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1 Introduction 
The remote procedure call (RPC) paradigm [1] is widely used in distributed computing. It 
provides a straightforward procedure for executing parts of an application on a remote 
computer. To execute a RPC, the application programmer does not need to learn a new 
programming language but merely uses the RPC API. Using the API the application 
programmer specifies the remote task to be performed, the server to execute the task, the 
location of the input data on the user’s computer required by the task and the location on the 
user’s computer where the results will be stored. The execution of the remote call involves 
transferring input data from the user’s computer to the remote computer, executing the task 
on the remote server and delivering output data from the remote computer to the user’s one. 

GridRPC [2] is a standard promoted by the Open Grid Forum, which extends the traditional 
RPC. GridRPC differs from the traditional RPC in that the programmer does not need to 
specify the server to execute the task. When the programmer does not specify the server, the 
middleware system, which implements the GridRPC API, is responsible for finding the 
remote executing server. When the program runs, each GridRPC call results in the 
middleware mapping the call to a remote server and then the middleware is responsible for 
the execution of that task on the mapped server. Another difference is that GridRPC is a 
stubless model, meaning that client programs do not need to be recompiled when services 
are changed or added. This facilitates the creation of interfaces from interactive 
environments like Matlab, Mathematica, and IDL. A number of Grid middleware systems 
have recently become GridRPC compliant including GridSolve [3], Ninf-G [4] and DIET 
[5]. 

1.1 GridRPC programming model and API 
The aim of the GridRPC model is to provide a standardised, portable and simple 
programming interface for Remote Procedure Call. It intends to unify client access to 
existing Grid computing systems (such as GridSolve, Ninf-G, DIET and OmniRPC). This is 
done by providing a single standardized, portable and simple programming interface for 
Remote Procedure Call (figure 1). 

 
Figure 1: Overview of GridRPC model/API 

This standardization provides portability of the programmers’ source code across all 
GridRPC implemented platforms. Since the GridRPC model specifies the API and the 
programming model but does not dictate the implementation details of the servers, which 
will execute the remote procedure call, there may be multiple different middleware 
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implementation of the GridRPC model, in which the source code could be executed on. 

1.1.1 Design of the GridRPC programming model 

The functions presented in this section are shared by all the implementations of the GridRPC 
model. However the mechanics of these functions differ in each implementation. 

1.1.1.1 Register discovery 

The servers of the Grid environment register the tasks, which they can execute with a 
“registry”. This involves sending information such as how the client should interface with 
the task and what type of arguments the server expects when the task is called (the calling 
sequence). In this paper, the registry will be an abstract term for the entity/entities, which 
stores the information about the registered tasks and the underlying network. This may be a 
single entity, such as the Agent in GridSolve, or several entities such as the MDS (or LDIF), 
running on servers in Ninf-G, or the Global Agents and Local Agents, running in the DIET 
system.  

1.1.1.2 Run-time of client application 

When the GridRPC call grpc_function_handle_default() is invoked, the client 
contacts the registry to look-up a desired task and receives a handle, which is used by the 
client to interface with the remote task. A task handle is a small structure that describes 
various aspects of the task and its arguments such as: 

• The task name (dgesv, dgemm etc.) 

• The object types of the arguments (scalars, vectors, matrices etc.) 

• The data type of the arguments (integer, float, double, complex etc.) 

• Whether the arguments are inputs or outputs. 

The client then uses the handle to call the task, which eventually returns the results. Each 
GridRPC call gets processed individually, where each task is discovered (task look-up) and 
executed separately from all the other tasks in the application. 

Currently a task is discovered by explicitly asking the registry for a known function through 
a string look-up. For applications, which are run using the GridSolve middleware, the 
discovery mechanism is done via the GridSolve agent. In Ninf-G, discovery is done via the 
Globus MDS, which runs on each server, and in DIET discovery is done via the Global 
Agent. The GridRPC model does not dictate the mechanics of resource discovery since 
different underlying GridRPC implementations may use vastly different protocols. 

GridSolve and DIET are GridRPC systems that can perform dynamic mapping of tasks. 
Discovery for dynamic mapping also involves discovery of performance models, which are 
used by the mapping heuristics. 

1.1.2 GridRPC: API and semantics 

Now we will introduce the fundamental objects and functions of the GridRPC API and 
explain their syntax and semantics. 

The two fundamental objects in the GridRPC model are the task handles and the session IDs. 
The task handle represents a mapping from a task name to an instance of that task on a 
particular server. 

Once a particular task-to-server mapping has been established by initializing a task handle, 
all GridRPC calls using that task handle will be executed on the server specified in that 
binding. In GridRPC systems, which perform dynamic resource discovery and mapping, it is 



possible to delay the selection of the server until the task is called. In this case, resource 
discovery and mapping is done when the GridRPC task call is invoked with this initialized 
handle. In theory, there is more chance to choose a “better” server in this way, since at the 
time of invocation more information regarding the task and network is known, such as the 
size of input/outputs, complexity of task and dynamic performance of client-server links. 

The two types of GridRPC task call functions are blocking calls and non-blocking calls. The 
grpc_call() function makes a blocking remote procedure call with a variable number of 
arguments. This means the function does not return until the task has completed and the 
client has received all outputs from the server. 

The grpc_call_async() function makes a non-blocking remote procedure call with a 
variable number arguments. When this call is invoked, the remote task and data transfer of 
the input are initiated and the function returns. This means that either the client computation 
or server computation can be done in parallel with the grpc_call_async() call. 

The grpc_wait() function waits for the result of the asynchronous call with the supplied 
session ID. The grpc_wait_all() function waits for all preceding asynchronous calls. 

1.2 GridRPC: A GridRPC application 
Table 1 is a simple application, which uses the GridRPC API. 

It comprises of three task handles and three corresponding remote calls. The task handles are 
set up so that the remote call is bound to a server at call time by passing 
“bind_server_at_call_time” 1 as a parameter. This string could be substituted with a server 
host name or the user could assign it to the default server by calling 
grpc_function_handle_default(). 

The task “mmul” takes four arguments: the size of the matrices, the two input matrices and 
the one output matrix. In this application, the size of the matrices are not known prior to run-
time as they can only be established by executing the local functions (initMatA and 
initMatB). Therefore, it is impossible for a user to decide which servers to assign which 
tasks since the size of inputs and outputs and complexity are not known until the application 
is run. This is a difficult decision even if the sizes of the matrices are known before run-time 
as the performance of underlying networks are dynamic and difficult to predict in Grid 
environments. 

It is also impossible for a dynamic GridRPC system such as GridSolve, which can discover 
resources and map tasks at run-time, to optimally map the tasks in this application. This is 
due to the current GridRPC model only permitting a single task to be processed at any time. 
Therefore, when the system maps the GridRPC task call executing handle h1, it has no 
knowledge of what tasks are executing in parallel with this task and the computation load of 
the tasks executing in parallel. 

Consider the following scenario: M is initialized to 1000 and N is initialized to 100. 
Therefore, the computational load of the first task will be far less than that of the second task. 
In this circumstance, when the system maps the function handle h1, it will map this to the 
fastest server as this will yield the lowest execution time for this task. Then, when the 
system maps the function executing handle h2, it will map it to the second fastest server as 
the fastest server is currently heavily loaded with the first task. This is poor load balancing 
of computation and will affect the overall performance of the parallel execution of both 
tasks. 

                                                 
  This special string is a GridSolve-specific workaround to enable lazy binding in GridRPC. 



In addition, since tasks are processed individually in the GridRPC model, it is impossible for 
systems, which implement this model, to know the dependencies between tasks. Since 
dependencies between tasks are not known and the communication model of GridRPC 
model is based on the client-server model, bridge communication between remote tasks is 
forced. With the GridRPC model, this dependent argument would have to be sent from the 
source task to the destination task via the client, which is two communication steps. This 
necessity for the client to buffer intermediate data may also cause memory paging on the 
client. In this application, the third task, h3, is dependent on argument F from the second 
task h2 and argument C from task h1. In this case, the only way to send F from the server 
executing h2 and C from the server executing h1 to the server executing h3 is via the client, 
which is two communication steps. Mapping tasks individually in this application has forced 
bridge communication and increased the amount of memory used on the client. This will 
affect the overall volume of communication and may cause paging on the client, which 
would significantly affect the performance of the application. In addition, since tasks are 
mapped individually on to a star network, parallelism of remote communication cannot be 
employed. In this case, if dependencies were known, argument C could be sent from the 

 
Table 1: GridRPC model — Example application 

  main() 
{ 
    int N; 
    int M; 
    double A[N*N], B[N*N], C[N*N]; 
    double D[M*M], E[M*M], F[M*M], G[M*M]; 
 
    grpc_function_handle_t h1, h2, h3; 
    grpc_session_t s1, s2; 
    grpc_initialize(argv[1]); 
     
    /* initialize */ 
    char * hndl_str= “bind_server_at_call_time”; 
     
    grpc_function_handle_init(&h1, hndl_str,"mmul/mmul"); 
    grpc_function_handle_init(&h2, hndl_str, "mmul/mmul");  
    grpc_function_handle_init(&h3, hndl_str, "mmul/mmul");  
     
    N=getNSize(); 
    initMatA(N, A);  initMatB(N, B); 
    if(grpc_call_asnc(&h1,&s1, N, A, B, C)!= GRPC_NO_ERROR) { 
        fprintf(stderr, "Error in grpc_call\n"); 
        exit(1); 
    } 
 
    M=getMSize();       
    initMatD(M, D);  initMatD(M, E); 
    if(grpc_call_async(&h2, &s2, M, D, E, F)!=GRPC_NO_ERROR){ 
        fprintf(stderr, "Error in grpc_call\n"); 
        exit(1); 
    } 
 
    grpc_wait(s1); 
    grpc_wait(s2); 
 
    if (grpc_call(&h3, M, C , F, G) != GRPC_NO_ERROR) { 
        fprintf(stderr, "Error in grpc_call\n"); 
        exit(1); 
    } 
 
    grpc_function_handle_destruct(&h1); 
    grpc_function_handle_destruct(&h2); 
    grpc_function_handle_destruct(&h3); 
    ... 
    grpc_finalize(); 
} 
 



server executing h1 to the server executing h3 in parallel with computation and 
communication of task h2 (permitting that task h2 has been assigned a different server than 
h3). 

From this application, it is evident that the potential for higher performance applications 
would be increased if we could map tasks collectively as a group on to a network, which is 
fully connected. This is the premise of the SmartGridRPC model. 

1.3 Implementing the GridRPC model in GridSolve 
The GridSolve agent, which is the focal point of the GridSolve system, has the responsibility 
of performing discovery and mapping of tasks. The GridSolve agent is implementation of 
the registry entity, which was outlined in the section 1.1. 

In order to map a task on the client-server network, the agent must discover performance 
models, which can be used to estimate the execution time of individual tasks on different 
servers on the network. These performance models include functions for each task, which 
calculate the computation/communication load of tasks, and parameters, which specify the 
dynamic performance of the network. These performance models are sent from each server 
in the network to the agent before run-time of the client application (Agent discovery). 

1.3.1 GridSolve: Agent discovery 
The section outlines the GridSolve implementation of the “Register discovery” part of the 
GridRPC model. The agent maintains a list of all available servers and their registered tasks. 
This list is incremented when each new server registers with the agent. In addition, the agent 
stores performance models required to estimate the execution time of available tasks on the 
servers. 

This includes the dynamic performance of each server and functions/parameters, which are 
used to calculate the computational/communication load of tasks. These performance 
models are implemented by executing the LINPACK benchmark on each server when they 
are started, running the CPU load monitor on the server and using descriptions of the task 
provided by the person that installed the task to generate functions for calculating the 
computation and communication load of the tasks (figure 2). 

 
Figure 2: GridSolve – Agent discovery 

The server may optionally be configured to maintain a history of execution times and use a 
non-negative least squares algorithm to predict future execution times. At run-time of the 
client application, when each GridRPC task call is invoked, these performance models are 
used to estimate the execution time of the called task on each server. 

1.3.2 Run-time GridRPC task call 

In practice, from the user’s perspective the mechanism employed by GridSolve makes the 
GridRPC task call fairly transparent. However, behind the scenes a typical GridRPC task 



call involves the following operations: 

• The discovery operation. 
• The mapping operation. 
• The execution operation. 

1.3.2.1 The	discovery	operation	
When the GridRPC call is invoked, the client queries the agent for an appropriate server that 
can execute the desired function. The agent returns a list of available servers, ranked in order 
of suitability. 

This ranked list is sorted based only on task computation times. Normally, the client would 
simply submit the service request to the first server on the list, but if specified by the user it 
is resorted according to its overall computation and communication time. If this is specified, 
the bandwidth from the client to the top few servers is measured. This is done using a simple 
32KB ping-pong benchmark. The time required to do the measurement will depend on the 
number of servers, which have the requested task, and the bandwidth and latency from the 
client to those servers. When the data is relatively small, the measurements are not 
performed because it would take less time to just send the data than it would take to do the 
measurements. Also, since a given service may be available on many servers, the cost of 
measuring network speed to all of them could be prohibitive. Therefore, the number of 
servers to be measured is limited to those with the highest computational performance. 

1.3.2.2 The	mapping	operation	
As previously described, the agent sends a server list, which is ordered according to their 
estimated computation time. 

In GridSolve, there is a number of mapping heuristics, which can be employed to generate 
the mapping solution. Among the mapping heuristics is the minimum completion time 
(MCT) mapping heuristic, which bases its execution time on the performance models and 
the dynamic network performance of each server. Also included are a set of mapping 
heuristics that rely on the other performance model in GridSolve called the Historical Trace 
Manager (HTM). 

1.3.2.3 The	execution	operation	
The client attempts to contact the first server from the list. It sends the input data to the 
server, the server then executes the task on behalf of the client and returns the results. If at 
any point the execution fails, the client automatically moves down the list of servers. 

1.4 GridRPC limitations 
GridRPC has some limitations affecting the performance of Grid applications. When using 
the traditional GridRPC to execute tasks remotely, the mapping and execution of the task is 
one atomic operation, which cannot be separated. As a result, each task is mapped separately 
and independently of other tasks of the application. 

Another important aspect of the GridRPC model is its communication model. The 
communication model of GridRPC is based on the client-server model or star network 
topology. This means that a task can be executed on any of the servers and inputs/outputs 
can only traverse the client-server links. 

Mapping tasks individually on to the star network results in mapping solutions that are far 
from optimal. If tasks are mapped individually, the mapping heuristic is unable to take into 
account any of the tasks that follow the task being mapped. Consequently, the mapping 
heuristic does not have the ability to optimally balance the load of computation and 



communication. Another consequence of mapping tasks in this way is that dependencies 
between tasks are not known at the time of mapping. Therefore this approach forces bridge 
communication. Bridge communication occurs when the output of one task is required as an 
input to another task. In this case, using the traditional GridRPC model, the output of the 
first task must be sent back to the client and the client then subsequently sends it to the 
server executing the second task when it is called. 

Also, since dependencies are not known and the network is based on the client-server model, 
it is impossible to employ any parallelism of communication between the tasks in the group. 
For example, this can be implemented if there is a dependency between two tasks and the 
destination task is not executed in parallel or immediately after the source task. In theory, 
this dependent data could be sent to the destination task in parallel with any computation or 
communication on any other machine (client or other servers) which happens in the 
intervening time. However, since tasks are mapped individually on to a star network, this 
parallelism of communication cannot be realized using the GridRPC model. 

2 SmartGridRPC and SmartGridSolve 
SmartGridRPC [6] is an enhancement of the traditional GridRPC model, which would allow 
a group of tasks to be mapped collectively on to a fully connected network. This would 
remove each of the limitations of the GridRPC model already described. The SmartGridRPC 
model has extended the GridRPC model to support collective mapping of a group of tasks 
by separating the mapping of tasks from their execution. This allows the group of tasks to be 
mapped collectively and then executed collectively. 

In addition, the traditional client-server model of GridRPC has been extended so that the 
group of tasks can be collectively executed on to a network topology, which is fully 
connected. This is a network topology where all servers can communicate directly or servers 
can cache their outputs locally. 

2.1 SmartGridRPC programming model and API 
The aim of the SmartGridRPC model is to enhance the GridRPC model by providing 
functionality for collective mapping of a group of tasks on a fully connected network. 

The SmartGridRPC programming model is designed so that when it is implemented it is 
interoperable with the existing GridRPC implementation (figure 3). Therefore, if any 
middleware has been extended to be made SmartGridRPC compliant, the application 
programmer has the option whether their application is implemented for the SmartGridRPC 
model, where tasks are mapped collectively on to a fully connected network or for the 
standard GridRPC model, where tasks are mapped individually on to a client-server star 
network. 

In addition, the SmartGridRPC model is designed so that when it is implemented it is 
incremental to the GridRPC system. Therefore, if the SmartGridRPC model is installed only 
on the client side, the system will be extended to allow for collective mapping. If the 
SmartGridRPC model is installed on the client side and on only some of the servers in the 
network, the system will be extended to allow for collective mapping on a partially 
connected network. If it is installed on all servers, the system will be extended to allow for 

 
Figure 3: Overview of SmartGridRPC model/API 
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collective mapping on the fully connected network. 

2.1.1 SmartGridRPC programming model 

The SmartGridRPC model provides an API, which allows the application programmer to 
specify a block of code, in which a group of GridRPC task calls should be mapped 
collectively. Then, when the application is run, the specified group of tasks in this block of 
code is processed collectively and each operation in the GridRPC call is separated and done 
collectively for all tasks in the group. Namely, all tasks in the group are discovered 
collectively, mapped collectively and executed collectively on the fully connected network. 
In the discovery phase, performance models are generated for estimating the execution time 
of the group of tasks on the fully connected network. In the mapping phase, the performance 
models are used by the mapping heuristic to generate a mapping solution for the group of 
tasks. In the execution phase, the group of tasks is executed on the fully connected network 
according to the mapping solution generated. 

In the context of this paper, a performance model is any structure, function, parameter etc., 
which are used to estimate the execution time of tasks in the distributed environment. The 
SmartGridRPC performance model refers to performance models, which are used to 
estimate the time of executing a group of tasks on the fully connected network. The 
GridRPC performance model refers to performance models, which are used to estimate the 
execution time of an individual task on a star network. A mapping heuristic is an algorithm, 
which aims to generate a mapping solution that satisfies a certain criterion, for example, 
minimum completion time, minimum perturbation etc. The SmartGridRPC mapping 
heuristics refer to mapping heuristics, which map a group of tasks on to a fully connected 
network. The GridRPC mapping heuristics refer to mapping heuristics which map an 
individual task on to a client-server network. Furthermore, a mapping solution is a structure, 
which outlines how tasks should be executed on the distributed network. The SmartGridRPC 
mapping solution outlines both a task-to-server mapping of each task in the group to a server 
in the network and the communication operations between the tasks in the group. The 
GridRPC mapping solution outlines the server list, which specifies where the called task 
should be executed, and the backup servers which should execute the task should the 
execution fail. 

The collective mapping of the SmartGridRPC model allows the mapping heuristics to 
estimate the execution time of more mapping solutions than if these tasks were mapped 
individually and therefore have higher potential of finding a more optimal solution. 

The job of generating the performance models is divided between the different components 
of GridRPC architecture (i.e. client, server and registry). The components may only be 
capable of constructing part of the performance model required to estimate the groups’ 
execution time. Therefore, the registry accumulates these parts from the different 
components and generates the required performance models. 

There are numerous methods for estimating the execution time of the group of tasks on a 
fully connected network so the implemented performance models are not specified in the 
SmartGridRPC model. Examples of performance models would be the ones currently 
implemented in SmartGridSolve, which have extended the performance models used in 
GridSolve. In the future, SmartGridSolve will implement performance models such as the 
Functional Performance Model, which is described in [7] [8]. Other possible 
implementations could include the Network Weather Service [9], the MDS directories 
(Globus, Ninf) [4] and the Historical Trace Manager (GridSolve) [10]. In general, in the 
SmartGridRPC model, the performance models are used to estimate: 

• The execution time of a task on a server. 
• The execution time of multiple tasks on a server and the effect the execution each 



task has on the other (perturbation). 
• The communication time of sending inputs and outputs between client and server. 
• The communication time of sending inputs and outputs between different servers. 

Mapping heuristics implement a certain methodology that uses these performance models to 
generate a mapping solution, which satisfies a certain criterion. Examples of mapping 
solutions include the greedy mapping heuristic and the exhaustive mapping heuristics, which 
have been currently implemented in SmartGridSolve. There has been extensive research 
done in the area of mapping heuristics [11] so this is not the focus of our study. 

The following sections describe the programming model of SmartGridRPC in the 
circumstance where the performance models are generated on the registry and the group of 
tasks is mapped by a mapping heuristic on the registry. However, the SmartGridRPC model 
could have an alternative implementation. These performance models could be generated on 
the client and the group of tasks could also be mapped by a mapping heuristic on the client. 
This may be a more suitable model for systems, such as Ninf-G, which have no central 
daemon like the GridSolve Agent or the DIET Global Agent. 

The SmartGridRPC map function separates the GridRPC call operations into three distinct 
phases so they can be done for all tasks collectively: 

• Discovery phase – The registry discovers all the performance models necessary for 
estimating the execution time of the group of tasks on a fully connected network. 

• Mapping phase – The mapping heuristic uses the performance models to generate a 
mapping solution for the group of tasks. 

• Execution phase – The group of tasks is executed on the fully connected network 
according to the mapping solution. 

2.1.1.1 Register discovery 

The servers provide the part of the performance model, which would facilitate the modeling 
of the execution of its available tasks on the underlying network. This partial model can 
either be automatically generated by the server or has to be explicitly specified or both. This 
partial model will be referred to as the server PM. 

As previously mentioned, the SmartGridRPC model does not specify how to implement the 
server PM as there are many possible implementations. Exactly when the server’s PM is 
sent to the registry is also not specified by the SmartGridRPC model as this would depend 
on the type of performance model implemented. 

But for example, the server PM could be sent to the registry upon registration and then 
updated after a certain event has occurred (i.e. when the CPU load or communication load 
has changed beyond a certain threshold) or when a certain time interval has elapsed. Or it 
may be updated during the run-time of the application when actual running times of tasks 
are used to build the performance model. It is suffice to say that the server PM is updated on 
the registry and is stored there until it is required during the run-time of a client application. 

2.1.1.2 Client application run-time 
The client also provides a part of the performance model, which is sent to the registry during 
the run-time of the client application. This will be referred to as the client PM. This part of 
the performance model is application-specific such as the list of tasks in the group, their 
order, the dependencies between tasks and the values of the arguments in the calling 
sequences. In addition, the client PM specifies the performance of the client-server links. 

In order to determine the parts of the performance model of the group of tasks, which are 
application-specific, each task, which has been requested to be mapped collectively, will be 
iterated through twice. On the first iteration, each GridRPC task call is discovered but not 



executed. This is the discovery phase. After all tasks in the group are discovered, the client 
determines the performance of the client-server links and sends the client PM to the registry. 
The registry then generates the performance models based on the stored server PM and the 
client PM. Based on these performance models, the mapping heuristic generates a mapping 
solution. This is the mapping phase. On the second iteration through the group of tasks, each 
task is then executed according to the mapping solution generated. This is the execution 
phase. This approach of iterating twice through the group tasks to separate the discovery, 
mapping and execution of tasks into three distinct phases is the basis that allows the 
SmartGridRPC model to collectively map and then collectively execute a group of tasks. 

The run-time map function, grpc_map(), is part of the SmartGridRPC API and allows the 
application programmer to specify a group of GridRPC calls to map collectively. 

This is done by using a set of parenthesis, which follows the map function, to specify a 
block of code, which consists of the group of GridRPC task calls that should be mapped 
collectively: 

grpc_map(char * mapping_heuristic_name){ 
    ... 
    //group of GridRPC calls to map collectively 
    ... 
} 

When this function is called, the code and GridRPC task calls within the parenthesis of the 
function are iterated through twice as previously described. 

2.1.1.3 Discovery phase 

On the first iteration through the group of tasks, each GridRPC task call within the 
parenthesis is discovered but not executed so therefore all tasks in the group can be 
discovered collectively. This is different to the GridRPC model, which only allows a single 
task to be discovered at any one time. The client can therefore look up and retrieve handles 
for all tasks in the group at the same time. In addition to sending the handles, the registry 
also sends back a list of all the servers that can execute each task. The client then determines 
the performance of the client-server links to the servers in the list. The client may only 
determine the performance of some of these links, depending on how many servers are in 
this list, or may not determine the performance of any of the links if the arguments being 
sent over the links are small. Exactly how the client determines the performance of these 
links is not specified by the SmartGridRPC model. This could be implemented using NWS 
sensors, ping-pong benchmarks, MDS directory or any other conceivable method for 
determining the performance of communication links. 

The client now sends the client PM to the registry. The client PM specifies the order of tasks 
in the group, their dependencies and the values of each argument in the calling sequence of 
each task and the performance of the client-server links. This does not involve sending non-
scalar arguments, such as matrices or vectors, but just the pointer value as this will be used 
to determine the dependencies between tasks. The registry then uses the server PM and 
client PM to generate the performance models for estimating the time of executing a group 
of tasks on the fully connected network. These performance models are then used in the 
mapping phase to generate a mapping solution. 

2.1.1.4 Mapping Phase 
Based on the performance models, the mapping heuristic then produces a mapping solution, 
which satisfies a certain criterion, for example, minimizing the execution time of tasks. The 
implemented mapping heuristic is chosen by the application programmer using the 
SmartGridRPC API. 



There is an extensive number of possible mapping heuristics that could be implemented and 
therefore the mapping heuristics implemented are not bound by the SmartGridRPC model. 
However, the SmartGridRPC framework allows different mapping heuristics and different 
performance models to be added and therefore provides an ideal framework for testing and 
evaluating these performance models and mapping heuristics. 

2.1.1.5 Execution Phase 

The execution phase occurs on the second iteration through the group of tasks. In this phase, 
each GridRPC call is executed according to the mapping solution generated by the mapping 
heuristic on the previous iteration. The mapping solution not only outlines the task-to-server 
mapping but also the remote communication operations between the tasks in the group. 

2.1.2 SmartGridRPC: API and semantics 

The SmartGridRPC API allows a user to specify a group of tasks that should be mapped 
collectively on a fully connected network. The SmartGridRPC map function is used for 
specifying the block of code, which consists of the group of GridRPC tasks calls that is to be 
mapped collectively. 

When the grpc_map() function is called, the code within its parenthesis will be iterated 
through twice as previously described. After the first iteration through the group of tasks, the 
mapping heuristic specified by the parameter “mapping_heuristic_name” of the 
grpc_map() function generates a mapping solution. 

The mapping solution outlines a task to server mapping and also the communication 
operations between tasks. These communication operations include: 

• Client-server communication 
o Standard GridRPC communication 

• Server-server communication 
o Server sends a single argument to another server 

• Client broadcasting 
o Client sends a single argument to multiple servers. 

• Server broadcasting 
o Server sends a single argument to multiple servers. 

• Server caching 
o Server stores an argument locally for future tasks. 

As a result, the network may have: 

• A fully connected topology - where all the servers are SmartGridSolve enabled 
servers (SmartServers), which can communicate directly with each other. 

• A partially connected topology – where only some of the servers are SmartServers, 
which can communicate directly. The standard servers can only communicate with 
each other via the client. 

• A star connected topology – where all servers are standard servers and they can only 
communicate with each other via the client. 

During the second iteration through the code, the tasks will be executed according to the 
generated mapping solution. 

The SmartGridRPC model also requires a method for identifying code that will be executed 
on the client. There are many possible approaches, which could be implemented to identify 
client code. For example, a preprocessor approach could be used to identify the client code 
transparently. Where the client code cannot be identified, we provide a grpc_local() 
function call, which the application programmer can use to explicitly specify client 
computation: 



grpc_map(char * mapping_heuristic_name) { 
 
    //reset variables which have been updated  
    // during the discovery phase 
 
    grpc_local(list of arguments){ 
        //code to ignore when generating task graph 
    } 
    ... 
    // group of tasks to map collectively 
    ... 
} 

The grpc_local() function is used to specify the code block that should be ignored 
during the first iteration through the scope of grpc_map(). The function is also used to 
specify remote arguments that are required locally. This information is used to determine 
when arguments will be sent back to client and also facilitates the generation of the task 
graph. 

Any segment of client code that is not part of the GridRPC API should be identified using 
this function. There is one exception to this rule, when the client code directly affects any 
aspect of the task graph. For example, if a variable is updated on the client that determines 
which remote tasks get executed or the size of inputs/outputs of any task, then the operations 
on this variable should not be enclosed by the grpc_local() function. If any variables or 
structures are updated during the task discovery cycle then they should be restored to their 
original values before the execution cycle begins. 

2.1.3 A SmartGridRPC application 

Table 2 is the SmartGridRPC implementation of the GridRPC application in section 1.2. 
There is only one extra call required to make this application SmartGridRPC enabled, which 
is the grpc_map() function. In this example, the user has specified that all three tasks 
should be mapped collectively. 

Let us consider the same simple scenario as in section 1.2, where task h2 has a larger 
computational load than h1 and the underlying network consists of two servers, which have 
different performances. In this case, since all tasks are mapped together, the SmartGridRPC 
model will improve the load balancing of computation by assigning task h2 to the faster 
server and h1 to the slower. 

In addition, task h3 has a dependency on the argument F, which is an output of task h2, and 
argument C, which is an output of task h1. Since the tasks are mapped as a group and 
therefore dependencies can be considered, this dependency can be mapped on to the virtual 
link connecting the servers executing both tasks, which will reduce the communication load. 
Or if the tasks are executing on the same server, then the output can be cached and retrieved 
from the same server, which would further reduce the communication load and further 
increase the overall performance of the group of tasks.  

Also, since no intermediate results are sent back to the client, the amount of memory utilised 
on the client will be reduced and this will reduce the risk of paging on the client. This 
prevention of paging could also considerably reduce the overall execution time of the group 
of tasks. 

In addition, since dependencies are known and the network is fully connected, the remote 
communication of argument C from server, executing task h1, to server executing task h2, 
could be done in parallel with the communication and computation of h2. 



2.2 SmartGridSolve: implementing SmartGridRPC in GridSolve 
SmartGridSolve [12] is an extension of GridSolve, which makes the GridSolve middleware 
compliant with the SmartGridRPC model. SmartNetSolve [13] was previously implemented 
to make the NetSolve [14] middleware, which was the predecessor of GridSolve, compliant 
with the SmartGridRPC model. 

The SmartGridSolve extension is interoperable with GridSolve. Therefore, if GridSolve is 
installed with the SmartGridSolve extension, the user can choose whether to implement an 
application using the standard GridRPC model or the extended SmartGridRPC model. In 
addition, SmartGridSolve is incremental to the GridSolve system. Therefore, if the 
SmartGridSolve extension is installed only on the client side, the system will be extended to 
allow for collective mapping. If SmartGridSolve is installed on the client side and on only 
some of the servers in the network, the system will be extended to allow for collective 
mapping on a partially connected network. If it is installed on all servers, the system will be 
extended to allow for collective mapping on the fully connected network. 

 
Table 2: SmartGridRPC model — Example application 

  main() 
{ 
    int N=getNSize(); 
    int M=getMSize(); 
 
    double A[N*N], B[N*N], C[N*N]; 
    double D[M*M], E[M*M], F[M*M], G[M*M 
    grpc_function_handle_t h1, h2, h3; 
    grpc_session_t s1, s2; 
    grpc_initialize(argv[1]); 
     
    /* initialize */ 
    initMatA(N, A);  initMatB(N, B);  
    initMatD(M, D);  initMatD(M, E);  
     
 
    grpc_function_handle_default(&h1, "mmul/mmul"); 
    grpc_function_handle_default(&h2, "mmul/mmul");  
    grpc_function_handle_default(&h3, "mmul/mmul");  
 
    grpc_map(“greedy_map”){     
      if(grpc_call_asnc(&h1,&s1,N,A,B,C)!= GRPC_NO_ERROR) { 
        fprintf(stderr, "Error in grpc_call\n"); 
        exit(1); 
      } 
      if(grpc_call_async(&h2, &s2,M,D,E,F)!=GRPC_NO_ERROR){ 
        fprintf(stderr, "Error in grpc_call\n"); 
        exit(1); 
      } 
      grpc_wait(s1); 
      grpc_wait(s2); 
 
      if (grpc_call(&h3,M,C ,F,G) != GRPC_NO_ERROR){ 
        fprintf(stderr, "Error in grpc_call\n"); 
        exit(1); 
      } 
    } 
 
    grpc_function_handle_destruct(&h1); 
    grpc_function_handle_destruct(&h2); 
    grpc_function_handle_destruct(&h3); 
    ... 
    grpc_finalize(); 
} 



2.2.1 Agent discovery 

This section presents the SmartGridSolve implementation of the “register discovery” part of 
SmartGridRPC model outlined in section 2.1.1. In addition to registering services, the 
servers also send the server PM. The server PM makes up part of the performance model 
used for estimating the execution time of the server’s available tasks on the fully connected 
network. This along with the client PM is used to generate a performance model, which is 
used by the mapping heuristics to produce mapping solutions. 

Currently, the server PM of SmartGridSolve extends that of GridSolve, which comprises of 
functions for calculating the computation load and communication load and parameters for 
calculating the dynamic performance of the servers and client-server links. 

However, the network discovery of GridSolve is extended to also discover the dynamic 
performance of each link connecting SmartServers. These are those servers, which can 
communicate directly with each other or store/receive data from their local cache. The 
dynamic performance of the server-server links are taken periodically using the same 32KB 
ping-pong technique used by GridSolve. 

To achieve backward compatibility and to give server administrators full control over how 
the server operates a server, which has the SmartGridSolve extension enabled, may be also 
started as a standard GridSolve server. 

As a result, the network may have: 

• A fully connected topology. 
• A partially connected topology. 
• A star connected topology. 

Also to minimize the volume of data transferred around the network, each SmartServer is 
given an ID. Each SmartServer then only sends ping-pong messages to those SmartServers 
that have an id that is less than their own. This prevents the performance of the same 
communication link being measured twice. Once determined, these values are sent to the 
agent to update the server PM. The server PM is stored on the registry and updated either 
periodically (every 5 minutes) or when the CPU load monitor records a change, which 
exceeds a certain threshold. This server PM is then used to generate the performance models 
during the run-time of a client application. 

 
Figure 4: SmartGridSolve - Agent discovery 

2.2.2 Run-time of client application 

This section presents the SmartGridSolve implementation of the “Client application run-
time” part of SmartGridRPC model. Each phase of the SmartGridRPC run-time map 
function (grpc_map()) will be described. 



2.2.2.1 Discovery phase 

On the first iteration through the group of tasks, each GridRPC task call (grpc_call()) 
within the parenthesis is discovered but not executed. This involves discovering the name of 
each task and the calling sequence of each task, which involves discovering the pointers to 
the non-scalar arguments (such as matrices, vectors etc.) and the values of the scalar 
arguments. 

After the first iteration through the group, the client contacts the agent and looks up the 
group of tasks, which involves sending the agent a list of the task names.  

The agent then creates a handle for each task. The agent sends back the group of handles, 
one for each task. In addition, for each handle it sends a list of servers, which can execute 
each task. 

The client then uses the list of servers to perform the ping-pong benchmark on each of the 
links from the client to each server that can execute a task in the group of tasks. Subsequent 
to this, the client will send the client PM, which is a structure that specifies application-
specific information such as the list of tasks, the calling sequence and the dependencies 
between the tasks. In addition it specifies the performances of each client-server link. 

The agent can now generate all the performance models necessary for estimating the 
execution time of the group of tasks on the fully or partially connected network. In 
SmartGridSolve, these performance models consist of a task graph, a network graph and 
functions for estimating computation and communication times. 

The task graph specifies the order of tasks, their synchronisation (whether they are executed 
in sequence or parallel), the dependencies between tasks, the load of computation and 
communication of each task in the group. 

The network graph specifies the performance of each server in the network and the 
communication links of the fully connected, partially connected or star network. These 
performance models will be used by the mapping heuristics in the mapping phase to 
generate a mapping solution for the group of tasks. 

2.2.2.2 Mapping Phase 

The mapping heuristic produces a mapping solution graph based on the task graph, the 
network graph and the functions for estimating computation and communication time. The 
mapping heuristics currently implemented in SmartGridSolve are: 

• Exhaustive mapping heuristic. 
• Random walk mapping heuristic. 
• Greedy mapping heuristic. 

The mapping solution generated by these heuristics is then used in the execution phase to 
determine how the group of tasks should be executed on the network. 

2.2.2.3 Execution Phase 
This execution phase occurs on the second iteration through the group of tasks. In this phase, 
each called GridRPC call is executed according to the mapping solution generated by the 
mapping heuristic. The mapping solution not only outlines the task-to-server mapping but 
also the communication operations between the tasks in the group.  

In addition to the standard GridRPC communication, the mapping solution can use the 
following communication operations: 

• Server-server communication. 
• Client broadcasting. 



• Server broadcasting. 
• Server caching. 

2.2.3 Fault tolerance 

SmartGridSolve maps tasks to servers collectively and allows server to server 
communication, so single server's failure can affect not only tasks running on that server, but 
also tasks dependent on those tasks. 

There are two fault tolerance modes in SmartGridSolve. 

2.2.3.1 Advanced mode 

The advanced mode is the default mode implemented in grpc_map()function in 
SmartGridSolve. If there is a problem communicating with a server running a task, or the 
server reports a failure during grpc_call() or grpc_call_async(), the library 
enters the fault mode. The agent is notified that the server is unavailable and should be 
removed from the list of available servers. All remaining grpc_call() and 
grpc_call_async() calls do nothing, grpc_local() blocks are being skipped, and 
the grpc_map() loop is started over again in mapping phase. 

The disadvantage of this mode is that even a single server's fault is expensive: it leads to all 
tasks inside grpc_map() block to be mapped and started over again. All results of 
computation done already inside grpc_map() block are lost. 

The advantage of this mode is that it has no performance impact if there are no faults. 

If several servers became unavailable during execution of a single grpc_map(), only the 
first fault is detected, all subsequent calls to grpc_call() and grpc_call_async() 
do nothing, and the remapping is performed before the next loop pass. At the moment of the 
next remapping the agent may have noticed some of the other failed servers, but it may take 
several mapping and execution attempts before the agent notices all failed servers. 

2.2.3.2 Simple mode 

The simple mode is implemented in grpc_map_ft() function. This function works the 
same way as grpc_map(), but with server-to-server communication disabled. As a result, 
a failure of a single GridRPC call does not affect other calls. The fault tolerance inside 
grpc_map_ft() is implemented the same way as in GridSolve: if there is any problem 
communicating with a server running a task, or the server reports a failure of that task, 
another server is selected, and the task is run again on that server. 

The advantage of this approach is that each fault is relatively cheap: a server's fault affects 
only those tasks which are running on this server at the moment of the fault. 

The disadvantage is that although tasks are still mapped to servers collectively, the 
communication optimization is sacrificed: all communication goes through the client. This 
has a significant negative impact on performance in absence of faults. 

If several servers became unavailable during execution of a single grpc_map_ft(), each 
fault is handled independently, and each failed task is re-tried on a different server. 

2.2.3.3 Additional constraints for fault tolerance in advanced mode 

The current implementation of SmartGridSolve places additional constraints on the code 
inside grpc_map() block to work correctly in case of a task failure. The existing guideline 
is that all side effects should be done in grpc_local() block, which is skipped during 
discovery phase and is run only during the actual task execution phase (the last pass of the 



loop). However, in case of task failure, the task execution phase is not the the last: the loop 
will start over again for the mapping phase. This means that if there is grpc_call() or 
grpc_call_async() after the grpc_local() block, and this call has failed, 
grpc_local() block preceding it has been already executed, producing side effects, and 
there is no way to roll those side effects back. Hence, here is the additional guideline for 
grpc_local() block to work correctly in case of failure: if there are more remote task 
calls after the grpc_local() block inside grpc_map() loop, the code inside this 
grpc_local() block should be idempotent: produce exactly the same results if it is run 
more than once. 

3 Making SmartGridSolve smarter 

3.1 SmartGridSolve approach to smart mapping and its limitations 
The current approach to smart mapping implemented by SmartGridSolve is the following. A 
block containing an algorithm to apply smart mapping to is marked by the grpc_map() 
directive before the block. So, if the original algorithm is looking as follows: 

grpc_call(task1, ...); 
grpc_call(task2, ...); 
grpc_call(task3, ...); 

after converting it to use smart mapping it will look like this: 
grpc_map("heuristics_name") { 
    grpc_call(task1, ...); 
    grpc_call(task2, ...); 
    grpc_call(task3, ...); 
} 

The grpc_map() directive is actually a C preprocessor macro implemented as a while 
loop. The first pass of this loop discovers all GridRPC calls, but instead of executing them it 
just stores the information about calls and their arguments for building dependency graph. 
Before the second loop pass the dependency graph is built and sent to the agent for smart 
mapping. The agent responds with the suggested mapping, and the tasks are run on servers 
suggested by the agent during the second loop pass. If a fault happens during the execution 
of a task, the faulty server is excluded from the list of available servers, all subsequent task 
runs are being skipped, and the loop is run once again, asking for the agent for mapping and 
then running the tasks inside the loop pass. 

This approach is very simple, but it has the following limitations. 

• The current implementation of the grpc_map() directive puts significant restrictions 
on a code inside the bock following it. Although the fact that grpc_map() is 
implemented as a loop should be hidden as implementation detail, a user still has to keep 
this in mind. In particular, all statements besides GridRPC calls should be written to 
yield the same result when run during the first and second loop pass. User should keep in 
mind that the loop is run at least twice and avoid the statements with side effect inside 
grpc_map() controlled block. A special grpc_local() block was introduced to 
allow all statements which should not be run during the discovery phase to be put there. 
However, this does not fully protect those statements from being run twice in case of 
GridRPC call failure. This means that all statements inside grpc_map() block should 
be idempotent: either having no side effects, or if they have one, the side effect should 
be exactly the same when the statement is performed for the second time (except 
statements inside grpc_local() blocks not followed by any GridRPC calls). See 
section 2.2.3.3 for details. It's very easy to violate this restriction and there is no easy 



way to detect if that happened. A simple mistake can lead to unpredictable results. Or 
even worse, a program can silently produce incorrect results only if a server fault has 
happened during algorithm execution. 

• The current implementation does not handle branching inside grpc_map() block 
properly. If there is an if statement, the rules of C programming language dictate that 
only one branch is executed during the discovery phase. This means that no GridRPC 
calls in another branch will be taken into account when building the dependency graph. 

• The implementation of grpc_map() block and GridRPC calls uses global state to 
determine which loop pass is taking place and what to do now. This makes GridRPC 
implementation non re-entrant and thread unsafe. 

• If a fault happens during GridRPC call, all the mapping and the discovery, mapping and 
execution stages are performed again on the whole algorithm inside grpc_map() 
block, not taking into account that some tasks could have already successfully completed 
and their results are not lost. 

3.2 Better approach to smart mapping 
In order to achieve more correct smart mapping which puts less constraints on statements 
used inside the block to be mapped, other approaches are needed. Very few programming 
languages have facilities for introspection on statement level, and those languages are not 
widely used for grid computing anyway, so in order to discover GridRPC calls dependency 
graph correctly without executing the block in a “special mode”, some kind of additional 
tool is needed. 

In order to discover dependency graph, the algorithm should be analysed somehow before it 
is run. As the algorithm does not contain self-modifying code, the dependency graph is the 
same during different algorithm runs, so it does not make sense to build it every time it's run. 
The better way to build dependency graph is to analyse the algorithm during the compilation 
phase or even before. Hence, the preprocessor approach (discovery before compilation) is 
proposed. 

The preprocessor approach can be implemented by a program which reads a program written 
in a programming language, analyses it, finds all blocks marked for smart mapping, finds all 
GridRPC calls inside these blocks, builds dependency graph for all those blocks, and then 
outputs the program with blocks marked for smart mapping modified to contain dependency 
graph table, a call to the agent to get task-to-server mapping in the beginning of the block, 
and GridRPC calls which use this mapping. 

The preprocessor approach can lift some restrictions on code inside grpc_map() block 
because there will be no discovery phase during runtime, just execution phase: 

• there will be no need in grpc_local() blocks to keep some code from being 
executed during the discovery phase; 

• all GridRPC calls in all branches of if statements will be taken into account when 
building the dependency graph, not just ones which happen to be executed during the 
discovery phase. 

 However this approach makes the solution for fault tolerance used in the current 
implementation of SmartGridSolve even less optimal: placing restrictions on code inside 
grpc_map() block just for the rare case of task failure. Better approach to lift remaining 
restrictions on code is proposed in section 3.3.1. 



3.3 Better approaches to fault tolerance 
The current implementation of fault tolerance in SmartGridSolve is very simple, and it's far 
from optimal. It has no performance overhead in case there are no faults, but if the fault 
happens the overhead is huge. All algorithm inside grpc_map() block is being essentially 
restarted in this case. 

There are three main directions to improve fault tolerance in SmartGridSolve: 

• lifting the restrictions on code inside grpc_map() block caused by fault handling 
implementation; 

• reducing set of tasks to be restarted to only those tasks that have their results being 
lost; 

• reducing set of tasks to be restarted by reducing likelihood of their results being lost; 

• improving reliability of mapping and graceful handling of mapping failures. 

3.3.1 Recovery from task failures 

When the task-to-server mapping is found, everything else looks simple on the first glance: 
just execute the algorithm, making GridRPC calls according to the mapping. However, 
things become complicated if there is a GridRPC call which has failed. The problem is what 
to do when this happened. In a common case it's not enough to re-run the failed GridRPC 
call on a different server: some of the previous GridRPC calls results are lost if server-to-
server communication is involved. This means that a new mapping should be built and those 
GridRPC calls which have results lost have to be re-run as well. 

All GridRPC tasks have an interesting property: they are independent on each other, return 
the same results when called with the same arguments, and have no side effects. This means 
that in case of GridRPC failure, instead of rolling back the whole algorithm to a checkpoint, 
we can re-run all GridRPC calls which have results lost with exactly the same arguments as 
before, and we'll have exactly the same result. 

In this approach, each GridRPC call should store its arguments in some kind of redo log. 
Also each GridRPC call should contain logic for fault recovery: ask agent for another task-
to-server mapping using the same dependency graph and re-run the redo log or its part in 
case of failure. 

The redo approach has the advantage that it completely solves the problem with side effects 
inside and outside of program state: nothing has to be rolled back, no program state need to 
be restored, no side effects need to be discovered. Combined with the preprocessor approach 
to discovering dependency graph described in section 3.2, it allows to completely lift the 
constraints on code inside grpc_map() block described in sections 2.2.3.3 and 3.1. 

3.3.2 Restarting only relevant tasks 

3.3.2.1 Not remapping completed tasks 
The current SmartGridSolve implementation remaps and executes again even those tasks 
that were successfully completed, and results were successfully retrieved by the client, even 
if there are no more tasks which need those results. 

The simplest and and most obvious improvement is to take completed tasks into account and 
exclude those of them which have final results retrieved by the client from the remapping in 
case of other task's failure. It's necessary to remap only those tasks which were not 
completed or have other tasks which are dependent (directly or indirectly) on their results. 

The correct implementation of this improvement decreases performance penalty in case of a 



failure and has negligible performance impact if there are no failures. 

3.3.2.2 Individually restarting tasks not dependent on other ones 

The most difficult problem to solve in case of a fault during collective mapping is the loss of 
results which were produced by other tasks. But the simple case if there is no data from 
other tasks needed by the failed task can be handled without a complete remapping. If there 
are no data loss from other tasks, the failed task can be restarted individually. 

The correct implementation of this improvement decreases performance penalty in case of a 
failure and has negligible performance impact if there are no failures. 

3.3.3 Losing less results 

3.3.3.1 Keeping task results until all tasks dependent on them finished 

Another direction of improvement of fault tolerance is to prevent losing the results of 
completed tasks. The current SmartGridSolve sends the results of tasks to the tasks 
dependent on those results directly. The sending server removes the results when the 
transmission is complete, so the results are lost in case of the receiving server's fault after the 
results were transmitted. This means that the failed task can not be restarted individually: the 
data needed for this task are lost and have to be recalculated by running all the tasks 
necessary to produce those data again. 

Recalculating lost results can be avoided if they were stored somewhere else, not only on 
failed server. It can be implemented by caching data on the server which produced the 
results until all tasks which need those results are completes and passed their results to the 
client or to other servers. 

This approach has no additional overhead besides using storage for the results for longer 
period of time. However, this still results in high performance penalty if the server which 
keeps the results and the server running a task using those results failed simultaneously. In 
this case the results are lost and have to be recalculated by rerunning all tasks the lost data 
depend on. 

3.3.3.2 Redundant storage for intermediary results 

To even more decrease probability of data loss, more generic approach can be used for 
storing task results redundantly. For example, task results can be not only kept on the server 
where those results were produced and on the servers which run tasks which need those 
results, but also on some servers which are not supposed to run tasks which need those 
results. The agent can keep track of the servers where results are stored and instruct them to 
send the data to the servers where remapped tasks will be run in case of a failure. The 
number of servers to store the same data redundantly should be configurable. 

This approach can be optimised further by sending results for redundant storage to those 
servers which are the most likely candidates for running tasks which use those results in case 
of a server failure, and by taking into account where data stored when remapping tasks. 

3.3.4 More reliable mapping 

3.3.4.1 Redundant agents 

There is a problem in the current SmartGridSolve implementation: the agent is a single point 
of failure, and there is no recovery in case of the agent's failure. Servers are redundant, and 
tasks running on a failed server can be retried on another server. However, the failed agent 
can make the whole grid unusable by making all clients to be unable to map or remap all 
further tasks. 



This problem can be solved by running multiple synchronised instances of the agent. A 
server can register with any agent instance, and this information will be propagated among 
all instances. The protocol of server-agent and client-agent communication can be extended 
by allowing them to reconnect to another agent instance in case of communication error. 

3.3.4.2 Improved mapping error handling 

There is another issue which is not directly related to performance in case of server failure, 
but it is related to the handling of agent failure. The current SmartGridSolve implementation 
has no way to handle task mapping failure gracefully. This is because the condition inside 
while() loop in plain C has no way to communicate additional information besides being 
true or false. If there is an error during task mapping, the client falls back to individual 
mapping for all further tasks, and there is no way to switch to smart mapping for further task 
groups, even if the agent became available again. 

The handling of mapping failure can be improved in preprocessor approach by introducing 
syntax to handle such kind of failure. 

4 Smart RPC-based computing on Clouds: Adaptation of SmartGridRPC and 
SmartGridSolve to Cloud computing 

4.1 Introduction 
Cloud computing allows users to have easy access to large distributed resources from data 
centers from anywhere in the world. Moreover, by renting the infrastructure on a pay per use 
basis, they can have immediate access to required resources without any capacity planning 
and they are free to release them when resources are no longer needed. These resources can 
be dynamically re-configured to adjust to a users needs or the variable load of applications 
allowing for an optimum resource utilization. Hence, the computing infrastructure can be 
scaled up and down according to the application requirements or the budget of the user or a 
combination of both. 

SmartCloudSolve (SCS) is a Platform as a Service (PaaS). PaaS are platforms which 
facilitate deployment of cloud applications without the cost and complexity of buying and 
managing the underlying hardware and software layers. SCS is based on SmartGridSolve [6] 
which is an extension to GridSolve [3], the middleware platform for Grids and Clusters. 
SCS allows application programmers to easily convert existing applications into high 
performance scalable applications that will run on a number of cloud infrastructures Other 
examples of PaaS include, Google AppEngine [15], MicroSoft Azure [16] and Force.com 
[17]. 

The following are the advantages of using SCS over other PaaS: 

• Increased performance – SCS can automatically generate a task graph for an 
application and this task graph is used to improve the mapping of the application on 
the cloud infrastructure and thus increase the performance of the application. 

• Automation – SCS can improve the scaling up and scale down of the cloud 
infrastructure by using the task graph. SCS can determine future levels of parallelism 
of the application from its task graph and therefore can scale the infrastructure up 
ahead of time to maximize performance. Since future levels of parallelism can be 
determined, SCS can also terminate servers if they are not required for future tasks 
and therefore reduce costs. 

• Ease of use – With a few simple steps an application programmer can change their 
existing serial applications into high performance scalable applications that can 
execute in a cloud environment. 



• Flexibility – The application programmer can choose from a number of 
programming languages and their application is not restricted to run on a single 
public or private cloud. 

4.2 Cloud Computing 
In this section we will describe the three major catogories of cloud computing. These are: 
Infrastructure as a Service (IaaS), Platform as a Service (PaaS) which is the catogory the 
SCS platform falls under and Software as a Service (SaaS). 

4.2.1 Infrastructure as a Service 

Infrastructure as a Service (IaaS) or Hardware as a Service (HaaS) are terms that refer to the 
practice of delivering IT infrastructure based on virtual or physical resources as a 
commodity to customers. These resources meet the end user requirements in terms of 
memory, CPU type and power, storage, and, in most of the cases, operating system. Users 
are billed on a pay per use basis and have to set up their system on top of these resources 
that are hosted and managed in data centers owned by the vendor. Amazon is one of the 
major players in providing IaaS solutions. Other providers include Rackspace [18], GoGrid 
[19] and FlexiScale [20]. 

4.2.2 Platform as a Service 

Cloud systems can offer an additional abstraction level: instead of supplying a virtualized 
infrastructure, they can provide the software platform where systems run on. The sizing of 
the hardware resources demanded by the execution of the services is made in a transparent 
manner. This is denoted as Platform as a Service (PaaS). Platform as a Service solutions 
provide an application or development platform in which users can create their own 
application that will run on the cloud. PaaS implementations usually provide users with an 
application framework and a set of API that can be used by developers to program or 
compose applications for the cloud. The two major players adopting this strategy are Google 
and Microsoft. Google AppEngine is a platform for developing scalable web applications 
that will be run on top of server infrastructure of Google. It provides a set of APIs and an 
application model that allow developers to take advantage of additional services provided by 
Google such as Mail, Datastore, Memcache, and others. By following the provided 
application model, developers create applications in Python. These applications will be run 
within a sandbox and AppEngine will take care of automatically scaling when needed. 
Azure is the solution provided by Microsoft for developing scalable applications for the 
cloud. It is a cloud service operating system that serves as the development, run-time, and 
control environment for the Azure Services Platform. By using the Microsoft Azure SDK, 
developers can create services that leverage the .NET Framework. These services have to be 
uploaded through the Microsoft Azure portal in order to be executed on top of Windows 
Azure. Additional services, such as workflow execution and management, web services 
orchestration, and access to SQL data stores, are provided to build enterprise applications. 

4.2.3 Software as a Service 
Software as a Service solutions are at the top end of the cloud computing stack and they 
provide end users with an integrated service comprising hardware, development platforms, 
and applications. Examples of the SaaS implementations are the services provided by 
Google for office automation, such as Google Document and Google Calendar, which are 
delivered for free to the Internet users and charged for professional quality services. An 
example of a commercial solution is Salesforce.com [21], which provides an on line 
customer relation management service. 



4.3 SmartCloudSolve (SCS) 

4.3.1 Overview 

SCS is a PaaS that allows programmers to easily develop applications or convert their 
existing applications into high performing scalable applications that will execute on a cloud 
infrastructure. SCS will give the application programmer the freedom to develop their 
application using any one of a number of languages and execute that application on any one 
of a number of cloud infrastructures. Therefore, programmers can focus on software 
development in their language of choice as opposed to focusing on managing the underlying 
cloud infrastructures (servers, network, storage etc) and determining how the application 
should be executed on that infrastructure. 

By using the simple SmartGridRPC API, applications written in a number of languages can 
be easily converted into high performing scalable cloud applications. Applications written 
using the SmartGridRPC API are interpreted by SCS, which then generates a task graph 
automatically for the application. The task graph is a directed acyclic graph representing the 
order, computational load, communication load of each task in the application and the data 
dependencies between these tasks. This task graph is used to determine a close to optimal 
solution for executing the application on the cloud. The mapping outlines how tasks are 
mapped to sever and how communication will be sent between these tasks (inter-server 
communication). SCS design also takes advantage of the processing power of each 
individual CPU core in the underlying infrastructure by using the task graph to leverage 
message passing, process forking and threading. In addition the task graph is used to 
determine ahead of time, when to automatically scale up and scale down the cloud 
infrastructure and can thus minimize time and cost. 

4.3.2 Advantages of the SCS Platform 

The main advantages of SCS over existing cloud PaaS is that you can implement 
applications in any number of languages and these application can potentially achieve higher 
performance. The application programmer creates an application using their chosen 
language and the SmartGridRPC API. SCS applications can be developed in Fortran, C, 
Matlab, Mathematica, and Octave. The platform is extensible to include other languages. 
Therefore, the application programmer will not be locked-in to a specific development 
language, which is the case with most other PaaS. With Google, for example programmers 
must write their applications only in the Python programming language to Google specific 
APIs. “Regular” applications which have been implemented to run on a single machine can 
be implemented for SCS to execute on a cloud infrastructure with only a few simple changes. 
In addition higher performance can be achieved since the task graph of the application is 
automatically generated and is known prior to execution. This can be used to determine the 
scaling of the infrastructure and to implement a close to optimal execution of the application 
on that infrastructure. 

The other advantage of SCS is there is no infrastructure lock-in. When an application is 
developed for SCS it will not be locked in to any one infrastructure. The application is 
“cloud neutral” which is not the case with other PaaS. For example, if you develop an 
application using Force.com, which is the SalesForce PaaS or Google AppEngine, it is 
impossible to move these applications to other cloud infrastructures. SCS will be developed 
so that applications can be easily moved from one cloud provider to another or even to a 
private cloud. 

4.3.3 High Level Design of the SCS Platform 

Figure 5 shows an high level view of the design of SCS. In the software layer, the 
application programmer creates an application using their chosen language and the 



SmartGridRPC API. In the platform layer, SCS automatically generates a task graph when 
the application is run, which is then used to optimally map the application to the cloud 
infrastructure. The infrastructure is scaled up and down based on the level of parallelism in 
the task graph. In addition, using this graph the load of computation and communication is 
balanced over the network and inter-server communication is implemented to further 
increase the performance. The task graph could also be used to execute parallel fine grain 
tasks on multiple processors on the same machine (OpenMP [22] /Pthreads [23]) or on 
multiple processors on different machines (MPI [24]). 

In the infrastructure layer, SCS executes the application on the target infrastructure. The 
original target infrastructure for SmartGridSolve which SCS is based on is Grids and 
clusters. SCS supports many different architectures/platforms such as Linux, Solaris, BSD, 
Windows and Windows Compute Cluster. This means that SCS can easily be extended so 
that applications can be executed across a number of public clouds or even private clouds. 
Namely, SCS could be extended for other public clouds such as Rackspace, GoGrid, 
Flexiscale and private clouds such as the Eucalyptus cloud [25]. 

 
Figure 5: Overview of SmartCloudSolve 

4.3.4 SCS API and Application Implementation 

This section will describe how a programmer can easily convert their serial application into 
a high performance scalable application using the SmartGridRPC APIs. SmartGridRPC 
model is the programming model that the SCS platform is based on which was described in 
section 2.1. 

Hydropad [26] is a real-life astrophysics application that simulates the evolution of clusters 
of galaxies in the Universe. Hydropad requires high processing resources because it has to 
simulate an area comparable to the dimensions of the Universe. The cosmological model, 
which this application is based on, has the assumption that the Universe is composed of two 
different kinds of matter. The first is baryonic matter, which is directly observed and forms 
all bright objects. The second is dark matter, which is theorized to account for most of the 
gravitational mass in the Universe. The evolution of this system can only be described by 
treating both components at the same time, looking at all of their internal processes, while 
their mutual interaction is regulated by a gravitational component. Figure 6 shows the serial 
implementation of the main loop of the Hydropad that simulates the evolution of the 



Universe. At each iteration of the loop, the grav function calculates the gravitational effect 
the matter has on each other. The dark function and the bary functions then use the result of 
the grav function to calculate their new respective positions. The grav function then uses the 
positions of the particles in the previous evolution step to calculate the gravitational result in 
this evolution step. This is done cyclically for each evolution step of the Universe that is 
simulated. 

Table 3 shows the same Hydropad application implemented as a serial application. Table 4 
shows the same application implemented for SCS. When implementing a SCS application, 
there are three areas that the application the programmer needs to identify. These are the 
remote computation part of the application, the local computation part of the application and 
the part of the application that will be mapped collectively. 

t_sim=0; 

while(t_sim < t_total){ 

    grav(phiold, ….); 

    if(t_sim==0){ 

        initvel(phi, …); 

    } 

    dark(x1, ..);  

    bary(n, …); 

    t_sim+=t_step; 

} 

Table 3: Hydropad serial application 

#include “gridrpc.h” 

t_sim=0; 

gridrpc_map(){ 

    while(t_sim < t_total){ 

        gridrpc_call (grav , phiold, ….); 

        if(t_sim==0){ 

            gridrpc_call (initvel , phi, …); 

        } 

        gridrpc_call (dark, x1, ..); 

        gridrpc_call (bary , n, …); 

        gridrpc_local(){ 

            t_sim+=t_step; 

        } 

    } 

} 

Table 4: Hydropad cloud application 



To convert a serial application in to a cloud application the application programmer must 
first identify functions for remote execution using the gridrpc_call function. In this example, 
the programmer has identified the grav, initvel, dark and bary functions for remote 
execution. The SCS system may now execute these tasks locally or remotely in the cloud 
depending on which gives higher performance. Secondly, the parts of the application that is 
executing local computation need to be identified. In this case, the local operation on t_sim 
has been identified using the grpc_local function. The region of the application which will 
be mapped and executed collectively is identified using the parenthesis of the gridrpc_map 
function. 

This application is now a high performance scalable cloud application. SCS can now 
generate a task graph for this application and can therefore scale up and down the cloud 
infrastructure, balance the load of computation and communication and perform inter-server 
communication to maximize the performance of the application. 
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