiplication on a heterogeneous multicore clus-
ter. We experiment with a heterogeneous multicore platform, Grid5000 [20], which
connects the clusters geographically distributed between 9 sites in France. In the ex-
periment, 16 dedicated multicore nodes from four clusters, i.e. Paradent, Paramount,
Parapide and Parapluie, of Rennes site, are used, specified in Table 3.2. The multicore
nodes of different clusters are heterogeneous in terms of computing power and memory
capacity. MPICH-1.2.7 is used for communication between processes.

To demonstrate the effectiveness of the data partitioning algorithm based on perfor-
mance models built using the proposed method, it is compared with other data partition-
ing algorithms. In homogeneous data partitioning, the workload is evenly partitioned. In
CPM-based data partitioning, the workload is partitioned in proportion to the constants
that define the performance of processors. The constants are obtained in advance from
speed measurements when some workload is distributed evenly between the processors.

In the experiment, the single-threaded gemm computational kernel is used. The

Table 3.2: Specifications of the four types of nodes used for experiments
Host Paradent Paramount Parapide Parapluie
Processor Xeon L5420 Xeon 5418LV Xeon X5570 Opteron 6164HE
Core Clock 2.50 GHz 2.33 GHz 2.93 GHz 1.70 Ghz
CPUs 2 2 2 2
Cores 8 4 8 24
L1 Cache 32 KB 32 KB 32 KB 64 KB
L2 Cache 6144 KB 4096 KB 256 KB 512 KB
L3 Cache 8 MB 10 MB
Memory Size 31 GB 8 GB 24 GB 48 GB
Memory BW 1.33 GT/s 1.33 GT/s 6.4 GT/s 6.4 GT/s
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parallel matrix multiplication is executed with one process executing a computational
kernel on each CPU core of the platform. In this case, each CPU core is modeled by an
abstract processor. The speed of CPU cores of each node is measured when all cores
in the node are executing the same amount of workload simultaneously. The speed is
measured for wide range of problem sizes, then a speed function, sc(x), is built for each
CPU core, where c is the number of CPU cores of the multicore node.
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Figure 3.5: Functional performance models of the multicore nodes

Figure 3.5 shows the speed functions, c ·sc(x/c), of the four types of multicore nodes
specified in Table 3.2, where c is the number of CPU cores of a multicore node. The
x-axis represents the total number of matrix blocks, which represents the area of the up-
dated matrix; and the y-axis represents the speed of the nodes. When the problem size is
small enough to fit into the cache, there is relatively little memory traffic between caches
and the main memory, and the highest performance is observed. When problem sizes
cannot fit into the caches, the performance decreases with the increase of the problem
size due to more load/restore operations and heavier memory traffic. For large prob-
lem sizes, memory traffic dominates the whole execution and therefore the application
becomes memory-bound and the performance becomes stable.

With more CPU cores and larger cache, the Parapluie node has the best performance
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in the range of small problem sizes. But due to a lower CPU speed than the Paradent and
Parapide node, the Parapluie node fails to gain a triple speedup. Memory bandwidth is
the main bottleneck to achieve high performance when the problem size becomes very
large. With advanced AMD HyperTransport and Intel QuickPath Interconnect technolo-
gies respectively, the Parapluie and Parapide nodes have a faster data transfer speed than
the other two types of nodes. Therefore, they achieve a better performance in the range
of large problem sizes. These four types of nodes represent a common heterogeneity of
high performance computing platforms in the real world.
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Figure 3.6: Execution time of parallel matrix multiplication on 16 multicore nodes with
MFPM-based, CPM-based and homogeneous data partition schemes

Figure 3.6 shows the execution time of the parallel matrix multiplication applica-
tion based on three different data partitioning schemes. We randomly select two sizes
of matrix and run the computational kernel to generate the CPMs of these four types
of multicore nodes. The CPM-based data partition 1 uses the CPMs when the size of
matrix for benchmarking is 3000 blocks for each node, and the CPMs when the size is
7000 blocks is used in CPM-based data partition 2. Since FPM-based data partitioning
scheme is more accurate and better capture different aspects of heterogeneity of hetero-
geneous multicore nodes than the other two schemes, it achieves the best performance.
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Figure 3.6 demonstrates that the CPM-based data partition and Homogeneous data par-
tition scheme are 2 times to 3 times slower than the FPM-based data partition scheme.

3.5 Summary

In this chapter, we present performance modeling and performance measurement meth-
ods on multicore systems, and extend the FPM-based data partitioning to heterogeneous
clusters of multicore computers. We also present a procedure for performance mea-
surement on heterogeneous clusters of multicore nodes. Based on proposed methods,
functional performance models are built and are used as the input of data partitioning
algorithms to balance the workload of a data parallel application on target platforms. Ex-
perimental results demonstrate that a data partitioning algorithm based on performance
models built by the proposed methods are able to balance the workload of a data-parallel
application on heterogeneous multicore platforms and achieve good performance.
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Chapter 4

Data Partitioning on Heterogeneous Multicore
and Multi-GPU Platforms

In this chapter, we focus on the problem of optimal data distribution of data parallel ap-
plications on heterogeneous multicore and multi-GPU platforms. Data parallel applica-
tions can be load balanced by applying data partitioning with respect to the performance
of the platform’s processing elements. However, load balancing on such platforms is
complicated by several factors, such as contention for shared system resources, non-
uniform memory access (NUMA), limited device memory and relatively low bandwidth
of PCIe bus, which connects the host processor and the devices, etc. In this chapter,
we propose methods of performance modeling and performance measurement on mul-
ticore and multi-GPU systems, and extend the FPM-based data partitioning algorithms
to heterogeneous multicore and multi-GPU platforms.

4.1 Performance Modeling of multicore and multi-GPU Systems

On multicore and multi-GPU systems, where processing elements are coupled and share
system resources, the speed of one processing element may depend on the load of others
due to resource contention, therefore, they cannot be considered as independent process-
ing elements and their speed cannot be measured separately.

In this work, we propose to model a multicore and multi-GPU system by a number
of heterogeneous abstract processors. Each abstract processor represents a processing
unit made of one or a group of processing elements executing one computational ker-
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nel of the application. Performance modeling methods of GPUs and CPU cores are
presented in Section 4.1.1 and 4.1.2 respectively, as well as performance measurement
methods that take into account the influence of resource contention on the performance
of processing units. In these two sections, we focus on resource contention between only
GPU processing units, and between only CPU processing units respectively, the impact
of resource contention between CPU and GPU processing units on their performance is
investigated in Section 4.1.3.

On target platforms, a parallel application can be executed in various configurations,
depending on the computational kernels used in the application and their mapping to the
processing elements of the platform. Nevertheless, in this work, we assume a parallel
application will be configured following a set of simple rules, which we believe lead
to efficient configurations: (i) all processing elements, including CPU cores and GPUs,
will be utilized. (ii) if a multi-threaded CPU computational kernel is used, each group of
CPU cores sharing memory will only execute a single such computational kernel. (iii) if
a multi-GPU computational kernel is used, each group of GPUs sharing a PCIe link will
only execute a single such computational kernel. In this work, we focus on the problem
of optimal data distribution of data-parallel applications assuming that the configuration
of the application is fixed. Comparison of different configurations and the problem of
finding the optimal configuration of the application are out of the scope of this thesis.

For illustration, we use a multicore and multi-GPU server of NUMA architecture,
Pluto, specified in Table 4.1. Pluto consists of eight NUMA nodes, with six cores and
16 GB memory each. It is equipped with a NVIDIA Tesla S2050 1U server, which
consists of two pairs of GPUs. Each pair is connected by a PCIe switch that is linked to
a separate NUMA node, that is, shares a PCIe link. The gemm kernels used for the CPU

Table 4.1: Specifications of the Pluto server pluto.icl.utk.edu
Hybird Server Pluto (AMD CPU + NVIDIA GPU)
Architecture Opteron 6172 Tesla S2050
Core Clock 2.1 GHz 575 MHz
Number of Cores 8×6 cores 4×448 cores
Memory Size 8×16 GB 2667 MB
Mem. Bandwidth 4×148.4 GB/s
PCIe 2 × I/O hubs 2 × switches
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and GPU are from libraries ACML 4.4 and CUBLAS 4.1 respectively.

4.1.1 Performance Modeling of GPUs

In GPU-accelerated multicore systems, a GPU is usually controlled by a host process
executed on a dedicated CPU core. Since the GPU has a separate memory, input data are
required to be transfered to the device for computation, and the result need to be copied
back to the host memory afterwards. In this work, we model a GPU and its dedicated
CPU core by an abstract processor, consequently, the data transfer time is included in
the execution time during performance measurement. We measure the speed of the com-
bined GPU processing unit (i.e. a GPU and its dedicated core) for a number of problem
sizes to build its functional performance model. In general, the performance model can
be defined only for the range of problem sizes that fit in the device memory. However, it
can be extended for out-of-core applications, which can handle a larger amount of data
stored in host memory through a large number of host-device data transfers.

As more and more GPUs added to GPU-accelerated multicore systems, additional
PCIe lanes are required to maintain the available bandwidth to each GPU. There are
two common strategies for increasing the available number of PCIe connections [116].
One approach is to introduce additional I/O hubs so that each GPU is connected to
the host processor via a separate PCIe link. In this case, the performance models of
GPU processing units can be built independently. Another approach is to utilize a PCIe
switch. All data traffic traverses a single PCIe connection to the PCIe switch, and then
is routed to GPUs connected to the PCIe switch. In this case, the performance models
of GPU processing units cannot be built separately due to their contention for PCIe
link. We propose to group GPU processing units by shared PCIe link. GPU processing
units that share a PCIe link are grouped together and their performance is measured
when all GPU processing units in the group are executing the same amount of workload
simultaneously.

Wide use of multi-GPU systems encourages development of optimized computa-
tional kernels that could effectively distribute workload between multiple GPUs that
share a PCIe link, minimize PCIe contention and overlap the host-device data transfers
and device computations. If such a computational kernel is used, the dedicated CPU
core and the multiple GPUs will make a combined processing unit, and will be modeled
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(a)

(b)

Figure 4.1: Performance modeling on a GPU-accelerated multicore server of NUMA
architecture: (a) single-threaded and single-GPU computational kernels executed; each
GPU handled by a dedicated CPU core (b) multi-threaded and multi-GPU computational
kernels executed; two GPUs handled by a single dedicated CPU core

by an abstract processor.
Figure 4.1 shows a multicore and multi-GPU server of NUMA architecture execut-

ing a parallel application in two different configurations. In Figure 4.1(a), the single-
GPU computational kernel is used, so each GPU and its dedicated CPU core make
a combined processing unit, and are modeled by an abstract processor. One single-
threaded computational kernel is executed on each of other CPU cores. As GPU pro-
cessing units 5 and 6 on NUMA node 1 share a PCIe link, they cannot be considered
independent. To measure the performance accurately, these two GPU processing units
are grouped together. Their performance is measured when both of them are execut-
ing some workload simultaneously, thereby taking into account the contention for PCIe
link. In Figure 4.1(b), the multi-GPU computational kernel is used, so the two GPUs
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and their dedicated CPU core make a combined processing unit, and are modeled by an
abstract processor (processing unit 3 on NUMA node 1). One multi-threaded computa-
tional kernel is executed on each NUMA node with multiple threads. The performance
of GPU processing units is measured for a wide range of problem sizes to build their
functional performance models.

Three types of functional performance models for GPUs are defined as follows:

1. g(x) approximates the speed of a combined processing unit made of a GPU and its
dedicated CPU core that execute a single-GPU computational kernel, exclusively
using a PCIe link. The speed g(x) = x/t, where x is the number of computation
units, and t is the execution time.

2. gd(x) approximates the speed of one of d combined processing units, each made
of a GPU and its dedicated CPU core. All combined processing units execute
identical single-GPU computational kernels simultaneously and share a PCIe link.
The speed gd(x) = x/t, where x is the number of computation units executed by
each GPU processing unit, and t is the execution time.

3. Gd(x) approximates the speed of a combined processing unit made of d GPUs and
their dedicated CPU core that collectively execute a multi-GPU computational
kernel. The speed Gd(x) = x/t, where x is the total number of computation units
processed by all d GPUs, and t is the execution time. Gd(dx)/d is used to denote
the average speed of a GPU.

Figure 4.2 shows the speed functions of a GPU processing unit built in different
configurations on Pluto. Speed functions g1(x), g2(x), and g4(x) are built by executing a
single-GPU gemm kernel per GPU processing unit on only one GPU processing unit, on
two GPU processing units that share a PCIe link, and on two pairs of GPU processing
units, each sharing a PCIe link. The dedicated CPU cores are located on NUMA nodes
directly connected to the GPUs, therefore, the GPU processing units in a pair share not
only PCIe but also memory. G2(2x)/2 and G4(4x)/4 approximate the average speed of
a GPU, when one multi-GPU gemm kernel is executed on two GPUs that share a PCIe
link, and on two pairs of GPUs, each sharing a PCIe link. In the last two configurations,
only one CPU core is dedicated to GPUs. For all these experiments, the out-of-core
gemm kernel implemented in CUDA is used. When the problem size exceeds the device
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Figure 4.2: Speed functions of a GPU processing unit built in different configurations

memory, the performance of the kernel decreases due to more data transfers between the
main and device memory. The multi-GPU version of the kernel is designed for GPUs
that share a single data link and are handled by a single dedicated CPU core. The kernel
schedules data transfers to eliminate PCIe contention between GPUs.

We can see that g2(x) is lower than g1(x), especially for large problem sizes. This
indicates significant resource contention between two GPU processing units, dominated
by PCIe but also including memory. There is no difference between g2(x) and g4(x),
indicating there is no resource contention between the two pairs of GPU processing
units. In the 4-GPU configuration, each pair of GPUs is connected to its own NUMA
node, therefore, the performance of the pairs of GPU processing units can be measured
independently. The performance degradation in G4(4x)/4 compared to G2(2x)/2 is
caused by inappropriate use of the multi-GPU computational kernel, which is designed
for GPUs sharing the same data link. In the 4-GPU configuration, due to the contention-
free scheduling of data transfers, two data links are used alternately, remaining under-
utilized during the execution of the kernel. In addition, the 4-GPU configuration uses
the PCIe slots of two NUMA nodes but the memory of only one of them. As a result,
one of the data links includes an extra QPI between NUMA nodes, which incurs extra
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communication overhead.

4.1.2 Performance Modeling of CPU cores

The method for performance modeling of CPU cores in a GPU-accelerated multicore
system is the same as the performance modeling method for multicore systems in Chap-
ter 3. The CPU cores are modeled by a number of abstract processors determined by
the configuration of the parallel application. For example, if a single-threaded compu-
tational kernel is used, then on each CPU core one process executes a computational
kernel, each CPU core will be modeled by an abstract processor. If a multi-threaded
kernel is used, then one master process executes such a computational kernel on several
CPU cores with multiple threads. Each group of CPU cores executing a computational
kernel will make a combined processing unit, and will be modeled by an abstract proces-
sor. The master process is supposed to handles the placement and execution of threads,
and workload distribution between threads.

To measure the performance accurately, CPU processing units are grouped by shared
system resources so that the resources are shared within each group but not shared be-
tween groups. The performance of CPU processing units in a group is measured when
all CPU processing units in the group are executing some workload simultaneously,
thereby taking into account the influence of resource contention. The performance of
CPU processing units are measured for a wide range of problem sizes to build their
functional performance models.

Three types of functional performance models for CPU cores are defined as follows:

1. s(x) approximates the speed of a uniprocessor executing a single-threaded com-
putational kernel. The speed s(x) = x/t, where x is the number of computation
units, and t is the execution time.

2. sc(x) approximates the speed of one of c CPU cores all executing the same single-
threaded computational kernel. The speed sc(x) = x/t, where x is the number of
computation units executed by each CPU core, and t is the execution time.

3. Sc(x) approximates the collective speed of c CPU cores executing a multi-threaded
computational kernel. The speed Sc(x) = x/t, where x is the total number of
computation units executed by all c CPU cores, and t is the execution time.
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Figure 4.1 shows a multicore and multi-GPU server of NUMA architecture execut-
ing a parallel application in two different configurations. In Figure 4.1(a), one single-
threaded computational kernel is executed on each CPU core of NUMA node 0. There-
fore, each CPU core is modeled by an abstract processor representing a CPU process-
ing unit made of one core. As the CPU cores of NUMA node 0 are tightly coupled
and share memory, they cannot be considered independent. To measure the perfor-
mance accurately, the CPU cores are grouped together. Their performance is measured
simultaneously, thereby taking into account the influence of memory contention. As
NUMA nodes are relatively independent in term of memory sharing, the performance
of CPU cores of different NUMA nodes can be measured separately. In Figure 4.1(b),
one multi-threaded computational kernel is executed on NUMA node 0 with multiple
threads. Therefore, all CPU cores of NUMA node 0 make a combined CPU processing
units and are modeled by an abstract processor.

Up to this point, we have focused on the memory contention between CPU pro-
cessing units, and PCIe contention between GPU processing units separately. In the
following section, we investigate the impact of resource contention between CPU and
GPU processing units on their performance.

4.1.3 Impact of Resource Contention between CPU and GPU Pro-
cessing Units

To achieve the maximum performance on a multicore and multi-GPU system, it is nec-
essary to employ both CPUs and GPUs for computation. During the execution, while
the CPU computational kernel performs computations using all levels of memory hier-
archy, the GPU computational kernel mainly offload work to GPUs. Therefore, CPU
and GPU processing units are heterogeneous in terms of computing power and as well
as memory access pattern. As the CPU cores included in these two types of process-
ing units share memory, they cannot be considered independent. For example, in Figure
4.1(a), CPU and GPU processing units share resources on NUMA node 1. The CPU and
GPU processing units that share resources should be grouped together, and their perfor-
mance should be measured simultaneously, thereby taking into account the influence of
resource contention.

Figure 4.3 shows the speed functions of a combined CPU processing unit made of
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Figure 4.3: The impact of resource contention on the performance of the CPU (a) and
GPU (b) processing units

five CPU cores of a NUMA node of Pluto, S5(x), built by executing the multi-threaded
gemm kernel. The last CPU core of the NUMA node is dedicated to a GPU, therefore,
they make a combined processing unit. The speed functions of the GPU processing
unit, g(x), built by executing the single-GPU gemm kernel in different configurations
are also presented in the figure. The speed functions of the CPU and GPU processing
units are built simultaneously with the influence of resource contention included. The
speed functions built separately are also presented in the figure for comparison. The
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workloads are distributed in proportion to their speed measured independently. The
distribution (1:6) corresponds to the relative speed when problem size fits in the device
memory, while the distribution (1:4) to relative speed when problem size exceeds the
device memory.

The resource contention has an obvious impact on the performance of the GPU pro-
cessing unit, i.e. a performance reduction by 5% ∼ 10%, but exerts little impact on the
combined CPU processing unit. In this case, the performance of processing units can be
measured independently or simultaneously, which will not make too much difference.
Therefore, functional performance models built independently are reasonably accurate
for data partitioning. However, this is not always true. The amount of performance
reduction due to resource contention may depend on the platform, application, and the
implementation of the computational kernel. For example, in Chapter 5, the GPU per-
formance of the computational kernel of a computational fluid dynamics application,
which consists of a collection of linear algebra operations such as matrix-vector and
vector-vector products, can be reduced by around 33% due to resource contention from
other CPU cores of the same NUMA node. In that case, only performance models that
are built with resource contention taken into account are accurate enough to be used for
data partitioning.

4.1.4 Impact of NUMA Mapping and PCIe Contention

On a multicore system of NUMA architecture, data is transferred between NUMA nodes
over links such as Intel QuickPath Interconnect (QPI), whose bandwidth is usually
lower than memory bandwidth. Integration of multiple GPUs into multicore systems
of NUMA architecture introduces complex performance phenomena. If the host pro-
cess that handles the GPU is bound to a CPU core that resides in the NUMA node
connected to the GPU directly through a I/O hub, the data processed by the GPU will
only traverse links between the NUMA node, the I/O hub, and the GPU. Otherwise, the
data processed by the GPU will traverse extra links between NUMA nodes, incurring
extra communication overhead. In this work, these two types of configurations are re-
ferred to as local and remote respectively. In this section, we investigate the impact of
process mapping in a GPU-accelerated multicore system of NUMA architecture on the
performance of GPU processing units.
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Figure 4.4: Speed functions of a GPU processing unit built in different configurations

Figure 4.4 demonstrates the impact of NUMA mapping on the performance of a
GPU processing unit, comprised of a CPU core and a GPU of Tesla S2050 deployed
in Pluto. g1(x) is built by executing one single-GPU gemm kernel, which uses exclu-
sively the PCIe link and the memory of a local or remote NUMA node. g2(x) is built
by executing two single-GPU kernels simultaneously on two GPU units that share the
PCIe link and the memory of the same NUMA node, local or remote. In the remote
configuration, the GPU units also share an extra QPI link to the remote NUMA node.
Speed function g2(x) is also built in the configuration, when the dedicated CPU cores
are located on different NUMA nodes, which is denoted as local + remote. In this case,
the processing units share PCIe but do not share memory.

The difference between speed functions g1(x) and g2(x), built in local or remote
configuration, reflects the performance degradation due to the contention for PCIe link
and possibly also for main memory of the same NUMA node. Significant difference
is observed for large problem sizes when a large number of data transfers are required.
Communication overhead between NUMA nodes can be estimated by the difference be-
tween g1(x) in local and remote configurations. The combined effect of both phenomena
is reflected by the g2(x) functions in different configurations.
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4.2 Heterogeneous Parallel Matrix Multiplication

In this section, firstly, we refresh the data parallel application, i.e. heterogeneous parallel
matrix multiplication [33], which will be used in experiments; then, we discuss the
implementation of the computational kernel of this application for GPUs.

Heterogeneous parallel column-based matrix multiplication has been described in
Section 3.3 in detail. The heterogeneous parallel application was originally designed
for a heterogeneous network of uniprocessors. It takes the functional performance mod-
els of heterogeneous processors as input, partitions the matrices using the FPM-based
data partitioning algorithm, and then performs the blocked matrix multiplication using
vendor-optimized gemm kernels. In this algorithm each process is responsible for cal-
culations associated with a rectangular submatrix. These rectangles are arranged into
columns and the area of the rectangles is proportional to the speed of the processing
element upon which the process is running, as shown in Figure 4.5. A communication
minimizing algorithm proposed in [11] uses this column-based partitioning and finds
the shape and ordering of these rectangles such that the total volume of communication
for parallel matrix multiplication is minimized. The computational kernel of this appli-

(a)

(b)

Figure 4.5: Heterogeneous parallel column-based matrix multiplication. (a) One step of
the algorithm. (b) Computational kernel.
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cation is matrix multiplication, as shown in Figure 4.5(b). On CPU-based computing
systems, the gemm kernel from optimized libraries like BLAS can simply be directly
invoked to implement the computational kernel. However, the computational kernel for
GPUs should be carefully designed, taking into account the separate memory address
spaces of CPU and GPU, and the limited memory capacity of the GPU.

The following two sections presents the design of computational kernels for a single
GPU with its own PCIe link, and for multiple GPUs that share a PCIe link respectively.
To overcome the limited memory capacity of GPUs, out-of-core computational kernels
are designed. A static scheduling strategy, which is designed to avoid PCIe contention
and improve the utilization of the shared PCIe bus of multiple GPUs, is discussed.

4.2.1 Design of the Single-GPU Computational Kernel

In the single-GPU computational kernel, when matrices Ab, Bb, and Cb fit in the device
memory, we allocate a set of three data buffers in the device memory for storing them re-
spectively. At the first iteration of the application, all three submatrices are transferred to
the device and stored in the buffers. The gemm kernel from a vendor-optimized library,
e.g. CUBLAS, is then invoked to update Cb. In this application, the computational
kernel will be executed multiple times iteratively with different pivot rows and pivot
columns for updating Cb. At each iteration, Ab and Bb will be transferred to the device
memory, and Cb will be updated and accumulated in the device memory. To reduce
the communication overhead over the PCIe bus, the updated Cb will only be transferred
back to the host memory at the last iteration of the application.

Due to the memory limit of the GPU, the GPU gemm kernel from vendor-optimized
libraries cannot be used straightforwardly in cases when the matrix size is too large.
To exploit the computing power of GPUs, we developed an out-of-core computational
kernel for the purpose of demonstration. In the out-of-core implementation, Cb is split in
two dimensions into a number of rectangular blocks to be updated. Accordingly, Ab and
Bb are split in one dimension into horizontal and vertical slices respectively. The data
required for updating a matrix block of Cb is small enough to fit in the device memory.
Matrix blocks of Cb will be updated one by one on the device by invoking the gemm

kernel from a vendor-optimized library. During each iteration, multiple transfers of the
matrix blocks between the host memory and device memory are required, leading to
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a significant communication cost. To reduce the communication overhead, we overlap
data transfers and gemm executions. To this end, two sets of data buffers are allocated
in the device memory, each for updating one matrix block of Cb. While the update of
one matrix block of Cb is being conducted using the data from one set of buffers, data
transfers can be performed between the host memory and the other set of data buffers.

Algorithm 1 illustrates the implementation of the out-of-core computational kernel
in CUDA [96]. The gemm kernel used is from the vendor-optimized library CUBLAS
[95], an implementation of BLAS on top of the CUDA runtime. In this implementation,
submatrix Cb is partitioned into h rows and w columns, thus producing h×w rectangular
blocks ci j, Ab is horizontally split into h slices ai, and Bb is vertically split into w slices
b j, 0 ≤ i < h, 0 ≤ j < w. A matrix block ci j is of the same height as matrix block ai,
and of the same width as matrix block b j. The matrix blocks of Cb are updated column
by column. In each column, the matrix blocks are updated one by one from the top to
the bottom. The matrix blocks are updated using multiple CUDA streams so that in
different streams data transfers and gemm executions can be executed concurrently, and
data can be transferred concurrently in both directions (if hardware supports). To lever-
age concurrent data transfers and overlapping of data transfers and gemm executions,
five buffers, Ā0, Ā1, B̄0, C̄0, C̄1, are allocated for storing matrix blocks in the device
memory using its maximum capacity. More specifically, Ā0 and Ā1 are allocated to store
one matrix block of Ab each. B̄0 is allocated to store one matrix block of Bb. C̄0 and
C̄1 are allocated to store one matrix block of Cb each. When one matrix block ci j is
being updated using data stored in a set of buffers, e.g. Ā0, B̄0, C̄0, in one stream, data
transfers can be performed between the host memory and the other set of data buffers,
e.g. Ā1, C̄1 in another stream simultaneously. Note that data in the buffer B̄0 will be
reused for updating matrix blocks of every column of Cb, and will be renewed once for
each column. To make sure data stored in device buffers will not be renewed until gemm

executions that operate on the data have completed, we create three CUDA event arrays.
Note that synchronization to an event recorded in one stream from another given stream
will make all future operations submitted to the given stream wait until the event reports
completion before beginning execution.

At the beginning of Algorithm 1, the transfer operations of a0, b0, and c00 to device
buffers Ā0, B̄0, and C̄0 are submitted to stream 0. Then, three steps repeat until the last
matrix block of Cb is updated:
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Algorithm 1: Implementation of the out-of-core kernel for a single GPU
for j = 0 to w−1 do

for i = 0 to h−1 do
k = i+ j ·h; l = k%2;
i′ = (k+1)%h; j′ = (k+1)/h; l′ = (k+1)%2;
if k == 0 then transfer operations of matrix blocks ai, b j and ci j to device
buffers Āl , B̄0 and C̄l submitted to stream[k]

if k < h ·w−1 then
// execute cublas gemm to update matrix block ci j
gemm execution for updating ci j submitted to stream[k]
cuda event event a[k] recorded in stream[k]
if i == (h−1) then cuda event event b[k] recorded in stream[k]

// transfer blocks of ai′ , b j+1 and ci′ j′ to device buffers
if k > 0 then sync with event a[k−1] recorded in stream[k+1]

transfer operation of ai′ to buffer Āl′ submitted to stream[k+1]
if i == (h−1) then

if j == w−1 then sync with event b[k] recorded in stream[k+1]

transfer operation of b j+1 to buffer B̄0 submitted to stream[k+1]
end
if k > 0 then sync with event c[k−1] recorded in stream[k+1]

transfer operation of ci′ j′ to buffer C̄l′ submitted to stream[k+1]

// transfer updated block ci j stored in buffer C̄ī back to the host
transfer operation of updated ci j back to host submitted to stream[k]
cuda event event c[k] recorded in stream[k]

else
// update the last block ci j, i = h−1, j = w−1 on device
gemm execution for updating ci j submitted to stream[k]
transfer operation of updated ci j back to host submitted to stream[k]

end
end

end
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1. The update of matrix block ci j, i.e gemm execution, is submitted to stream k,
k = i+ jh. Note that the input data, i.e. ai, b j, ci j, has already been transferred
to a set of buffers Āl , B̄0, C̄l , l = k%2. Then one event in event a is recorded
asynchronously to ensure that data stored in buffer Āl will not be renewed until
the matrix block ci j is updated. If ci j is the matrix block at the bottom of column
j of Cb, one event in event b is recorded asynchronously to ensure that data in this
buffer will not be renewed until the matrix block ci j is updated.

2. The transfer operations of the input data for the update of the next matrix block
ci′ j′ , i.e. matrix blocks ai′ , ci′ j′ , where i′ is its row index and j′ is its column index,
from the host memory to buffers Āl′ , C̄l′ , l′ = (k+1)%2, are submitted to stream

k+1. Note that data in B̄0 is reused for updating matrix blocks of one column of
Cb. If ci′ j′ is at the top of the next column, the transfer operation of matrix block b j′

to buffer B̄0 is also submitted to stream k+1. An asynchronous synchronization
function is called before each data transfer operation. Note that data transfers will
not be actually executed until the corresponding recorded events have completed.

3. The transfer operation of the updated matrix block ci j stored in device buffer C̄l

back to the host memory is submitted to stream k. Note that operations submitted
to the same stream will be executed in issue-order on the device. Then one event
in event c is recorded to ensure data stored in buffer C̄l will not be renewed until
the updated block ci j has been transferred back to the host memory.

At the end, the last block c(h−1)(w−1) is updated on the device and then transferred back
to the host memory. All operations are asynchronous with respect to the host, which are
submitted to streams first and then executed concurrently.

To reduce communication overhead incurred by transferring matrix blocks between
the host and device memory, the last two matrix blocks of Cb will not be transferred
back to the host memory after they are updated. Instead, the updating order of the
matrix blocks of Cb will be reversed in the next iteration of the application. In this way,
the first two matrix blocks of Cb to be updated in the next iteration, i.e. the last two
matrix blocks in this iteration, will be already stored in the device buffers, saving data
transfers of two matrix blocks at the end of this iteration and data transfers of two matrix
blocks at the beginning of the next iteration. For the sake of brevity, this optimization

56



4.2 Heterogeneous Parallel Matrix Multiplication Chapter 4

(a)

(b)

Figure 4.6: Timeline of the execution of algorithm 1 with matrix Cb split into four matrix
blocks (a) on a device with two copy engines which supports concurrent data transfers
and overlapping of data transfers and kernel executions (b) on a device with only one
copy engine which only support overlapping of data transfers and kernel executions
in one direction. The operations marked by the same color are submitted to the same
stream, otherwise are submitted to different streams.

is not presented in the pseudocode. In addition, the dimensions of the matrix blocks
are ensured to be multiples of 32, taking into account the impact of memory alignment
issues of CUDA on the Level 3 BLAS implementation of CUBLAS [9].

This implementation of the single-GPU computational kernel can be used on a GPU
with one copy engine which only support overlapping of kernel execution and data trans-
fer in one direction, and on a more advanced GPU with two copy engines which support
both concurrent data transfers in two directions and overlapping of kernel executions
and data transfers. Note that in this implementation we only execute one kernel on the
device at a time. Although this computational kernel can be directly used on all genera-
tions of GPUs, it can be improved to support concurrent kernel executions supported by
modern advanced GPUs for better performance in the future work.

Figure 4.6 illustrates the overlapping behavior of algorithm 1. In this example, Cb is
split into 2×2 matrix blocks, and Ab and Bb are split into 2 matrix blocks each accord-
ingly. Four streams are created for updating the four matrix blocks of Cb concurrently.
As shown in the figure, each row consists of a number of operations of the same type.
The first row shows data transfer operations from the host memory to device buffers Ā0,
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Ā1, B̄0, C̄0, C̄1 in four streams. In the figure, CUDA operations submitted to the same
stream are marked by the same color, otherwise are marked by different colors. The
second row shows gemm executions operating on data stored in device buffers, and the
third row shows data transfer operations of updated matrix blocks from device buffers
C̄0, C̄1 to the host memory. While CUDA operations submitted to the same stream will
be executed in issue-order, operations submitted to different streams can be executed
concurrently. The amount of communication that could be hidden depends on the ratio
of the data transfer time to the gemm execution time. If the gemm execution dominates
the total execution time, then, the smaller the ratio, the more communication could be
overlapped. However, if the communication over the PCIe bus dominates the total exe-
cution time, the communication would be always the bottleneck.

In the parallel matrix multiplication using the out-of-core computational kernel, the
total volume of communications between the host and device memory is determined by
the blocking factor b. In each iteration of parallel matrix multiplication, the submatrix
Cb to be updated by a device will be transferred between the host and device once in each
direction, by transferring the matrix blocks serially. The total number of transfers of Cb

doubles the number of iterations of the application. By increasing the blocking factor,
the number of iterations can be decreased, resulting in less total volume of communica-
tions. The performance will be improved since the data transfer time occupies a large
part of the GPU execution time. Meanwhile, with a larger b, all processing elements
perform better, benefiting from the optimized gemm kernels, and the communication
operations (such as broadcast) between processing elements decrease. However, too
large a blocking factor will result in a coarse-grained partitioning of matrices, which
may reduce the level of parallelism and leave less opportunity to balance the workload.
Thus, the blocking factor b should be tuned depending on platforms and parallel routines
to achieve a better performance, which is out of the scope of this thesis.

Figure 4.7 presents the speed functions built with different modifications of the com-
putational kernel on NVIDIA GeForce GTX680 deployed in the Ig server, specified in
Table 4.2. The computational kernels are executed in single precision with b = 640 on
a dedicated core, while other cores stay idle. Version 1 is designed for problem sizes
that fit in the device memory. At each iteration, Ab, Bb, and Cb are transferred to GPU
in full; the updated Cb is transferred back to the host memory and not reused. In version
2 and 3, Cb is accumulated in the device memory when problem sizes fit in the device
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Table 4.2: Specifications of the Ig server ig.icl.utk.edu
Hybird Server Ig (AMD CPU + NVIDIA GPU)
Architecture Opteron 8439SE GF GTX680 Tesla C870
Core Clock 2.8 GHz 1006 MHz 600 MHz
Number of Cores 4×6 cores 1536 cores 128 cores
Memory Size 4×16 GB 2048 MB 1536 MB
Mem. Bandwidth 192.3 GB/s 76.8 GB/s
Number of PCIe 1 1
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Figure 4.7: Speed functions of GeForce GTX680 on Hybrid system Ig

memory. Hence, the data transfers of Cb are excluded from the speed measurement.
As a result, the performance doubles that of version 1 in the range of small problem
sizes. When problem sizes exceed the device memory, the out-of-core computations
are enabled. This implementation requires many data transfers of matrix blocks of Cb

to and from the device memory, which explains the performance drop in this range of
problem size. In version 2, concurrent data transfers and overlapping of data transfers
with computations in the device are disabled, while in version 3 these two optimization
techniques are enabled. Therefore, the performance of GeForce GTX680 executing the
kernel of version 3 improves by up to 30% in the range of large problem sizes.
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4.2.2 Design of the Multi-GPU Computational Kernel

In this section, we briefly describe the design of the multi-GPU computational kernel
for a GPU server consisting of multiple identical GPUs that share one PCIe link.

When problem sizes fit in the sum of the device memory of GPUs, submatrix Cb is
partitioned into a number of rectangular matrix blocks, each to be updated by one GPU.
Accordingly, Ab and Bb are partitioned into slices. We allocate a set of three data buffers
for storing one matrix block of Cb, and one matrix block of Ab, i.e. the pivot column, and
one matrix block of Bb, i.e. the pivot row, respectively. Matrix blocks are transferred
to devices and stored in these data buffers. The gemm kernel from a vendor-optimized
library, e.g. CUBLAS, is then invoked on each device to update one matrix block of Cb.
In the parallel matrix multiplication, the computational kernel will be executed multiple
times iteratively with different pivot columns and pivot rows for updating Cb. At each
iteration, matrix blocks of Ab and Bb will be transferred to the devices, and the matrix
blocks of Cb will be updated and accumulated in the device memory. To reduce the
communication overhead over the PCIe bus, the updated matrix blocks of Cb will only
be transferred back to the host memory at the last iteration of the application.

When problem sizes exceed the sum of the device memory of GPUs, submatrix Cb

is partitioned into a number of rectangular matrix blocks, which are then distributed to
GPUs to be updated. Submatrix Cb is split into h×w matrix blocks ci j, Ab is horizontally
split into h matrix blocks ai, and Bb is vertically split into w matrix blocks b j accordingly,
0≤ i< h, 0≤ j <w. The data required for updating a matrix block of Cb is small enough
to fit in the device memory of one GPU. Let d denote the number of GPUs sharing the
PCIe bus, and r denote the id of a GPU, 0≤ r < d. Matrix blocks of column j of Cb are
sent to GPU r for update, r = j mod d. Each GPU updates one or multiple columns
of matrix blocks. All GPUs will update matrix blocks of Cb simultaneously. However,
matrix blocks assigned to an individual GPU are updated one by one from the top to the
bottom in each column, column by column.

The matrix blocks of Cb are updated using multiple CUDA streams so that in dif-
ferent streams data transfers and gemm executions can be executed concurrently, and
data can be transferred concurrently in both directions (if hardware supports). Similar
to Algorithm 1, to leverage concurrent data transfers and overlapping of data transfers
and gemm executions, five buffers, Ā0, Ā1, B̄0,C̄0,C̄1 are allocated in the device memory
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of each GPU using its maximum capacity for storing matrix blocks. Also, three event
arrays, event a, event b and event c, are created to ensure data stored in device buffers
will not be renewed until all operations operating on the data stored in these buffers have
completed. In addition, two global event arrays, event send and event recv, are created
to ensure that data transfers issued on device r+1 in a stream will not be executed un-
til the data transfers issued on device r in the same stream in the same direction have
completed, 0 ≤ r < d− 1, except that device 0 will wait until device d− 1 completes
data transfer operations. Data transfers from the host to the device memory of all GPUs
are scheduled so that the shared PCIe link is used exclusively to communicate by one
device at a time, thereby, avoiding PCIe contention. For updating one matrix block of
Cb, the transfer of the input data of gemm execution and the transfer of output data are
submitted in the same stream and will be executed in issue-order. As the transfer opera-
tions of the input data are scheduled so that one operation will be executed at a time, the
transfer operations of the output data will be executed one by one consequently.

Figure 4.8 illustrates the overlapping behavior of the multi-GPU computational ker-
nel. In this example, the multi-GPU server consists of two GPUs sharing one PCIe bus,
and Cb is split into 4×2 rectangular matrix blocks. Ab and Bb split into smaller matrix

Figure 4.8: Timeline of the execution of the out-of-core multi-GPU computational ker-
nel. Cb is partitioned into 4×2 rectangular matrix blocks, which are then distributed to
two devices for update. For each device, CUDA operations marked by the same color
are submitted to the same stream, otherwise are submitted to different streams. Data
transfer operations are scheduled so that only one operation will be executed at a time,
in order to avoid PCIe contention.
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blocks accordingly. Four streams are created on each device for updating blocks of Cb

concurrently. The upper three rows of the timeline demonstrate the overlapping behav-
ior of device 0 while the lower three rows shows that on the other device. Each row
consists of a number of operations of the same type. The first row shows data transfer
operations from the host memory to device buffers Ā0, Ā1, B̄0, C̄0, C̄1 in four streams.
In the figure, for each GPU, CUDA operations submitted to the same stream are marked
by the same color, otherwise are marked by different colors. The second row shows
gemm executions operating on data stored in device buffers, and the third row shows
data transfer operations of updated matrix blocks from device buffers C̄0, C̄1 to the host
memory. While CUDA operations submitted to the same stream will be executed in
issue-order, operations submitted to different streams can be executed concurrently.

In this example, the data transfer time and kernel execution time are comparable. As
we can see, the PCIe bus is always busy with data transfers in the direction from the host
to the device, until the last block is sent to the device buffer. The total execution time can
be estimated by the sum of the time for transferring all matrix blocks from the host to the
two GPUs, the gemm execution time for updating the last block on GPU 1, and the time
for transferring it back to the host. This multi-GPU computational kernel is efficient in
terms of the utilization of the PCIe bus, on the premise that the throughput speed of the
PCIe does not vary wildly. In cases when the kernel execution time dominates the total
execution time, this multi-GPU computational kernel is able to achieve good computa-
tion parallelism since kernel executions are performed independently on both GPUs. In
cases when data transfer time dominates, the communication over PCIe link will be the
bottleneck. The speed functions built by executing the multi-GPU computational kernel
in different configurations are shown in Figure 4.2.

4.3 Experimental Results

In this section, the proposed performance modeling and performance measurement meth-
ods are evaluated with a fundamental data parallel application, namely, parallel matrix
multiplication. Firstly, experimental results of data partitioning based on pre-built FPMs
on a multicore and multi-GPU server are presented; then, we experiment with a hetero-
geneous GPU-accelerated multicore cluster. Instead of pre-built FPMs, partial FPMs
that are built dynamically at application run-time to a sufficient level of accuracy to

62



4.3 Experimental Results Chapter 4

achieve load balancing are used. Experimental results of data partitioning based on
different performance models are presented.

4.3.1 FPM-based Data Partitioning on Hybrid Multicore and Multi-
GPU Servers

The platform used for experiment is a multicore and multi-GPU server, Ig, specified in
Table 4.2. This server consists of four identical NUMA nodes, with 6 cores and 16 GB
local memory each, and is accelerated by two different NVIDIA GPUs.

Table 4.3: Execution time of the application on hybrid system Ig
Problem size CPUs only GTX680 only Hybrid-FPM

40×40 99.5 74.2 26.6
50×50 195.4 162.7 77.8
60×60 300.1 316.8 114.4
70×70 491.6 554.8 226.1

Table 4.3 shows the execution time of the heterogeneous matrix multiplication appli-
cation in different configurations on Ig. In the experiment, single-threaded and single-
GPU computational kernels are used. Each GPU and its dedicated CPU core make a
combined processing unit. A speed function, g(x), is built for each GPU processing
unit. The two CPU cores dedicated to GPUs are from two different NUMA nodes. A
speed function, s5(x), is built for CPU cores in these two NUMA nodes. A speed func-
tion, s6(x), is built for CPU cores in other two NUMA nodes. Column 1 shows the
problem sizes of the application, i.e. the numbers of matrix blocks of size 640× 640.
Column 2 shows the execution time of the application executed using all 24 CPU cores,
with workload distributed to CPU cores homogeneously. Column 3 shows the execution
time of the application executed on GeForce GTX680. Column 4 shows the execution
time of the application executed using all CPU cores and GPUs, with workload parti-
tioned to CPU cores and GPUs by FPM-based data partitioning algorithm. Experiment
results shows that the GeForce GTX680 outperforms 24 CPU cores when problem sizes
fit in the device memory. When problem sizes exceed the device memory, CPUs per-
form better. These variations are captured by functional performance models, therefore,
the FPM-based data partitioning algorithm is able to balance computations under all
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Table 4.4: Heterogeneous data partitioning on hybrid system Ig
Problem size CPM-based FPM-based

n×n G1 G2 S5 S6 G1 G2 S5 S6
40×40 928 226 105 120 1000 210 95 102
50×50 1460 352 160 186 1250 429 190 222
60×60 2085 501 235 270 1627 657 295 342
70×70 2848 677 320 366 2250 806 425 504

problem sizes and results in good performance.
To demonstrate the accuracy of the FPM-based data partitioning, we compare it with

data partitioning based on the constant performance model (CPM). In CPM-based data
partitioning, the speed of each processor is represented by a constant, which is obtained
in advance from the speed measurements. In Table 4.4, we present the results of the
CPM- and FPM-based partitioning algorithms with different problem sizes. Column 1
shows the problem sizes of the application. Columns G1 and G2 shows the numbers of
matrix blocks distributed to GeForce GTX680 and Tesla C870 respectively. Columns S5
shows the total number of matrix blocks partitioned to the other five cores in the NUMA
node in which one CPU core is dedicated to a GPU. Columns S6 shows the total number
of matrix blocks distributed to all CPU cores in the NUMA node in which no CPU core
is dedicated to GPUs.

According to the speed functions, GeForce GTX680 is around 9 times faster than a
NUMA node when the problem size fits in the device memory (40×40), and around 6∼
4 times faster when problem sizes exceed the device memory (from 50×50 to 70×70).
As we can see in Table 4.4, the CPM-based data partitioning resulted in overloading
GeForce GTX680, starting from problem size 50× 50. For example, the ratio of the
number of matrix blocks partitioned to GeForce GTX680 and a NUMA node is nearly
8 when the problem size is 70×70, which is far from the balanced ratio of 6 ∼ 4. The
reason for overloading is that the CPM-based algorithm used inaccurate performance
models. The speed of GPU used for data partitioning is measured when the problem
size happened to fit in the device memory, therefore it can not represent the speed when
problem sizes exceed the device memory. As the functional performance model captures
the change of performance in a wide range of problem sizes accurately, the FPM-based
partitioning algorithm is able to balance the load and deliver good performance.
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Figure 4.9: The computation time of each process on Ig

Figure 4.9 illustrates the computation time (communication time between processes
excluded) of each process when problem size is 60×60, and the workload is partitioned
by CPM- and FPM-based partitioning algorithms respectively. In both experiments,
process 0 and 6 are bound to CPU cores dedicated to Tesla C870 and GeForce GTX680
respectively. With the CPM-based data partitioning, GeForce GTX680 took a longer
time than other processes to finish its job because it is overloaded. The CPM-based data
partitioning fails to balance the workload. The FPM-based data partitioning algorithm
achieves good load balance and reduces the total computation time by around 40%.
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Figure 4.10: Execution time of the parallel matrix multiplication application on hybrid
system Ig with different data partitioning algorithms

Figure 4.10 shows the execution time (including communication time between pro-
cesses) of the heterogeneous parallel matrix multiplication application when the work-
load is distributed by different data partitioning algorithms. The execution of the ap-
plication based on homogeneous partitioning (data distributed evenly) is unbalanced,
being dominated by the slowest processing elements (CPU cores). Both the CPM-based
and FPM-based data partitioning are able to balance the workload when problem sizes
are relatively small. However, starting from problem size 50× 50, the CPM-based al-
gorithm fails to balance the workload and the application takes longer time to complete
than the application based on the FPM-based algorithm. The FPM-based data partition-
ing algorithm reduces the execution time of the application over the CPM-based and
homogeneous partitioning algorithms by up to 21% and 50% respectively, in the range
of large problem sizes.

4.3.2 Partial FPM-based Data Partitioning on Heterogeneous Mul-
ticore and Multi-GPU Clusters

In this experiment, 40 dedicated nodes from two clusters, i.e. Adonis and Genepi, speci-
fied in Table 4.5, of the Grid5000 experimental testbed are used. Each node from Adonis
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Table 4.5: Specifications of the GPU-accelerated multicore cluster
Cluster Adonis (CPU + GPU) Genepi (CPU)

Intel Nvidia Intel
Processor Xeon E5520 Tesla C1060 XeonE5420 QC
Cores 2 × 4 cores 240 cores 2 × 4 cores
Clock Rate 2.27 GHz 602MHz 2.5 GHz
Memory Size 24 GB 4 GB 8 GB
Nodes 9 1 GPU/node 31
Network Infiniband 40G Infiniband 20G

cluster is equipped with a NVIDIA GPU, which exacerbates the processor heterogene-
ity of the experiment platform. In addition, the platform is heterogeneous in terms of
memory, because the memory capacity of a Genepi node is much smaller than a Ado-
nis node. We use gemm kernels from vendor-optimized BLAS libraries, namely ACML
BLAS Library for CPU cores and NVIDIA CUBLAS for GPU. Multi-thread version of
ACML gemm kernel is used for exploiting the the computing capacity of multicore pro-
cessors. OpenMPI is used for inter-node communication. All nodes are interconnected
by a high speed InfiniBand network which reduces the impact of communication on the
total execution time.

In this experiment, multi-threaded ACML and single-GPU computational kernels
are used. On each Genepi node, one process executes a multi-threaded computational
kernel with eight threads. Therefore, all CPU cores of a Genepi node make a combined
processing unit and are modeled by an abstract processor. On each Adonis node, the
GPU and its dedicated CPU core make a combined processing unit executing the single-
GPU computational kernel, and are modeled by an abstract processor; other seven CPU
cores make another combined processing unit executing one multi-threaded computa-
tional kernel and are modeled by another abstract processor.

Figure 4.11 shows the pre-built speed functions of CPU and GPU processing units
of Adonis and Genepi nodes. The speed function of a Genepi node, S8(x), is built by
executing the multi-threaded computational kernel on the node. As discussed in Section
4.1.3, for gemm kernel, it is acceptable to build performance models of a GPU with
its dedicated CPU core and other CPU cores separately. Therefore, on a Adonis node,
speed functions g(x) and S7(x) are built separately, since the computational kernel of
this application involves mainly matrix-matrix multiplications. When problem sizes are
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Figure 4.11: Full performance models of Grenoble nodes

small, the relative speed of the three processing elements are constant and as a result
data could be partitioned easily; however, when problem sizes exceeded the memory
limit of GPU, the performance of the device decreases significantly. In addition, due
to a much smaller memory capacity of Genepi nodes, Genepi nodes could only handle
relatively small problem sizes. Once problem sizes exceeded the memory limit of a
Genepi node, the speed decreased significantly resulting in a great change of relative
speed of the three type of processing elements. All these factors complicated the load
balancing on such heterogeneous distributed platform.

To demonstrate the accuracy of the partial FPM-based data partitioning on such
distributed hybrid platforms, we compared the execution time of the application based
on partial FPM-based data partitioning algorithm with that based on CPM-based data
partitioning algorithm. Table 4.6 presents the partitionings from the CPM-based and
partial FPM-based partitioning algorithms with different problem sizes. Experiments
are performed in single precision with blocking factor b = 128, and the computation
time is presented in seconds. The first column shows the square root of problem sizes.
d1, d2, and d3 represent the number of computation units (i.e. matrix blocks of size
128× 128) distributed to the GPU processing unit on a Adonis node, the other seven
CPU cores on the same Adonis node, and one Genepi node respectively. t1, t2, and
t3 represent the computation time of one iteration of the application measured when
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Table 4.6: Partitioning results from different data partitioning algorithms on Grenoble
Problem size (blocks) 1100×1100 1200×1200 1300×1300 1400×1400

Adonis d1 50000 59700 70200 81800
GPU t1 0.60 1.16 1.36 1.57

CPM- Adonis d2 16800 19900 23300 27300
based CPU t2 0.60 0.70 0.83 0.98

Genepi d3 19600 23300 27300 31500
CPU t3 0.59 0.72 0.84 0.96
Adonis d1 50700 58000 58000 62700

Partial GPU t1 0.60 0.68 0.68 1.22
FPM- Adonis d2 16900 21100 25700 34000
based CPU t2 0.59 0.73 0.92 1.24

Genepi d3 19400 23500 30200 34800
CPU t3 0.59 0.72 0.91 1.18

computing d1, d2, and d3 computation units on corresponding processing units. The
computation time of each iteration is reasonably stable thus it is representative of the
total computation time of the application. As we can see, starting from problem size
1200× 1200, the CPM-based data partitioning resulted in overloading GPUs due to
inaccurate performance models. By contrast, the partially built functional performance
model could capture the performance variations, and the data partitioning based on such
models was able to balance the load in a wide range of problem sizes.

Figure 4.12 illustrates the execution time (including communication time between
processes) of the application when the workload is distributed by different data par-
titioning algorithms on the hybrid cluster. The execution of the application based on
homogeneous partitioning (data distributed evenly) is always unbalanced, being dom-
inated by the slowest processing elements. Both CPM-based and partial FPM-based
data partitioning are able to balance the workload when problem sizes are relatively
small, i.e. up to 1100× 1100. However, starting from problem size 1200× 1200, the
CPM-based algorithm fails to balance the load and the application takes longer time to
complete than that based on the partial FPM-based algorithm. The partial FPM-based
data partitioning algorithm reduces the execution time of the application over homoge-
neous and CPM-based partitioning algorithm by up to 13% and 22% respectively in the
range of large problem sizes. Data partitioning based on partial functional performance
models achieves comparable load balancing as data partitioning based on pre-build full
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Figure 4.12: Execution time of the parallel matrix multiplication application with dif-
ferent data partitioning algorithms

functional performance models.
Table 4.7 shows the estimated overhead of partial FPM-based data partitioning. The

first row shows the problem size, whose square root is the number of the iterations of
the application. The second row shows the number of iterations for building partial
performance models. The third row shows the ratio of the number of iterations for
building partial FPMs to the number of iterations of the application. This ratio could be
roughly seen as the ratio of the time for building partial FPMs to the computation time
of the application, because the same computational kernel is executed in each iteration
of the building of partial FPMs and the execution of the application. As we can see, the
time for building performance models is negligible compared to the computation time
of the application.

Table 4.7: Estimated overhead of partial FPM-based data partitioning
1000×1000 1100×1100 1200×1200 1300×1300 1400×1400

Iters 2 2 11 11 9
Ratio 0.2% 0.18% 0.92% 0.85% 0.64%
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4.4 Summary

In this chapter, we present performance modeling and performance measurement meth-
ods on multicore and multi-GPU systems, and extend the FPM-based data partitioning
to heterogeneous multicore and multi-GPU platforms. We also investigate the impact
of resource contention on the performance of CPU cores and GPUs, and the impact of
NUMA mapping on the performance of GPUs. Using the proposed methods, functional
performance models are built and are used as the input of data partitioning algorithms
to balance the workload of data parallel applications on target platforms. Experimental
results demonstrate that the data partitioning algorithm based on the functional per-
formance models built by the proposed methods is able to balance the workload of
data-parallel applications on heterogeneous multicore platforms and achieve good per-
formance.
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Chapter 5

Domain Decomposition of Computational Fluid
Dynamics Applications on Highly Heterogeneous
Modern HPC Platforms

In this chapter, we evaluate the performance modeling and data partitioning methods
proposed in previous sections with a computational fluid dynamics application, namely,
numerical simulation of lid-driven cavity flow. Based on the functional performance
models of the processing units, the geometric domain is divided into a number of sub-
domians to be processed in parallel. Experimental results prove that the FPM-based
data partitioning algorithm is able to balance the load of complex real-life applications
on heterogeneous GPU-accelerated multi-core platforms and deliver good performance.

5.1 Introduction to Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is the analysis of systems involving fluid flow,
heat transfer, and associated phenomena by means of computer-based numerical sim-
ulation [46]. Over the past few decades, computational fluid dynamics has become a
practical cornerstone of most fluid and mechanical engineering applications.

Conservation laws describing the motion of fluid flows are derived by considering
a certain spatial region in fluid flows, which is called a control volume (CV). The fluid
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motion is governed by the Navier-Stokes equations [46]:

∂

∂ t

∫
V

ρ dV +
∫

S
ρυ ·n dS = 0 (5.1)
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T ·n dS+
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V
ρb dV (5.2)

where ρ stands for the density, υ for the fluid velocity, t for time, V for the CV volume,
S for the CV surface, T for the stress tensor, and b for the body forces (per unit mass),
and n is the unit vector orthogonal to CV surface and directed outwards.

The Navier-Stokes equations are difficult to solve analytically. Therefore, numerical
methods are usually used. In numerical methods, the geometric domain and the con-
servation equations are discretized, producing a system of algebraic equations whose
solution is used to approximate the solution of the conservation equations. The system
of algebraic equations could be linear or non-linear, depending on the nature of the con-
servation equations from which they are derived. In the non-linear case, the equations
are solved by an iterative technique that involves guessing a solution, linearizing the
equations and improving the solution. The process is repeated until a converged result is
obtained. In both cases, the linear system of algebraic equations need to be solved effi-
ciently. The coefficient matrices of the linear equations systems are always sparse. The
linear equations system can be solved exactly by an direct method, such as the Gauss
elimination, or approximately by an iterative method, such as the conjugate gradient
method [51]. Iterative methods are favored when solving large sparse linear systems.

5.2 Parallel Computing in Computational Fluid Dynamics

Parallelization of numerical simulations of fluid dynamics is usually based on domain
decomposition, which is essentially data parallelism. In methods based on domain de-
composition, the solution domain is divided into a number of subdomains, each assigned
to one processor. The problem is solved on the entire domain from problem solutions
on subdomains. The same program runs on all processors simultaneously, on its own set
of data. Since each processor needs data that resides in other subdomains, exchange of
data between processors is necessary. From the viewpoint of partial differential equa-
tion, if the value of the solution is known at the interfaces between the subdomains,
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the equations are decoupled and can be solved concurrently [111]. One example is the
Schur complement method, which is based on a non-overlapping decomposition of the
domain. In this method, firstly, a reduced system is derived for determining the values
on the subdomain boundaries. Once the reduced problem is solved, the global solution
can be obtained by solving a local boundary problem on each subdomain in parallel.

When solving a CFD problem on a parallel platform, it is very important to decide
how to map data to processors. Many graph partitioning algorithms have been proposed,
which can be used to partitioning the graph representing a system of sparse linear equa-
tions. The goal is to subdivide the graph into smaller subgraphs in order to balance
the workload among processors and to minimize the amount of communication. Graph
partitioning algorithms implemented in Metis [71], Scotch [26], Jostle [125] reduce the
number of edges between the target subdomains, aiming to minimize the total communi-
cation cost of the parallel application. They take into account the platform heterogeneity,
which is specified by a weighted graph providing information about the speed of pro-
cessors and the bandwidth of links. Algorithms implemented in PaGrid [5], Zoltan [21]
minimize the execution time of the application using a cost function, which also de-
pends on the weighted graph of the platform. To distribute data between the processors,
all these graph partitioning libraries use simplistic computation performance models,
where the speeds of processors are given by constants (weights). Despite the fact that
the result of data partitioning is very sensitive to the weights, these libraries do not pro-
vide any methods to find the values that balance the workload for given data-parallel
applications on heterogeneous platforms.

In [22], a model to predict the execution time of iterative mesh-based applications
running on heterogeneous multi-core clusters is proposed. This model takes into ac-
count resource heterogeneity, hierarchical communication characteristics, etc., there-
fore, it can be used to guide the graph partitioning of CFD applications on heteroge-
neous multi-core environments. Based on the functional performance models of hetero-
geneous processing units, the data partitioning algorithm [134] can be used to find the
accurate weights for a given computational fluid dynamics application on heterogeneous
multicore and multi-GPU platforms.
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5.3 Model-based Domain Decomposition on Heterogeneous HPC

Platforms

In this section, first, we briefly describe the CFD test case and the iterative linear system
solvers used to compute its solution. Then, the experimental results on domain decom-
position of the CFD test case based on functional performance models on heterogeneous
GPU-accelerated multicore platforms are presented.

5.3.1 Test Case: Lid-driven Cavity Flow

The lid-driven cavity flow is a well-known benchmark problem for incompressible, lam-
ina flow of Newtonian fluids. This test case has been studied by many researchers, and
accurate solutions are available in the literature (see [48]). The standard case is fluid
contained in a square domain with Dirichlet boundary conditions on all sides, with three
stationary sides and a lid moving with a tangential unit velocity. The fluid density can
be assumed constant for incompressible flows, hence, the Navier-Stokes equations (5.1)
and (5.2) reduce to: ∫

S
υ ·n dS = 0 (5.3)

∂

∂ t

∫
V
υ dV +

∫
S
υυ ·n dS =

1
ρ

∫
S
(µ∇υ− p) ·n dS+

∫
V
b dV (5.4)

where υ is the fluid velocity, t is time, ρ is the density, µ is the kinematic viscosity,
V stands for the CV volume, S for the CV surface, and b for the body forces (per unit
mass), and n is the unit vector orthogonal to CV surface and directed outwards.

5.3.2 Numerical Solution Methods

For this test case, a system of pressure-velocity coupled equations is produced from
discretization of the solution domain and conservation equations. In this work, we use
the PISO algorithm [64], an implicit pressure-correction method, to solve this system of
algebraic equations.

In PISO, at the beginning of each new time step, the latest solution of velocity and
pressure is used as starting estimates. Next, the intermediate velocity field is calculated
by solving the linearized momentum equation, and the pressure-correction equations are
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solved to obtain a pressure-correction value. Then, the velocity field and pressure are
corrected and used as new estimates. This process is repeated until all corrections are
negligibly small. Finally, the algorithm advances to the next time step. In PISO, the
velocity and pressure are calculated by solving linear systems of velocity equations and
pressure-correction equations. In this work, the conjugate gradient algorithm (CG) [51]
is used to solve the symmetric linear pressure-correction equations. The bi-conjugate
gradient stabilized algorithm (BiCGSTAB) [122] is chosen to solve the non-symmetric
linear velocity equations.

To solve the CFD test case on parallel platforms, the solution domain is subdivided
into a number of subdomains on which the sub-problems are to be solved in parallel.
The global iteration matrix is selected so that the diagonal blocks, which contain the
elements connecting the nodes that belong to particular subdomains, are decoupled and
the subproblems can be solved on subdomains concurrently. After one iteration is per-
formed on each subdomain, the updated values of the unknowns will be exchanged so
that the variable values can be corrected and residual can be calculated at nodes near
subdomain interfaces.

Algorithm 2 presents the pseudo-code of the CG algorithm, where matrix A is a
diagonal block of the global iteration matrix which represents a particular subdomain,
φ0 is an initial guess of the result, and matrix M represents the preconditioning matrix
and the way of preconditioning. All data arrays, namely matrix A and vectors φ, ρ, z
and p, are local parts for a particular processor operating on a particular subdomain.
The main linear algebra operations involved in this solver include matrix-vector prod-
ucts, vector-vector products, and some vector additions and subtractions. Two types of
communications are required, namely local and global communication. Local commu-
nication (LC) takes place between processors handling neighboring subdomains. For
example, one has to exchange pk along interfaces, and then update vk with the product
of pk and corresponding off-diagonal blocks, so that the influence of coupling can be in-
cluded (which is not shown in the pseudo-code). Global communication (GC) involves
all processors. For example, the magnitude of residuals from all processors are gathered
and scattered to check if convergence is reached.

Algorithm 3 presents the pseudo-code of the BiCGSTAB algorithm. Similarly, ma-
trix A represents a particular subdomain, φ0 is an initial guess and matrix M represents
the preconditioning matrix and the way of preconditioning. All data arrays are local
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Algorithm 2: Parallel Conjugate Gradient Algorithm
k = 0;
ρ0 =Q−Aφ0;
while (not convergent) do
zk = M−1ρk;
k = k+1;
sk = ρ

T
k−1zk−1;

GC: gather and scatter sk;
if k = 1 then
p1 = z0;

else
βk = sk/sk−1;
pk = zk−1 +βkpk−1;

end
LC: exchange pk along interfaces;
vk = Apk;
wk = p

T
k vk;

GC: gather and scatter wk;
αk = sk/wk;
φk = φk−1 +αkpk;
ρk = ρk−1−αkvk;
GC: gather and scatter ||ρk||2;

end

parts for a particular processor operating on a particular subdomain. The main linear al-
gebra operations involved in this solver include matrix-vector products, vector-vector
products, and some vector additions and subtractions. It is worth pointing out that
this algorithm requires almost exactly twice as much effort per iteration as the stan-
dard conjugate gradient algorithm but converges in about the same number of iterations
[46]. Similarly, local communication (LC) that takes place between processors handling
neighboring subdomains, and global communication (GC) that involves all processors
are also required to calculate scalars such as α , β , ω , and to calculate the magnitude of
the global residual to check if convergence is reached.
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Algorithm 3: Parallel Bi-Conjugate Gradient Stabilized Algorithm
k = 0;
p0 = ρ0 =Q−Aφ0;
ρ̄0 is an arbitrary vector, such that ρ̄T

0ρ0 6= 0;
while (not convergent) do
p̂k = M−1pk;
LC: exchange p̂k along interfaces;
rk = ρ

T
k ρ̄0;

vk = Ap̂k;
GC: gather and scatter rk and vT

k ρ̄0;
αk = rk/v

T
k ρ̄0;

sk = ρk−αkvk;
GC: gather and scatter ||sk||2;
if ||sk||2 is small enough then
φk+1 = φk +αkp̂k;
exit;

end
ŝk = M−1sk;
LC: exchange ŝk along interfaces;
tk = Aŝk;
GC: gather and scatter sT

k tk and tTk tk;
ωk = s

T
k tk/t

T
k tk;

φk+1 = φk +αkp̂k +ωkŝk;
ρk+1 = sk−ωkŝk;
GC: gather and scatter ||ρk+1||2;
rk+1 = ρ

T
k+1ρ̄0;

GC: gather and scatter rk+1;
βk = (αk/ωk)(rk+1/rk);
pk+1 = ρk+1 +βk(pk−ωkvk);
k = k+1;

end

5.3.3 Hybrid Linear System Solvers

To take full advantage of hybrid CPU/GPU platforms, we design and implement hybrid
CG and BiCGSTAB linear equation solvers. Depending on the type of the computing
system on which the hybrid solver is executed, the CPU version or GPU version of
code is executed to perform required linear algebra operations in the CG or BiCGSTAB
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solver. Multiple hybrid solvers can be executed on hybrid CPU/GPU platforms in par-
allel. Most linear algebra operations involved in the hybrid linear equation solvers are
implemented using CUSP 0.3, a C++ template library for sparse matrix computations
for both CPU and GPU computing systems.

Parallelism of the hybrid solvers is achieved by employing the single program mul-
tiple data paradigm. The local communication (LC) and global communication (GC)
between processes that handle subdomains are performed through MPI point-to-point
and collective communication routines. For local communication between processes,
non-blocking MPI point-to-point communication routines are used to reduce overall
communication overhead.

Since CPU and GPU have separate memory spaces, additional data transfers be-
tween the main memory and GPU memory are required when running GPU version
of the hybrid solvers. The data transfer time between the host and device memory is
comparable with the computation time, hence, is included in the measurement of com-
putation performance of GPU solvers.

5.3.4 Experimental Results

In this work, the CFD test case is implemented using the OpenFOAM package [119],
a flexible and programmable environment for CFD simulation. Although the Open-
FOAM standard solver icoFoam can be used to solve the lid-driven cavity problem,
it only support parallel computing on CPU platforms. To experiment with heteroge-
neous GPU-accelerated multicore platforms, we implement the hybrid linear equation
solvers described in the preceding section. In OpenFOAM, the pre-processing and post-
processing tasks, such as mesh generation and domain decomposition, involve a sig-
nificant number of file input and output operations which consume a large amount of
time. However, these tasks are handled by stand-alone utilities, such as blockMesh and
decomposePar which we use in this study, so the parallelization and load balancing of
such tasks are considered separate problems and not studied in this work.

For this simple CFD test case, the square geometric domain is discretized into a
regular mesh using the OpenFOAM utility blockMesh. In the discretization of the con-
servation equations, the implicit Euler method is used as the discretization scheme for
the first temporal derivative, the Gauss linear method is used for the discretization of
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the gradient of a given field, and the Gauss linear orthogonal method is used for the dis-
cretization of the laplacian of a given field. The discretization scheme for interpolation
of values from centers of CVs to face centers is linear interpolation [118]. For the sake
of simplicity, the preconditioning in the linear equation solvers is not considered in this
work, therefore, the identity matrix is used as the preconditioning matrix.

In the CFD simulation, solving the sparse linear equation systems is the compute-
intensive and time-consuming part. Therefore, in order to balance the workload on het-
erogeneous platforms, we build functional performance models of the processing units
executing the linear equation solver, e.g. CG and BiCGSTAB. The speed is calculated
by dividing the number of floating-point operations by the computation time of one it-
eration of the linear equation solver (communication time eliminated). Next, using the
FPM-based data partitioning algorithm, we calculate the numbers of control volumes
to be assigned to processing units, which are proportional to their speeds. The solution
domain is then decomposed into a number of subdomains so that each processing unit
handles a subdomain with the number of control volumes assigned to it.

In this work, one-dimensional heterogeneous domain decomposition is used, which
is able to handle simple rectangular domains discretized into regular meshes, but the
communication is not optimized. It is worth noting that the proposed partitioning method
can also be applied to CFD applications with complex geometries which necessitate the
use of unstructured meshes. In that case, the numbers of control volumes to be assigned
to processing units are used as the input weights of a graph partitioning algorithm, e.g.
Metis, to decompose the solution domain, which guarantees a balanced workload and
optimized communication overhead on the parallel platform.

According to experimental results, the performance of a processing unit executing
the CG and BiCGSTAB solvers is almost the same. The BiCGSTAB solver requires
almost exactly twice as many linear algebra operations of each type per iteration as the
CG solver. Both the complexity and computation time per iteration of the BiCGSTAB
solver are almost twice as much as the CG solver, therefore, their speed remains the
same. During the simulation of the lid-driven flow, both the CG and BiCGSTAB solvers
will be invoked at each time step. Since the two linear equation solvers have almost
the same performance, it is reasonable to partition the workload based on performance
models built by executing either solver. In this work, we choose to decompose the
domain based on the functional performance models built by executing the CG solver.
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The experimental platform is the Adonis cluster, specified in Table 4.5. Each Ado-
nis node consists of two four-core NUMA nodes, and is equipped with a NVIDIA GPU,
which exacerbates the processor heterogeneity of the platform. Experiments are con-
ducted on both a single Adonis node and a cluster of Adonis nodes.

In the experiment on a single Adonis node, one GPU CG solver is executed on the
GPU and its dedicated CPU core, and one CPU CG solver is executed on each of other
seven CPU cores. Therefore, the GPU and its dedicated CPU core make a combined
processing unit, and are represented by an abstract processor. Each of other seven cores
is modeled by an abstract processor. The processing units of the same NUMA node are
grouped together and their speed is measured simultaneously. Their speed is measured
for a wide range of problem sizes to build their functional performance models. As
a result, three functional performance models are built, which are presented in Figure
5.1. Speed functions g(x) and s3(x) are built simultaneously by executing the GPU CG
solver on the GPU processing unit, and one CPU CG solver on each of other three CPU
cores of the same NUMA node. s4(x) is built by executing one CPU CG solver on each
CPU core of the other NUMA node simultaneously. We can see that g(x) is much higher
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Figure 5.1: Speed functions of the CPU and GPU processing units built by executing
the CG solver in different configurations on an Adonis node
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than s3(x) and s4(x), s3(x) is slightly higher s4(x) These functional performance models
are then used as the input of FPM-based domain decomposition.

Figure 5.2 presents the speedup in execution time of the CFD test case when using
the FPM-based heterogeneous decomposition method over the homogeneous decompo-
sition method, and the estimated upper bound of the actual speedup. It is worth noting
that the speedup that can be achieved depends on the level of the processor heterogeneity
of the experiment platform.
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Figure 5.2: The actual speedup and the estimated upper bound of the speedup in execu-
tion time on a single Adonis node and on the Adonis cluster

The execution time consists of the computation time and communication time. There-
fore, the speedup in execution time, Sexec = (th

comp+ th
comm)/(t

f
comp+ t f

comm), where tcomp

stands for the computation time, tcomm stands for the communication time, h indicates
that the time is measured in experiments when the homogeneous decomposition is used,
and f indicates that FPM-based heterogeneous decomposition is used. Because the
geometric domain is decomposed in one-dimension, the total volume of communica-
tion does not depend on whether the domain is decomposed homogeneously or het-
erogeneously. Therefore, t f

comm can be used as an estimate of t f
comm. Divide the nu-

merator and denominator by t f
comp, we get that Sexec = (Scomp + r f )/(1+ r f ), where

Scomp = th
comp/t f

comp, which is the speedup in computation time, r f = t f
comm/t f

comp, which
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is the ratio of the communication time to the computation time.
In this work, Scomp is calculated based on the pre-built functional performance mod-

els. To calculate r f , we measure the execution time, and the communication time with
all computation in the linear solvers removed, which can be regarded as a lower bound
of the communication overhead. For a given problem size, after the values of Scomp

and r f are calculated, the upper bound of the speedup in execution time on the given
heterogeneous platform can then be calculated.

As shown in Figure 5.2, the actual speedup in execution time is around 1.22 in
experiments on a single Adonis node. For a certain problem size, let g and s3 denote the
speed of the GPU processing unit and the other CPU cores of the same NUMA node,
s4 denotes the speed of the CPU cores of the other NUMA node, with a heterogeneous
workload distribution calculated using FPM-based decomposition method. For the same
problem size, if the domain is decomposed by homogeneous decomposition method, let
ḡ, s̄3 and s̄4 denote the speed of the corresponding processing units. We can calculate
that the speedup in computation time Scomp = (g+ 3 ∗ s3 + 4 ∗ s4)/(8 ∗ s̄4) is up to 1.4.
Based on experimental results, r f is around 0.6, therefore, the upper bound of Sexec is
1.25. As we can see, the actual speedup and the estimated upper bound are quite close,
which demonstrates that the FPM-based heterogeneous domain decomposition is able
to balance the workload on a GPU-accelerated multicore node.

The mesh generation utility used in the experiments, blockMesh, can only run on a
single node, so the range of problem size with which we can experiment is limited by
the memory capacity of a single node. If the largest number of control volumes that can
be generated on a single node are distributed evenly to all processing elements of the
Adonis cluster, each will receive only a relatively small number of control volumes. In
that case, the computing capacity of GPU is barely fulfilled, and the level of performance
heterogeneity of CPU and GPU is low, which is of no interest in this study.

In order to experiment with a wide range of problem sizes on the Adonis cluster, only
one GPU (with a dedicated CPU core) and seven CPU cores are used in the experiments,
each from a Adonis node. Figure 5.1 shows the speed functions of the CPU and GPU
processing units, namely, s1(x), which is built by executing the CPU CG solver on a
single CPU core, and g(x), which is built by executing the GPU CG solver on a GPU
processing unit independently. Compared to the performance measured independently,
the performance of the GPU processing unit measured under resource contention from
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neighboring CPU cores reduces by up to 30%.
On the Adonis cluster, the speedup in execution time is around 1.1. Using the same

method described above, we can calculate that the speedup in computation time Scomp

is up to 1.25. Based on experimental results, the ratio of the communication time to
the computation time r f is around 0.67. Therefore, we can estimate that the speedup
in execution time Sexec is up to 1.15. As we can see, the actual speedup and the esti-
mated upper bound of the actual speedup are reasonably close, which demonstrates the
effectiveness of FPM-based heterogeneous domain decomposition.

5.4 Summary

In this chapter, we apply the FPM-based data partitioning to a typical computational
fluid dynamics application in order to balance the workload on hybrid GPU-accelerated
multicore platforms. First, we briefly introduce the computational fluid dynamics. Next,
we briefly review the parallel computing in computational fluid dynamics. Then, using
the lid-driven cavity simulation as a test case, we demonstrate that the FPM-based do-
main decomposition is able to balance the workload of CFD applications on hybrid
GPU-accelerated multicore platforms.
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Chapter 6

A Software Framework for Data Partitioning on
Heterogeneous Platforms

Applying data partitioning for deriving concurrency in parallel scientific applications
is challenging in terms of efficient use of heterogeneous hardware and software on the
target platform. In order to balance the workload, the computation should be partitioned
and distributed to processing elements in proportion to their relative speed. To this
end, accurate and efficient benchmarking methods are required to obtain the speed of
processing elements; appropriate interpolation methods are required to predict processor
performance, and to build computation performance models as input of data partitioning
algorithms, such as the functional performance model (Section 2.4.1); data partitioning
algorithms (Section 2.4.2) that yield high quality partitioning based on computation
performance models should be implemented.

This chapter presents a software framework, Fupermod [35] 1, that meets the chal-
lenges of data partitioning for parallel scientific applications on dedicated heterogeneous
HPC platforms. The software framework provides functionalities for benchmarking
and constructing computation performance models, with the model granularity config-
urable. Both constant and functional performance models are supported. The perfor-
mance model can be built either in advance to be used in static data partitioning, or

1The software framework was initiated a few years ago in the HCL research group. Many experi-
ments presented in this thesis are conducted with the help of this software framework. The author of the
thesis participates in the work on extending the framework to heterogeneous multicore and multi-GPU
platforms, including the code refactoring on process configuration, performance measurement, and the
development of CBLAS routines for the GPU, the wrappers for memory operations and the execution of
linear algebra routines on hybrid GPU-accelerated multicore systems.
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at runtime during dynamic load balancing. A set of general-purpose data partition-
ing algorithms based on computation performance models are also implemented, such
as geometrical partitioning algorithm [84] and numerical partitioning algorithm [109].
Moreover, a wide range of dedicated heterogeneous platforms are supported, such as
heterogeneous network of uni- or multi-core computers, GPU-accelerated hybrid plat-
forms. The framework is designed to be extensible in that new measurement techniques
for new types of hardware can be added and other computation performance models and
data partitioning algorithms can be included.

The software framework consists of a library and a set of tools. The library imple-
ments the main functionality, which can be integrated into application-level software.
The library is made up of five modules: process configuration, performance measure-
ment, model construction, static data partitioning, dynamic data partitioning and load
balancing. The tools, which are developed based on the library, are used in differ-
ent phases of a model-based data partitioning procedure. The framework also includes
some user cases such as heterogeneous matrix multiplication and Jacobi solver, and
some wrappers of CBLAS routines and memory management for heterogeneous pro-
cessing elements.

6.1 Library Modules

In this section, we describe the design and implementation of the main five modules of
the library of the software framework.

6.1.1 Process Configuration

Configuration settings specific to each MPI process are stored in a single configuration
file. Fupermod defines a data structure, fupermod process conf, to store the configura-
tion information for a specific process; a function, fupermod print conf, to print a default
usable template configuration file of the current mpirun which can be customized further
by the user; and a function, fupermod get conf, to read the configuration file and return
the configuration information for that MPI process.

typedef struct fupermod_process_conf {

char* hostname;
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int rank_intra; // process rank in intra-node communicator

char* bind; // processing binding

char* device_type;

char* subopts; // suboptions

} fupermod_process_conf;

The data structure fupermod process conf includes the following parameters: host-

name specifies the name of the node executing this MPI process; rank intra is the rank of
this process in the intra-node MPI communicator; bind provides information for process
binding; device type specifies the type of the device executing this process (cpu, gpu,
etc). Applications designed for hybrid platforms may incorporate codes for different
computing devices. In this case, the device type information could be used for choosing
the corresponding code for each computing device; subopts is a string containing some
optional parameters for this process.

void fupermod_print_conf( MPI_Comm comm, int root, FILE* file, char*
default_device_type, char* subopts );

The function fupermod print conf includes the following parameters: comm is the
MPI communicator; root is the rank of the processor to print the template configuration
file; file is the file pointer to the output template file; defualt device type specifies the
default device type; and subopts is a string containing some optional parameters for this
process.

fupermod_process_conf fupermod_get_conf( MPI_Comm comm, char*
conf_file_path );

The function fupermod get conf includes two parameters: the MPI communicator
comm and the path of the configuration file conf file path. The configuration setting
for a specific MPI process contained in a configuration file can be addressed by host-

name and rank intra. The hostname can be obtained by invoking MPI built-in function
MPI Get processor name. To get the rank intra, we first need to invoke an auxiliary
function fupermod comm intra to get the intra-communicator, then call the MPI built-in
function MPI Comm rank.

int fupermod_comm_intra( MPI_Comm comm, MPI_Comm* comm_intra );

int fupermod_bind_process( char* str_mask );

The auxiliary function fupermod bind process can be invoked to bind a process to
CPU core(s). It takes a CPU affinity mask as input and then invokes system function
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sched setaffinity to set this process’s CPU affinity mask.
Below is an example of the configuration file. As we can see, 5 MPI processes are

configured to be launched, with 3 processes on node tesla (8-core) and 1 on node yeats

(8-core) and 1 on node hcl02 (dual-core). On node tesla, process 0 will be bound to 4
cores from core 0 to core 3, process 1 will be bound to 3 cores from core 4 to core 6,
and process 2 will be bound to core 7. Both process 0 and process 1 will run CPU code,
and process 2 will run GPU code (offload compute-intensive portions of the application
to the GPU). Node yeats will execute a single process which further spawn 8 threads
utilizing all 8 cores. Similarly, node hcl02 will execute a single process which further
spawns 2 threads utilizing both 2 cores.

#hostname rank_intra bind device_type suboptions

tesla.ucd.ie 0 0-3 CPU <some optional params>

tesla.ucd.ie 1 4-6 CPU <some optional params>

tesla.ucd.ie 2 7 GPU <some optional params>

yeats.ucd.ie 0 all CPU OMP_NUM_THREADS=8

hcl02.ucd.ie 0 all CPU OMP_NUM_THREADS=2

6.1.2 Computation Performance Measurement

Fupermod provide a data structure fupermod benchmark for computation performance
measurement, which encapsulates: kernel, a pointer to a user-defined benchmark kernel;
conf, a variable that contains process-specific configuration information; and execute, a
pointer to a user-defined function that performs the benchmark.

typedef struct fupermod_benchmark {

fupermod_kernel* kernel;

fupermod_process_conf conf;

int (*execute) (struct fupermod_benchmark* benchmark, MPI_Comm comm

, int d, fupermod_precision precision, fupermod_point* point );

} fupermod_benchmark;

The data structure fupermod kernel encapsulates user-defined functions required to
implement a benchmark: initialize and finalize point to functions that implement initial-
ization and finalization of memory allocation and deallocation of a problem of d compu-

88



6.1 Library Modules Chapter 6

tation units, and of the execution context of the kernel based on parameters referenced
by pointer params; execute points to the function that implements the execution of the
computational kernel; complexity points to the function that returns the complexity of
computing d computation units. Please note that the code of the (serial) computational
kernel has to be provided by the user along with a function that converts speed from
units/sec to floating-point performance.

typedef struct fupermod_kernel {

int (*initialize)(int d, void* params);

int (*execute)(pthread_mutex_t* mutex, void* params);

int (*finalize)(void* params);

double (*complexity)(int d, void* params);

} fupermod_kernel;

During the performance measurement, function execute of fupermod benchmark ex-
ecutes the computational kernel encapsulated in fupermod kernel multiple times to ob-
tain an reliable result. The precision argument specifies how many times to repeat the
benchmark. User can define the minimum and maximum numbers of repetitions. The
benchmark will stop when the number of repetitions has reached reps max. Otherwise
it will be repeated until the sample of the measured execution times satisfies the Stu-
dent’s t-test with the confidence level cl and relative error eps. The measured execution
time is proved reliable statistically if ci/T̄ < eps, where ci is the confidence interval that
contains the average execution time with a certain probability Pr(|T̄ − µ|) = cl, T̄ is
the average time obtained from several observations, and µ is the mean. An auxiliary
function fupermod ci is provided to return the confidence interval.

typedef struct fupermod_precision {

int reps_min; // minimum number of repetitions

int reps_max; // maximun number of repetitions

double cl; // confidence level

double eps; // relative error

} fupermod_precision;

double fupermod_ci(double cl, int reps, double* t);

The measurement result is returned in the form of an experimental point of data type
fupermod point, which contains information on problem size and execution time. Aux-
iliary functions are provided to output experimental points to files and to read them from
a file. Such experimental points are used as the input of functions for model construction
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to build computation performance models.

typedef struct fupermod_point {

int d; // number of computation units

double t; // measured execution time

int reps; // number of repetitions

double ci; // confidence interval

} fupermod_point;

The following code shows an implementation of the benchmark function execute

of fupermod benchmark for the purpose of demonstration. The basic idea is that it
invokes functions encapsulated in data structure fupermod kernel to initialize, finalize
the computational kernel, and execute the computational kernel multiple times to obtain
an accurate benchmark result.

void benchmark_execute(fupermod_benchmark* benchmark, MPI_Comm

comm, int d, fupermod_precision precision, fupermod_point*

point) {

// initialize

void* params;

benchmark->kernel->initialize(d, &params);

// execution

int stop = 0; // loop termination condition

int reps = 0; // number of repetitions

double sum = 0; double ci = 0;

double* t = (double*)malloc(sizeof(double) * precision.reps_max)

;

while (reps < precision.reps_max && !stop) {

int accurate = 0;

MPI_Barrier(comm);

struct timespec start, end;

get_time(&start);

benchmark->kernel->execute(NULL, params);

get_time(&end);

double time = get_timediff(&start, &end);

sum += t[reps] = time;

ci = fupermod_ci(precision.cl,reps,t);

if (reps>=precision.reps_min-1 && ci*reps/sum < precision.eps)
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accurate = 1;

MPI_Allreduce(&accurate, &stop, 1, MPI_INT, MPI_MIN, comm);

reps++;

} free(t);

// result

point->d = d;

point->t = sum/reps;

point->reps = reps;

point->ci = ci;

// finalize

benchmark->kernel->finalize(params);

}

6.1.3 Performance Model Construction

The key abstraction of the programming interface for performance model construction is
fupermod model, which has the following interface: data, a variable of fupermod data

data type that encapsulates experimental points obtained from measurements under dif-
ferent problem sizes; t, a user-defined function that implements the approximation of
execution time; update, a user-defined function that specifies how the approximation
changes after adding a new experimental point. These approximations are used in the
model-based data partitioning algorithms to predict the computation performance and
distribute the workload proportionally.

typedef struct fupermod_model {

fupermod_data* data; // experimental points

double (*t)(struct fupermod_model* model, double x);

int (*update)(struct fupermod_model* model, fupermod_point point);

} fupermod_model;

typedef struct fupermod_data {

int count; // Number of points

fupermod_point* points; // points

} fupermod_data;
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Currently, Fupermod supports both the constant performance model and the func-
tional performance model. Two types of interpolation techniques are implemented to
construct the execution time function, namely, piecewise linear interpolation and Akima
spline interpolation.

The functional performance model constructed using linear piecewise interpolation
is based on some assumptions on the shape of the speed function [84], where data points
that do not satisfy the assumptions are removed, as shown in Figure 6.1(a). The func-
tional performance model based on the Akima spline interpolation removes these re-
strictions [109], and therefore, represents the speed of the processor with more accurate
continuous functions (Figure 6.1(b)). The fupermod model data structure can be used to
implement other computation performance models.
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Figure 6.1: Speed functions of the matrix multiplication kernel based on the Netlib
BLAS GEMM: (a) piecewise linear interpolation (b) Akima spline interpolation

6.1.4 Static Data Partitioning

Fupermod defines the following programming interface for static data partitioning al-
gorithms, where size is the number of the processes running the parallel application,
models is an array of performance models of the processes, and dist specifies how work-
load (data) will be distributed among these processes.

typedef int (*fupermod_partition)( int size, fupermod_model** models,

fupermod_dist* dist );
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The user should provide computation performance models of processes as the input
of data partitioning algorithms. After execution of the data partitioning algorithm, the
workload distribution result is returned and stored in a fupermod dist variable. Auxiliary
functions for outputting the distribution result to a file and for reading in distribution in-
formation from a file are provided. The application programmer can then distribute data
to processes based on the distribution result generated by the data partitioning algorithm.

The data structure for storing information on data distribution is fupermod dist. It
has the following parameters: D is the total problem size to partition (in computation
units); size is the number of processes; parts is an array of partitions each specifying
the workload d to be assigned to a process i and the predicted computing time t of the
workload.

typedef struct fupermod_dist {

int D; // total problem size

int size; // number of processes

fupermod_part* parts; // partitions

} fupermod_dist;

typedef struct fupermod_part {

int d; // partitioned problem size

int i; // process index

double t; // predicted execution time

} fupermod_part;

Currently, three data partitioning algorithms have been implemented:

• fupermod partition constant implements a basic partitioning algorithm based on
constant performance models. This algorithm divides the data in proportion to the
speeds represented by constants.

• fupermod partition geometric implements a geometrical partitioning algorithm
[84] based on functional performance models constructed by piecewise linear in-
terpolation. The algorithm implements iterative bisection of the speed functions
with lines passing through the origin of the coordinate system. Convergence of
this algorithm is ensured by putting restrictions on the shape of the speed functions
(Section 2.4.2).

• fupermod partition multiroot implements a numerical partitioning algorithm based
on functional performance models constructed by Akima spline interpolation. The
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algorithm applies multidimensional solvers to numerical solution of the system of
non-linear equations that formalize the problem of optimal data partitioning [109].
It can be applied to smooth speed functions of any shape.

6.1.5 Dynamic Data Partitioning and Load Balancing

Fupermod provides efficient data partitioning algorithms that do not require perfor-
mance models as input but partially estimate the performance model at runtime to a
sufficient level of accuracy (Section 2.4.2). These algorithms allow for efficient load
balancing and are suitable for use in self-adaptable applications. The dynamic partition-
ing algorithms build the partial functional performance models iteratively and alternate
between (i) performing benchmark on each process for a given distribution of workload,
adding newly measured speeds to the corresponding partial models and (ii) repartition-
ing the data based on current partial estimates of the speed functions. In the case of
dynamic data partitioning, the measurements are made by benchmarking the represen-
tative computation kernel of the application. In the case of dynamic load balancing, the
execution of one iteration of the application is timed.

(a) (b)

Figure 6.2: Construction of the partial FPMs based on piecewise linear interpolation,
using the geometrical data partitioning algorithm

Data structure fupermod dynamic is defined to encapsulate execution context re-
quired for dynamic data partitioning or load balancing algorithms. Parameter partition

specifies a static data partitioning algorithm which will be used repeatedly in the dy-
namic algorithm; size is the number of processes participating in the dynamic algorithm;

94



6.1 Library Modules Chapter 6

models stores current partial functional performance models which is updated iteratively
during the dynamic algorithm; dist stores the current distribution. If current distribution
dist is well balanced, the dynamic algorithm stops repartitioning; otherwise, the dy-
namic algorithm repeats another benchmark using partition algorithm based on current
partial models models.

typedef struct fupermod_dynamic {

fupermod_partition partition;

int size;

fupermod_model** models;

fupermod_dist* dist;

} fupermod_dynamic;

Function fupermod partitioner iterate implements one step of the dynamic data par-
titioning algorithm. First, it distributes workload to processes according to the data
distribution stored in partitioner; next, it performs one benchmark with computational
kernel encapsulated in parameter benchmark; then, it gathers newly measured speeds
and add them to current models; finally, it repartition the workload and compare the
distribution obtained from repartition with current distribution dist. If the distribution
change is within relative error eps, status indicating convergence is returned; otherwise,
status indicating another iteration is returned.

int fupermod_partitioner_iterate( fupermod_dynamic* partitioner,

MPI_Comm comm, fupermod_precision precision, fupermod_benchmark*

benchmark, double eps );

The code snippet below demonstrates dynamic data partitioning.

fupermod_dynamic partitioner;

fupermod_benchmark* benchmark = fupermod_benchmark_alloc();

// status: 0 indicates more iterations, 1 indicates convergence

int status = 0;

while (!status) {

fupermod_partitioner_iterate(&partitioner, comm, root,

precision, benchmark);

if (rank == root)

status = fupermod_dist_test(partitioner.dist, eps);

MPI_Bcast(&status, 1, MPI_INT, root, comm);
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}

fupermod_benchmark_free(benchmark);

Function fupermod balancer iterate implements one step of the dynamic load bal-
ancing algorithm. It is invoked after the execution of each iteration of the application.
First it measures the execution time of each iteration, next, it adds the measured data to
update partial functional performance models, then, it repartition the workload based on
updated performance models.

int fupermod_balancer_iterate( fupermod_dynamic* partitioner,

MPI_Comm comm, struct timespec start);

The code snippet below demonstrates dynamic load balancing of a data-parallel ap-
plication Jacobi solver. This application distributes the matrix and vectors by rows be-
tween the processors and iteratively solves the system of equations. In the code snippet
below, the partial FPMs based on piecewise linear interpolation are constructed at run-
time during the iterations of the Jacobi method. At each iteration, the load balancing
function invokes the geometrical data partitioning algorithm. The system of equations
is redistributed accordingly to the newly obtained data distribution.

MPI_Comm_size(comm, &size);

// FPMs based on piecewise linear interpolation

fupermod_model** models = malloc(sizeof(fupermod_model*) * size);

for (i = 0; i < size; i++)

models[i] = fupermod_model_piecewise_alloc();

// context for dynamic load balancing

fupermod_dynamic balancer = { fupermod_partition_geometric, size,

models, fupermod_dist_alloc(D, size) };

// current distribution, initially even

fupermod_dist* dist = fupermod_dist_alloc(D, size);

// Jacobi data: dist->parts[i].d rows of matrix and vectors

double *A, *b, *x; // allocation, initialization

// main loop

double error = DBL_MAX;

while (error > eps) {
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// redistribution of Jacobi data accordingly to balancer.dist

jacobi_redistribute(comm, dist, A, b, x, balancer.dist);

// store the current distribution

fupermod_dist_copy(dist, balancer.dist);

struct timeval start;

gettimeofday(&start, NULL);

// Jacobi iteration

jacobi_iterate(comm, dist, A, b, x, &error);

// load balancing with the (dist->parts[i].d, now-start) point

fupermod_balance_iterate(&balancer, comm, start);

}

6.2 Wrappers

In order to facilitate programming hybrid CPU+GPU platforms, Fupermod defines wap-
pers for memory operations and one of the level 3 CBLAS routines, i.e. general matrix
multiplication. More wrappers for CBLAS routines could be implemented in the future
work.

Two memory function wrappers are defined as below. Function fupermod malloc

is designed to allocate memory of size specified in parameter size. It invokes CPU
memory operation malloc or GPU memory operation cudaHostAlloc depending on the
device type stored in process-specific configuration conf. Additional parameters such
as memory allocation modes, device id, can be passed to the function through field
subops of configuration conf. Function fupermod free is designed to free memory block
referenced by pointer ptr. It invokes CPU memory operation free or GPU memory
operation cudaFreeHost according to device type from conf. Additional parameters
required for memory free are passed to the function through subops that is a field of
configuration conf.

void* fupermod_malloc(size_t size, fupermod_process_conf* conf);

void fupermod_free(void* ptr, fupermod_process_conf* conf)

Currently, Fupermod implements a wrapper function fupermod gemm execute for
general matrix multiplication on different computing devices. Data structure fuper-
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mod gemm encapsulates process-specific configuration conf and additional parameters
params for the gemm routine. Auxiliary functions, fupermod gemm alloc and fuper-

mod gemm free are provided for initialization and finalization of execution context of
gemm routine.

void fupermod_gemm_execute( fupermod_gemm* gemm, const enum

CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const enum

CBLAS_TRANSPOSE TransB, const int M, const int N, const int K,

const fupermod_float alpha, const fupermod_float *A, const int lda

, const fupermod_float *B, const int ldb, const fupermod_float

beta, fupermod_float *C, const int ldc );

typedef struct fupermod_gemm {

fupermod_process_conf* conf; // configuration

void* params; // additional parameters for gemm

routine

} fupermod_gemm;

fupermod_gemm* fupermod_gemm_alloc(fupermod_process_conf* conf);

void fupermod_gemm_free(fupermod_gemm* gemm);

6.3 Tools

In this section, we first describe a set of tools that have been implemented in Fupermod
to support all steps involved in a model-based data partitioning, then we give a quick
start guide on how to use these tools to conduct a data partitioning.

The builder is a parallel MPI-based executable program that performs a speed bench-
mark using a user-defined computational kernel, and outputs speed measurements for a
series of problem sizes into a data file. This file contains all data required for con-
struction of computation performance models. Some of its command-line arguments
are shown below. The user-defined computational kernel is implemented as a shared
library, then builder can link against this library to invoke the computational kernel for
benchmark. User can also specify path to output data file, a range of problem sizes,
number of benchmark steps, and so on.
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-l S shared library (computational kernel)

-f S path to output data file (default: %s)

-L I lower problem size (default:%d)

-U I upper problem size (default:%d)

-s I number of steps in the model (default %d)

-r I minimum number of repetitions (default %d)

-R I maximum number of repetitions (default %d)

-i D confidence level (default %f)

-e D relative error (default %f)

The modeler is a serial tool to test the approximation of kernel’s time and speed,
using different computation performance models and different methods of interpolation
and smoothing.

The partitioner a serial tool that performs model-based data partitioning. It offers a
variety of choices of data partitioning algorithms. It takes the output data files generated
by Tool builder as input, and outputs a data file containing optimal distribution. The
application should take this output file as input to distribute workload. Some of its
command-line arguments are shown below.

-a I Balancing algorithm. (default: %d)

0: Homogeneous distribution

1: Constant performance model 1 (small benchmark)

2: Constant performance model 2 (homogeneous benchmark)

3: Geometric algorithm

4: multiroot solver

-l S shared library (computational kernel)

-D I problem size to partition (required)

-s I smoothing, number of points to average over(default: %d)

-f S path to input data file (default: %s)

-m S path to machine file (default: %s)

-p S path to output distribution (default: %s)

The dynamic partitioner is a parallel MPI-based tool that performs dynamic data
partitioning. It builds partial functional performance models at runtime and output a

99



6.3 Tools Chapter 6

data file containing near-optimal distribution. Some of the command-line arguments are
shown below.

-a I Balancing algorithm. (default: %d)

0: Homogeneous distribution

1: Constant performance model 1 (small benchmark)

2: Constant performance model 2 (homogeneous benchmark)

3: Geometric algorithm

4: FPM multiroot solver

-l S shared library (computational kernel)

-p S path to output inter-node distribution (default: %s)

-d I problem size to partition (default %lld)

-i I number of inter-node iterations (default: %d)

-e I Stopping condition eps (default: %lf)

Below is a quick start guide on how to use these tools to generate optimal distribution
to balance workload of data-parallel applications on heterogeneous platforms. In step
1, data files used as input to construct performance models are generated by executing
builder in parallel. Application executed in Step 3 should take data file partition.dist

generated in step 2 as input to distribute workload.

Step 1: Run the builder in parallel

$ mpirun -np 8 -hostfile hostfile builder -l <install dir>/libs/

lib_kernel.so -U2000 -s100

// data file used as input to construct models

Output file: hostname.rank.device_type.fpm

Step 2: Run partitioner on head node

$ partitioner -l <install dir>/libs/lib_kernel.so -a3 -D256

// data file containing optima- distribution

Output file: partition.dist

Step 3: Execute application

$ mpirun -n 8 -hostfile hostfile application_excutable
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6.4 Summary

In this chapter, we outline a software framework for general-purpose data partitioning
based on computation performance models. This software framework provides a range
of algorithms and models for optimization of data-parallel scientific applications on
modern heterogeneous platforms.
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Conclusion

The design of microprocessor has been shifting to a new model where multiple homo-
geneous processing units, aka cores, are integrated onto the same die due to the heat
dissipation and energy consumption issues. Multicore clusters have become the main-
stream HPC platforms, which are naturally heterogeneous in terms of processor perfor-
mance and memory capacity. In the meantime, specialized processing resources, such
as Graphic Processing Units (GPUs), has been widely incorporated into multicore com-
puting systems for gaining extra computing power, thus making a computing system
heterogeneous. This thesis focuses on the problem of optimal data distribution of data
parallel applications on heterogeneous multicore and heterogeneous GPU-accelerated
multicore platforms. In the thesis, we provide solutions to the performance modeling
and data partitioning on target heterogeneous platforms, and present a software frame-
work for facilitating performance modeling and data partitioning on target platforms.

In Chapter 3, we present the performance modeling and performance measurement
methods of multicore systems, and extend the FPM-based data partitioning to heteroge-
neous multicore clusters. The performance modeling of multicore systems is compli-
cated by resource contention between CPU cores. We model a multicore system by a
number of abstract processors determined by the configuration of the parallel applica-
tion. Each abstract processor represents a CPU processing unit made of one or a group
of CPU cores executing one computational kernel of the application. For example, if a
single-threaded computational kernel is used, then each CPU core will be modeled by an
abstract processor. If a multi-threaded computational kernel is used, then each group of
CPU cores executing the kernel makes a combined processing unit, and will be modeled
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by an abstract processor. To measure the performance accurately, we propose to group
CPU processing units by shared resources, so that some system resources are shared
within each group but not between groups. The performance of CPU processing units
in a group is measured when all the CPU processing units are executing some workload
simultaneously, thereby taking into account the influence of resource contention. Using
proposed method for measuring performance, functional performance models of CPU
processing units are built, and used as the input of data partitioning algorithm to balance
the workload on target platforms. Experimental results demonstrate that data partition-
ing algorithms based on functional performance models built by proposed methods are
able to balance the workload of data parallel applications on target platforms and deliver
good performance.

In Chapter 4, we present performance modeling and performance measurement
methods of multicore and multi-GPU systems, and extend the FPM-data partition to het-
erogeneous multicore and multi-GPU platforms. We propose to model a multicore and
multi-GPU system by a number of heterogeneous abstract processors determined by the
configuration of the parallel application. Each abstract processor represents a process-
ing unit made of one or a group of processing elements executing one computational
kernel of the application. The method of performance modeling of CPU cores is the
same as in Chapter 3. For GPUs, if a single-GPU computational kernel is used, then the
GPU and its dedicated CPU core make a combined processing unit, and will be modeled
by an abstract processor. If a multi-GPU computational kernel is used, then the GPUs
and their dedicated CPU core make a combined processing unit, and will be modeled
by an abstract processor. To measure the performance accurately, we propose to group
processing units (including both CPU and GPU processing units) by shared resources,
so that some system resources are shared within each group but not between groups.
The performance of processing units in a group is measured when all processing units
in the group are executing some workload simultaneously. We investigate the impact of
resource contention on the performance of CPU and GPU processing units, and the im-
pact of processing mapping on GPU-accelerated multicore systems of NUMA architec-
ture on the performance of the GPU processing unit. We build functional performance
models of abstract processors, and partition data using the functional performance mod-
els to balance the load between heterogeneous processing units. Experimental results
with a parallel matrix multiplication application on both a single hybrid server and on a
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hybrid cluster demonstrate that data partitioning algorithms based on proposed perfor-
mance modeling method are able to balance the workload of data parallel applications
on target platforms and deliver good performance.

In Chapter 5, we evaluate the proposed performance modeling and data partition-
ing methods with a typical computational fluid dynamic application, namely numerical
simulation of lid-driven cavity flow. The fluid motion is governed by the Navier-Stoke
equations, which are different to solve analytically, so numerical method need to be
used. Through discretization of the geometric domain and the conservation equations, a
system of algebraic equations is formed, whose solution can be used to approximate the
solution of the conservation equations. Parallel computing in computational fluid dy-
namics is usually based on domain decomposition, which is essentially data parallelism.
In domain decomposition methods, the geometry domain is divided into a number of
subdomains, each assigned to a process. The problem is solved on the entire domain
from problem solutions on subdomains. To balance the load between subdomains, we
build functional performance models of platform’s processing units executing the linear
equation solvers used for the solution of the test case, i.e. conjugate gradient and bi-
conjugate gradient stabilized algorithms, for solving symmetric pressure equations and
non-symmetric velocity equations respectively. Based on the functional performance
models, the domain is divided into a number of subdomians in proportion to the speed
of processing units handling the subdomains. Experimental results on both hybrid server
and cluster prove that FPM-data partitioning algorithms are able to balance the workload
of complex applications and deliver good performance.

In Chapter 6, we outline a software framework that is designed to facilitate the per-
formance modeling and data partitioning on heterogeneous platforms. The software
framework is made up of a library and a number of standalone tools. The library pro-
vides function interfaces for process configuration, performance measurement, model
construction, static data partitioning, dynamic data partitioning and load balancing.
Snippet code is shown to demonstrate how to dynamically balance the workload of a
data-parallel application Jacobi solver. The tools, which are developed based on the li-
brary, can be used in different stages of a model-based data partitioning procedure. A
quick start guide on how to use these tools is presented at the end of this chapter.

The results presented in Chapter 3 have been published in [133], part of the results
presented in Chapter 4 have been published in [134], the results presented in Chapter
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6 have been published in [35], and the results presented in Chapters 4, 5 have been
submitted for publication in IEEE Transactions on Computers.

As high performance computing systems evolve, the requirement for balancing work-
load between diverse heterogeneous processing elements will become stronger and chal-
lenging. For data-parallel scientific applications, the data partitioning approach based
on functional performance models built using proposed methods is an efficient solution
that can reliably solve this problem.
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