MPIBlib: Benchmarking MPI Communications for Parallel Computing on Homogeneous and Heterogeneous Clusters

Alexey Lastovetsky Vladimir Rychkov Maureen O'Flynn {Alexey.Lastovetsky, Vladimir.Rychkov, Maureen.OFlynn}@ucd.ie

Heterogeneous Computing Laboratory School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland http://hcl.ucd.ie

The 15th European PVM/MPI Users Group conference September 9, 2008, Dublin, Ireland

・ロン ・回 と ・ ヨ と ・ ヨ と

Introduction MPIBlib benchmarking suite Conclusion Motivation Related work

- Accurate estimation of the execution time of MPI communication operations plays an important role in optimization of parallel applications:
 - Design of parallel applications
 - Tuning collective communication operations
 - Heterogeneous platforms

・ロト ・回ト ・ヨト ・ヨト

- Accurate estimation of the execution time of MPI communication operations plays an important role in optimization of parallel applications:
 - Design of parallel applications
 - Tuning collective communication operations
 - Heterogeneous platforms
- MPI benchmarking suites mpptest, NetPIPE, IMB(PMB), SKaMPI, MPIBench
 - Measurement of the execution time of MPI functions fixed set of communication operations to be measured (except SKaMPI)
 - A benchmark methodology a single timing method
 - Not much interpretation of results executables and plotting

(ロ) (同) (E) (E) (E)

Introduction MPIBlib benchmarking suite Conclusion Related work

Communication performance modeling - interpretation of results The procedure of the estimation of parameters determines what amount of experimental results and what communication experiments are required

・ロン ・回 と ・ヨン ・ヨン

Introduction MPIBlib benchmarking suite Conclusion Related work

Communication performance modeling - interpretation of results The procedure of the estimation of parameters determines what amount of experimental results and what communication experiments are required

- Results of experiments should be available dynamically -MPI benchmarking library
- The communication operations measured by benchmarking suite should be customized - user-defined communication experiments
- ► The efficiency of measurements is crucial for the modeling at runtime (less accurate can be acceptable) selection of timing methods

(ロ) (同) (E) (E) (E)

Related work

Benchmark methodology

Gropp, W., Lusk E.: Reproducible Measurements of MPI Performance Characteristics. In: Dongarra, J., Luque, E., Margalef, T. (eds.) EuroPVM/MPI 1999. LNCS, vol. 1697, pp. 1118, Springer (1999)

- Repeating the communication operation multiple times to obtain the reliable estimation of its execution time
- Selecting message sizes adaptively to eliminate artifacts in a graph of the output
- Testing the communication operation in different conditions: cache effects, communication and computation overlap, communication patterns, non-blocking communication etc.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

Introduction MPIBlib benchmarking suite Conclusion Related work

Benchmark methodology

Gropp, W., Lusk E.: Reproducible Measurements of MPI Performance Characteristics. In: Dongarra, J., Luque, E., Margalef, T. (eds.) EuroPVM/MPI 1999. LNCS, vol. 1697, pp. 1118, Springer (1999)

- Repeating the communication operation multiple times to obtain the reliable estimation of its execution time
- Selecting message sizes adaptively to eliminate artifacts in a graph of the output
- Testing the communication operation in different conditions: cache effects, communication and computation overlap, communication patterns, non-blocking communication etc.
- Common features on MPI benchmarking suites
 - computing an average, minimum, maximum execution time of a series of the same communication experiments to get accurate results;
 - measuring the communication time for different message sizes the number of measurements can be fixed or adaptively increased for messages when time is fluctuating rapidly;
 - performing simple statistical analysis by finding averages, variations, and errors.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

Motivation Related work

Scheduling the communication experiment

Series of communications - overlapping

Intel MPI Benchmarks

Isolation of communication operations from each other barrier, reduce, short acknowledgments overlapping with these communications

イロト イポト イヨト イヨト

Timing methods - based on MPI_Wtime

- General the time between two events:
 - on a single designated processor (root)
 - on all participating processors (max)
 - on different processors (global)

Global timing is the most accurate but the costliest if MPI global timer is not supported by a platform (regular clock synchronization required)

(ロ) (同) (E) (E) (E)

Timing methods - based on MPI_Wtime

- General the time between two events:
 - on a single designated processor (root)
 - on all participating processors (max)
 - on different processors (global)

Global timing is the most accurate but the costliest if MPI global timer is not supported by a platform (regular clock synchronization required)

Operation-specific

Supinski, B. de, Karonis, N.: Accurately measuring MPI broadcasts in a computational grid. In: The 8th International Symposium on High Performance Distributed Computing, pp. 2937 (1999)

伺下 イヨト イヨト

MPIBlib benchmarking suite

- Implemented as a library can be integrated into applications
- Provides general and operation-specific timing methods
- Supports extension of the communication operations to be measured

Input accuracy parameters

- minimum/maximum numbers of repetitions if min_reps == max_reps, the fixed number of measurement
- confidence level and error of estimation if min_reps < max_reps, the number of measurement depends on statistics</p>

Output accuracy parameters

- number of repetitions
- confidence interval

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

Timing method	Scatter	Gather
	0100KB, 1KB stride, 1 rep (sec)	0100KB, 1KB stride, 1 rep (sec)
Global	28.7	44.7
Maximum	0.8	15.6
Root	0.8	15.7

Alexey Lastovetsky, Vladimir Rychkov, Maureen O'Flynn {Ale MPIBlib: Benchmarking MPI Communications for Parallel Con

イロン イヨン イヨン イヨン

3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

Encapsulation - Special data structure

```
struct MPIB_coll_container {|
void (*initialize)(void* this, MPI_Comm comm, int root, int M);|
void (*execute)(void* this, MPI_Comm comm, int root, int M);|
void (*finalize)(void* this, MPI_Comm comm, int root);|
void (*free)(void* this);|
}|
```

- Allocation and deallocation of buffers required for the communication operation
- Communication operation
- Release of data structure

```
struct MPIB_Scatter_container {|
   struct MPIB_coll_container base;|
   char* buffer;|
   int (*scatter)(void* sendbuf, int sendcount, MPI_Datatype sendtype,...);|
}|
```

Customization of communication operations

Alexey Lastovetsky, Vladimir Rychkov, Maureen O'Flynn {Ale MPIBlib: Benchmarking MPI Communications for Parallel Con

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣ぬ(で)

MPI Benchmarking library was used for communication performance modeling on heterogeneous clusters

- Measurement of roundtrips with empty and non-empty messages sequential, parallel (clusters with a single switch)
- Measurement of linear scatter/gather root timing
- User-defined communication operations one-to-two sequential, parallel (clusters with a single switch)

・ロト ・回ト ・ヨト ・ヨト

Acknowledgments

Science Foundation Ireland

IBM Dublin CAS

3

・ロト ・回 ト ・ヨト ・ヨト