

SmartGridRPC: The new RPC model for high performance
Grid computing

Thomas Brady†, Jack Dongarra‡, Michele Guidolin†, Alexey Lastovetsky†, Keith Seymour‡

†School of Computer Science and Informatics, University College Dublin, Ireland
‡Department of Electrical Engineering and Computer Science, University of Tennessee, USA

Technical Report UCD-CSI-2009-10
October, 2009

ABSTRACT

 The paper presents the SmartGridRPC model, an extension of the GridRPC model, which
aims to achieve higher performance. The traditional GridRPC provides a programming
model and API for mapping individual tasks of an application in a distributed Grid
environment, which is based on the client-server model characterised by the star network
topology. SmartGridRPC provides a programming model and API for mapping a group of
tasks of an application in a distributed Grid environment, which is based on the fully
connected network topology. The SmartGridRPC programming model and API, its
implementation in SmartGridSolve and its performance advantages over the GridRPC
model are outlined in this paper. In addition, experimental results using a real-world
application are also presented.

1. INTRODUCTION

The remote procedure call (RPC) paradigm [1] is widely used in distributed computing. It
provides a straightforward procedure for executing parts of an application on a remote
computer. To execute a RPC, the application programmer does not need to learn a new
programming language but merely uses the RPC API. Using the API the application
programmer specifies the remote task to be performed, the server to execute the task, the location
of the input data on the user’s computer required by the task and the location on the user’s
computer where the results will be stored. The execution of the remote call involves transferring
input data from the user’s computer to the remote computer, executing the task on the remote
server and delivering output data from the remote computer to the user’s one.

GridRPC [2] is a standard promoted by the Open Grid Forum, which extends the traditional
RPC. GridRPC differs from the traditional RPC in that the programmer does not need to specify
the server to execute the task. When the programmer does not specify the server, the middleware
system, which implements the GridRPC API, is responsible for finding the remote executing
server. When the program runs, each GridRPC call results in the middleware mapping the call to

a remote server and then the middleware is responsible for the execution of that task on the
mapped server. Another difference is that GridRPC is a stubless model, meaning that client
programs do not need to be recompiled when services are changed or added. This facilitates the
creation of interfaces from interactive environments like Matlab, Mathematica, and IDL. A
number of Grid middleware systems have recently become GridRPC compliant including
GridSolve [3], Ninf-G [4] and DIET [5].

This simple extension to the RPC however has some limitations affecting the performance of
Grid applications. When using the traditional GridRPC to execute tasks remotely, the mapping
and execution of the task is one atomic operation, which cannot be separated. As a result, each
task is mapped separately and independently of other tasks of the application.

Another important aspect of the GridRPC model is its communication model. The
communication model of GridRPC is based on the client-server model or star network topology.
This means that a task can be executed on any of the servers and inputs/outputs can only traverse
the client-server links.

Mapping tasks individually on to the star network results in mapping solutions that are far
from optimal. If tasks are mapped individually, the mapping heuristic is unable to take into
account any of the tasks that follow the task being mapped. Consequently, the mapping heuristic
does not have the ability to optimally balance the load of computation and communication.
Another consequence of mapping tasks in this way is that dependencies between tasks are not
known at the time of mapping. Therefore this approach forces bridge communication. Bridge
communication occurs when the output of one task is required as an input to another task. In this
case, using the traditional GridRPC model, the output of the first task must be sent back to the
client and the client then subsequently sends it to the server executing the second task when it is
called.

Also, since dependencies are not known and the network is based on the client-server model,
it is impossible to employ any parallelism of communication between the tasks in the group. For
example, this can be implemented if there is a dependency between two tasks and the destination
task is not executed in parallel or immediately after the source task. In theory, this dependent
data could be sent to the destination task in parallel with any computation or communication on
any other machine (client or other servers) which happens in the intervening time. However,
since tasks are mapped individually on to a star network, this parallelism of communication
cannot be realized using the GridRPC model.

In this paper, we propose an enhancement of the traditional GridRPC model, which would
allow a group of tasks to be mapped collectively on to a fully connected network. This would
remove each of the limitations of the GridRPC model already described. The SmartGridRPC
model has extended the GridRPC model to support collective mapping of a group of tasks by
separating the mapping of tasks from their execution. This allows the group of tasks to be
mapped collectively and then executed collectively.

In addition, the traditional client-server model of GridRPC has been extended so that the
group of tasks can be collectively executed on to a network topology, which is fully connected.
This is a network topology where all servers can communicate directly or servers can cache their
outputs locally.

There are a number of advantages of mapping tasks collectively on to a fully connected
network. When mapping tasks individually, the communication and computation load of a
single task are only considered. However, when tasks are mapped collectively, the

communication and computation load of multiple tasks can be considered together and therefore
this load can be better distributed over the fully connected network. In addition, the relationships
between tasks can also be considered such as the data dependencies between tasks. This allows
bridge communication to be eliminated by mapping these dependencies on to virtual links
connecting servers. As a result, servers can send data directly to other servers and therefore do
not need to send it via the client. Eliminating bridge communication can significantly decrease
the overall communication time of an application and hence improve the overall performance of
the application because communication is often the more time consuming phase in a RPC
context.

In addition, this may also eliminate memory paging on the client, which would otherwise
occur when storing intermediate data. Also, since dependencies between tasks are known, it
means that remote communication of one task can be parallelized with other computation and
communication in the group.

The client-server model of GridRPC results in a communication network, which has a star
topology. Therefore, in this case for any given mapping of a group of tasks to remote servers
there will be only one communication path between any pair of servers that could be considered
when mapping. This path consists of two communication links connecting the servers with the
client machine. Any other path connecting the two servers obviously results in higher
communication cost.

However, if the communication network is fully connected, then there will be multiple
independent paths connecting the servers and each of these paths can be considered when
mapping. In other words, for each mapping of a group of tasks to remote servers in a star
communication network there is only one fixed communication scheme that can be employed.
However, when a group of tasks are mapped on a fully connected network there are many
communication schemes to choose from. These communication schemes may employ direct
communication, server broadcast, client broadcast or caching. Therefore, the mapping of a
group of tasks on a fully connected network not only involves the mapping of tasks to servers but
also the mapping of the dependencies between tasks on to the communication paths of the
network. This increases the mapping solution space and allows for further optimization to be
achieved by choosing the optimal paths for data to traverse between servers. This increase of the
solution space means that the mapping heuristics implemented in the SmartGridRPC model have
more potential of finding a more optimal solution than the mapping heuristics inherent in
implementations using the standard GridRPC model.

GridSolve is a middleware system that implements the GridRPC model. It enables users to
solve complex scientific tasks remotely on distributed resources. GridSolve emphasises ease-of-
use for the user and includes resource monitoring, mapping and service-level fault tolerance. In
addition to providing Fortran and C clients, GridSolve enables SCEs (such as Matlab) to be used
as clients, so domain scientists can use Grid resources from within their preferred environments.

SmartGridSolve [6] is an extension of GridSolve, which makes the GridSolve middleware
compliant with the SmartGridRPC model. SmartNetSolve [7] was previously implemented to
make the NetSolve [8] middleware, which was the predecessor of GridSolve, compliant with the
SmartGridRPC model.

The SmartGridSolve extension is interoperable with GridSolve. Therefore, if GridSolve is
installed with the SmartGridSolve extension, the user can choose whether to implement an
application using the standard GridRPC model or the extended SmartGridRPC model. In

addition, SmartGridSolve is incremental to the GridSolve system. Therefore, if the
SmartGridSolve extension is installed only on the client side, the system will be extended to
allow for collective mapping. If SmartGridSolve is installed on the client side and on only some
of the servers in the network, the system will be extended to allow for collective mapping on a
partially connected network. If it is installed on all servers, the system will be extended to allow
for collective mapping on the fully connected network.

The paper is outlined as follows. Section 2 gives the motivation of GridRPC and
SmartGridRPC models. Section 3 outlines research papers, which are related to the
SmartGridRPC model. The GridRPC programming model and API are described in Section 4.
The SmartGridRPC model and API are described in Section 5. Section 6, describes the
implementation of the GridRPC model in GridSolve and Section 7 describes the implementation
of the SmartGridRPC model in SmartGridSolve. Section 8 outlines the Hydropad application,
which is an astrophysics application we used to benchmark the GridRPC model and the
SmartGridRPC model. Section 9 gives experimental results, which compare the GridRPC model
with the SmartGridRPC model using the Hydropad application as a benchmark. The paper
concludes with Section 10.

2. MOTIVATION

2.1. Motivation: GridRPC model

The following are some of the key benefits of implementing GridRPC enabled applications:

• Improved performance of applications.
• Solution of larger scale applications.
• More control over applications.
• Solution of hardware specific applications.
• Portability.
• Easy and powerful development of applications.

Improved performance of applications: The performance related benefits include the

potential for faster solution of a problem of a given size and solution of problems of larger sizes.
There are two main reasons for this. Firstly, if parts of the code can be executed in parallel on
remote servers then the GridRPC model allows us to implement their parallel execution on
remote servers. This parallelisation will decrease the computation time of the application.

Secondly, if the Grid environment contains machines more powerful than the client machine,
then remote execution of the tasks of this application on these more powerful machines will also
decrease the computation time of the application.

However, this decrease of the computation time does not come for free. The application will
pay the communication cost due to remote execution of the tasks. If communication links
connecting the client machine and the remote servers are relatively slow, than the acceleration of
computations may be compensated by the communication cost resulting in the total execution
time of the application being higher than its sequential execution on the client machine.

Solution of large scale applications: The GridRPC model provides a solution for
applications, which cannot be executed on a client machine due to their strong demands on the

resources (memory, disk space etc.) of the client machine. In this case, GridRPC provides a
means to allocate these demands to remote servers in the Grid environment. For example, the
execution of parts of a memory intensive application on remote servers could eliminate heavy
paging that would otherwise occur on the client machine.

More control over the application: In some cases, applications that could be executed in a
Grid environment could potentially be executed in a high performance computer (HPC) system.
Unfortunately, in a HPC system, where applications are executed in batch mode, the user will not
have much control over the execution. Grid-enabled applications allow the user to have a high
control over its execution because, although the tasks are being computed in remote servers, the
main component of the application is running on the client machine. This can be important for
applications that need a direct interaction with the data produced. For a given application it
would be possible for a user to see intermediate results of the application. Furthermore, while
the user/client is checking these results, they could decide on the fly to change some parameters
of the application or restart the application.

Solution of hardware-specific applications: Some applications have a task that is
inherently remote. For example, a task could be a proprietary pre-compiled binary, which has
been compiled for a specific architecture, or a task may be tuned or tweaked to execute more
efficiently on a specific type of hardware such as an FPGA.

Furthermore, a task could require interaction with a resource that can only interface with a
particular machine such as a telescope, video camera, microscope etc. In such cases, an
environment that allows the resources (including software) to be used on a particular computer is
needed.

Portability: Since a Grid-enabled application comprises of a client application and server-
side compiled executables, the client application can be easily ported, compiled and executed on
a new machine in the Grid environment. This does not require the recompilation of server-side
task executables, which could make up a large proportion of the application. Also, client
implementations can be ported to different environments and languages easily since language-
specific stub generators are not required. This also enables many effortless cross-language
calling scenarios (e.g. C to Fortran, Matlab to C, etc.).

An easy and powerful development paradigm: Any task, which has been developed for
remote execution on GridRPC enabled application can be easily reused in other Grid
applications. This situation can reduce the programmer’s effort on developing a Grid application.
For example, the programmer can use already existing tasks that they would not have the time or
skill to write.

2.2. Motivation: SmartGridRPC model

SmartGridRPC model share the same benefits of the GridRPC model. In addition, the
following are the key benefits of implementing a SmartGridRPC enabled application over a
GridRPC enabled application:

• Improved balancing of computation load.
• Reduced volume of communication.
• Improved balancing of communication load.
• Increased parallelism of communication.
• Reduced memory usage and paging.

Improved mapping of computation load: In GridRPC, tasks get mapped individually on to

a client-server network. This could result in poor load balancing of computation. Since tasks get
mapped individually, it is impossible to balance the load of computation of a group of tasks,
which are executing in parallel. If tasks are mapped individually, each task will be mapped
without the knowledge of any of the subsequent parallel tasks. This means that if a large task
follows a smaller task, the mapping heuristic will give priority to the smaller task over the larger
task.

This is because when the smaller task is mapped, the mapping heuristic cannot take into
account that a larger task will be executing in parallel. Therefore, it maps the smaller task to the
faster server as this will yield the lowest execution time for this individual task. When the
mapping heuristic maps the larger task, it will assign it to the next fastest server as the fastest
server is busy executing the previous task. This is poor load balancing of computation.

However, if you implement the collective mapping of the SmartGridRPC model, then the
computation load can be better distributed over the network. In this case, if both tasks can be
mapped collectively then the larger task would be mapped to the faster server and the smaller to
the slower server. This improved balancing of the computation load will increase the
performance of the execution of these parallel tasks.

Reduced volume of communication: Since the GridRPC model maps tasks individually on
to a client-server network, the model forces bridge communication between tasks. This occurs
because dependencies are not known between tasks and data can only traverse the client-server
links. As a result, the source task can only send the dependent data to the destination task via the
client. This requires two communication steps: - the first from the source task to the client and
the second from the client to destination task. However, this can be eliminated with the
SmartGridRPC model, where tasks can be mapped collectively on to a network, which is fully
connected. Since tasks are mapped collectively, dependencies between tasks are known. These
dependencies can then be mapped on to virtual links connecting the source server to the
destination server, which is only one communication step. Therefore, the overall volume of
communication over the network will be reduced, which would result in improved application
performance.

Moreover, if the source task and destination task are both executing on the same server then
this output could be cached to the local file system or cached in memory, which would further
reduce the overall communication on the network and increase the performance of the
application.

Improved mapping of communication load: Since the GridRPC model is based on the
client-server model, communication can only be mapped to client server links. This may result in
the client links becoming heavily loaded.

SmartGridRPC can increase the performance of an application by better distribution of
communication load over the network. When tasks are mapped collectively, the volume of
communication of each task in the group of tasks is known. Since the sizes of inputs and outputs
of each task are known and this communication is mapped onto a network, which is fully
connected, this communication can be better distributed over the fully connected network. This
improved load balancing of communication will result in improved overall communication times
and hence improved application performance.

Increased parallelism of communication: In much the same way that the GridRPC model
improves on the RPC model with the parallelism of computation; the SmartGridRPC improves
on the GridRPC model with the parallelism of communication.

With the GridRPC model, the parallelism of communication is limited to the sending of inputs
to a non-blocking task, which is an asynchronous operation.

With the SmartGridRPC model any communication on one machine can be done in parallel
with computation or communication on any other. This asynchronous communication is only
achievable since the dependencies between tasks are known prior to the execution of the group
due to the collective mapping.

This parallelism of communication can be advantageous if a task executing on one server has
a dependency on another task, which will be executed on another server, and the destination task
is not executed immediately after the source task. In this case, this communication can be done
asynchronously. This means that the server initiates the communication but does not wait for it
to finish. Therefore, this communication can be done in parallel with any other computation or
any communication on any other machine (client or servers), which happens in the intervening
time.

In addition, this parallelism of communication can be beneficial if the client broadcasts an
argument to more than one task, which is to be executed on different machines. If any of the
tasks are not executing immediately after the communication, then the communication to these
tasks can be done in parallel with any computation on the client machine and computation or
communication on any other server, which happens in the intervening time. The same is true for
server broadcast communication.

This parallelism of communication reduces overall communication times and thus improves
the overall performance of the group of tasks executing on the fully connected network.

Reduced memory usage and paging: The direct communication between servers and the
data caching that SmartGridRPC model implements mean that intermediate results do not have
to be sent back to the client. This minimizes the amount of memory used on the client. This
could eliminate any paging on the client, which would otherwise occur. This elimination of
paging would considerably increase the performance of an application.

3. RELATED RESEARCH

This section examines those systems, which implement the GridRPC model (i.e. GridSolve,
Ninf-G, DIET) and their predecessors (i.e. NetSolve and Ninf), and will focus on the papers,
which mostly relate to our research, specifically those papers, which fall into the following
categories:

• Papers presenting extensions, which extend the client-server model to implement direct
communication between servers or data persistence.

• Papers presenting extensions, which extend the system so that a group of tasks can be
collectively mapped.

These papers will be presented in chronological order and we will outline the limitations of
each approach in comparison with the SmartGridRPC model.

Both NetSolve and Ninf, the predecessors to the GridSolve and Ninf-G system, were started
at roughly the same time. The projects were both started in 1994 and were first released in 1995.

These systems were designed to resolve the difficulty of performing computational science
problems over loosely connected geographically disperse networks. The computational libraries,
which the most common computational problems use, may be highly optimized for only certain
platforms and do not provide a convenient interface to other computer systems. Other libraries
demand considerable programming effort from the user, who may not have the time to learn the
required programming techniques. The resolution of these issues was the motivation behind both
projects. These systems were called Network Enabled Server (NES) or Problem Solving
Environment (PSE) systems and employed a RPC-style model to perform remote computations.

In 1999, task farming [9] was introduced to NetSolve. The farming feature of NetSolve
allowed a certain class of tasks, called farming jobs, to be processed collectively. A farming job
fell into the class of embarrassingly parallel programs, for which it is very clear how to partition
the jobs for parallel programming environments. While these tasks were processed collectively,
they were not mapped collectively. Each task was individually mapped but computation loads of
subsequent tasks were dynamically adjusted at run-time based on previous task response times.
The limitations of task farming are:

• It can only be implemented for a certain class of application.
• Tasks are mapped individually and therefore the mapping heuristic cannot take advantage

of characteristics of the group such as data dependencies.
• Conditional statements cannot exist in the scope of the task farming job.
• Client computation cannot exist in the scope of the task farming job
• The group of tasks is called as one atomic call, therefore intermediate results cannot be

viewed or analysed.

In 2000, task sequencing [10] was introduced to NetSolve. Using the task sequencing API a
group of tasks could be processed collectively so that data dependencies could be analysed. This
group of task is subsequently mapped on to a single server and if any data dependencies exist,
the data would be stored locally and not sent back to the client. Therefore, using this API data
persistency could be implemented and therefore if dependencies exist, bridge communication
could be eliminated.
The limitations of task sequencing are:

• The group of tasks can only be mapped to a single server.
o This computation load could be better distributed over a number of servers.
o There may not be a server in the environment that can execute all tasks.

• Conditional statements, such as for, if, while, are forbidden between tasks.
• Client computation cannot exist in the scope of the task sequencing job.

In 2001, data transfers between servers were introduced to NetSolve [11]. This was achieved

with an added function to the API, which allowed the user to explicitly outline data
dependencies. If there are two tasks, which have a data dependency and are executing on
different servers, this data would be stored in the source server when it finished execution and
then the destination server would pull the argument from that server when it is called for
execution.
The limitations to this approach are:

• Tasks are mapped individually.
• Push communication cannot be implemented when tasks are mapped individually.

o Increased communication times since communication cannot be done in parallel
with computation or other communication.

• The user has to explicitly specify dependencies.
o More labour intensive.
o More prone to error.

This feature was later implemented in the GridRPC model in the GridSolve system [12],

DIET [13] and NINF-G [14] and had the same limitations.
In July 2002, the DIET system was launched, which implemented an architecture where the

scheduler/agent is scattered across a hierarchy of Local Agents and Master Agents. The
motivation for this architecture was that it was more scalable and solved the problem of
bottlenecks in a centralised agent/scheduler when many clients try to access several servers. In
addition, the DIET system employed direct communication between servers and data
persistency. Where a dependency existed between tasks, this output would remain on the source
server. When the destination task is called for execution, this data would be pulled from the
source server. If the source server is the same as the destination server this output would be
stored and retrieved locally (data persistency).
The limitations of this approach are:

• Tasks are mapped individually.
• Push communication cannot be implemented when tasks are mapped individually

o Increased communication times since communication cannot be done in parallel
with computation or other communication.

In 2002, Distributed Storage Interface (DSI) [15] was implemented in NetSolve. The DSI
was another feature that attempted to minimize data movement in the NetSolve middleware.
With DSI, data could be stored in the storage depots, which are close to servers, which require
the data. Instead of having multiple transmissions of the same data, DSI allows the transfer of
data once from the client to storage depot. A data handle is then used to retrieve only the
relevant portions of the stored data when running computations. This reduced communication
times but again did not change how tasks are fundamentally mapped.

Also in 2002 the Global Grid Forum (now known as the Open Grid Forum) standardized the
RPC mechanism for Grid computing with the GridRPC programming model and API [2]. This
was implemented in NetSolve [16] and Ninf-G [4]. Ninf-G is the second generation of Ninf and
was implemented on top of the Globus toolkit [17]. The Globus toolkit provides a reference
implementation of standard protocols and it deploys Globus Security Infrastructure so that all the
components of Ninf-G are protected properly. In 2003, GridSolve, which is the second
generation of NetSolve, was released and provided full support for the GridRPC model.

In 2005, the GridRPC model was implemented in DIET [5]. This paper also introduced the
Data Tree Manager (DTM). The DTM allows data to be left on a server after computation and
then retrieved from another server during its computation. This paper described how JUXMEM
(Juxtaposed memory) could be used in the DIET system to allow servers to share memory data.
Both the DTM and JUXMEM avoided multiple transmissions of the same data from a client to a
server but again tasks could only be processed and mapped individually.
The limitations to this approach are:

• Tasks are mapped individually.

• Push communication is not implemented.

SmartNetSolve was designed in 2004, implemented in 2005 and was first presented in [7] in
April 2006. SmartNetSolve is the predecessor to SmartGridSolve. SmartNetSolve allowed a
group of tasks to be collectively mapped and collectively executed on a fully connected network.
The initial design allowed the user to give a description of the group of tasks and then at run-time
this description would be used to generate a task graph. This task graph and a graph of the
network were used to generate a mapping solution, which was then in turn used to execute the
tasks on the fully connected network. Initially, the description of the task graph was given using
an XML file, which was read at run-time. A new language, Application Definition Language
(ADL) [18], was also being designed to make this more user friendly for the user.

In September 2006, distributed task sequencing was developed for the GridRPC model [19].
A new function was introduced that allows direct data transfer between servers when executing a
task sequencing job in a Grid environment. This meant that multiple servers could be used and
not just a single server as was originally a restriction of task sequencing.
The limitations of this approach are:

• Tasks were not mapped collectively.
• Conditional statements cannot exist in the scope of the task sequencing job.
• Client computation cannot exist in the scope of the task sequencing job.
• Push communication is not implemented.

In October 2006, the special agent called MADAG was implemented in DIET, which handled

workflow submissions [20]. The user gives a description of this workflow using an XML file
including the values of any arguments (i.e. element values of vectors, matrices, etc). Using the
DIET API, the user references the file, which has the DAG description. This is used to create a
DAG or task graph, which is submitted to the MADAG agent, which is responsible for scheduling
the DAG. This is implemented for the DIET API and has not yet been implemented for the
GridRPC model and API. This implementation does not follow the RPC style of calling each
task in the application. Instead, the application calls a function that submits the entire task graph
as a single entity.
The limitations to this approach are:

• Since this approach does not follow the GridRPC model, intermediate results cannot be
sent back to the client.

• The task graph has to be known at compile time. Therefore, no conditional statements can
exist and initial values of input matrices, vectors etc. have to be known before run-time.

• Client computation cannot exist between tasks.
• It is not user friendly as it can be difficult and time consuming to write the XML

description of a task graph.
• Writing XML files to generate task graphs is more prone to error than if the task graphs

were automatically generated by the system.

Since this initial design of MADAG system, a GUI has been developed, which has made it
more user friendly [21]. However, this is also prone to error due to the fact that the application
programmer has to outline the task graph and in addition it is still more labour intensive than if
the task graph was automatically generated.

In late 2006, work began on SmartGridSolve and the SmartGridRPC model to address the
limitations described above. This was presented in 2008 [6].
4. GRIDRPC PROGRAMMING MODEL AND API

The aim of the GridRPC model is to provide a standardized, portable and simple
programming interface for Remote Procedure Call. It intends to unify client access to existing
Grid computing systems (such as GridSolve, Ninf-G, DIET and OmniRPC). This is done by
providing a single standardized, portable and simple programming interface for Remote
Procedure Call (figure 1).

Middleware
GridRPC Model/API

Application

Figure 1: Overview of GridRPC model/API

This standardisation provides portability of the programmers’ source code across all GridRPC
implemented platforms. Since the GridRPC model specifies the API and the programming
model but does not dictate the implementation details of the servers, which will execute the
remote procedure call, there may be multiple different middleware implementation of the
GridRPC model, in which the source code could be executed on.

4.1. Design of the GridRPC programming model

The functions presented in this section are shared by all the implementations of the GridRPC
model. However the mechanics of these functions differ in each implementation.

Register discovery: The servers of the Grid environment register the tasks, which they can
execute with a “registry”. This involves sending information such as how the client should
interface with the task and what type of arguments the server expects when the task is called (the
calling sequence). In this paper, the registry will be an abstract term for the entity/entities, which
stores the information about the registered tasks and the underlying network. This may be a
single entity, such as the Agent in GridSolve, or several entities such as the MDS (or LDIF),
running on servers in Ninf-G, or the Global Agents and Local Agents, running in the DIET
system.

Run-time of client application: When the GridRPC call grpc_function_handle_default is
invoked, the client contacts the registry to look-up a desired task and receives a handle, which is
used by the client to interface with the remote task. A task handle is a small structure that
describes various aspects of the task and its arguments such as:

• The task name (dgesv, dgemm etc.)
• The object types of the arguments (scalars, vectors, matrices etc.)
• The data type of the arguments (integer, float, double, complex etc)
• Whether the arguments are inputs or outputs.

The client then uses the handle to call the task, which eventually returns the results. Each
GridRPC call gets processed individually, where each task is discovered (task look-up) and
executed separately from all the other tasks in the application.

Currently a task is discovered by explicitly asking the registry for a known function through a
string look-up. For applications, which are run using the GridSolve middleware, the discovery
mechanism is done via the GridSolve agent. In Ninf -G, discovery is done via the Globus MDS,
which runs on each server, and in DIET discovery is done via the Global Agent. The GridRPC
model does not dictate the mechanics of resource discovery since different underlying GridRPC
implementations may use vastly different protocols.

GridSolve and DIET are GridRPC systems that can perform dynamic mapping of tasks.
Discovery for dynamic mapping also involves discovery of performance models, which are used
by the mapping heuristics. The performance models for DIET are the FAST prediction tool [5],
CORI [21] and NWS [5]. The performance models for GridSolve are described in section 6.3.

4.2. GridRPC: API and semantics

Now we will introduce the fundamental objects and functions of the GridRPC API and
explain their syntax and semantics.

The two fundamental objects in the GridRPC model are the task handles and the session IDs.
The task handle represents a mapping from a task name to an instance of that task on a particular
server.

Once a particular task-to-server mapping has been established by initializing a task handle, all
GridRPC calls using that task handle will be executed on the server specified in that binding. In
GridRPC systems, which perform dynamic resource discovery and mapping, it is possible to
delay the selection of the server until the task is called. In this case, resource discovery and
mapping is done when the GridRPC task call is invoked with this initialized handle. In theory,
there is more chance to choose a “better” server in this way, since at the time of invocation more
information regarding the task and network is known, such as the size of input/outputs,
complexity of task and dynamic performance of client-server links.

The two types of GridRPC task call functions are blocking calls and non-blocking calls. The
grpc_call function makes a blocking remote procedure call with a variable number of arguments.
This means the function does not return until the task has completed and the client has received
all outputs from the server.

The grpc_call_async function makes a non-blocking remote procedure call with a variable
number arguments. When this call is invoked, the remote task and data transfer of the input are
initiated and the function returns. This means that either the client computation or server
computation can be done in parallel with the grpc_call_async call.

The grpc_wait function waits for the result of the asynchronous call with the supplied session
ID. The grpc_wait_all function waits for all preceding asynchronous calls.

4.3 GridRPC: A GridRPC application

Table 1 is a simple application, which uses the GridRPC API.

Table 1: GridRPC model – Example application.

It comprises of three ta
set up so that the r
“bind_server_at_call_time
name or the user could ass

The task “mmul” takes
the one output matrix. In
time as they can only be
Therefore, it is impossible
of inputs and outputs and
difficult decision even if t
of underlying networks are

It is also impossible fo
resources and map tasks at
the current GridRPC mode
when the system maps the

1 This special string is a GridSolve-spec
main()
{
 int N;
 int M;
 double A[N*N], B[N*N], C[N*N];
 double D[M*M], E[M*M], F[M*M], G[M*M];

 grpc_function_handle_t h1, h2, h3;
 grpc_session_t s1, s2;
 grpc_initialize(argv[1]);

 /* initialize */
 char * hndl_str= “bind_server_at_call_time”;

 grpc_function_handle_init(&h1, hndl_str,"mmul/mmul");
 grpc_function_handle_init(&h2, hndl_str, "mmul/mmul");
 grpc_function_handle_init(&h3, hndl_str, "mmul/mmul");

 N=getNSize();
 initMatA(N, A); initMatB(N, B);
 if(grpc_call_asnc(&h1,&s1, N, A, B, C)!= GRPC_NO_ERROR) {
 fprintf(stderr, "Error in grpc_call\n");
 exit(1);
 }

 M=getMSize();
 initMatD(M, D); initMatD(M, E);
 if(grpc_call_async(&h2, &s2, M, D, E, F)!=GRPC_NO_ERROR){
 fprintf(stderr, "Error in grpc_call\n");
 exit(1);
 }

 grpc_wait(s1);
 grpc_wait(s2);

 if (grpc_call(&h3, M, C , F, G) != GRPC_NO_ERROR) {
 fprintf(stderr, "Error in grpc_call\n");
 exit(1);
 }

 grpc_function_handle_destruct(&h1);
 grpc_function_handle_destruct(&h2);
 grpc_function_handle_destruct(&h3);
 ...
 grpc_finalize();
}
sk handles and three corresponding remote calls. The task handles are
emote call is bound to a server at call time by passing
” 1 as a parameter. This string could be substituted with a server host
ign it to the default server by calling grpc_function_handle_default.
 four arguments: - the size of the matrices, the two input matrices and
 this application, the size of the matrices are not known prior to run-

established by executing the local functions (initMatA and initMatB).
 for a user to decide which servers to assign which tasks since the size
 complexity are not known until the application is run. This is a

he sizes of the matrices are known before run-time as the performance
 dynamic and difficult to predict in Grid environments.
r a dynamic GridRPC system such as GridSolve, which can discover
 run-time, to optimally map the tasks in this application. This is due to
l only permitting a single task to be processed at any time. Therefore,
 GridRPC task call executing handle h1, it has no knowledge of what

ific workaround to enable lazy binding in GridRPC.

tasks are executing in parallel with this task and the computation load of the tasks executing in
parallel.

Consider the following scenario - M is initialized to 1000 and N is initialized to 100.
Therefore, the computational load of the first task will be far less than that of the second task. In
this circumstance, when the system maps the function handle h1, it will map this to the fastest
server as this will yield the lowest execution time for this task. Then, when the system maps the
function executing handle h2, it will map it to the second fastest server as the fastest server is
currently heavily loaded with the first task. This is poor load balancing of computation and will
affect the overall performance of the parallel execution of both tasks.

In addition, since tasks are processed individually in the GridRPC model, it is impossible for
systems, which implement this model, to know the dependencies between tasks. Since
dependencies between tasks are not known and the communication model of GridRPC model is
based on the client-server model, bridge communication between remote tasks is forced. With
the GridRPC model, this dependent argument would have to be sent from the source task to the
destination task via the client, which is two communication steps. This necessity for the client to
buffer intermediate data may also cause memory paging on the client. In this application, the
third task, h3, is dependent on argument F from the second task h2 and argument C from task h1.
In this case, the only way to send F from the server executing h2 and C from the server executing
h1 to the server executing h3 is via the client, which is two communication steps. Mapping tasks
individually in this application has forced bridge communication and increased the amount of
memory used on the client. This will affect the overall volume of communication and may cause
paging on the client, which would significantly affect the performance of the application. In
addition, since tasks are mapped individually on to a star network, parallelism of remote
communication cannot be employed. In this case, if dependencies were known, argument C
could be sent from the server executing h1 to the server executing h3 in parallel with
computation and communication of task h2 (permitting that task h2 has been assigned a different
server than h3).

From this application, it is evident that the potential for higher performance applications
would be increased if we could map tasks collectively as a group on to a network, which is fully
connected. This is the premise of the SmartGridRPC model.

5. SMARTGRIDRPC PROGRAMMING MODEL AND API

The aim of the SmartGridRPC model is to enhance the GridRPC model by providing
functionality for collective mapping of a group of tasks on a fully connected network.

The SmartGridRPC programming model is designed so that when it is implemented it is
interoperable with the existing GridRPC implementation (figure 2). Therefore, if any
middleware has been extended to be made SmartGridRPC compliant, the application
programmer has the option whether their application is implemented for the SmartGridRPC
model, where tasks are mapped collectively on to a fully connected network or for the standard
GridRPC model, where tasks are mapped individually on to a client-server star network.

In addition, the SmartGridRPC model is designed so that when it is implemented it is
incremental to the GridRPC system. Therefore, if the SmartGridRPC model is installed only on
the client side, the system will be extended to allow for collective mapping. If the
SmartGridRPC model is installed on the client side and on only some of the servers in the

network, the system will be extended to allow for collective mapping on a partially connected
network. If it is installed on all servers, the system will be extended to allow for collective
mapping on the fully connected network.

Middleware
SmartGridRPC GridRPC

Application

Figure 2: Overview of SmartGridRPC model/API

5.1. SmartGridRPC programming model

The SmartGridRPC model provides an API, which allows the application programmer to
specify a block of code, in which a group of GridRPC task calls should be mapped collectively.
Then, when the application is run, the specified group of tasks in this block of code is processed
collectively and each operation in the GridRPC call is separated and done collectively for all
tasks in the group. Namely, all tasks in the group are discovered collectively, mapped
collectively and executed collectively on the fully connected network. In the discovery phase,
performance models are generated for estimating the execution time of the group of tasks on the
fully connected network. In the mapping phase, the performance models are used by the
mapping heuristic to generate a mapping solution for the group of tasks. In the execution phase,
the group of tasks is executed on the fully connected network according to the mapping solution
generated.

In the context of this paper, a performance model is any structure, function, parameter etc.,
which are used to estimate the execution time of tasks in the distributed environment. The
SmartGridRPC performance model refers to performance models, which are used to estimate the
time of executing a group of tasks on the fully connected network. The GridRPC performance
model refers to performance models, which are used to estimate the execution time of an
individual task on a star network. A mapping heuristic is an algorithm, which aims to generate a
mapping solution that satisfies a certain criterion, for example, minimum completion time,
minimum perturbation etc. The SmartGridRPC mapping heuristics refer to mapping heuristics,
which map a group of tasks on to a fully connected network. The GridRPC mapping heuristics
refer to mapping heuristics which map an individual task on to a client-server network.
Furthermore, a mapping solution is a structure, which outlines how tasks should be executed on
the distributed network. The SmartGridRPC mapping solution outlines both a task-to-server
mapping of each task in the group to a server in the network and the communication operations
between the tasks in the group. The GridRPC mapping solution outlines the server list, which
specifies where the called task should be executed, and the backup servers which should execute
the task should the execution fail.

The collective mapping of the SmartGridRPC model allows the mapping heuristics to
estimate the execution time of more mapping solutions than if these tasks were mapped
individually and therefore have higher potential of finding a more optimal solution.

The job of generating the performance models is divided between the different components of
GridRPC architecture (i.e. client, server and registry). The components may only be capable of
constructing part of the performance model required to estimate the groups’ execution time.

Therefore, the registry accumulates these parts from the different components and generates the
required performance models.

There are numerous methods for estimating the execution time of the group of tasks on a fully
connected network so the implemented performance models are not specified in the
SmartGridRPC model. Examples of performance models would be the ones currently
implemented in SmartGridSolve, which have extended the performance models used in
GridSolve (section 6.3). In the future, SmartGridSolve will implement performance models such
as the Functional Performance Model, which is described in [22][23]. Other possible
implementations could include the Network Weather Service [24], the MDS directories (Globus,
Ninf) [4] and the Historical Trace Manager (GridSolve) [25]. In general, in the SmartGridRPC
model, the performance models are used to estimate:

• The execution time of a task on a server.
• The execution time of multiple tasks on a server and the affect the execution each task has

on the other (perturbation).
• The communication time of sending inputs and outputs between client and server.
• The communication time of sending inputs and outputs between different servers.

Mapping heuristics implement a certain methodology that uses these performance models to

generate a mapping solution, which satisfies a certain criterion. Examples of mapping solutions
include the greedy mapping heuristic and the exhaustive mapping heuristics, which have been
currently implemented in SmartGridSolve. There has been extensive research done in the area of
mapping heuristics [26] so this is not the focus of our study.

The following sections describe the programming model of SmartGridRPC in the
circumstance where the performance models are generated on the registry and the group of tasks
is mapped by a mapping heuristic on the registry. However, the SmartGridRPC model could
have an alternative implementation. These performance models could be generated on the client
and the group of tasks could also be mapped by a mapping heuristic on the client. This may be a
more suitable model for systems, such as Ninf-G, which have no central daemon like the
GridSolve Agent or the DIET Global Agent.

The SmartGridRPC map function separates the GridRPC call operations into three distinct
phases so they can be done for all tasks collectively:

• Discovery phase – The registry discovers all the performance models necessary for
estimating the execution time of the group of tasks on a fully connected network.

• Mapping phase – The mapping heuristic uses the performance models to generate a
mapping solution for the group of tasks.

• Execution phase - The group of tasks is executed on the fully connected network according
to the mapping solution.

Register discovery: The servers provide the part of the performance model, which would

facilitate the modeling of the execution of its available tasks on the underlying network. This
partial model can either be automatically generated by the server or has to be explicitly specified
or both. This partial model will be referred to as the server PM.

As previously mentioned, the SmartGridRPC model does not specify how to implement the
server PM as there are many possible implementations. Exactly when the server’s PM is sent to

the registry is also not specified by the SmartGridRPC model as this would depend on the type of
performance model implemented.

But for example, the server PM could be sent to the registry upon registration and then
updated after a certain event has occurred (i.e. when the CPU load or communication load has
changed beyond a certain threshold) or when a certain time interval has elapsed. Or it may be
updated during the run-time of the application when actual running times of tasks are used to
build the performance model. It is suffice to say that the server PM is updated on the registry
and is stored there until it is required during the run-time of a client application.

Client application run-time: The client also provides a part of the performance model,
which is sent to the registry during the run-time of the client application. This will be referred to
as the client PM. This part of the performance model is application-specific such as the list of
tasks in the group, their order, the dependencies between tasks and the values of the arguments in
the calling sequences. In addition, the client PM specifies the performance of the client-server
links.

In order to determine the parts of the performance model of the group of tasks, which are
application-specific, each task, which has been requested to be mapped collectively, will be
iterated through twice. On the first iteration, each GridRPC task call is discovered but not
executed. This is the discovery phase. After all tasks in the group are discovered, the client
determines the performance of the client-server links and sends the client PM to the registry.
The registry then generates the performance models based on the stored server PM and the client
PM. Based on these performance models, the mapping heuristic generates a mapping solution.
This is the mapping phase. On the second iteration through the group of tasks, each task is then
executed according to the mapping solution generated. This is the execution phase. This
approach of iterating twice through the group tasks to separate the discovery, mapping and
execution of tasks into three distinct phases is the basis that allows the SmartGridRPC model to
collectively map and then collectively execute a group of tasks.

The run-time map function, grpc_map, is part of the SmartGridRPC API and allows the
application programmer to specify a group of GridRPC calls to map collectively.

This is done by using a set of parenthesis, which follows the map function, to specify a block
of code, which consists of the group of GridRPC task calls that should be mapped collectively: -

 grpc_map(char * mapping_heuristic_name){
 ...
 //group of GridRPC calls to map collectively
 ...
 }

When this function is called, the code and GridRPC task calls within the parenthesis of the
function are iterated through twice as previously described.

Discovery phase: On the first iteration through the group of tasks, each GridRPC task call
within the parenthesis is discovered but not executed so therefore all tasks in the group can be
discovered collectively. This is different to the GridRPC model, which only allows a single task
to be discovered at any one time. The client can therefore look up and retrieve handles for all
tasks in the group at the same time. In addition to sending the handles, the registry also sends
back a list of all the servers that can execute each task. The client then determines the
performance of the client-server links to the servers in the list. The client may only determine

the performance of some of these links, depending on how many servers are in this list, or may
not determine the performance of any of the links if the arguments being sent over the links are
small. Exactly how the client determines the performance of these links is not specified by the
SmartGridRPC model. This could be implemented using NWS sensors, ping-pong benchmarks,
MDS directory or any other conceivable method for determining the performance of
communication links.

The client now sends the client PM to the registry. The client PM specifies the order of tasks
in the group, their dependencies and the values of each argument in the calling sequence of each
task and the performance of the client-server links. This does not involve sending non-scalar
arguments, such as matrices or vectors, but just the pointer value as this will be used to
determine the dependencies between tasks. The registry then uses the server PM and client PM
to generate the performance models for estimating the time of executing a group of tasks on the
fully connected network. These performance models are then used in the mapping phase to
generate a mapping solution.

Mapping Phase: Based on the performance models, the mapping heuristic then produces a
mapping solution, which satisfies a certain criterion, for example, minimizing the execution time
of tasks. The implemented mapping heuristic is chosen by the application programmer using the
SmartGridRPC API.

There is an extensive number of possible mapping heuristics that could be implemented and
therefore the mapping heuristics implemented are not bound by the SmartGridRPC model.
However, the SmartGridRPC framework allows different mapping heuristics and different
performance models to be added and therefore provides an ideal framework for testing and
evaluating these performance models and mapping heuristics.

Execution Phase: The execution phase occurs on the second iteration through the group of
tasks. In this phase, each GridRPC call is executed according to the mapping solution generated
by the mapping heuristic on the previous iteration. The mapping solution not only outlines the
task-to-server mapping but also the remote communication operations between the tasks in the
group.

5.2. SmartGridRPC: API and semantics

The SmartGridRPC API allows a user to specify a group of tasks that should be mapped
collectively on a fully connected network. The SmartGridRPC map function is used for
specifying the block of code, which consists of the group of GridRPC tasks calls that is to be
mapped collectively.

When the grpc_map function is called, the code within its parenthesis will be iterated through
twice as previously described in section 5.1. After the first iteration through the group of tasks,
the mapping heuristic specified by the parameter “mapping_heuristic_name” of the grpc_map
function generates a mapping solution.

The mapping solution outlines a task to server mapping and also the communication
operations between tasks. These communication operations include:
- Client-server communication

o Standard GridRPC communication
- Server-server communication

o Server sends a single argument to another server
- Client broadcasting

o Client sends a single argument to multiple servers.
- Server broadcasting

o Server sends a single argument to multiple servers.
- Server caching

o Server stores an argument locally for future tasks.

As a result, the network may have:
• A fully connected topology - where all the servers are SmartGridSolve enabled servers

(SmartServers), which can communicate directly with each other.
• A partially connected topology – where only some of the servers are SmartServers, which can

communicate directly. The standard servers can only communicate with each other via the
client.

• A star connected topology – where all servers are standard servers and they can only
communicate with each other via the client.

During the second iteration through the code, the tasks will be executed according to the

generated mapping solution.
The SmartGridRPC model also requires a method for identifying code that will be executed

on the client. There are many possible approaches, which could be implemented to identify
client code. For example, a preprocessor approach could be used to identify the client code
transparently. Where the client code cannot be identified, we provide a grpc_local function call,
which the application programmer can use to explicitly specify client computation: -

 grpc_map(char * mapping_heuristic_name){

 //reset variables which have been updated
 // during the discovery phase

 grpc_local(list of arguments){
 //code to ignore when generating task graph
 }
 ...
 // group of tasks to map collectively
 ...
 }

The grpc_local function is used to specify the code block that should be ignored during the
first iteration through the scope of grpc_map. The function is also used to specify remote
arguments that are required locally. This information is used to determine when arguments will
be sent back to client and also facilitates the generation of the task graph.

Any segment of client code that is not part of the GridRPC API should be identified using this
function. There is one exception to this rule, when the client code directly affects any aspect of
the task graph. For example, if a variable is updated on the client that determines which remote
tasks get executed or the size of inputs/outputs of any task, then the operations on this variable
should not be enclosed by the grpc_local function. If any variables or structures are updated
during the task discovery cycle then they should be restored to their original values before the
execution cycle begins.

5.3. SmartGridRPC: A SmartGridRPC application

Table 2 is the SmartGridRPC implementation of the GridRPC application in section 4.3.
There is only one extra call required to make this application SmartGridRPC enabled, which is
the grpc_map function. In this example, the user has specified that all three tasks should be
mapped collectively.

Table 2: SmartGridRPC model – Example application.

 main()
{
 int N=getNSize();
 int M=getMSize();

 double A[N*N], B[N*N], C[N*N];
 double D[M*M], E[M*M], F[M*M], G[M*M
 grpc_function_handle_t h1, h2, h3;
 grpc_session_t s1, s2;
 grpc_initialize(argv[1]);

 /* initialize */
 initMatA(N, A); initMatB(N, B);
 initMatD(M, D); initMatD(M, E);

 grpc_function_handle_default(&h1, "mmul/mmul");
 grpc_function_handle_default(&h2, "mmul/mmul");
 grpc_function_handle_default(&h3, "mmul/mmul");

 grpc_map(“greedy_map”){
 if(grpc_call_asnc(&h1,&s1,N,A,B,C)!= GRPC_NO_ERROR) {
 fprintf(stderr, "Error in grpc_call\n");
 exit(1);
 }
 if(grpc_call_async(&h2, &s2,M,D,E,F)!=GRPC_NO_ERROR){
 fprintf(stderr, "Error in grpc_call\n");
 exit(1);
 }
 grpc_wait(s1);
 grpc_wait(s2);

 if (grpc_call(&h3,M,C ,F,G) != GRPC_NO_ERROR){
 fprintf(stderr, "Error in grpc_call\n");
 exit(1);
 }

 }

 grpc_function_handle_destruct(&h1);
 grpc_function_handle_destruct(&h2);
 grpc_function_handle_destruct(&h3);
 ...
 grpc_finalize();
}

Let us consider the same simple scenario as in section 4.3, where task h2 has a larger
computational load than h1 and the underlying network consists of two servers, which have
different performances. In this case, since all tasks are mapped together, the SmartGridRPC
model will improve the load balancing of computation by assigning task h2 to the faster server
and h1 to the slower.

In addition, task h3 has a dependency on the argument F, which is an output of task h2, and
argument C, which is an output of task h1. Since the tasks are mapped as a group and therefore
dependencies can be considered, this dependency can be mapped on to the virtual link
connecting the servers executing both tasks, which will reduce the communication load. Or if
the tasks are executing on the same server, then the output can be cached and retrieved from the
same server, which would further reduce the communication load and further increase the overall
performance of the group of tasks.

Also, since no intermediate results are sent back to the client, the amount of memory utilised
on the client will be reduced and this will reduce the risk of paging on the client. This prevention
of paging could also considerably reduce the overall execution time of the group of tasks.

In addition, since dependencies are known and the network is fully connected, the remote
communication of argument C from server, executing task h1, to server executing task h2, could
be done in parallel with the communication and computation of h2.

6. IMPLEMENTING THE GRIDRPC MODEL IN GRIDSOLVE

The GridSolve agent, which is the focal point of the GridSolve system, has the responsibility
of performing discovery and mapping of tasks. The GridSolve agent is implementation of the
registry entity, which was outlined in the section 4 of the paper.

In order to map a task on the client-server network, the agent must discover performance
models, which can be used to estimate the execution time of individual tasks on different servers
on the network. These performance models include functions for each task, which calculate the
computation/communication load of tasks, and parameters, which specify the dynamic
performance of the network. These performance models are sent from each server in the
network to the agent before run-time of the client application (Agent discovery).

6.1. GridSolve: Agent discovery

The section outlines the GridSolve implementation of the “Register discovery” part of the
GridRPC model outlined in section 4.1. The agent maintains a list of all available servers and
their registered tasks. This list is incremented when each new server registers with the agent. In
addition, the agent stores performance models required to estimate the execution time of
available tasks on the servers. This includes the dynamic performance of each server and
functions/parameters, which are used to calculate the computational/communication load of
tasks. These performance models are implemented by executing the LINPACK benchmark on
each server when they are started, running the CPU load monitor on the server and using
descriptions of the task provided by the person that installed the task to generate functions for
calculating the computation and communication load of the tasks (figure 3).

F

The server may optionally
non-negative least squares alg
igure 3: GridSolve – Agent discovery

 be configured to maintain a history of execution times and use a
orithm to predict future execution times. At run-time of the client

application, when each GridRPC task call is invoked, these performance models are used to
estimate the execution time of the called task on each server.

6.2. Run-time GridRPC task call

In practice, from the user’s perspective the mechanism employed by GridSolve makes the
GridRPC task call fairly transparent. However, behind the scenes a typical GridRPC task call
involves the following operations:

• The discovery operation.
• The mapping operation.
• The execution operation.

The discovery operation: When the GridRPC call is invoked, the client queries the agent for

an appropriate server that can execute the desired function. The agent returns a list of available
servers, ranked in order of suitability.

This ranked list is sorted based only on task computation times. Normally, the client would
simply submit the service request to the first server on the list, but if specified by the user it is
resorted according to its overall computation and communication time. If this is specified, the
bandwidth from the client to the top few servers is measured. This is done using a simple 32KB
ping-pong benchmark. The time required to do the measurement will depend on the number of
servers, which have the requested task, and the bandwidth and latency from the client to those
servers. When the data is relatively small, the measurements are not performed because it would
take less time to just send the data than it would take to do the measurements. Also, since a
given service may be available on many servers, the cost of measuring network speed to all of
them could be prohibitive. Therefore, the number of servers to be measured is limited to those
with the highest computational performance.

The mapping operation: As previously described, the agent sends a server list, which is
ordered according to their estimated computation time.

In GridSolve, there is a number of mapping heuristics, which can be employed to generate the
mapping solution. Among the mapping heuristics is the minimum completion time (MCT)
mapping heuristic, which bases its execution time on the performance models and the dynamic
network performance of each server outlined in section 6.3. Also included are a set of mapping
heuristics that rely on the other performance model in GridSolve called the Historical Trace
Manager (HTM).

The execution operation: The client attempts to contact the first server from the list. It sends
the input data to the server, the server then executes the task on behalf of the client and returns
the results. If at any point the execution fails, the client automatically moves down the list of
servers.

6.3. GridSolve: Performance models

The performance models of GridSolve are used by the mapping heuristics to estimate the
execution time of individual tasks on a client-server network. In GridSolve, the performance
models can be used to estimate:

• The execution time of a task on a server.

• The communication time of sending inputs and outputs between client and server.
• The perturbation that one task has on another.

The mapping heuristics use these performance models to estimate the time of different

possible task-to-server mapping solutions and choose the mapping solution, which most satisfies
a certain criterion.

The performance models of GridSolve specify the dynamic performance of each server and
the dynamic performance of the client-server links. They also specify the computation load and
communication load of the called task. When a task is called for execution, the computation load
and dynamic performance of a server is used to estimate the task’s computation time. The
communication load and dynamic performance of the client-server links are used to estimate the
task’s communication time.

The dynamic performance of a server is parameterized by the number of floating point
operations per second (flop/sec) that the server can perform. It is obtained by first determining
the static performance of each server by running a sequential benchmark on each server (figure
3). This sequential benchmark is the LINPACK benchmark, which is executed on each server
when it is started. The benchmark times the execution of a routine, which solves a dense system
of linear equations. This benchmark is close to the peak performance rate of the server. There is
a “CPU load monitor” on each server, which continually monitors the CPU load. When this
CPU load changes beyond a certain threshold or if a certain time interval has elapsed (~5mins),
then this CPU load is sent to the agent. To get the dynamic performance (p) of the server, the
agent uses this updated CPU load to scale the value for the server’s peak performance (P). The
dynamic performance of a server is calculated as follows:

- where p is the dynamic performance of the server, w is the current CPU load, P is the peak
performance (benchmark) of the server and n is the number of processors on the server.

The dynamic performance of a client-server link is parameterized by its bandwidth (bw),
which is the number of bytes per second (bytes/sec) that can traverse the link. It is obtained
using the ping-pong benchmarks. Using these benchmarks the bandwidth of the link can be
calculated as follows:

- where the PING_PACKET_SIZE is 32 KB and PING_TIME is the time it takes to send the
packet between the client and server.

In addition, the performance model includes functions for calculating computation and
communication load of tasks. These functions are generated from the task description of each
task, which is provided by the person who writes or installs a task. They are written in a
language called the GridSolve Interface Definition Language (IDL). With this language, the
task writer/installer provides a specification of the calling sequence of the task. This
specification describes the data type of each argument (integer, float, double etc.), the object type
of each argument (scalar, vector, or matrix) and whether each argument is an input, an output or

an input-output. Table 3 shows the IDL description of the DGESV task, which is a LAPACK
routine that solves . The IDL description specifies that the first two arguments of
the calling sequence are input scalar integers. The third argument of the calling sequence is an
input-output, which is a matrix of doubles. The fourth argument is an output scalar argument.
The fifth argument is an output vector of integers and the sixth is an input-output matrix of
doubles. The seventh is a scalar integer input and the eight is a scalar output integer. This
specification of the calling sequence is used to generate functions for calculating both the
computation load and the communication load of the task.

Table 3: IDL specification of DGESV task

Included in the IDL de
with the specification of
computation load of a tas
parameter. The string form

This formula in conjunc

that describes the compu
multiplied by the second ar

At run-time, when the
calculate the computation
floating operations (flop),
the DGESV task could be a

For this calling sequence th

SUBROUTINE dgesv(
 IN int N,
 IN int NRHS,
 INOUT double A[LDA][N],
 IN int LDA,
 OUT int IPIV[N],
 INOUT double B[LDB][NRHS],
 IN int LDB,
 OUT int INFO)

"This solves Ax=b using LAPACK"
LANGUAGE = "FORTRAN"
LIBS = "$(LAPACK_LIBS) $(BLAS_LIBS)"
COMPLEXITY = "2.0*pow(N,3.0)*(double)NRHS"
MAJOR="COLUMN
scription of the task is a “string” formula that is used in conjunction
 the calling sequence to generate a function for calculating the
k. This formula is denoted in the IDL file as the “COMPLEXITY”
ula for the DGESV task is:

tion with the specified calling sequence in table 3 generates a function
tational load as a multiplication of 2 by the first argument cubed
gument of the calling sequence.
values of these arguments are known, this function can be used to

 load of task. The computation load is measured in the number of
which the task will execute. An example of the calling sequence of
s follows:

 grpc_callሺ°esv_handle,400,100, A, 800, IPIV, B, 400,INFOሻ

e computation load would be:

The communication load of a task can be calculated using the following formulas in
conjunction with the specified calling sequence in the IDL specification:

In these formulas, the DATA_TYPE variable specifies whether the argument type is a double,
integer, float etc. And the rows and cols variables are the dimensions of the matrix/vector. The
get_elem_size function returns the size of bytes of the specified DATA_TYPE (double, integer
etc.).

The formula for calculating matrix argument size in conjunction with the specification of the
calling sequence in table 3 would generate a function that outlines that the communication load
of argument A of the DGESV task can be calculated by multiplying the fourth argument (LDA)
in the calling sequence by the first argument (N) in the calling sequence by the size of a double
(e.g. 8 bytes). At run-time, when the values of these arguments are known, this function can be
used to calculate the communication load of argument A of the DGESV task.

However, in some instances, the platform of the sending machine must be known to
determine this communication load. One of the problems with C and C++ is that the built in data
types such as int and long int are platform dependent. There is nothing in the standard to say
how many bytes each data type occupies beyond some basic ordering. For example, long int
must use at least as many bytes as int (but could be the same). Table 4 outlines the number of
bytes of different data types on different platforms.

Table 4: Size of datatypes on different platforms

OS ARCH Size of
int

Size of
long int

Size of
double

LINUX x86 4 bytes 4 bytes 8 bytes
LINUX x86-64 4 bytes 8 bytes 8 bytes
Windows x86 4 bytes 4 bytes 8 bytes
Windows x86-64 4 bytes 4 bytes 8 bytes
MAC OS X x86 4 bytes 4 bytes 8 bytes
MAC OS X x86-64 4 bytes 8 bytes 8 bytes

For this reason the get_elem_size function also takes an architecture identifier as a parameter.

For the calling sequence outlined previously for the DGESV task, the communication load of
non-scalar arguments on a 32bit Intel machine running LINUX OS would be:

From these performance models, it is possible to estimate both the communication time and
computation time of individual tasks on the client-server network. These performance models
are used by the mapping heuristics to generate a mapping solution.

6.4. GridSolve: Mapping heuristics

There have been several mapping heuristics implemented in GridSolve. Each task is mapped
when it is called for execution and therefore each task is mapped individually on the client-server
network. The following mapping heuristics have been implemented:

• Minimum Completion Time.
• HTM - Minimum Completion Time.
• HTM - Minimum Perturbation.
• HTM - Minimum Sum Flow.
• HTM – Minimum Length.

The Minimum Completion Time (MCT) maps the individual task based on the performance

models described in 6.3.
All the HTM mapping heuristics generate mapping solutions based on the Historical Trace

Manager (HTM) performance model. When a new task arrives, the HTM simulates the execution
of the task on each server. Using the HTM information, the heuristic has an estimation of
finishing time of each task running on each server. This is used to consider the perturbation that
tasks induce on each other and compute the ‘best’ server according to the main objective of that
heuristic.

When a task has completed the server sends a message to the agent that the task has
completed and this information is used by the HTM to correct what has been simulated and
improve the quality of future predictions.

7. SMARTGRIDSOLVE: IMPLEMENTING SMARGRIDRPC IN GRIDSOLVE

7.1. SmartGridSolve: Agent discovery

This section presents the SmartGridSolve implementation of the “register discovery” part of
SmartGridRPC model outlined in section 5.1. In addition to registering services, the servers
also send the server PM. The server PM makes up part of the performance model used for
estimating the execution time of the server’s available tasks on the fully connected network.
This along with the client PM is used to generate a performance model, which is used by the
mapping heuristics to produce mapping solutions.

Currently, the server PM of SmartGridSolve extends that of GridSolve, which comprises of
functions for calculating the computation load and communication load and parameters for
calculating the dynamic performance of the servers and client-server links. This is described in
section 6.3.

However, the network discovery of GridSolve is extended to also discover the dynamic
performance of each link connecting SmartServers. These are those servers, which can
communicate directly with each other or store/receive data from their local cache. The dynamic

performance of the server-server links are taken periodically using the same 32KB ping-pong
technique used by GridSolve.

To achieve backward compatibility and to give server administrators full control over how the
server operates a server, which has the SmartGridSolve extension enabled, may be also started as
a standard GridSolve server.
As a result, the network may have:

• A fully connected topology.
• A partially connected topology.
• A star connected topology.

Also to minimize the volume of data transferred around the network, each SmartServer is

given an ID. Each SmartServer then only sends ping-pong messages to those SmartServers that
have an id that is less than their own. This prevents the performance of the same communication
link being measured twice. Once determined, these values are sent to the agent to update the
server PM. The server PM is stored on the registry and updated either periodically (every 5
minutes) or when the CPU load monitor records a change, which exceeds a certain threshold.
This server PM is then used to generate the performance models during the run-time of a client
application.

Figu

7.2. Run-time of client appli

This section presents the S
part of SmartGridRPC model
time map function (grpc_map

Discovery phase: On th
(grpc_call) within the parenth
name of each task and the cal
to the non-scalar arguments
arguments.

After the first iteration thro
of tasks, which involves sendi

The agent then creates a ha
for each task. In addition, for
re 4: SmartGridSolve - Agent discovery

cation

martGridSolve implementation of the “Client application run-time”
 outlined in section 5.1. Each phase of the SmartGridRPC run-
) will be described.
e first iteration through the group of tasks, each GridRPC task call
esis is discovered but not executed. This involves discovering the

ling sequence of each task, which involves discovering the pointers
 (such as matrices, vectors etc.) and the values of the scalar

ugh the group, the client contacts the agent and looks up the group
ng the agent a list of the task names.
ndle for each task. The agent sends back the group of handles, one

 each handle it sends a list of servers, which can execute each task.

The client then uses the list of servers to perform the ping-pong benchmark on each of the
links from the client to each server that can execute a task in the group of tasks. Subsequent to
this, the client will send the client PM, which is a structure that specifies application-specific
information such as the list of tasks, the calling sequence and the dependencies between the
tasks. In addition it specifies the performances of each client-server link.

The agent can now generate all the performance models necessary for estimating the
execution time of the group of tasks on the fully or partially connected network. In
SmartGridSolve, these performance models consist of a task graph, a network graph and
functions for estimating computation and communication times.

The task graph specifies the order of tasks, their synchronisation (whether they are executed
in sequence or parallel), the dependencies between tasks, the load of computation and
communication of each task in the group.

The network graph specifies the performance of each server in the network and the
communication links of the fully connected, partially connected or star network. These
performance models will be used by the mapping heuristics in the mapping phase to generate a
mapping solution for the group of tasks.

Mapping Phase: The mapping heuristic produces a mapping solution graph based on the
task graph, the network graph and the functions for estimating computation and communication
time. The mapping heuristics currently implemented in SmartGridSolve are:

• Exhaustive mapping heuristic.
• Random walk mapping heuristic.
• Greedy mapping heuristic.

The mapping solution generated by these heuristics is then used in the execution phase to

determine how the group of tasks should be executed on the network.
Execution Phase: This execution phase occurs on the second iteration through the group of

tasks. In this phase, each called GridRPC call is executed according to the mapping solution
generated by the mapping heuristic. The mapping solution not only outlines the task-to-server
mapping but also the communication operations between the tasks in the group.

In addition to the standard GridRPC communication, the mapping solution can use the
following communication operations:

• Server-server communication.
• Client broadcasting.
• Server broadcasting.
• Server caching.

7.3. SmartGridSolve performance models

This section presents the performance models, which are currently implemented in
SmartGridSolve. The performance models are used by the mapping heuristics to estimate the
execution times of different mappings of the group of tasks on the network. This involves both
estimating the computation time of tasks of the application on the servers of the network and also
estimating the communication time of sending inputs/outputs over the network. The accuracy of
these performance models affects the ability of the mapping heuristics to generate optimal
mapping solutions.

7.3.1. Network graph

The network graph is a representation of the performance of the servers and communication
links of the fully connected, partially connected or star network. If SmartGridSolve is installed
only on the client side, this structure will represent a star network where no servers can
communicate directly. With this network topology, the application programmer may only benefit
from improved mapping of tasks to servers. If some of the servers are SmartServers then this
structure will represent a partially connected network. With this network topology, the
application programmer may also benefit from improved mapping of communication. If all
servers are SmartServers, the network will be fully connected. With this network topology, the
application programmer will benefit from the full potential of improved mapping of
communication.

The graph specifies the performance of each server and also the performance of each link
connecting it with the client. Where there are two or more servers in the network that are
SmartServers, the graph will include links which specify the performance of the link between
these servers.

Figure

Figure 5 illustrates a netwo
server. Each circle node in
performance, which is measur
diamond shaped node represe
communication link” and is
measured in the number of by
servers have links connecting
them to other SmartServers.
therefore have links connecting
which was started without dire
the SmartGridSolve extension,
with direct communication ena

The performance of the ser
outlined in section 6.3.

5: SmartGridSolve – The network graph

rk graph, which represents three SmartServers and one standard
the graph represents a server and is weighted by its dynamic
ed in floating point operations per second (flop/sec). The single
nts the client. Each link connecting nodes represents a “virtual
weighted by its dynamic performance (bandwidth), which is
tes per second (bytes/sec), which can traverse the link. All four
 them to the client but only SmartServers have links connecting
 In figure 5, the servers S0, S1 and S2 are SmartServers and
 them with each other and also to the client. Server S3 is a server,
ct communication enabled. If GridSolve has been compiled with
 a server administrator has the option whether the server is started
bled or disabled.
vers and communication links are calculated using the equations

7.3.2. Task graph

The task graph is the representation of the mapped group of tasks. The task graph specifies
the order of tasks, their synchronisation (whether they are executed in sequence or parallel), the
dependencies between tasks, the load of computation and communication of each task in the
group.

Figure 6 illustrates a task graph, which represents 5 tasks, where task 0 and task 1 are
executed in sequence and then task 2, task 3 and task 4 are executed in parallel. The task graph
has three sets of nodes, the task nodes, the client node and the argument nodes. Each task node
is represented by a rectangle node and is weighted by its computation load (flop). Each input
and output non-scalar argument (matrix, vector etc.) is represented by a circle shaped node and is
weighted by communication load (bytes).

The functions for calculating the computation load of each task in the group are generated
using the formulas specified by the person that wrote or installed the task in conjunction with the
specification of the tasks calling sequence in the IDL description (table 3). This is part of the
server PM, which is sent from each server to the agent prior to the execution of the client
application.

Then at run-time, the calling sequence of each task in the group is discovered collectively and
these calling sequences are sent as part of the client PM to the agent. The functions of the server
PM and the calling sequences of the client PM can be used to determine the computation load of
each task in the group.

Figure 6: The task graph

The functions for calculating the communication load of each non-scalar argument in the
group are generated using the functions for calculating argument sizes in section 6.3 in

conjunction with information on the tasks calling sequence in the IDL description (table 3). This
is part of the server PM.

At run-time, the calling sequences of the tasks in the group are discovered collectively and are
sent to the agent as part of the client PM. Then, the communication load functions of the server
PM and the calling sequence of the client PM are used to determine the communication load of
each non-scalar argument in the group.

The dependencies between tasks are determined by examining the pointers of non-scalar
arguments of the calling sequence of each task (which is outlined in the client PM) and using the
IDL description (which is outlined in the server PM) to determine whether they are inputs or
outputs.

The links in the graph represent the data-flow between tasks. There are two types of data-
flow dependencies, the input data-flow dependency and output data-flow dependency.

Input dependencies occur when a task has a dependency on an input of another task. This is
specified in the task graph by a link from an input argument node of one task pointing to another
task node. If multiple tasks require the same input argument then a link will emanate from this
argument node to each dependant task node. In this case the mapping heuristics can choose a
mapping solution, which broadcasts the input argument of the source task from the client to each
of the servers of the destination tasks.

Output dependencies occur when a task has a dependency on an output of another task. This
is specified in the task graph by a link from an output argument node of one task pointing to
another task node. If multiple tasks require the same output argument, then a link will emanate
from this argument to each dependant task. In this case, mapping heuristics can choose a
mapping solution, which broadcasts the argument from the source task to each of the servers of
the destination tasks.

7.4. Mapping heuristics

The problem of optimally mapping a group tasks on to a fully connected network has been
proved to be NP-complete, thus requiring the development of heuristic techniques for practical
usage. SmartGridSolve currently has a number of mapping heuristics implemented to optimize
searching through possible mapping solutions (the solution space).

In order to reduce mapping times, the current mapping heuristics implemented in
SmartGridSolve do not consider all possible mapping solutions due to large number of possible
solutions in the solution space. Instead, for each task-to-server mapping, the mapping heuristics
consider only a single communication scheme, the communication scheme that has the lowest
number of communication steps. In the future with improved optimization heuristics a greater
number of communication schemes could be considered.

When considering only a single communication scheme, the number of possible mapping
solutions can be significant even when there are only a few tasks and servers. For a given set of
tasks and servers, the number of task-to-server mappings when only a single communication
scheme is considered will be:

For each task-to-server mapping, the mapping heuristic can consider the following number of
communication schemes.

This represents the number of communication schemes when there are more than one server
in the network (servers) and at least one dependency in the group of tasks (num.dep). Otherwise,
there is only a single communication scheme that needs to be considered.

Therefore, the total number of solutions for a given group of tasks with one or more
dependencies on a fully connected network with more than one server will be:

This sums the number of task-to-server mappings and the number of possible communication
schemes for each task to server mapping.

To demonstrate the significant increase when considering multiple communication schemes,
consider the following example. A group of 10 tasks, which have 10 dependencies between the
tasks, are mapped on to a network of 5 servers. In this circumstance, the number of possible
task-to server mappings would be nearly 1 billion when considering only a single
communication scheme. Then, when considering the number of possible communication
schemes, the number of possible mapping solutions would increase to in excess of 1 trillion.
Considering that it roughly takes one second to simulate 10,000 solutions on Pentium 4 3.2 GHz
CPU it is unfeasible to consider multiple communication schemes for each task-to-server
mapping.

Therefore, for each possible task-to-server mapping the current mapping heuristics
implemented in SmartGridSolve consider a single communication scheme. This is the
communication scheme, which minimizes the number of communication steps between tasks.

If there is a dependency between two tasks, which have been assigned to different
SmartServers, the only communication path that is considered is the one, which connects both
servers directly. If there is a dependency between two tasks and both have been assigned the
same SmartServer, then the communication scheme will outline that this output should be cached
locally on the server. If there is a dependency between two tasks and either has been assigned to
a server that is not a SmartServer, the only communication path that will be considered is the one
that connects both servers via the client.

Therefore, the mapping heuristics of SmartGridSolve will generate at most serverstasks
mapping solutions graphs.

7.4.1. Mapping solution graph

A mapping solution graph is a structure, which outlines both the task-to-server mapping of the
group of tasks and the communication scheme between the tasks in the group. In addition, the
mapping solution graph outlines the estimated computation time of each task on their assigned
server and the estimated communication time of each task dependency on their assigned
communication path.

Since only a single communication scheme is considered, a mapping solution can be
generated from the task graph, the network graph and only a single task-to-server assignment
vector (table 5). The index of each vector element corresponds to a task in the task graph and
each vector element corresponds to a server in the network graph.

The task-to-server vector in table 5 specifies that task 0 of the task graph is assigned to server
0 of the network graph, task 1 is assigned server 0, task 2 is assigned to server 1, task 3 is
assigned to server 2 and task 4 is assigned to server 0.

 Table 5 - Task-to-server assignment vector

0 0 1 2 0

Figure 7 shows a mapping solution graph for the task-to-server assignment vector in table 5
and the task graph in figure 6 and the network graph in figure 5.

When the mapping solution graph for this task-to-server vector is generated, the
communication scheme chosen would be the one which minimizes the number of
communication steps between the tasks. The communication scheme in figure 7 minimizes the
communication steps for the given assignment vector in table 5.

Figure 7: The mapping solution graph

This communication scheme implements each type of communication transactions, which can
be employed in the SmartGridRPC model:

• Direct server-server communication.
• Client broadcasting.
• Server broadcasting.
• Server caching of inputs.

• Server caching of outputs.

The mapping solution outlines direct server-server communication of argument 3 from
server 0 to server 1 after task 0 has executed. This argument is subsequently used on server 1
for the execution of task 2. It outlines server broadcast communication of argument 4 from
server 0 to server 1 and server 2 after task 0 has executed. This argument is subsequently used
on server 1 for execution of task 2 and on server 2 for the execution of task 3. It outlines client
broadcast communication of argument 0 from the client to server 0 and server 1 before the
execution of task 0. It outlines the server caching of input argument 2 on server 0 before the
execution of task 0 as this argument. This argument is subsequently used on the same server by
task 4. It outlines the server caching of output argument 5 on server 0 after the execution of
task 0. This argument is subsequently used on the same server by task 4.

The estimated time of each of these remote communication transactions is calculated by
dividing the communication load of the argument outlined in the task graph in figure 6 and the
bandwidth of the communication link outlined in the network graph in figure 5. For example the
direct server-server communication of argument 3 is estimated to take 60 seconds, which is
calculated by dividing the communication load of 600MB by the link speed, which is 10MB/sec.

The estimated time of the caching transactions are based on a naïve assumption that disk
speed is 50MB/sec. For example, the caching of input argument 2 takes 10 seconds, which is
calculated by dividing the argument size of this argument which is outlined in the task graph
which is 500MB by the disk speed which is 50MB/sec. In the future, benchmarks could be used
to determine a more accurate disk speed for each machine.

The estimated time for computation is calculated by dividing the computation load of the task,
outlined in the task graph, and the server performance speed, outlined in the network graph. For
example, the computation time for task 0 is 160seconds, which is calculated by dividing the
computation load of 4000MFlops by the server speed, which is 25MFlops/second.

However, not every task in the group contributes to the overall execution time of the group of
tasks. Parallelism of computation has been employed between tasks 2, task 3 and task 4 and
therefore only the task that takes the longest time of all three contributes to the total execution
time of all three. In this mapping solution, the time saved due to parallelism of computation is:

The SmartGridRPC model also permits the parallelism of communication. Any
communication may be done in parallel with other computation/communication in the group.
This is advantageous when there is a dependency between two tasks and the destination task is
not executed in parallel or immediately after the source tasks. In this case, the dependent data
can be sent to the destination task in parallel with any computation or communication on any
other machine (client and servers), which happens in the intervening time.

For example, each of the communication transactions from server 0 after the execution of task
0 can be done in parallel with other computation and communication. This is because the tasks
that require the arguments, task 2, task 3 and task 4- are not executed in parallel or immediately
after task 0. Therefore, these communication transactions can be done in parallel with the
computation of task 1 on server 0 or any computation on the client.

Moreover, broadcast communication from the client can also be done in parallel with other
computation/communication that happens in the intervening time. The sending of argument 0
from the client to server 1 can be done in parallel with:

• The computation of task 0 on server 0.
• All the communication transactions from server 0 that happen after task 0 has executed.
• The computation of task 1 on server 0.
• The broadcast of argument 6 after the execution of task 1.
• Any computation on the client which happens in the intervening time.

Therefore, the time saved due parallelism of communication will be:

In addition to specifying a more advantageous communication scheme, the mapping solution
will outline a more advantageous computation scheme (i.e. task-to-server mapping). Since the
mapping heuristics can consider all tasks in the group collectively, it can better distribute the
load of parallel computation over the servers. Because the computations of all tasks in the group
are considered collectively, the mapping heuristic is able to balance the load of the computation
of the three parallel tasks. It therefore assigns task 4, which has the highest computation load, to
the fastest sever (server 0) and task 2, which has the lowest computation load, to the second
slowest server (server 1). If these were mapped individually in the GridRPC model, they could
be mapped in reverse order as individual mapping gives priority to tasks in the order they are
mapped.

In this example, the amount of time saved by employing parallelism of computation is
 and the amount of time saved by employing parallelism of communication is

415.5 seconds.
The time saved due to this parallelism of computation and communication does not contribute

to the overall group time and therefore would not be included in the calculation for the total
execution time for the group.

This example has outlined that the mapping heuristics of the SmartGridRPC model have more
potential of finding a better mapping solution due to collective mapping and employing the
SmartGridRPC communication model, which permits parallel remote communication.

7.5. Communication model

The communication model of SmartGridSolve is based on the fully connected network. This
extends the GridRPC communication model, so that in addition to client-server communication,
the following communication transactions can be employed:
- Server-server communication

o Server sends a single argument to another server.
- Server broadcasting

o Server sends a single argument to multiple servers.
- Client broadcasting

o Client sends a single argument to multiple servers.
- Server caching

o Server stores an argument locally for future tasks.

To apply a communication scheme, which employs any of these transactions, the client and
the servers must be able to identify where to send and receive arguments of each task. To
achieve this functionality, the communication scheme of the group of tasks is stored in
communication structures, which specify the communication required for each task in the group.
When each task is called for execution, a communication structure is created for that task, which
is based on the mapping solution outlined by the mapping heuristic. They are subsequently
used by the client to determine where to send the inputs of each task and where to receive
outputs of each task. In addition, the client sends the communication structure to other servers if
they are involved in any remote communication. The servers use the structure to determine
whether to send their inputs/outputs to remote destinations, to cache them locally or to send them
back to the client. If arguments are sent remotely, the structure specifies which servers to send it
to and the filename of where arguments should be stored. If the argument is received remotely it
specifies the filename where the argument should be read from. These filenames are unique for
each argument that is sent remotely.

To demonstrate how the communication model of SmartGridSolve operates using these
communication structures, we will consider what communication operations occur if task 0 of
the mapping solution in figure 7 was called for execution.

Firstly, the communication transactions, which are initiated before the execution of task 0,
will be described. These communication transactions are illustrated in figure 8. When task 0 is
called for execution, the client generates a communication structure for this task based on the
mapping solution. The client then interprets this communication structure, which specifies that
argument 0, argument 1 and argument 2 should be sent to server 0. In addition to sending these
arguments to the server, the client also sends the communication structure.

The server interprets it and deciphers what to do with the inputs arguments prior to the
execution of the task and the output arguments after the execution of the task. In this case, it
outlines that input argument 2 should be cached locally in a specified file as it is required by task
4. This operation is done asynchronously, which means that remote computation/communication
(on the client or other server) can be done in parallel with this operation.

The communication structure also outlines that argument 0 should be sent to server 1. This is
again done asynchronously and so computation on the client or communication/computation on
any other server can be done in parallel with this communication. In addition to sending the

argument, the client also sends the communication structure for this argument, which outlines
that the argument should be stored locally in the file specified.

It should be noted that arguments can also be stored to memory and it is the server
administrator’s responsibility to choose which method of storage is implemented on the server.
If this is the case, every argument is stored in a buffer/array, which is given a unique identifier
similar to that of the filename if it was stored in cache.

Figure 8: Communicat

After task 0 has fini

determine what should b

Figure 9: Communicat

The communication s
specified file as it is req
server 1 and argument 4
also sent so the destinatio

Once again, these rem
computation/communica
with this communication
ion transactions of task 0 of the mapping solution in figure 7, which
happen prior to the execution of task 0.

shed executing, the communication structure is used by the server to
e done with the output arguments (figure 9).

ion transactions of task 0 of the mapping solution in figure 7, which
happen subsequent to the execution of task 0.

tructure would outline that argument 5 should be cached locally in a
uired by task 4. In addition, argument 3 and argument 4 are sent to
is sent to server 2. In these transactions, the communication structure is
n servers know the files names to store the arguments.
ote transactions happen asynchronously and therefore if there is any

tion on any machine (client or server), then this will be done in parallel
.

When the destination tasks, which require these remote arguments, are called for execution,
the client will send a communication structure outlining that arguments should be received
locally from a file and it will specify the file name where the argument is stored.

7.6. Fault tolerance

The grpc_map_ft function in SmartGridSolve is a fault tolerant version of the grpc_map
function:

grpc_map_ft(char * mapping_heuristic_name){
 ...
 // group of tasks to map collectively
 ...

}

This is the same as grpc_map function, except that the mapping solution generated does not
implement server-server communication. The mapping solution outlines a task to server
mapping and a communication scheme, which only implements communication between client
and server. The communication scheme may implement:
- Client-server communication

o Standard GridRPC communication.
- Client broadcasting

o Client sends a single argument to multiple servers.

If any server that is part of the mapping solution fails, the tasks mapped to that server will be
mapped to the next server, which is estimated to give lowest execution time for that task.

Although, no direct server communication or caching is implemented when this function is
called, the performance of a group of tasks can be increased due to improved load balancing of
computation and client broadcast.

In the future, we plan to introduce a fault-tolerant method of mapping a group of tasks, which
will remove this restriction on remote communication.

8. SMARTGRIDRPC BENCHMARK APPLICATION: THE EVOLUTION OF A
CLUSTER OF GALAXIES

A typical numerical simulation needs a lot of computational power and memory footprint to
solve a physical problem with a high accuracy. A single hardware platform that has enough
computational power and memory to handle problems of high complexity is not easy to access.
Grid computing provides an easy way to gather computational resources, whether local or
geographically separated, that can be pooled together to solve large problems.

A scientific application that obviously benefits from the use of GridRPC consists of tasks with
high computational loads and low communication loads. These applications, which are the best
suited to run on a Grid environment, are not representative of many real-life scientific
applications. Unfortunately they are typically chosen, or artificially created, to test and show the

performance of GridRPC middleware systems. We believe that to justify the use of GridRPC for
a wide range of applications, we should not use an extremely suitable application as a benchmark
but a real life application that shows the eventual limits and benefits of the GridRPC middleware
systems tested.

In this section, we present Hydropad [27][28], a real-life astrophysics application that
simulates the evolution of clusters of galaxies in the Universe. This application is composed of
tasks that have a balanced ratio between computation and communication. Hydropad requires
high processing resources because it has to simulate an area comparable to the dimension of the
Universe.

The cosmological model, which this application is based on, has the assumption that the
universe is composed of two different kinds of matter. The first is baryonic matter, which is
directly observed and forms all bright objects. The second is dark matter, which is theorised to
account for most of the gravitational mass in the Universe. The evolution of this system can only
be described by treating both components at the same time, looking at all of their internal
processes, while their mutual interaction is regulated by a gravitational component. Figure 10
shows an example of a typical output generated by Hydropad.

Figure 10: Example of Hydropad output

The dark matter computation can be simulated using N-Body methods [29]. This method
utilises the interactions between a large number, Np, of collision-less particles. These particles,
subjected to gravitational forces, can simulate the process of the formation of galaxies. The
accuracy of this simulation depends on the quantity of particles used. Hydropad utilises a
Particle-Mesh (PM) N-Body algorithm, which has a linear computational cost and depends on
the number of particles, O(Np). In the first part this method transforms the particles, through an
interpolation, into a grid of density values. Afterwards the gravitational potential is calculated
from this density grid. In the last part the particles are moved depending on the gravitational
forces of the cell where they were located.

The baryonic matter computation utilises a Piecewise-Parabolic-Method (PPM) Hydro-
dynamic algorithm [30]. This is a higher order method for solving partial differential equations.
PPM reproduces the formation of pressure forces and the heating and cooling processes gen-
erated by the baryonic component during the formation of galaxies. For each time step of the
evolution, the fluid quantities of the baryonic matter are estimated over the cells of the grid by
using the gravitational potential. The density of this matter is then retrieved and used to calculate
the gravitational forces for the next time step. The accuracy of this method depends on the

number of cells of the grid used, Ng, and its computational cost is linear O(Ng). The application
computes the gravitational forces, needed in the two previous algorithms, by using the Fast-
Fourier-Transform (FFT) method to solve the Poisson equation. This method has a
computational cost of O(Ng logNg). All the data, used by the different components in Hydropad,
are stored and manipulated in three-dimensional grid-like structures. In the application, the
uniformity of these base structures permits easy interaction between the different methods.

Figure 11 shows the workflow of the Hydropad application. It is composed of two parts: the
initialisation of the data and the main computation. The main computation of the application
consists of a number of iterations that simulate the discrete time steps used to represent the
evolution of the universe from the Big Bang to present time. This part consists of three tasks: the
gravitational task (FFT method), the dark matter task (PM method) and the baryonic matter task
(PPM method). For every time step in the evolution of the universe, the gravitational task
generates the gravitational field using the density of the two matters calculated in the previous
time step. Hence the dark and baryonic tasks use the newly produced gravitational forces to
calculate the movement of the matter that happens during this time step. Then the new density is
generated and the lapse of time in the next time step is calculated from it. It is possible to see in
figure 11 that the dark matter task and baryonic matter task are independent of each other.

Figure 11

The initialisation part is also
matter initialisation is that the
module of the package COSMIC
the position and velocity of the p
is stored in two files which info
part. Like the main application,

An important characteristic o
of its tasks. Despite both algori
component is far greater than th
equal to the number of cells in
dark matter computation is great

As previously indicated, Hyd
data. In the application code,
matter component, the applicat
particle, one for each dimension
Np, chosen to run on the simula
: Overview of the Hydropad application

divided in two independent tasks. The main characteristic of dark
 output data is generated by the external application grafic, a
S [31]. Grafic, given the initial parameters as an input, generates
articles that will be used in the N-Body method. The output data

rmation has to be read by the application during the initialisation
grafic has a high memory footprint.
f Hydropad is the difference in computational and memory load

thms being linear, the computational load of the baryonic matter
e dark matter one, Cbm >> Cdm, when the number of particles is
the grid, Np = Ng. Furthermore, the quantity of data used by the
er than the baryonic matter one, Ddm >> Dbm.
ropad utilises three dimensional grid structures to represent the

these grids are represented as vectors. In the case of the dark
ion stores the position and velocity in three vectors for each
. The size of these vectors depends on the number of particles,

tion. For the gravitational and baryonic components, the different

physical variables, such as force or pressure, are stored in vectors, with the size depending on the
given number of grid cells, Ng. In a typical simulation the number of particles is of the order of
billions, while the number of cells in a grid can be over 1024 for each grid side. Given that for
the values of Ng = 128

3
and Np = 106 the total amount of memory used in the application is

roughly 500MB, the memory demand to run a typical simulation is very high.

8.1. GridRPC implementation of Hydropad

Hydropad was originally a sequential Fortran code, which we upgraded this program to take
advantage of the GridRPC API and to work with the GridSolve middleware. Table 6 shows the
original Hydropad code of the main loop, written in the C language. Three functions, grav, dark,
and bary, are called in this loop to perform the three main tasks of the application. In addition, at
the first iteration of this loop, a special task, initvel is called to initialise the velocities of the
particles. The dark and baryonic tasks compute the general velocities of the respective matter. At
each iteration, these velocities are used by a local function, timestep, to calculate the next time
step of the simulation. The simulation will continue until this time becomes equal to the present
time of the universe, tsim = tuniv .

Table 6: Hydropad evolve loop

t_sim=0

while(t_sim<t_univ) {

grav(phi,phiold,rhoddm,rhobm,...);

if(t_sim==0){

initvel(phi,...);

}

dark(xdm,vdm,...,veldm);..

bary(nes,phi,...,velbm);

timestep(veldm,velbm,...,t_step);

t_sim+=t_step;
}

The GridRPC implementation of Hydropad application uses the APIs grpc_call and
grpc_call_async to execute respectively a blocking and an asynchronous remote call of the
Fortran functions. The first argument of both APIs is the handler of the task executed; the second
is the session ID of the remote call while the following arguments are the parameters of the task.
Furthermore, the code uses the method grpc_wait to block the execution until the chosen,
previously issued, asynchronous request has completed. When the program runs, the GridSolve
middleware maps each grpc_call and grpc_call_async functions singularly to a remote server.
Then, the middleware communicates the data from the client computer to the chosen server and
then executes the task remotely. At the end of the task execution, the data is communicated back
to the client. In the blocking call method, the client cannot continue the execution until the task is
finished and all the outputs have been returned. Instead, in the asynchronous method, the client
does not wait for the task to finish and proceeds immediately to execute the next code. The
output of the remote task is retrieved when the respective wait call function is executed.

Table 7 outlines the GridRPC implementation of the main loop of Hydropad that simulates
the evolution of the universe. At each iteration of the loop, the first grpc_call results in the
gravitational task being mapped and then executed. When this task is completed, the client
proceeds to the next call, which is a non-blocking call of the dark matter task. This call returns
after the task is mapped and its execution is initiated. Then, the baryonic matter call is executed
in the same way. Therefore, the baryonic and dark matter tasks are executed in parallel. After
this, the client waits for the outputs of both these parallel tasks using the grpc_wait calls.

Table 7: Hydropad implementation in GridRPC

8.2. SmartGridRPC imp

The code in table 8
SmartGridRPC model. T
SmartGridRPC code in ta
These belong to the Smart

t_sim=0;
while(t_sim<t_total) {
 grpc_call(grav_hndl,phiold,...);
 if(t_sim==0){
 grpc_call(initvel_hndl,phi,...);
 }
 grpc_call_async(dark_hndl,&sid_dark,x1,...);
 grpc_call_async(bary_hndl,&sid_bary,n,...);

 /* wait for non blocking calls */
 grpc_wait(sid_dark);
 grpc_wait(sid_bary); /* to finish */
 timestep(t_step,...);
 t_sim+=t_step;

}

lementation of Hydropad

shows the modifications required to implement Hydropad for the
he only minor difference between the GridRPC code in table 7 and the
ble 8 is the addition of: the grpc_map block and grpc_local condition.
GridRPC API.

Table 8: Hydropad implementation in
SmartGridRPC

t_sim=0;
while(t_sim<t_univ) {
 grpc_map("greedy_map"){
 grpc call(grav_hndl,phiold,...);
 if(t_sim==0){
 grpc_call(initvel_hndl,phi,...); }
 grpc_call_async(dark_hndl,&sid_dark,x1,.);
 grpc_call_async(bary_hndl,&sid_bary,n,..);

 /* wait for non blocking call */
 grpc_wait(sid_dark);
 grpc_wait(sid_bary);

 grpc_local(){
 timestep(t_step,...);
 t_sim+=t_step;
 }
 }
 }
}

The specified mapping heuristic, in this case the greedy mapping heuristic, generates a
mapping solution for this group of tasks based on these performance models. On the second
iteration through the group of tasks the group is executed according to the mapping solutions
generated.

The grpc_local function is used by the application programmer to indicate when a local
computation is executed. At run time, on the first discovery iteration, the code within this
conditional statement is not executed. This is to avoid computing local executions when
generating a performance model for the group of remote tasks. However, if a local computation
directly affects the performance model of the group of remote tasks, then the grpc_local function
should not be used. This would be the case a local computation affects whether certain remote
tasks get executed or affects the size of computation of tasks. If this were the case, then the local
computation should be executed during discovery and any structures, variables etc. that have
changed values should be reset back to their original values before the beginning of execution.

On the second iteration, during the execution phase all the code in grpc_map function is
executed normally (i.e. the local computation is also executed). The mapping in the code of
table 8 is performed at every iteration of the main loop; this can generate a good mapping
solution if the Grid environment is not a stable one. This would be the case if there are other
applications’ tasks running on the Grid servers. If the Grid environment is dedicated, where only
one application executes at a time, a better mapping solution may be generated if the area to map
contains more tasks, i.e. two or more loop cycles. A simple solution could be including an inner
loop within the grpc_map code block (table 9). The application programmer could increase the
number of tasks mapped together by increasing the number of iterations of the inner loop.

Figure 12 is a task graph generated for only two cycles of the evolution step. It is also
possible to map a significantly larger number of evolution steps, by increasing the value of the
nb_evolutions variable in table 9.

Figure 12: Task graph for two evolution steps

This type of coarse mapping would be more favourable on a distributed environment, which is

highly stable, for example, a distributed environment that consisted of dedicated servers or
servers that are idle. However, if the environment is highly changeable, which would be the case
if the distributed environment consisted of workstations currently being used, then it might be

more advantageous to have a higher frequency of mappings. It may also be necessary to increase
the frequency of mappings, if the task graph is altered as a result of the execution of one of the
remote tasks in the task graph. For example, this may be the case if there is a conditional
statement in the group of tasks that is based on an output of a remote task in the group (task A).
If this conditional statement determines whether another remote task (task B) gets executed then
the shape of the task graph depends on the output of task A. When the shape of a task graph is
determined by the outputs of a remote task in the group then it is important to increase the
frequency of mappings and perform mappings whenever the task graph is altered. To ensure the
shape of the task graph is accurate in the aforementioned case, the task graph should be
generated and mapped every time task A is executed.

It is also possible to make this mapping frequency more dynamically adaptive. In table 9, the
value assigned to the variable nb_steps indicates how many evolution steps should be mapped
collectively at the next point of execution of the application. This value can be fine-tuned
during the execution of the application to determine the optimal number of evolutions to map as
a group. In this example, the value for nb_steps is updated and fine-tuned using an evaluation
function func. This may be a function that changes the value of the variable nb_steps based on
an evaluation of the performances of previous executions of collective mappings.

Table 9: Dynamically determining the optimal group size to map

This approach can be
distributed environment.
for each subsequent execu
evaluation function.

However, in the case,
evolutions may vary throu
beneficial to maintain this

t_sim=0;
while(t_sim<t_univ) {
 nb_steps=func(..); //assign dynamically
 for(i=0;(i<nb_steps)&(t_sim<t_univ);i++){
 grpc_map("greedy_map"){
 grpc call(grav_hndl,phiold,...);
 if(t_sim==0){
 grpc_call(initvel_hndl,phi,...); }
 grpc_call_async(dark_hndl,&sid_dark,..);
 grpc_call_async(bary_hndl,&sid_bary,..);

 /* wait for non blocking call */
 grpc_wait(sid_dark);
 grpc_wait(sid_bary);

 grpc_local(){
 timestep(t_step,...);
 t_sim+=t_step;
 }
 }
 }
 }

}

used to find the optimal mapping for an application on any given
Once determined, this optimal number can then be assigned statically
tion of the application on this environment without the need for an

where the environment is highly changeable, this optimal number of
ghout the execution of the application and therefore it may be more
dynamic update of nb_steps variable at run-time.

9. EXPERIMENTAL RESULTS

In the experiments performed in this section, we use three different implementations of

Hydropad: the original sequential version, the GridSolve version and the SmartGridSolve
version. For each version, we present the average computation time of one evolution step and the
memory footprints of the application on the client machine. In the first part of this section, we
compare the GridSolve version versus the local sequential version. Then, in the second part we
compare the SmartGridSolve version of Hydropad versus both GridSolve and the local one.
Furthermore, in the second part we will focus on the performance improvement of each of the
key benefits of the SmartGridRPC model over the GridRPC model, which were introduced in
section 2.2.

The hardware configuration used in the experiments consists of three machines: a client and
two remote servers, S1 and S2. The two servers are heterogeneous, however, they have similar
performance, respectively 498 and 531 MFlops, and they have equal amount of main memory,
1GB each. The bandwidth of the communication link between the two servers is 1Gb/s. The
client machine, C, is a computer with low hardware specifications, 248MFlops of performance.
The client to server connection varies depending on the experimental setup. We use two setups,
C1 with a 1Gb/s connection and C100 with a 100Mb/s communication link. For each conducted
experiment, table 10 shows the initial problem parameters and the corresponding data sizes (the
total memory used during the execution of Hydropad on a single machine). The quantity of
memory available in the client machine varies as well depending on the experimental setup. We
use two configurations: C-1 with 1GB of memory, which is large enough to avoid paging, and C-
256 with 256MB of memory, that undergo paging for larger problems.

Table 10: Input values and problem sizes for the Hydropad experiments

Problem
ID

Np Ng Data Size

P1 1203 603 73MB
P2 1403 803 142MB
P3 1603 803 176MB
P4 1403 1003 242MB
P5 1603 1003 270MB
P6 1803 1003 313MB
P7 2003 1003 340MB
P8 2203 1203 552MB
P9 2403 1203 624MB

9.1. Experiments with the GridSolve version of Hydropad

Table 11 shows the results obtained by local computation and by GridSolve version of
Hydropad using C1-1 as the client machine which has a fast network connection and large
quantity of memory.

Table 11: Experimental results using client C1-1 that has 1Gb/s network link to the servers.

 Local GridSolve
P. ID Time Step Time Step Sp v Local

P1 14.12s 9.40s 1.50
P2 29.90s 18.38s 1.63
P3 34.84s 20.82s 1.67
P4 52.04s 30.81s 1.69
P5 54.06s 32.00s 1.69
P6 58.56s 36.81s 1.59
P7 66.29s 37.22s 1.78
P8 102.03s 67.04s 1.52
P9 114.83s 112.05s 1.02

One can see that the GridSolve version is faster than the local sequential computation. The

speedup obtained is constantly over 1.50, which is due to the parallel execution of the two tasks
and the use of servers with greater performance than the client machine. The fluctuation in
speedup obtained by GridSolve depends on the varying ratio of data size used by the two parallel
tasks for different problem sizes. Furthermore, it should also be noted, that the speedup
achieved on P9 is significantly lower due to paging on the server. This is caused by the fact that
the GridRPC model maps both tasks to the same server and therefore causes paging on it.

Table 12 shows the results obtained by the GridSolve version when the client machine used,
C100-256, has a slow client-to-servers connection of 100Mb/s and only 256MB of memory
available. This hardware configuration simulates a common situation that can happen in real
life. A user has access only to a slow client machine with low hardware specification, which is
not suitable to perform large simulations, and wants to use a powerful Grid environment through
a relatively slow network link. Table 12 also presents the scale of paging that occurs on the
client machine during the executions. One can see that for the local computation the paging is
taking place when the problem size is equal or greater than the machine main memory, 256MB.

Table 12: Experimental results using client C100-256 that has 100Mb/s network link to the

servers and 256MB of memory.

 Local GridSolve
PD Time

Step
Paging Time Step Paging Sp v

Local
P1 14.32s No 20.26s No 0.71
P2 30.05s No 38.75s No 0.78
P3 35.78s No 48.65s No 0.74
P4 55.57s Light 60.48s No 0.92
P5 62.13s Light 66.43s No 0.94
P6 84.33s Yes 76.76s Light 1.10
P7 128.22s Yes 93.74s Yes 1.37
P8 231.56s Heavy 150.03s Heavy 1.54
P9 279.52s Heavy 183.45s Heavy 1.52

The GridSolve version is slower than the local computation when the client machine is not

paging. This is happening because there is a large amount of data communication between tasks.

So for this configuration, the time spent communicating the data compensates for the time gained
by computing tasks remotely. However, as the problem size gets larger and the client machine
starts paging, the GridSolve version becomes faster than the local computation, even in the case
of slow communication between the client and server machines. This trend is also seen in figure
13. For the GridSolve version, the paging is occurring later than for the local version, when the
problem size is around 310MB, as shown in table 12. The GridRPC implementation can save
memory due to the temporary data allocated remotely in the tasks and consequently increase the
problem size that will not cause the paging. Furthermore, in the sequential local execution, the
paging is taking place during a task computation, while for the GridSolve version the paging
occurs during a remote task data communication. Hence, for the GridSolve version of
Hydropad, the paging on the client machine does not negatively affect the execution time of the
application.

Figure 13: Evolution time step of the local and GridSolve computation on client C100-256

In these experiments, “light” paging means that paging is occurring only in some task calls

and the amount of paging is approximately 10% of the main memory (approx. 25MB).
“Normal” paging means that paging is occurring on almost every task call and the amount of
paging is approximately 40% of the main memory (approx. 100MB). “Heavy” paging means
that all task calls cause a memory page and almost 100% of the main memory is paged (approx.
256MB).

9.2. Experiments with the SmartGridSolve version of Hydropad

In the first experiment of this section, we use the same hardware configuration of table 12.
The client machine used, C100-256, has a slow client-to-servers connection of 100Mb/s and only
256MB of memory available. As previously mentioned, this is a common situation. Table 13
shows the results obtained by the SmartGridSolve version for this configuration. This table
shows that the SmartGridSolve version is much faster than the GridSolve and the sequential
versions. The speedup is around three times that of GridSolve, figure 14, and the speedup versus
the local sequential version is over 4 in the case of larger problems.

Table 13: Experimental results using client C100-256 that has 100Mb/s network link to the
servers and 256MB of memory

 Local GridSolve SmartGridSolve

PD Tim
e

Step

Paging Time Step Paging Sp v
Local

Time Step Paging Sp v
Local

SpvGS

P1 14.3
2s

No 20.26s No 0.71 7.31 No 1.96 2.77

P2 30.0
5s

No 38.75s No 0.78 15.06 No 2.00 2.57

P3 35.7
8s

No 48.65s No 0.74 16.36 No 2.19 2.97

P4 55.5
7s

Light 60.48s No 0.92 28.06 No 1.98 2.16

P5 62.1
3s

Light 66.43s No 0.94 27.54 No 2.26 2.41

P6 84.3
3s

Yes 76.76s Light 1.10 27.78 No 3.04 2.76

P7 128.
22s

Yes 93.74s Yes 1.37 30.81 Light 4.16 3.04

P8 231.
56s

Heavy 150.03s Heavy 1.54 48.04 Light 4.82 3.12

P9 279.
52s

Heavy 183.45s Heavy 1.52 60.74 Light 4.60 3.02

Figure 14: Execution times of the GridSolve and SmartGridSolve version of Hydropad on

client C100-256

These performances improvements are due to the key features of the SmartGridRPC model:
improved mapping, improved data movement and reduced memory usage. In the next
experiments of this section, we show the benefits introduced by each feature by using specific
hardware configurations and setup.

Computational load experiments. One important feature of SmartGridRPC is the superior
mapping system that permits to have an improved balancing of computational load of tasks
compared to standard GridRPC. In the underlying experiments, we compare the average
computation time of one evolution step achieved by the GridSolve version versus the
SmartGridSolve version of Hydropad, where SmartGridSolve is set up to utilize the same
network topology of GridSolve (star-network), i.e. without direct server-to-server
communication and server-caching. Consequently, the performance gains obtained by the
SmartGridSolve version are due only to the improved mapping method. In these experiments,
we use C1-1 as the client machine. This machine has a high speed network connection of 1Gb/s
to the servers. Table 14 shows that the SmartGridSolve version of Hydropad is faster than the
GridSolve version.

Table 14: Experimental results using only star-network topology (i.e. no direct server-to-
server communication) and client C1-1 that has 1Gb/s network link to the servers

 GridSolve SmartGridSolve

P. ID Time Step Time Step Sp v GS
P1 9.40s 7.09s 1.33
P2 18.38s 15.27s 1.20
P3 20.82s 16.17s 1.29
P4 30.81s 29.02s 1.06
P5 32.00s 28.99s 1.10
P6 36.81s 29.88s 1.23
P7 37.22s 30.88s 1.21
P8 67.04s 52.05s 1.29
P9 112.05 53.35s 2.10

Despite Hydropad having only two parallel tasks, the collective mapping of SmartGridRPC
can produce a faster execution time than the individual task mapping of GridRPC. The baryonic

task is computationally far larger than the dark matter one, CbmبCdm. When a GridRPC

system goes to map these two tasks, it does so without the knowledge that they are part of a
group to be executed in parallel. Its only goal is to minimize the execution time of an individual
task as it is called by the application. If the smaller dark matter task is called first, it will be
mapped to the fastest available server. With the fastest server occupied, the larger baryonic task
will then be mapped to a slower server and the overall execution time of the group of tasks will
be sub-optimal. As previously mentioned, in some cases, both tasks will be mapped to the same
server, which would also increase the total execution time and would cause paging on the server,
as happened for problem P9.

Communication load experiments. As mentioned before, another primary improvement of
SmartGridSolve is its communication model, use of which minimizes the amount of data
movement between the client and servers. This advantage is most prominent when the client
connection to the Grid environment is slow. Table 15 shows the results obtained by the
SmartGridSolve version of Hydropad using C100-1 as the client machine which has a slow
network connection of 100Mb/s. One can see that the SmartGridSolve version is much faster
than the GridSolve versions. The increase of speed is over twice that of GridSolve, which is
primarily due to the improved communication model of SmartGridSolve.

Furthermore, one can see that the timing results obtained by SmartGridSolve in table 15 are
similar to those obtained in table 14. This shows that when the client-server links are slow and
there is direct communication (table 15) it is similar to when the client links are fast and there is
no direct communication (table 14). This shows that the SmartGridRPC model allows the
mapping heuristic to generate solutions, which effectively minimize the communication load on
the networks link.

Table 15: Experimental results using client C100-1 that has 100Mb/s network link to the
servers

 GridSolve SmartGridSolve
P. ID Time Step Time Step Sp v GS

P1 19.97s 7.24s 2.76
P2 38.73s 15.17s 2.55
P3 48.20s 16.24s 2.97
P4 61.59s 29.42s 2.09
P5 66.26s 28.91s 2.29
P6 78.16s 29.73s 2.63
P7 93.20s 31.25s 2.99
P8 140.53s 50.20s 2.80
P9 174.14 53.02s 3.28

Memory usages experiments. In the following experiments, we utilize the client machine

C1-256, that has a high speed network connection of 1Gb/s to the servers and has 256MB of
main memory. Table 16 shows the average computation time of one evolution step achieved by
the local computation, by the GridSolve version and by the SmartGridSolve version of
Hydropad. Table 16 also presents the scale of paging that occurs on the client machine during
the various executions.

Table 16: Experimental results using client C1-256 that has 1Gb/s network link to the

servers and 256MB of memory

 Local GridSolve SmartGridSolve

PD Time
Step

Paging Time Step Paging Sp v Local Time Step Paging Sp v Local SpvGS

P1 14.3s No 8.6s No 1.67 7.0s No 2.02 1.21

P2 30.0s No 18.4s No 1.63 14.4s No 2.08 1.27

P3 35.7s No 20.1s No 1.77 15.8s No 2.26 1.27

P4 55.5s Light 31.3s No 1.77 27.5s No 2.02 1.14

P5 62.1s Light 33.7s No 1.84 28.1s No 2.21 1.20

P6 84.3s Yes 42.3s Light 1.99

28.8s No 2.92 1.47

P7 128s Yes 63.1s Yes 2.03 30.0s Light 4.27 2.10

P8 231s Heavy 109.3s Heavy 2.12 46.6s Light 4.96 2.34

P9 279s Heavy 144.3s Heavy 1.94 55.13 Light 5.07 2.62

One can see that for the SmartGridSolve experiments the paging on the client machine is less

penalizing than in the GridSolve and local experiments. A secondary advantage of the direct
server to server communication implemented in SmartGridSolve is that the quantity of memory
used on the client machine is lower than that of the GridSolve version. Furthermore, in
SmartGridSolve, the memory paging is happening only when data has to be sent to the server.
Hence, it happens only at the beginning and at the end of a group of tasks execution. This
minimizes the impact of paging on the overall execution of the group of tasks.

Figure 15: Execution times of the GridSolve and SmartGridSolve version of Hydropad
when the client machine C1-256 has 256MB of memory

Therefore, the SmartGridSolve version of Hydropad can execute larger problems without the

paging having a serious impact on the execution time. One can see that the computation time of
the evolution steps in table 16 is similar to that of table 14 and 15.
The speedup of SmartGridSolve over GridSolve, is increasing as the problem gets larger due to
paging on the client. This trend is also seen in Figure 15.

Figure 16: Execution times of the GridSolve and SmartGridSolve version of Hydropad
when the client machines are C1-1 and C100-256

The new features of SmartGridRPC have also a secondary benefit. As previously mentioned,

SmartGridSolve obtains similar results when the client memory and the client-to-server link are
largely different. Consequently, the hardware configuration of the client has less impact on the

application performance than in the case of GridRPC. Figure 16 shows this trend. We compare
the results obtained by GridSolve and SmartGridSolve version of Hydropad when the two
configurations of the client used are the optimal one, C1-1, and the worst one, C100-256. It is
possible to see that in the case of GridSolve the performance change dramatically depends on the
hardware used while for SmartGridSolve the performance is similar.

10. CONCLUSION

In this paper, we have presented the SmartGridRPC model, which is an extension to the
GridRPC model which aims to achieve higher performance. The SmartGridRPC model extends
the GridRPC model, which maps tasks individually on to a star network, to provide functionality
for collective mapping of tasks on a fully connected network. This functionality can be achieved
using only two simple calls which are part of the SmartGridRPC API. The SmartGridSolve
model has shown that mapping heuristics can improve the performance of an application by:

• Improving the load balancing of computation
• Improving the load balancing of communication
• Reducing the overall volume of communication
• Reduced memory usage on the client (reduce paging)
• Parallelism of communication.

We also outlined an implementation of the SmartGridRPC model in SmartGridSolve which is

an extension to the GridSolve middleware which implements the GridRPC model. It described a
possible implementation of the performance models which are used to simulate the different
executions of the group of tasks on the fully connected network.

We also gave an experimental evaluation of the SmartGridRPC model in comparison with the
GridRPC model using a real-life astrophysics application called Hydropad. This application
simulates the evolution of clusters of galaxies in our universe from the beginning of time till
present. The reason this application was chosen to benchmark both models was that it is an
application which is not well suited to be implemented in Grid environments and consequently it
can show the eventual limits and benefits of the two models tested. The experiments show a
significant speedup when the application was executed using the SmartGridRPC model over the
GridRPC model. The experiments section demonstrated the performance increase achieved by
using the SmartGridRPC model and highlights the key benefits of the SmartGridRPC model. A
speedup of 1.29 was achieved due to improved mapping of computation on to servers of the
network. A speedup of 2.89 was achieved due to improved mapping of communication on to
servers of the network. And a speedup of 2.62 was achieved due a decrease of memory usage
and paging on the client.

ACKNOWLEDGEMENTS

This work was supported by the Science Foundation Ireland and in part by the IBM Dublin CAS.

REFERENCES

[1] Birrell A, Nelson B. Implementing remote procedure calls. ACM Transactions on Computer
Systems (TOCS); 2(1): 39-59. 1984.

[2] Seymour K, Nakada H, Matsuoka S, Dongarra J, Lee C, Cassanova H. Overview of
GridRPC: A Remote Procedure Call API for Grid Computing, Lecture notes in computer
science, 274-278, 2002.

[3] YarKhan A, Seymour K, Sagi K, Shi Z, Dongarra J. Recent Developments in GridSolve.
International Journal of High Performance Computing Applications, 20(1), 131, 2006.

[4] Tanaka Y, Nakada H, Sekiguchi S, Suzumura T, Matsuoka S. Ninf-G: A Reference
Implementation of RPC-based Programming Middleware for Grid Computing, Journal of Grid
Computing, 1(1), 41-51, 2003.

[5] Caron E, Desprez F. DIET: A Scalable Toolbox to Build Network Enabled Servers on the
Grid. International Journal of High Performance Computing Applications, 20(3), 335-352,
2006.

[6] Brady T, Guidolin M, Lastovetsky A. Experiments with SmartGridSolve: Achieving higher
performance by improving the GridRPC model, in Proceedings of the 9th IEEE/ACM
International Conference on Grid Computing (Grid2008), Tsukuba, Japan, 29.

[7] Brady T, Konstantinov E, Lastovetsky A, SmartNetSolve: High Level Programming System
for High Performance Grid Computing, in Proceedings of the 20th International Parallel and
Distributed Symposium (IPDPS2006), IEEE Computing Society, 2006.

[8] Casanova H, Dongarra J, NetSolve: A Network Server for Solving Computational Science
Problems, In Proceedings of High Performance Computing Applications, 11(3), 212, 1997.

[9] Casanova H, Kim M, Plank J, Dongarra J. Adaptive Scheduling for Task Farming with Grid
Middleware, International Journal of High Performance Computing Applications, 13(3), 231,
1999.

[10] Arnold D, Dongarra J, The NetSolve Environment: Progressing Towards the Seamless Grid.
In Proceedings of the International Conference on Parallel Processing (ICPP2000), 199-206,
2000.

[11] Desprez F, Jeannot E. Adding Data Persistence and Redistribution to NetSolve. LIP, ENS
Lyon, Tech. Rep, 2002.

[12] Desprez F, Jeannot E, LIP I, Lyon F. Improving the GridRPC Model with Data Persistence
and Redistribution. in Proceedings of the Third International Symposium on Parallel and
Distributed Computing (ISPDC2004), 193-200, 2004.

[13] Del-Fabbro B, Laiymani D, Nicod J, Philippe L. Data management in grid applications
providers. in Distributed Frameworks for Multimedia Applications (DFMA2005), 315-322,
2005.

[14] Caron E, Del-Fabbro B, Desprez F, Jeannot E, Nicod J. M. Managing Data Persistence in
Network Enabled Servers, Scientific Programming Journal, 13(4), 333-354, 2005.

[15] Arnold D, Casanova H, Dongarra J. Innovations of the NetSolve Grid Computing System,
Concurrency and Computation: Practice and Experience, 14(13), 1457-1479, 2002.

[16] Seymour K, YarKhan A, Agrawal S, Dongarra J. NetSolve: Grid Enabling Scientific
Computing Environments, Grid Computing and New Frontiers of High Performance Processing,
2005.

[17] Foster I, Kesselman C, Globus: A metacomputing infrastructure toolkit, International
Journal of High Performance Computing Applications, 11(2), 115, 1997.

[18] Guidolin M, Lastovetsky A. ADL: An Algorithm Definition Language for SmartGridSolve,
The 9th IEEE/ACM International Conference on Grid Computing, 322-327, 2008.

[19] Tanimura Y, Nakada H, Tanaka Y, S. Sekiguchi. Design and implementation of distributed
task sequencing on GridRPC, Proceedings of the Sixth IEEE International Conference on
Computer and Information Technology (CIT06), 67, 2006.
[20] Amar A, Bolze R, Bouteiller A, Chouhan P.K, Chis A, Caniou Y, Caron E, Dail H,
Depardon B, Desprez F, Gay J-S, Mahec G. Le, Su A. DIET: New developments and recent
results, In CoreGRID Workshop on Grid Middleware (in conjunction with EuroPar2006), 2006.

[21] Caron E, Desprez F, Loureiro D. All-in-one Graphical Tool for the management of DIET a
GridRPC Middleware, In CoreGRID Workshop on Grid Middleware (in conjunction with
OGF'23), 2008.

[22] Higgins R, Lastovetsky A, Managing the Construction and Use of Functional Performance
Models in a Grid Environment, Proceedings of the 23rd International Parallel and Distributed
Symposium (IPDPS2009), 2009.

[23] Lastovetsky A, Reddy R, Higgins R. Building the Functional Performance Model of a
Processor, Proceedings of the 21st Annual ACM Symposium on Applied Computing (SAC 2006),
746-753, 2006.

[24] Wolski R, Spring N, Hayes J, The Network Weather Service: A Distributed Resource
Performance Forecasting Service for Metacomputing, Journal of Future Generation Computing
Systems, 15(5), 757-768, 1999.

[25] Caniou Y, Jeannot E. Study of the behaviour of heuristics relying on the Historical Trace
Manager in a (multi)client-agent-server System, Technical Report 5168, LORIA, 2004.

http://hcl.ucd.ie/biblio/author/Lastovetsky
http://graal.ens-lyon.fr/~diet/biblio/Author/CARON-E.html
http://graal.ens-lyon.fr/~diet/biblio/Author/DESPREZ-F.html
http://graal.ens-lyon.fr/~diet/biblio/Author/LOUREIRO-D.html
http://hcl.ucd.ie/biblio/author/Lastovetsky
http://hcl.ucd.ie/biblio/author/Reddy
http://hcl.ucd.ie/biblio/59
http://hcl.ucd.ie/biblio/59

[26] Braun T, Siegel H, Beck N, Boloni L, et al., A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed computing systems, Journal
of Parallel and Distributed Computing, 61(6), 810-837, 2001.

[27] Gheller C, Pantano O, Moscardini L. A cosmological hydrodynamic code based on the
Piecewise Parabolic Method, Royal Astronomical Society, Monthly Notices, 295(3), 519-533,
1998.

[28] Guidolin M, Lastovetsky A. Grid-Enabled Hydropad: a Scientific Application for
Benchmarking GridRPC-Based Programming Systems, Proceedings of the 23rd International
Parallel and Distributed Symposium (IPDPS2009), 2009.

[29] Hockney R, Eastwood J. Computer Simulation Using Particles, Institute of Physics
Publishing, 1988.

[30] Colella P, Woodward P. The piecewise parabolic method (PPM) for gas-dynamical
simulations, Journal of Computational Physics, 54, 174–201, 1984.

[31] Bertschinger E. COSMICS: Cosmological Initial Conditions and Microwave Anisotropy
Codes, ArXiv Astrophysics e-prints, 1995.

	1. INTRODUCTION
	2. MOTIVATION
	4. GRIDRPC PROGRAMMING MODEL AND API
	6. IMPLEMENTING THE GRIDRPC MODEL IN GRIDSOLVE
	8. SMARTGRIDRPC BENCHMARK APPLICATION: THE EVOLUTION OF A CL
	8.1. GridRPC implementation of Hydropad
	8.2. SmartGridRPC implementation of Hydropad

	9. EXPERIMENTAL RESULTS

