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Significant research has been conducted in collective communication operations, in
particular in MPI broadcast, on distributed memory platforms. Most of the research efforts
aim to optimize the collective operations for particular architectures by taking into account
either their topology or platform parameters. In this work we propose a simple but general
approach to optimization of the legacy MPI broadcast algorithms, which are widely used in
MPICH and Open MPI. The proposed optimization technique is designed to address the
challenge of extreme scale of future HPC platforms. It is based on hierarchical trans-
formation of the traditionally flat logical arrangement of communicating processors.
Theoretical analysis and experimental results on IBM BlueGene/P and a cluster of the
Grid’5000 platform are presented.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The Message Passing Interface (MPI) [1] is one of the core building blocks of scientific software libraries for parallel appli-
cations. For example, PETSc [2] library, which is used for simulation and modeling in different application domains such as
Nanosimulations, Aerodynamics, Geosciences, Computational Fluid Dynamics and others, utilizes MPI for all inter-process
data communication operations.

Depending on the application, MPI collective communication operations can provide significant performance improve-
ments over MPI point-to-point communication routines. One of the commonly used collective operations, MPI broadcast,
is used in a variety of basic scientific kernels such as parallel matrix–matrix multiplication, LU factorization and along with
others. During a broadcast operation, the root process sends a message to all other processes in the specified group of pro-
cesses. The implementations of the broadcast operation in MPICH [3] and Open MPI [4] are typically based on linear, binary,
binomial and pipelined algorithms [5]. The linear algorithms are not good for large numbers of processes, the binary and
binomial algorithms are not efficient for large data sizes. On the other hand, pipelined algorithms are more efficient for larger
numbers of processes and data sizes. Other widely used broadcast algorithms are scatter-ring-allgather and scatter-
recursive-doubling-allgather [6], which have been implemented in MPICH.

In addition, significant research has been done in optimizing MPI broadcast for some specific platforms. The research
works in [7,8] present efficient implementations of MPI broadcast, which use native Infiniband multicast. The Cheetah
vetsky).
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framework offers a hierarchical collective communication framework that takes advantage of hardware-specific data-access
mechanisms [9]. IBM BlueGene comes with its own platform specific optimizations of MPI collectives [10]. A comprehensive
overview of optimization techniques for collectives on heterogeneous HPC platforms using broadcast as a use case can be
found in [11]. A recent research work in [12] presents a generic framework to optimize the performance of MPI collectives
on Intel MIC clusters.

Theoretically optimal MPI broadcast algorithms have been an active research subject as well. One of the early results
in this area is the spanning binomial tree algorithm proposed by Jonson and Ho [13]. Later, the research work in [14]
introduced another theoretically optimal broadcast algorithm based on fractional trees. The work in [15] is similar to the
algorithm of Jonson and Ho when the number of processes is a power of two and extends it to an arbitrary number of
processes.

The number of processors in HPC systems has increased by three orders of magnitude over the past two decades. This
increase in scale is accompanied by the increase in complexity and diversity of communication layers in these platforms.
Both these factors raise the communication cost of the execution of traditional message-passing data-parallel applications
on modern and future HPC platforms. The main body of recent research in optimization of the communication cost of scien-
tific algorithms and applications focuses on the complexity of particular platforms and proposes solutions specific to these
platforms. In contrast to this approach, we focus on the scale of HPC platforms rather than their specific complexity and pro-
pose a solution that is universally applicable to all HPC platforms. The proposed solution is inspired by our previous study on
parallel matrix multiplication on large-scale distributed memory platforms [16]. It provides a simple and general technique
to optimize the legacy scientific MPI-based applications without redesigning them. The method is to design and implement
simple hierarchical modifications of MPI collective operations significantly reducing their execution time, especially at
extreme scale. This will lead to substantial acceleration of the applications that extensively use MPI collectives. In this article,
we apply this method to the MPI broadcast operation as an initial step to achieve this goal. The article is a substantially
extended version of our workshop paper [17].

The contributions of the presented work are as follows:

� A simple and general technique to optimize the MPI broadcast operation.
� The approach can be applied to any legacy applications using MPI broadcast with a marginal code modification.
� Theoretical and experimental study of the hierarchical modifications of eight existing broadcast algorithms in MPICH and

Open MPI.

2. Preliminaries and previous work

In the rest of this paper the amount of data to be broadcast and the number of MPI processes will be denoted by m and p
respectively. It is assumed that the network is fully connected, bidirectional and homogeneous. The cost of sending a mes-
sage of size m between any two processes is modeled by the Hockney’s model [18] as aþm� b. Here a is the startup cost or
latency, while b is the reciprocal bandwidth.

2.1. Previous work

This section recalls eight MPI broadcast algorithms implemented in MPICH and Open MPI, namely flat, linear, pipelined,
binary, split-binary, binomial tree, scatter-ring-allgather, and scatter-recursive-doubling-allgather broadcast algorithms.
The first six algorithms are implemented in Open MPI and the last three algorithms are implemented in MPICH. The
derivations of the theoretical costs of these algorithms are not the original contribution of this work and can be found
in [19].

2.1.1. Flat tree broadcast algorithm
Flat tree is the simplest MPI broadcast algorithm, in which the root node sequentially sends the same message to all the

nodes participating in the broadcast operation. This algorithm does not scale well for large communicators. Its cost is esti-
mated as ðp� 1Þ � ðaþm� bÞ.

2.1.2. Linear tree broadcast algorithm
In this algorithm each node sends or receives at most one message. Since the root does not receive the message, it is called

chain algorithm sometimes. Theoretically, its cost is the same as that of the flat tree algorithm: ðp� 1Þ � ðaþm� bÞ.

2.1.3. Pipelined linear tree broadcast algorithm
The performance of the linear tree algorithm can be improved by splitting and pipelining the message. In this case, each

process can start sending a part of the message after it receives the first part of the message. The run time of the algorithm is
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equal to ðX þ p� 2Þ � aþ m
X � b

� �
. Here it is assumed that a broadcast message of size m is split into X segments and in one

step of the algorithm a segment of size m
X is broadcast among p processes.
2.1.4. Binary tree broadcast algorithm
Lets assume a full and complete binary tree of height h is given and the run time of the broadcast at the height h is

denoted by TðhÞ. Then, the run time of the broadcast on a single node is zero, Tð0Þ ¼ 0. The last node receiving the message
at height h will send two messages to its children at height hþ 1, therefore Tðhþ 1Þ ¼ TðhÞ þ 2ðaþmbÞ. It can easily be

shown that TðhÞ ¼ 2� h� ðaþmbÞ and the number of nodes of the binary tree is 2hþ1 � 1, therefore the overall run time
will be 2� ðlog2ðpþ 1Þ � 1Þ � ðaþm� bÞ.
2.1.5. Split-binary tree broadcast algorithm
The split-binary tree algorithm [19] consists of forwarding and exchange phases. In the forwarding phase, the root pro-

cess splits the original message in half, then each of the halves is sent down the left and right subtree respectively. In the
exchange phase, each process in both trees exchanges its message with the corresponding pair process from the other tree.
The time to complete a broadcast operation with this algorithm is equal to the sum of the times spent in forwarding and
exchange phases. Thus, its cost on a full and complete binary tree, where the number of processes is one less than an exact
power of two, will be as follows: 2� ðlog2ðpþ 1Þ � 2Þ � ðaþm� bÞ þ aþ m

2 � b. A detailed analysis of this algorithm with
segmented messages can be found in [19].
2.1.6. Binomial tree broadcast algorithm

Lets assume a binomial tree of height h is given and the number of nodes is 2h. The number of nodes sending and receiv-
ing is doubled for each value of the height in the algorithm. For example, run time TðhÞ will change as follows:

Tð0Þ ¼ 0; Tð1Þ ¼ aþmb, Tð2Þ ¼ 2ðaþmbÞ, . . .TðhÞ ¼ hðaþmbÞ. If we consider that p ¼ 2h then the run time of the algorithm
will be log2ðpÞ � ðaþm� bÞ.
2.1.7. Scatter-ring-allgather broadcast algorithm
The run time of this algorithm is as follows: ðlog2ðpÞ þ p� 1Þ � aþ 2 p�1

p �m� b. The algorithm consists of scatter and

allgather phases. The message is scattered by a binomial tree algorithm in the first phase, and in the next phase a ring algo-
rithm for allgather is used to collect all segments from all processes. It is used in MPICH for large message sizes.

2.1.8. Scatter-recursive-doubling-allgather broadcast algorithm
This algorithm is very similar to the previous one except the allgather uses a recursive doubling algorithm. It is

used in MPICH for medium-size messages. However, the ring algorithm is more efficient than this one for large message
sizes because of its nearest-neighbor communication pattern [20]. Its cost is estimated as 2� log2ðpÞ � aþ 2 p�1

p �m� b.
3. Hierarchical optimization of MPI broadcast algorithms

This section introduces a simple but general optimization of the MPI broadcast algorithms. This optimization technique is
inspired by our previous study on the optimization of the communication cost of parallel matrix multiplication on large-
scale distributed memory platforms [16].

The proposed optimization is based on the hierarchical arrangement of the processes participating in the broadcast into
logical groups. For simplicity we assume that the number of groups divides the number of MPI processes and can change
between one and p. Let G be the number of groups. Then there will be p

G MPI processes per group. Fig. 1 shows an arrange-
ment of 12 processes in a non-hierarchical way and a hierarchical grouping of 12 processes into 3 groups of 4 processes.
The hierarchical optimization has two steps: in the first step a group leader is selected for each group and the broadcast is
performed between the group leaders (see Fig. 2), and in the next step the leaders start broadcasting inside their own
group (in this example between 4 processes). The grouping can be done by taking the topology into account as well.
However, in this work the grouping is topology-oblivious and the first process in each group is selected as the group leader.
The broadcasts inside different groups are executed in parallel. While in general different broadcast algorithms can be used
inside and between groups, this work focuses on the case where the same broadcast algorithm is employed in both levels.
Algorithm 1 shows the pseudocode of the optimized broadcast. Line 4 calculates the root for the broadcast inside the
groups. Then line 5 creates a sub-communicator of G processes among the groups and line 6 creates a sub-communicator
of p

G processes inside the groups. Our implementation uses the MPI_Comm_split MPI routine to create new sub-
communicators.
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Processes in the ellipses are the group leaders.

The rectangles show the processes inside groups.

First the broadcast is performed between the group leaders.

Then it is performed between the processes inside each group.

Fig. 2. Arrangement of processes in the hierarchical broadcast.
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Fig. 1. Arrangement of processes in MPI broadcast.
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Algorithm 1. Hierarchical modification of an MPI broadcast algorithm.
3.1. Hierarchical flat and linear tree broadcast

If we group the processes in the hierarchical way and apply the flat or linear tree broadcast algorithm among G groups
and inside the groups among p

G processes then the overall broadcast cost will be equal to their sum:
Please
forms
FðGÞ ¼ ðG� 1Þ � ðaþm� bÞ þ p
G
� 1

� �
� ðaþm� bÞ ¼ Gþ p

G
� 2

� �
� ðaþm� bÞ ð1Þ
Here FðGÞ is a function of G for a fixed p. Its derivative is equal to 1� p
G2

� �
� ðaþm� bÞ. It can be shown that G ¼ ffiffiffi

p
p

is the

minimum of the function FðGÞ as in the interval ð1; ffiffiffi
p
p Þ the function decreases, and in the interval

ffiffiffi
p
p

; p
� �

it increases. If we
consider G ¼ ffiffiffi

p
p

in the derivative the optimal value of the broadcast cost will be as follows:
F
ffiffiffi
p
p
ð Þ ¼ 2

ffiffiffi
p
p
� 2ð Þ � ðaþm� bÞ ð2Þ
3.2. Hierarchical pipelined linear tree broadcast

In the same way, if we add two pipelined linear tree broadcast costs among G groups and inside the groups among p
G pro-

cesses then the overall communication cost for the hierarchical pipelined linear tree will be as follows:
FðGÞ ¼ 2X þ Gþ p
G
� 4

� �
� aþm

X
� b

� �
ð3Þ
It can be shown that G ¼ ffiffiffi
p
p

is the minimum point again and at this point the cost will be as follows:
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Please
forms
F
ffiffiffi
p
p
ð Þ ¼ 2X þ 2

ffiffiffi
p
p
� 4ð Þ � aþm

X
� b

� �
ð4Þ
3.3. Hierarchical binary and binomial tree broadcast

Let us apply the binary tree algorithm among G groups and inside the groups among p
G processes. The broadcast cost

among G groups and inside the groups will be 2log2ðGÞ � ðaþm� bÞ and 2log2
p
G

� �
� ðaþm� bÞ respectively. If we add these

two costs and consider that log2
p
G

� �
¼ log2ðpÞ � log2ðGÞ then the cost of the hierarchical binary broadcast algorithm will be

the same as the corresponding non-hierarchical broadcast algorithm.
Because of the same reason the hierarchical modification of the binomial tree algorithm does not improve the non-

hierarchical binomial tree algorithm.

3.4. Hierarchical scatter-ring-allgather broadcast

If we apply the scatter-ring-allgather algorithm in the same way we can get the following formula:
FðGÞ ¼ log2ðpÞ þ Gþ p
G
� 2

� �
� aþ 2�m� 2� 1

G
� G

p

� �
� b ð5Þ
Let us find the optimal value of the FðGÞ function: F 0ðGÞ ¼ g2�p
G2 � a� 2mb

p

� �
. It is clear that if
a
b
>

2m
p

ð6Þ
then G ¼ ffiffiffi
p
p

is the minimum point of the FðGÞ function in the interval ð1; pÞ. The value of the function at this point will be as
follows:
F
ffiffiffi
p
p
ð Þ ¼ log2ðpÞ þ 2

ffiffiffi
p
p
� 2ð Þ � aþ 2�m� 2� 2ffiffiffi

p
p

� �
� b ð7Þ
3.5. Hierarchical scatter-recursive-doubling-allgather broadcast

The hierarchical modification of this algorithm has a higher theoretical cost compared to the cost of the original algorithm
(see Section 2.1.8). The latency term is increased two times and the bandwidth term is increased as well:

FðGÞ ¼ 2� log2ðpÞ � aþ 2�m� 2� 1
G� G

p

� �
� b. It can be shown that G ¼ ffiffiffi

p
p

is the extremum point. However the minimum

point is either G ¼ 1 or G ¼ p, in which case the hierarchical algorithm will have exactly the same cost as the original
algorithm.

3.6. Hierarchical split-binary tree broadcast

We take pþ 1 � p in the cost function of the split-binary tree algorithm to derive the cost of its hierarchical trans-
formation. It can be shown that the overall cost will be slightly worse than that of the original algorithm itself (see
Section 2.1.5) and with our simple theoretical model it does not depend on the number of groups:
2� ðlog2ðpÞ þ X � 4Þ � aþ b� m

X

� �
þ 2� aþ b� m

2

� �
. Therefore, the hierarchical algorithm should use 1 or p groups in this

case.

3.7. Summary of theoretical analysis

Thus, the hierarchical transformation of the flat, chain, pipeline and scatter-ring-allgather algorithms theoretically
reduces the communication cost of the corresponding original algorithms. The communication cost of the binary, binomial,
scatter-recursive-doubling-allgather and split-binary tree algorithms get their best performance when the number of groups
is one or equal to the number of processes.

4. Experiments

4.1. Experiments on BlueGene/P

Some of our experiments were carried out on the Shaheen BlueGene/P at the Supercomputing Laboratory at King
Abdullah University of Science&Technology (KAUST) in Thuwal, Saudi Arabia. Shaheen has 16 racks with a total of 16,384
nodes. Each node is equipped with four 32-bit, 850 MHz PowerPC 450 cores and 4 GB DDR memory. The BlueGene/P
cite this article in press as: K. Hasanov et al., Topology-oblivious optimization of MPI broadcast algorithms on extreme-scale plat-
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(BG/P) architecture provides a three-dimensional point-to-point BlueGene/P torus network which interconnects all compute
nodes and global networks for collective and interrupt operations. The use of this network is integrated into the BG/P MPI
implementation. BlueGene/P MPI is based on MPICH which uses three different broadcast algorithms depending on the
message size and the number of processes in a broadcast operation [20]:

� binomial tree algorithm – when the message size is less than 12 kB or when the number of processes is less than eight.
� scatter-recursive-doubling-allgather algortihm – when the message size is less than 512 kB and the number of processes

is a power-of-two.
� scatter-ring-allgather algorithm (we will call it SRGA) – otherwise, for long messages greater than or equal to 512 kB or

with non power-of-two number of processes.

Despite the referenced paper [20] was published more than a decade ago it still reflects the current version of MPI broad-
cast operation implemented in MPICH according to its source code.

In addition to the algorithms implemented in MPICH, the broadcast operation on BG/P comes with different optimizations
and algorithms specifically for the BG/P itself. Namely, if the communicator is MPI_COMM_WORLD it uses the BG/P collec-
tive tree network which supports hardware accelerated collective operations such as broadcast and all-reduce, and other-
wise depending on the communicator shape either a rectangular broadcast algorithm or the broadcast algorithms from
MPICH are used [10]. However, algorithms for some fundamental scientific applications such as parallel matrix multiplica-
tion, LU factorization does not use MPI_COMM_WORLD in their main communication steps, for example, it is more typical to
use sub-communicators for rows and columns in a two-dimensional arrangement of processes. On the other hand, the
rectangular broadcast is used only for rectangular shaped sub-communicators which strongly depends on the mapping of
the processes into the physical topology and depending on the allocated BG/P partition can be arbitrary. Furthermore, the
optimal mapping of processes to network hardware is not a trivial task and is a separate research area itself. The proposed
optimization in this work is more general and topology-oblivious.

We present experiments with the corresponding hierarchical modifications of the scatter-ring-allgather algorithm and
the native MPI broadcast operation. Experiments with the binomial and scatter-recursive-doubling-allgather algorithms
demonstrated only slight fluctuations as expected theoretically.

While performance modeling and analysis of the BG/P-specific broadcast algorithms and optimizations are beyond the
scope of this paper, we present some experiments with the native BG/P broadcast operation as an initial research in that
direction. The experiments have been done with different configurations, message sizes from 1 kB up to 16 MB and the num-
ber of MPI processes from 8 up to 6142. The number of the allocated BG/P nodes was 6144, however we deliberately
excluded two of them and used 6142 nodes by creating sub-communicators to avoid the case with MPI_COMM_WORLD.
Because of space restrictions we present results mainly for 2048 and 6142 processes and message sizes of 512 kB and
2 MB. Figs. 3 and 4 show experiments with the scatter-ring-allgather broadcast with message sizes of 512 kB and 2 MB
respectively. The improvement with 512 kB on 2048 nodes is 1.87 times, however with a message size of 2 MB there is a

performance drop. On the other hand, according to the formula (6) i:e: ab >
2m
p

� �
if we fix the message size, for a larger number

of processes the hierarchical transformation should improve the performance. This is validated with the experiments: Fig. 5
shows that for a message size of 512 kB the speedup increases up to 3.09 times on 6142 nodes and unlike on 2048 nodes, the
hierarchical algorithm outperforms the original algorithm with a message size of 2 MB as well. In addition, if we put the plat-
form and algorithm parameters in formula (5), we will see that the theoretically expected plots of the hierarchical algorithm
will be parabola-like as well (Fig. 6). Experiments with the native BG/P MPI broadcast operation are given in Figs. 7 and 8. As
it is already mentioned that during these experiments a sub-communicator of size 6142 was created from an
MPI_COMM_WORLD of size 6144 to disable BG/P optimizations for MPI_COMM_WORLD. As a result the native BG/P MPI
broadcast operation is worse than the scatter-ring-allgather broadcast with a message size of 2 MB.
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Fig. 5. Hierarchical SRGA bcast on BG/P. m = 512 kB and m = 2 MB.
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It is obvious that the time between the groups will increase if the number of groups increases, however it is the opposite
inside the groups. Fig. 4 confirms that by showing the broadcast times separately spent inside and between groups as well.

Our theoretical models do not take sub-communicator creation overheads into account. However, MPI_Comm_split is
also a collective operation and depending on the number of groups it makes different contributions into the overall time
of the hierarchical broadcast. For example, in Fig. 4 we do not have the expected upside-down parabola-like shape because
of the additional overhead from MPI_Comm_split operations. The reason is that when the number of groups is 2 or 1024 the
total cost of creation of the two sub-communicators exceeds the gains due to the hierarchical optimization. Fig. 9 demon-
strates these results. If the reduction of the execution time due to the optimization is greater than the overhead itself then
the sub-communicator creation times will be well compensated by the reduction. It is the case in the experiments with
512 kB (Fig. 3).

Fig. 10 presents the results of experiments with scatter-ring-allgather and native MPI broadcast operations. It shows the
speedup due to the hierarchical optimization of these operations. Here the number of processes is fixed to be equal to 6142,
and the message size changes from 1 kB up to 16 MB. The experiments with 2048 processes have more data points than that
of 6142 processes. The reason for that is we take only the factors of the number of processes as group numbers.
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Fig. 10. Speedup of hierarchical bcast on BG/P, p = 6142.
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Fig. 12. Hierarchical native MPI broadcast on Grid’5000. m = 16 MB and
p = 128.
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Fig. 13. Hierarchical chain broadcast on Grid’5000. m = 16 kB and p = 128.
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4.2. Experiments on Grid’5000
The next part of the experiments was carried out on the Graphene cluster of the Nancy site of the Grid’5000 infrastructure
in France. The platform consists of 20 clusters distributed over nine sites in France and one in Luxembourg. The Grid’5000
web site (http://www.grid5000.fr) provides more comprehensive information about the platform.

The experiments on Grid’5000 have been done with Open MPI 1.4.5 which provides a few broadcast implementations,
such as flat, chain(linear), pipelined, binary, binomial, split-binary tree. Because of space restrictions we only present experi-
mental study with Open MPI native broadcast operation, the chain and pipeline broadcast algorithms. During the experi-
ments the hierarchical transformations of the binary and binomial tree algorithms had the same performance as the
original algorithms. The same technique as described in MPIBlib [21] has been used to benchmark the performance.

4.2.1. Experiments on Grid’5000: One process per node
An experimental study with the Open MPI native broadcast operation is given in Figs. 11 and 12. The first measurement

was performed with a message size of 16 kB where there is more than 3 times improvement. The experiment with 16 MB
showed 2.6 times reduction of the broadcast time. In the experiments with smaller message sizes up to 1 kB and 128 pro-
cesses the overhead from the two MPI_Comm_split operations was higher than the broadcast itself. However, with message
sizes larger than 1 kB the overhead from the split operations was negligible, for example, Fig. 11 shows the split time on 128
nodes. We had the same trend with larger processes, unfortunately for a lack of space we could not include all of them in this
text. Figs. 13 and 14 show the results of experiments with the chain broadcast algorithm and its hierarchical transformation
for message sizes 16 kB and 16 MB respectively. The speedup with the first setting is more than 8 times and with 16 kB there
is about 3 times improvement. In such situations an implementation of the algorithm could check the message size before-
hand and fall back to use the regular MPI_Bcast for short messages to reduce the overhead even further.

Figs. 15 and 16 show experiments with the pipeline broadcast algorithm and its hierarchical transformation. This time the
speedup can be more than 30 times with a message size of 16 kB and more than 5 times with 16 MB. Fig. 17 shows the
speedup for different numbers of processes for a fixed message size of 16 MB, and Fig. 18 shows the speedup for different
message sizes on 128 nodes.

4.2.2. Experiments on Grid’5000: One process per core
This section presents experiments with a one-process-per-core configuration, or equivalently four processes per node.

Figs. 19 and 20 show experimental results for the chain and pipeline broadcasts on 512 cores with message sizes of
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Fig. 15. Hierarchical pipeline broadcast on Grid’5000. m = 16 kB and
p = 128.

20 21 22 23 24 25 26 27
0

0.2

0.4

0.6

0.8

1

1.2

Number of groups

T
im

e 
(S

ec
)

HBcast Bcast

Fig. 16. Hierarchical pipeline broadcast on Grid’5000. m = 16 MB and
p = 128.
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Fig. 18. Speedup of Hbcast over Bcast on Grid’5000. p = 128.
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Fig. 19. Hierarchical broadcast on Grid’5000. m = 16 kB and p = 512.
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Fig. 20. Hierarchical broadcast on Grid’5000. m = 16 MB and p = 512.
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16 kB and 16 MB respectively. Fig. 22 shows the speedup of the hierarchical chain and the hierarchical pipeline broadcast
algorithms for different message sizes from 16 kB up to 16 MB on 512 cores. Another experiment with a fixed message size
of 16 Mb and a power-of-two number of processes varying from 32 to 512 is given on Fig. 21.

5. Conclusion

The proposed hierarchical approach to optimize MPI broadcast algorithms is more general and simpler than many exist-
ing broadcast optimizations. The method does not break up any existing broadcast algorithms, is not limited to some specific
platforms and can be realized as a standalone library on top of any MPI implementations. The experiments show multifold
performance improvements. This approach can be applied to other MPI collective operations as well.

This paper presents optimization results of the general MPI broadcast algorithms implemented in MPICH and Open MPI,
including two most widely used algorithms, scatter-ring-allgather and pipelined algorithms. Our initial observations indicate
that BlueGene/P default broadcast operation can also be optimized by the hierarchical transformation.
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