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Abstract

In this report, we consider a simple but important linear algebra kernel, matrix-matrix multiplication.
Building multi-core processors based on heterogeneous cores is an important current trend. In this context,
it is of great interest to study optimal matrix partitioning algorithms for small cases (i.e. small number
of cores). Indeed, the general case, with relatively high numbers of heterogeneous resources is now well
understood, however the problem is in general NP-Complete when one aims at balancing the load while
minimizing the communications. Nonetheless several approximation algorithms have been successfully
designed. Nevertheless, negative complexity results do not apply for very few heterogeneous cores. Ad-
ditionally, the case of a small number of processors is useful as a model for heterogeneous clusters and
clusters of clusters. In this paper, we provide a complete study of 2 heterogeneous resources and we prove
that in this case, the optimal partitioning is based on non-standard decomposition techniques.

I. INTRODUCTION

Matrix-Matrix Multiplication (MMM) is a simple but important linear algebra kernel used on multiple
processors. Our goal is to minimize the execution time of MMM, which consists of two parts; the time
taken to send the necessary sections of matrices between processors, i.e., the communication time, and the
time taken to calculate the result matrix, i.e., the computation time. To minimize the execution time, we
focus on minimizing the communication time, and exploring ways to complete the communication and
computation in parallel, overlapping these two necessary parts to lower the total time. We look specifically
at the case of two processors of differing computation speeds; while important in its own right, this is
also a reasonable model for two clusters of processors. However, we also look to extend these results to
three processors and beyond. Though we focus on heterogeneous processors with differing computation
speeds, including ratios of 1:1 computation speeds also covers homogenous processors.

Traditionally data partitions made entirely of rectangles are thought to be the most efficient[1][2][3][4].
Our approach is to question whether a partitioning scheme made entirely of rectangles is optimal. Is it
possible to create an arbitrary partition, meaning product elements mapped to processors in no recognizable
shape, which will surpass the efficiency of the rectangular partition? Are there shapes other than rectangles
that might provide an optimal solution? In this paper we do not wish to show that a given partition is
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Fig. 1. 1. A Straight-Line partition 2. An arbitrary partition 3. A Square-Corner partition

simply better than the traditional rectangular approach, but that certain partitions are optimal, better than
any other approach, given a particular algorithm used to compute the MMM.

We focus specifically on five different algorithms to accomplish MMM on two processors. The first two
algorithms involve putting a barrier between communication and computation. Once the communication
has completed, and both processors have all data required to compute their assigned portions of the result
matrix, the computation proceeds. These algorithms are called Serial Communication with Barrier (SCB),
and Parallel Communication with Barrier (PCB).

The final three algorithms involve methods of overlapping communication and computation. Serial Com-
munication with Overlap (SCO) and Parallel Communication with Overlap (PCO) allow communication
to occur while any subsections of the partition not requiring communication are computed. Finally, there
is Parallel Interleaving Overlap (PIO), in which all communications and computations are overlapped, a
single row and column at a time.

We will find for these five algorithms the optimal partition by considering all arbitrary partitions,
meaning a partition with any possible shape. The rectangular partition is not optimal unconditionally and
there is an alternative shape which is optimal under certain conditions, many of which are practically
important when working with heterogeneous platforms.

For two processors, there is only one way in which to create an all rectangle partition. We call this
scheme the Straight-Line approach. The matrices are divided into two rectangles with areas proportional
to the processor’s speed. Each processor requires data from the other in order to compute its portion of
the matrix. Therefore the communication time is constant, every element of one matrix needing to be
communicated.

With this in mind, if we could create a partition resulting in a lower communication time, it could
outperform the Straight-Line, all rectangular, scheme. In this paper, we will begin with any arbitrary
partition and alter it incrementally to lower its communication time. When we can no longer alter it
to decrease communication volume, we will have created partition shapes that can not be improved.
These shapes are candidates for the optimal shape. In [5], the non-rectangular Square-Corner partition
was found to have a lower communication volume than Straight-Line partitions for processor computation
power ratios greater than three when using the SCB algorithm. We will go further than this and show that
not only is the Square-Corner better than Straight-Line in those cases, it is better than any other possible
partition. We also examine the partitions using a variety of algorithms, as opposed to one.

In this report we do an exhaustive study of the problem of data partitioning for parallel MMM with
two processors and find the optimal solution of this problem, which is different from the traditional one.
We also develop original mathematical techniques in order to prove the optimality of the found solution.
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II. THEORETICAL RESULTS

In this section we will prove that the Square-Corner partitioning is optimal compared to all other
MMM partitioning schemes for all processor power ratios when bulk overlapping communication and
computation, and some processor power ratios when placing a barrier between them or using interleaving
overlap.

A. Mathematical Model and Technique

Throughout, we will make several assumptions, as follows:
1) Matrices A, B and C are square, of size N × N , and identically partitioned between processor P,

represented in figures as white, and processor Q, represented in figures as black
2) Processor P computes faster than Processor Q by ratio, r : 1
3) The number of elements in the partition for Processor Q will be factorable, i.e. it will be possible

to form a rectangle with them

B. MMM Computation

As the kij algorithm is well-known and used by such software as ScaLAPACK[6] to compute MMM, we
will assume it is the manner of computation for all algorithms presented in this paper. The kij algorithm
for MMM is a variant of the triply nested loop algorithms. The three for loops are nested and iterate over
the line C[i, j] = A[i, k] * B[k, j] + C[i ,j]. The k variable represents a “pivot” row and column as shown
in Fig.2. For each iteration of k, every element of the result matrix C is updated, incrementally obtaining
the final value.

Fig. 2. Pivot row and column, k, of the kij algorithm. Every element of C is updated before k is moved to the next row and
column.

An element in the pivot column k of matrix A, will be used to calculate every element in its row, i, in
matrix C. Similarly, an element in the pivot row k of matrix B, will be used to calculate every element
in its column, j, in matrix C. If the processor assigned to calculate these elements of matrix C has not
also been assigned the element in the pivot column or row, that element must be communicated to the
processor.
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Here we define a partition to provide a basis for our performance models. Formally, each element of
an N ×N matrix is of the form (i, j) and a partition is a function, ϕ(i, j), such that,

ϕ(i, j) =

{
0 if (i, j) ∈ P, the faster processor
1 if (i, j) ∈ Q, the slower processor

1) Partition Metrics: To measure a partitioning scheme, we use metrics of which parts of each matrix
do not require communication. If a row of Matrix A, or a column of Matrix B, does not need to be
communicated between the processors it is considered to be clean. A row or column is dirty if it contains
elements belonging to both processors, and therefore requires communication. We need both the total
number of clean rows and columns, and a way to determine if a given row or column is clean or dirty.

‖ ϕ ‖x = # of clean rows in ϕ
‖ ϕ ‖y = # of clean columns in ϕ

‖ ϕ ‖0x = # ‖ ϕ ‖x belonging to Processor P

‖ ϕ ‖0y = # ‖ ϕ ‖y belonging to Processor P

‖ ϕ ‖1x = # ‖ ϕ ‖x belonging to Processor Q

‖ ϕ ‖1y = # ‖ ϕ ‖y belonging to Processor Q

r(ϕ, i) =

{
0 if (i, ·) of ϕ is clean
1 if (i, ·) of ϕ is dirty

c(ϕ, j) =

{
0 if (·, j) of ϕ is clean
1 if (·, j) of ϕ is dirty

C. The push Algorithm

For each of our algorithms, SCB, PCB, SCO, PCO, and PIO, we will use the push operations to start
with any arbitrary partition, and end with a partition that has a regular shape. The push algorithm, with
↑, ↓,←, and → operations is described in full here.

1) push ↓ Algorithm: The ↓ operation creates a new partition from an existing one by cleaning a row,
k, assigning elements ∈ Q to the rows below. The reassigned elements are filled into the rows below in
typewriter fashion, i.e. in the first available suitable slot from left to right and top to bottom. A slot is
suitable if it is not in a clean column and is ∈ P in the input partition ϕ.

Formally, ↓ (ϕ, k) = ϕ1 where,
Initialize ϕ1 ← ϕ
(g, h) = (k + 1, 1)
for j = 1→ N do

if ϕ(k, j) == 1 then
ϕ1(k, j) = 0; {If element was dirty, clean it}
(g, h) = find(g, h);
ϕ1(g, h) = 1; {Put displaced element in new spot}

end if
j ← j + 1;

end for
find(g, h) {Look for a suitable slot to put element}
for g → N do
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Fig. 3. An arbitrary partition, ϕ, between processor P (white) and processor Q (black), and partition, ϕ1, showing how the elements
of row k = 1 have been pushed by the ↓ operation

for h→ N do
if ϕ1(g, h) == 0 && ϕ(g, h) == 0 && c(ϕ, h) == 1 then

return (g, h);
end if

end for
g ← g + 1;
h← 1;

end for
return ϕ1 = ϕ {No free slots, no more push possible in this direction}
It is important to note that if no suitable ϕ(g, h) can be found for each element in the row being

cleaned that requires rearrangement, then ϕ is considered fully condensed from the top and all further
↓ (ϕ, k) = ϕ.

2) push ↑: The ↑ operation, similar to the ↓, creates a new partition, ϕ1, by cleaning row k of partition
ϕ by reassigning elements to the rows above row k. The algorithm is identical to the above for the ↓
operation, with the exception that possible slots for pushed elements are searched for in a left to right,
bottom to top fashion.

Initialize ϕ1 ← ϕ
(g, h) = (k − 1, 1)
for j = 1→ N do

if ϕ(k, j) == 1 then
ϕ1(k, j) = 0; {If element was dirty, clean it}
(g, h) = find(g, h);
ϕ1(g, h) = 1; {Put displaced element in new spot}

end if
j ← j + 1;

end for
find(g, h) {Look for a suitable slot to put element}
for g → 1 do

for h→ N do
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if ϕ1(g, h) == 0 && ϕ(g, h) == 0 && c(ϕ, h) == 1 then
return (g, h);

end if
end for
g ← g − 1;
h← 1;

end for
return ϕ1 = ϕ {No free slots, no more push possible in this direction}
3) push→: The → operation creates a new partition from an existing one by cleaning column, k, by

reassigning elements ∈ Q to the columns to the right. It searches for a suitable slot from top to bottom,
and then right to left. A slot is suitable if it is not in a clean row and is ∈ P in the partition ρ. Formally,
→ (ρ, k) = ρ1 where,

Initialize ϕ1 ← ϕ
(g, h) = (1, k + 1)
for i = 1→ N do

if ϕ(i, k) == 1 then
ϕ1(i, k) = 0; {If element was dirty, clean it}
(g, h) = find(g, h);
ϕ1(g, h) = 1; {Put displaced element in new spot}

end if
i← i+ 1;

end for
find(g, h) {Look for a suitable slot to put element}
for g → N do

for h→ N do
if ϕ1(g, h) == 0 && ϕ(g, h) == 0 && r(ϕ, h) == 1 then

return (g, h);
end if

end for
g ← 1;
h← h+ 1;

end for
return ϕ1 = ϕ {No free slots, no more push possible in this direction}
4) push←: The ← operation, similar to the →, creates a new partition, ρ1, by cleaning column k of

partition ρ by reassigning elements to the columns to the left of column k. The algorithm is identical for
the one above for →, with the exception that elements are placed in a top to bottom, right to left fashion.

Initialize ϕ1 ← ϕ
(g, h) = (1, k − 1)
for i = 1→ N do

if ϕ(i, k) == 1 then
ϕ1(i, k) = 0; {If element was dirty, clean it}
(g, h) = find(g, h);
ϕ1(g, h) = 1; {Put displaced element in new spot}

end if
i← i+ 1;
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end for
find(g, h) {Look for a suitable slot to put element}
for g → N do

for h→ 1 do
if ϕ1(g, h) == 0 && ϕ(g, h) == 0 && r(ϕ, h) == 1 then

return (g, h);
end if

end for
g ← 1;
h← h− 1;

end for
return ϕ1 = ϕ {No free slots, no more push possible in this direction}
We observe several axioms related to the push algorithm.
Axiom 1: ↓ and ↑, create a clean white row, k, and may create at most one dirty row in ϕ1 that was

clean in ϕ. No more than one row can be made dirty, as a row that was clean will have enough suitable
slots for all elements moved from the single row, k.

Axiom 2: ↓ and ↑ are defined to not create a dirty column, j, in ϕ1 that was clean in ϕ. However, they
may create additional clean column(s), if the row k being cleaned contains elements that are the only
elements ∈ Q in their column, and there are sufficient suitable slots in other columns.

Axiom 3: → and ← create a clean column, k, and may create at most one dirty column in ϕ1 that was
clean in ϕ.

Axiom 4: → and ← will never create a dirty row in ϕ1 that was clean in ϕ, but may create additional
clean rows.

III. SERIAL COMMUNICATION WITH BARRIER - SCB

In this algorithm communication is done serially, so Processor P first sends data to Processor Q. Once
that has completed, communication from Processor Q to Processor P occurs. Finally, each processor
computes its portion of the matrix in parallel. We model communication using the linear Hockey Model
[7], and all computation is done with the kij algorithm. For all partitions,

Texecution = Tcomm+ Tcomp (1)

Tcomm = 2N2 −N(‖ ϕ ‖x + ‖ ϕ ‖y) (2)

First we will show that no arbitrary partition is superior to either the Straight-Line or the Square-Corner
partition. The optimal partitioning scheme depends on the ratio of computational processing power between
the two processors. When this ratio, r, is less than 3 the Straight-Line partitioning provides the minimum
volume of communication. However, when r is greater than 3, Square-Corner partitioning minimizes
communication time. At r = 3, the two partitioning schemes are equivalent.

Theorem 1 (Arbitrary Partition): For SCB, there exists no arbitrary partition with a lower volume of
communication than either the Straight-Line or the Square-Corner partition.

Proof: Consider any arbitrary partition, ϕ. Repeatedly apply algorithm push in any direction.
Theorem 2 (push): The push algorithm output partition, ϕ1, will have lower, or at worst equal, com-

munication volume to the algorithm input partition, ϕ.
Proof: From (2) we know that Tcomm is given by 2N2 −N(‖ ϕ ‖x + ‖ ϕ ‖y). We observe,

Lemma 1: As (‖ ϕ ‖x + ‖ ϕ ‖y) increases, Tcomm decreases.
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push ↓ and ↑ on ϕ create ϕ1 such that:

For row k being cleaned,
If there exists some row i that was clean, but now dirty:
r(ϕ, i) = 0 and r(ϕ1, i) = 1

then by Axiom 1:
‖ ϕ1 ‖x = ‖ ϕ ‖x

else
‖ ϕ1 ‖x = ‖ ϕ ‖x +1

By Axiom 2:
‖ ϕ1 ‖y ≥ ‖ ϕ ‖y

push→ and ← on ϕ create ϕ1 such that:

For column k being cleaned,
If there exists some column j that was clean, but now dirty:
c(ϕ, j) = 0 and c(ϕ1, j) = 1

then by Axiom 3:
‖ ϕ1 ‖y = ‖ ϕ ‖y

else
‖ ϕ1 ‖y = ‖ ϕ ‖y +1

By Axiom 4:
‖ ϕ1 ‖x ≥ ‖ ϕ ‖x

By these definitions of all push operations we observe that for any push operation, (‖ ϕ1 ‖x + ‖
ϕ1 ‖y) ≥ (‖ ϕ ‖x + ‖ ϕ ‖y). Therefore, we conclude that all push operations will either decrease
communication time or leave it unchanged.

By repeatedly performing this operation, push, we incrementally lower the volume of communication,
and each resulting output partition is better than the input. If we apply the push until it can longer be
done anymore, we get the resulting partitions which minimize communication time. The optimal partition
will have all of the possible push operations performed, as leaving one unperformed may lead to a greater
communication volume and will certainly never lead to a lower communication volume.

Theorem 3 (Resulting Partitions): Applying the push algorithm until all 4 directions return as output,
ϕ1, such that ϕ1 = ϕ, the input results in one of 15 partitions.

Proof:
We have defined our problem to be limited only to numbers of elements which can be made to form

a rectangle of some kind. The partitions are given in Fig.4
Theorem 4 (Partition Location): The x, y coordinates of the smaller processor’s section of a data

partition does not affect the total volume of communication of that data partition.
Proof: The total volume of communication of a data partition is determined by the number of dirty

rows and columns. Two partitions with identical size and shape will create the same number of dirty
rows and columns, regardless of where they are placed.

Theorem 5 (Equivalent Partitions): All 15 resulting partitions are equivalent variations of the Straight-
Line or Square-Corner partitioning schemes.
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Fig. 4. The result of applying operations ↓, ↑, ←, and →, until the stopping point has been reached. Row 1 shows the result of
applying just a single transformation. Row 2 shows the result of applying a combination of two transformations. Row 3 shows the
possible results of applying three transformations, and Row 4 shows the result of applying all four transformations.

Proof: The 6 Straight-Line partitions are equivalent to each other, as are the 9 Square-Corner
partitions. The location of the Q portion of the partition with in the P portion does not affect the total
volume of communication necessary, and therefore is unimportant. For simplicity we depict the Straight-
Line as a rectangle with its N -length side adjacent to an edge of the partition, and the Square-Corner
as adjacent to two edges of the partition. Previous work has also shown the ideal shape of rectangle of
width less than N is a square[5]. So although some rectangles given by push may be non-square, but not
of length N , we will say they must conform to the Square-Corner scheme.
Therefore, from any arbitrary partition we have created a partition which is one of 15 possible outcomes,
all of which are variations of the Square-Corner or Straight-Line partition. These are guaranteed to have
lower, or equal, volumes of communication than any other possible partition. There exists no arbitrary
partition with a lower volume of communication.

Now that we have eliminated partitioning schemes other than Straight-Line and Square-Corner, we
focus on which of these is optimal in the given scenarios. The Straight-Line partition is understood to be
N × x in dimension, and the Square-Corner partition is understood to be q × q.

Theorem 6 (SCB): For serial communication with a barrier between communication and computation,
Square-Corner partitioning is optimal for all computational power ratios, r, greater than 3, and Straight-
Line partitioning is optimal for all ratios less than 3.

Proof: The Straight-Line partitioning total volume of communication is a constant, always equal
to N2. The Square-Corner partitioning total volume of communication is equal to 2Nq. We state that
2Nq < N2 subject to the conditions N, q > 0. The optimal value of q is given by q = N√

r+1
. Substituting
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this in, yields:

2N2

√
r + 1

< N2

2 <
√
r + 1

4 < r + 1

r > 3

We conclude that Square-Corner is optimal for all r > 3, and Straight-Line is optimal for all r < 3.

IV. PARALLEL COMMUNICATION WITH BARRIER - PCB

This scenario takes place in two steps. First, communication is done, with Processor P sending to
Processor Q, and Q sending to P, in parallel. Once the communication completes, both processors compute
their portion of the MMM in parallel. Again, the optimal partitioning scheme depends on the computational
power ratio, r, between the two processors. For ratios two and under, the Straight-Line partitioning
minimizes the volume of communication. However, when r is greater than 2, Square-Corner partitioning
minimizes the communication time.

Texecution = Tcomm+ Tcomp (3)
Tcomm = max(P → Q,Q→ P ) (4)

Tcomm = max[(2×#P )−N(‖ ρ ‖0x + ‖ ρ ‖0y), (2×#Q)−N(‖ ρ ‖1x + ‖ ρ ‖1y)]

Theorem 7 (Arbitrary Partition): For PCB, there exists no arbitrary partition with a lower volume of
communication than the Straight-Line or Square-Corner partition.

Proof: Consider any arbitrary partition, ϕ. Repeatedly apply algorithm push in any direction.
Theorem 8 (push): The push algorithm output partition, ϕ1, will have lower, or at worst equal, com-

munication volume to the algorithm input partition, ϕ.
Proof:

From the definition of the maximum function, and the definition of Tcomm, parallel, we make the
following observations:

1) Tcomm, parallel decreases as V P decreases if V P > V Q
2) Tcomm, parallel remains constant as V P decreases if V Q > V P
3) Tcomm, parallel remains constant as V Q increases if V P > V Q

VP will decrease or remain constant for all push operations on partition ρ.
a) : A push is defined to keep constant the number of elements in ∈ P and ∈ Q. From this fact

and from the long form of the definition of Tcomm, parallel, we observe Lemma 1: V P decreases as
(‖ ρ ‖0x + ‖ ρ ‖0y) increases.



11

b) :

push ↑ and ↓ of ρ are defined to create ρ1 such that:
For some k, r(ρ, k) = 1 and r(ρ1, k) = 0

By axiom 1,
If there exists some i such that r(ρ, i) = 0 and r(ρ1, i) = 1 then

‖ ρ1 ‖0x = ‖ ρ ‖0x
Else,

‖ ρ1 ‖0x = ‖ ρ ‖0x +1

By axiom 2,

‖ ρ1 ‖0y ≥ ‖ ρ ‖0y

push → and ← of ρ are defined to create ρ1 such that:
For some k, c(ρ, k) = 1 and c(ρ1, k) = 0

By axiom 3,
If there exists some j such that c(ρ, j) = 0 and c(ρ1, j) = 1 then

‖ ρ1 ‖0y = ‖ ρ ‖0y
Else,

‖ ρ1 ‖0y = ‖ ρ ‖0y +1

By axiom 4,

‖ ρ1 ‖0x ≥ ‖ ρ ‖0x
From these definitions we observe Lemma 2: For all push operations, (‖ ρ1 ‖0x + ‖ ρ1 ‖0y) ≥ (‖

ρ ‖0x + ‖ ρ ‖0y). By Lemmas 1 and 2, we conclude that V P decreases or remains constant for any push
operation.

c) :
By repeatedly performing this operation, push, we incrementally lower the volume of communication,

and each resulting output partition is better than the input. If we apply the push until it can longer be
done anymore, we get the resulting partitions which minimize communication time. The optimal partition
will have all of the possible push operations performed, as leaving one unperformed may lead to a greater
communication volume and will certainly never lead to a lower communication volume.

Theorem 9 (Resulting Partitions): Applying the push algorithm until all 4 directions return as output,
ϕ1, such that ϕ1 = ϕ, the input results in one of 15 partitions.

Proof: We have defined our problem to be limited only to numbers of elements which can be made
to form a rectangle of some kind. The partitions are given in Fig.4

Theorem 10 (Partition Location): The x, y coordinates of the smaller processor’s section of a data
partition does not affect the total volume of communication of that data partition.

Proof: The total volume of communication of a data partition is determined by the number of dirty
rows and columns. Two partitions with identical size and shape will create the same number of dirty
rows and columns, regardless of where they are placed.

Theorem 11 (Equivalent Partitions): All 15 resulting partitions are equivalent variations of the Straight-
Line or Square-Corner partitioning schemes.
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Proof: The 6 Straight-Line partitions are equivalent to each other, as are the 9 Square-Corner
partitions. The location of the Q portion of the partition with in the P portion does not affect the total
volume of communication necessary, and therefore is unimportant. For simplicity we depict the Straight-
Line as a rectangle with its N -length side adjacent to an edge of the partition, and the Square-Corner
as adjacent to two edges of the partition. Previous work has also shown the ideal shape of rectangle of
width less than N is a square[5]. So although some rectangles given by push may be non-square, but not
of length N , we will say they must conform to the Square-Corner scheme.
Therefore, from any arbitrary partition we have created a partition which is one of 15 possible outcomes,
all of which are variations of the Square-Corner or Straight-Line partition. These are guaranteed to have
lower, or equal, volumes of communication than any other possible partition. There exists no arbitrary
partition with a lower volume of communication.
Now that we have eliminated partitioning schemes other than Straight-Line and Square-Corner, we focus
on which of these is optimal in the given scenarios. The Straight-Line partition is understood to be N ×x
in dimension, and the Square-Corner partition is understood to be q × q.

Theorem 12 (PCB): For parallel communication with a barrier between communication and computa-
tion, Square-Corner partitioning is optimal for all ratios greater than 2, and Straight-Line partitioning is
optimal for all ratios less than 2.

Proof: For all power ratios, the communication volume for Straight-Line partitioning is N2 −Nx,
where x is the dimension of Processor Q’s portion and is given by x = N

r+1 . The total volume of
communication for Square-Corner partitioning depends on whether communication from P to Q, V P =
2Nq − 2q2 or Q to P, V Q = 2q2, dominates. V P > V Q when r > 3. Therefore, we compare Square-
Corner’s VQ to Straight-Line. For the conditions N, q, x > 0:

N2 −Nx < 2q2

N2 −N N

r + 1
< 2(

N√
r + 1

)2

N2 − N2

r + 1
< 2

N2

r + 1
r < 2

V. SERIAL COMMUNICATION WITH BULK OVERLAP - SCO

We now consider the scenarios where we use overlap, meaning we do communication and some
computation in parallel. Due to the layout of a Square-Corner partition, there is a section belonging
to Processor P that does not require communication in order to compute. This section of P, of size
(N − q)2, will be computed while communication takes place first in one direction, and then the other.
Only once the communication has completed does the computation begin on the other sections of P and
on Processor Q.

By taking advantage of this feature of the Square-Corner partitioning, the Square-Corner partition can
be made to have a lower total execution time than the Straight-Line partitioning for all power ratios.
Execution time using this strategy is given by,

Texe = max(max(Tcomm,P1) + (P2 + P3), (Tcomm+Q)) (5)

where P1, P2, P3, Q are the time taken to compute that section.
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Fig. 5. A partition divided between Processors P and Q. P1 is the subsection of P that does not need to be communicated to
Processor Q. Both P2 and P3 require communication.

Theorem 13 (Arbitrary Partition): For SCO, there exists no arbitrary partition with a lower volume of
communication than the Straight-Line or Square-Corner partition.
This proof is the same as that for SCB, as they both use serial communication. See above.

As the faster processor, P, gets a jump start on computing its section of the matrix, we will want to
adjust the proportion of the total matrix it receives, making it larger. Therefore, the optimal value for the
size of Processor Q, q, will decrease. To determine this optimal value of q, the Texe equation must be
put in terms of q. A single unit of computation is considered to be C[i, j] = A[i, k] ∗B[k, j] + C[i, j].

Tcomm = # of elements ∗ β = ((2Nq − 2q2) + 2q2)β = 2Nqβ

Sp = Speed of Processor P, units of computation/ second
Sq = Speed of Processor Q, units of computation/ second
y = units of computation/ matrix element = N

β = transfer time / matrix element

Each portion of the matrix is therefore equal to V ∗y
S , the volume of that section times N , divided by the

speed of the processor. Substituting all these, we find Texe is,

Texe = max(max

(
2Nqβ,

N (N − q)2

Sp

)
+ 2

Nq (N − q)
Sp

, 2Nqβ +
Nq2

Sq
) (6)

This equation will be easier to analyze and compare by factoring out the large constant, N3β, and
normalizing q as a proportion of N, q

N , so that q is understood to be 0 ≤ q ≤ 1. Also introduced is the
variable c, given by c = Sp∗β, which represents a ratio between computation and communication speeds.

Texe
N3β

= max(max

(
2

N
q,

(1− q)2

c

)
+ 2

(
q − q2

)
c

,
2

N
q +

q2

c
r

) (7)

The optimal value of q is the minimum of this function on the interval of {0, 1}. However, since a value
of q = 1 would indicate that Processor Q has been assigned the entire matrix, the interval of possible q
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Fig. 6. Graph of 3 possible functions of execution time for a sample N = 3000, Processor Ratio (r) = 5:1 and Communica-
tion/Computation ratio (c) = .05.

values can be made more specific. The largest q will be without overlap is when r = 1, and therefore
q = 1√

2
. We have already established that overlap will decrease the area assigned to Q, so it can certainly

be said that the optimal value of q is the minimum of Texe on the interval {0, 1√
2
}.

There are 3 functions that comprise the Texe equation. These functions and what they represent are as
follows,

y =
2

N
q + 2

q − q2

c
: Tcomm+ (P2 + P3) (8)

y =
(1− q)2

c
+ 2

q − q2

c
: P1 + (P2 + P3) (9)

y =
2

N
q +

q2r

c
: Tcomm+Q (10)

The first observation to make is that (8) is always less than (9) on the interval {0, 1√
2
}. Therefore for

possible values of q, it will never dominate the max function and can be safely ignored. Focusing on (9)
and (10), we note that (9) is concave down and (10) is concave up, and therefore the minimum on the
interval will be at the intersection of these two functions.

9 ∩ 10

(1− q)2

c
+ 2

q − q2

c
=

2

N
q +

q2r

c

0 =q2(r + 1) + q(
2c

N
)− 1

q =

−c
N +

√
c2

N2 + r + 1

r + 1

Theorem 14 (SCO): For serial communication with a bulk overlap between communication and P1
computation, Square-Corner partitioning is optimal with a lower total execution time than Straight-Line
partitioning for all processor power ratios.
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Proof: The Straight-Line partitioning has an execution time, once the constant N3β is removed and
x is normalized, given by Texe, SL = 1

N +max( 1−xc , rxc ). Because the layout of Straight-Line does not
allow for this type of easy overlap, its optimal x is still given by x = 1

r+1 .

Straight-Line Execution > Square-Corner Execution
1

N
+

1− x
c

>
(1− q)2

c
+ 2

q − q2

c

q2 > x− c

N

(

−c
N +

√
c2

N2 + r + 1

r + 1
)2 >

1

r + 1
− c

N

(
−c
N

+

√
c2

N2
+ r + 1)2 > (r + 1)− c

N
(r + 1)2

c2

N2
− 2c

N

√
c2

N2
+ r + 1 +

c2

N2
+ r + 1 >

r + 1− c

N
(r + 1)2

2c

N
+ (r + 1)2 > 2

√
c2

N2
+ r + 1

4c

N
(r + 1)2 + (r + 1)4 > 4(r + 1)

4c

N
+ r3 + 3r2 + 3r > 3

(always positive for c,N ≥ 0) + (> 3 for r ≥ 1) > 3

SL has a greater execution time for all c,N ≥ 0 and r ≥ 1

Therefore, by taking advantage of the overlap ready layout of the Square-Corner partitioning scheme, the
Square-Corner partitioning becomes optimal for all processor ratios.

VI. PARALLEL COMMUNICATION WITH BULK OVERLAP - PCO

In this algorithm, communication occurs in both directions in parallel while Processor P is also
computing its subsection, P1, which does not require communication. Once the communication is complete,
Processor P computes the remainder of its portion, while Processor Q computes in parallel. Square-Corner
execution time using this strategy the same as (5) where Tcomm = max(V P, V Q). Again, computation
of each portion of the matrix is V ∗y

S , the volume times N , divided by processor speed. Substituting these,
total execution time is given by,

Texe = max(max(max(2Nqβ − 2q2β, 2q2β),
N(N − q)2

Sp
)

+ 2
Nq(N − q)

Sp
,max(2Nqβ − 2q2β, 2q2β) +

Nq2

Sq
) (11)

Theorem 15 (Arbitrary Partition): For PCO, there exists no arbitrary partition with a lower volume of
communication than the Straight-Line or Square-Corner partition.
The proof of this is identical to the proof for PCB as they both use parallel communication. See above.
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Fig. 7. Graph of 5 possible parabolas for square corner partitioning with parallel communication and overlap. Equations 13 and
14, and 16 and 17 are nearly identical, respectively, and appear as a single curve. Given problem parameters N=3000, Processor
Ratio = 5:1, and Communication/Computation Ratio = .05.

Again, for analysis and comparison we factor out the large constant, N3β, and normalize q as a
proportion of N, q

N , so that q is understood to be 0 ≤ q ≤ 1. Also introduced is the variable c, given by
c = Sp ∗ β, which represents the ratio between computation and communication speeds.

Texe
N3β

= max(max(max(
2q

N
− 2q2

N
,
2q2

N
),
(1− q)2

c
)

+ 2
(q − q2)

c
,max(

2q

N
− 2q2

N
,
2q2

N
) +

rq2

c
) (12)

In order to compare this with Straight-Line partitioning, the optimal value of q must be found on the
interval {0, 1√

2
}. There are 5 functions that comprise (12). These functions and what they represent are

as follows,

y =
2q

N
− 2q2

N
+ 2

(q − q2)
c

: V P + (P2 + P3) (13)

y =
2q2

N
+ 2

(q − q2)
c

: V Q+ (P2 + P3) (14)

y =
(1− q)2

c
+ 2

(q − q2)
c

: P1 + (P2 + P3) (15)

y =
2q

N
− 2q2

N
+
rq2

c
: V P +Q (16)

y =
2q2

N
+
rq2

c
: V Q+Q (17)

Both (13) and (14) are less than (15) on the interval {0, 1√
2
}, and can be safely ignored. Of the remaining

3 equations, (15) is concave down and both (16) and (17) are concave up on the interval. The optimal
value of q, the minimum, is therefore at the intersection of (15), and whichever other function dominates.
For q < 1

2 , (16) dominates and for q > 1
2 (17) dominates. We have already established that Square-Corner

is superior for ratios greater than 2 using parallel communication. Ratios less than and equal to 2, will
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have q values greater than 1
2 , so the optimal value of q for the comparison is at (15) ∩ (17).

15 ∩ 17

(1− q)2

c
+ 2

(q − q2)
c

=
2q2

N
+
rq2

c

q =
1√

r + 1 + 2c
N

Theorem 16 (PCB): For parallel communication with a bulk overlap between communication and P1
computation, Square-Corner partitioning is optimal with a lower total execution time than Straight-Line
partitioning for all processor power ratios.

Proof: The Straight-Line partitioning has an execution time, once the constant N3β is removed and x
is normalized, given by Texe, SL = max( 1

N −
x
N ,

x
N )+max( 1−xc , rxc ). Of the 4 functions which comprise

this equation, only two dominate when x < 1
2 , which must always be true for Straight-Line partitioning.

Of these two functions, one is of negative slope, and the other of positive slope, so the minimum on the
interval is at their intersection. Again, this intersection is at x = 1

r+1 .

Straight-Line Execution > Square-Corner Execution
1

N
− x

N
+

1− x
c

>
1− q2

c

q2 +
c

N
> x+

cx

N
1

r + 1 + 2c
N

+
c

N
>

1

r + 1
+

c

N(r + 1)

1 +
c(r + 1 + 2c

N )

N
>
r + 1 + 2c

N

r + 1
+
c(r + 1 + 2c

N )

N(r + 1)

cr2

N
+
cr

N
+

2c2r

N2
>

2c

N

r + 1− 2

r
> −2c

N
is ≥ 0 when r ≥ 1 > is < 0

Therefore, for all c,N > 0 and r ≥ 1, Square-Corner partitioning is optimal when taking advantage of
the communication/computation overlap on the faster processor.

VII. PARALLEL INTERLEAVING OVERLAP - PIO

The bulk overlap operation is not the only way in which to overlap communication and computation.
The parallel kij algorithm we use to compute the matrices allows each processor to incrementally update
the result matrix as it receives the necessary data. We will refer to this as interleaving overlap. It occurs
as described in the following algorithm.
k ← 1
Send data corresponding to row and column k
for k = 1→ (N − 1) do

In Parallel:
Send data corresponding to row and column k + 1
Processor P updates C with data from row and column k
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Processor Q updates C with data from row and column k
end for
Processors P and Q update C with data from row and column N
For any given step k, the total amount of data being sent using this algorithm on a Square-Corner

partition will be q. We define the execution time of the Square-Corner partitioning to be given by,

Texe = 2βq + (N − 1)×max(2βq,
N2 − q2

Sp
,
q2

Sq
) + max(

N2 − q2

Sp
,
q2

Sq
) (18)

Similarly, we may use this algorithm for the Straight-Line partitioning, where the amount of data sent
at each step k will be N . We define the execution time of the Straight-Line partitioning to be given by,

Texe = Nβ + (N − 1)×max(Nβ,
N(N − x)

Sp
,
Nx

Sq
) + max(

N(N − x)
Sp

,
Nx

Sq
) (19)

Because there is no bulk overlap, the optimal size for the smaller partition is the same as for SCB and
PCB, 1

r+1 for Straight-Line and 1√
r+1

for Square-Corner.
Theorem 17 (Arbitrary Partition): For PIO, there exists no arbitrary partition with a lower volume of

communication than either the Straight-Line or the Square-Corner partition.
Proof: Note first that PIO completely serializes the communication for Square-Corner and Straight-

Line partitions. The communication takes place in one direction, and then the other. Therefore, commu-
nication time is the same as for any serial algorithm. See SCB above.

Intuitively, when communication dominates the PIO algorithm we expect the partition with the lower
volume of communication to be optimal. We have already shown that Square-Corner is optimal for
computational power ratios greater than 3, and Straight-Line for ratios less than 3. When c, the ratio of
communication and computation time, is such that computation dominates we expect the two partitions to
be equivalent, because we have optimally balanced the volume of computation between the two processors.
This is true if we look at the dominating term of each equation, the max function times (N−1). However,
because of the addition of communication time as the first term of the equations, whichever partition has
the lower volume communication volume will be a small amount more efficient for these values of c.
Since we are trying to find the optimal partition under all circumstances with this algorithm, we do not
ignore these terms.

Theorem 18 (PIO): For parallel interleaving overlap, Square-Corner is optimal for computational power
ratios, r, greater than 3, and Straight-Line is optimal for ratios less than 3.

Proof: We begin by giving these equations the same treatment as previously, removing the constant
N3β and normalizing x, q to x

N and q
N respectively. First we consider the values of c where communication

dominates. This occurs at c > N(1−x) for Straight-Line and c > N
2 (

1
q−q) for Square-Corner. Practically,

these are large values of c which would indicate a relatively small communication bandwidth compared
to the computational resources. When communication dominates our function, the formulas are,

Texe, SC =
2q

N
+

1− q2

c
(20)

Texe, SL =
1

N
+

1− x
c

(21)
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We begin by stating that for the given optimal values of x and q, Straight-Line is greater than Square-
Corner,

SL > SC

1

N
+

1− x
c

>
2q

N
+

1− q2

c

1

N
+

1− ( 1
r+1 )

c
>

2( 1√
r+1

)

N
+

1− ( 1√
r+1

)2

c

1 > 2(
1√
r + 1

)

r + 1 > 4

r > 3

Therefore, when c is such that communication dominates, Straight-Line is optimal for ratios less than 3,
and Square-Corner is optimal for ratios greater than 3.

When c is such that computation dominates, the formulas are,

Texe, SC =
2q

N2
+

1− q2

c
(22)

Texe, SL =
1

N2
+

1− x
c

(23)

We state that for the given optimal values of x and q, Straight-Line is greater than Square-Corner,

SL > SC

1

N2
+

1− x
c

>
2q

N2
+

1− q2

c

1

N2
+

1− ( 1
r+1 )

c
>

2( 1√
r+1

)

N2
+

1− ( 1√
r+1

)2

c

1 > 2(
1√
r + 1

)

r + 1 > 4

r > 3

Therefore, when c is such that computation dominates, Straight-Line is optimal for ratios less than 3, and
Square-Corner is optimal for ratios greater than 3.

VIII. SUMMARY OF RESULTS

We have found the general optimal solution for all matrix-matrix multiplication problems involving
two processors. For 2 processors with a barrier between communication and computation, Square-Corner
partitioning is optimal for ratios greater than 3 in serial communication and greater than 2 in parallel
communication, and Straight-Line partitioning is optimal for ratios less than 3 in serial communication
and less than 2 for parallel communication. However, if we overlap the computation that can be done
immediately on a square-corner partition with the communication, square-corner partitioning is optimal
for all power ratios of processors and communication/computation ratios for both serial and parallel
communication.
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