Noname manuscript No.
(will be inserted by the editor)

Out-of-core Implementation for Accelerator Kernels
on Heterogeneous Clouds

Hamidreza Khaleghzadeh -
Ziming Zhong - Ravi Reddy - and
Alexey Lastovetsky

the date of receipt and acceptance should be inserted later

Abstract Cloud environments today are increasingly featuring hybrid nodes
containing multicore CPU processors and a diverse mix of accelerators such as
Graphics Processing Units (GPUs), Intel Xeon Phi co-processors, and Field-
Programmable Gate Arrays (FPGAs) to facilitate easier migration to them of
HPC workloads. While virtualization of accelerators in clouds is a leading re-
search challenge, we address the programming challenges that assail execution
of large instances of data-parallel applications using these accelerators in this
paper.

In a typical hybrid node in a cloud, the tight integration of accelerators
with multicore CPUs via PCI-E communication links contains inherent limi-
tations such as limited main memory of accelerators and limited bandwidth
of the PCI-E communication links. These limitations poses formidable pro-
gramming challenges to execution of large problem sizes on these accelerators.
In this paper, we describe a library containing interfaces (HCLOOC) that
addresses these challenges. It employs optimal software pipelines to overlap
data transfers between host CPU and the accelerator and computations on
the accelerator. It is designed using the fundamental building blocks, which
are OpenCL command queues for FPGAs, Intel offload streams for Intel Xeon
Phis, and CUDA streams and events that allow concurrent utilization of the
copy and execution engines provided in NVidia GPUs.

We elucidate the key features of our library using an out-of-core imple-
mentation of matrix multiplication of large dense matrices on a hybrid node,
an Intel Haswell multicore CPU server hosting three accelerators that includes

H. Khaleghzadeh - R. Reddy - A. Lastovetsky
School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland,

E-mail: hamidreza.khaleghzadeh@ucdconnect.ie, ravi.manumachu@ucd.ie,
alexey.lastovetsky@ucd.ie
Z. Zhong

Complex Aviation Systems Simulation Laboratory, Beijing, China,
E-mail: zhongziming@gmail.com

2 Hamidreza Khaleghzadeh et al.

NVidia K40c GPU, Intel Xeon Phi 3120P, and a Xilinx FPGA. Based on exper-
iments with the GPU, we show that our out-of-core implementation achieves
82% of peak double-precision floating performance of the GPU and a speedup
of 2.7 times over the NVidia’s out-of-core matrix multiplication implementa-
tion (CUBLAS-XT). We also demonstrate that our implementation exhibits
0% drop in performance when the problem size exceeds the main memory of
the GPU. We observe this 0% drop also for our implementation for Intel Xeon
Phi and Xilinx FPGA.

Keywords Heterogeneous clouds, GPU, Intel Xeon Phi, matrix multiplica-
tion, out-of-core, CUBLAS, CUDA, Intel MKL

1 Introduction

Cloud computing systems today are placing great emphasis in facilitating
easier migration and execution of HPC workloads by trying to solve several
daunting challenges that have impeded this process. The challenges include:
a) Performance variation of the workloads due to virtualization, b) Poor net-
work performance due to wide geographical separation of the computational
resources, and c) Provision for a diverse mix of hardware accelerators, which
have now become dominant in the HPC landscape.

While reduction or even complete removal of performance losses due to
virtualization remains the biggest obstacle to overcome, commercial clouds
have addressed other easily surmountable challenges that allowed HPC users
to think about migrating their applications to cloud or using the HPC resources
in the cloud at a relatively low cost. They now provide reservation of hybrid
nodes that contain a mix of high performance processors now ubiquitous in
HPC such as Graphics Processing Units (GPUs), Intel Xeon Phi co-processors
(PHIs), and Field-Programmable Gate Arrays (FPGAs).

Filelis-Papadopoulos et al. [1] study few HPC applications that have been
migrated to clouds, which include Oil and Gas exploration, Genomics, and
Ray-tracing. They present a characterization of hardware used in these three
applications. Lynn et al. [2] study the conception of heterogeneous clouds
that use machines of different types, which include modern high performance
energy-efficient multicore processors and accelerators. They propose a cloud
management and delivery architecture that endeavours to enable cloud services
for HPC.

Hardware acceleration of scientific kernels in cloud poses three prominent
challenges. First, well-known hardware accelerators such as GPUs, PHIs, and
FPGAs must be provided and allowed to be booked with less hassle by HPC
users for execution of their applications. Second, virtualization of hardware
accelerators must be made possible to meet the core principles of the cloud
model, which includes elasticity and on-demand computing. Finally, efficient
utilization of accelerators to solve big instances of data-parallel applications
must be facilitated. The first challenge has now been addressed effectively by

Out-of-core Implementation for Accelerator Kernels on Heterogeneous Clouds

Table 1 Specification of the Intel Haswell multicore CPU server.

sion number

Technical Specifications Intel Haswell Server
Processor Intel E5-2670 v3 @ 2.30GHz
OS CentOS 7
Microarchitecture Haswell
Memory 64 GB
Socket(s) 2
Core(s) per socket 12
NUMA node(s) 2
L1d cache 32 KB
L1i cache 32 KB
L2 cache 256 KB
L3 cache 30720 KB
TDP 240 W
Base Power 58 W
Table 2 Main specifications of NVidia K40c GPU.
Characteristic Description
CUDA Driver Version / Runtime Ver- | 7.5 / 7.5
sion
CUDA Capability Major/Minor ver- | 3.5

Total amount of global memory

11520 MBytes

(15) Multiprocessors, (192) CUDA
Cores/MP

2880 CUDA Cores

L2 Cache Size

1572864 bytes

Total amount of constant memory

65536 bytes

Total amount of shared memory per
block

49152 bytes

Total number of registers available per | 65536

block

Warp size 32

Concurrent copy and kernel execution | Yes with 2 copy en-
gine(s)

Support host page-locked memory | Yes

mapping

Idle power consumption (Watts) 60

the cloud service providers. Virtualization of hardware accelerators at zero per-
formance loss remains a formidable research challenge. Hong et al. [3] present
a GPU virtualization system that achieves maximum fairness while causing
little performance degradation. In this paper, we address the final challenge.

Integration of multicore CPUs with accelerators poses challenges to execu-
tion of large problem sizes on these accelerators. The challenges are:

1. Limited memory size. Accelerators typically have smaller main memory
than the host multicore CPU. Therefore, the maximum problem size that
can be solved by an accelerator is limited by its main memory size. Consider
the Intel Haswell multicore CPU server shown in Table 1 hosting a NVidia
GPU shown in Table 2 and an Intel Xeon Phi co-processor in Table 3.
The server includes two Intel Xeon E5-2670 CPUs. While the host CPU

Hamidreza Khaleghzadeh et al.

Table 3 Specification of the Intel Xeon Phi 3120P.

Technical Specifications | Intel Xeon Phi 3120P
No. of processor cores 57

Base frequency 1.10 GHz

Total main memory 6 GB GDDR5

L2 cache size 28.5 MB

Memory bandwidth 240 GB/sec

Memory clock 3.0 GHz

TDP 300 W

Idle Power 91 W

Table 4 Specification of the Xilinx Virtex 7 690T FPGA.

Technical Specifications | Xilinx Virtex 7 690T FPGA
Frequency 200 MHz

LUTs 693120

DSPs 3600

BRAM 53 MB

FFs 866,400

Total main memory 16 GB DDR3

contains 64GB main memory, NVidia GPU has only 12 GB main memory
and Intel Xeon Phi has only 6 GB main memory. Therefore, to execute
large problem sizes of an application using these accelerators, it is required
that out-of-core implementations of the application are either available or
developed from scratch.

2. Limited bandwidth of the PCI-E communication link. Out-of-core
executions usually entail multiple data transfers of data structures (that
fit inside the main memory of the accelerator) from the host CPU to the
accelerator and back. Accelerators are connected to CPUs using PCI-E
communication links. However, due to the limited bandwidth of the PCI-E
communication link, this impacts the execution times of the out-of-core im-
plementation. In our server, the NVidia GPU and Intel Xeon Phi communi-
cate with the host CPU using low-bandwidth PCI-E x16 links. The FPGA
communicates using PCI-E x8 link. To achieve maximum performance, an
out-of-core implementation must utilize the vendor-supplied optimizations
for data transfers to overlap the communications over the PCI-E commu-
nication link with the computations on the accelerator.

3. Library for Out-of-core Implementations. There is an abysmal lack of
libraries providing interfaces that allow programmers to write out-of-core
implementations for their data-parallel kernels on accelerators. There are
exceptions (but very few) such as NVidia’s CUBLAS-XT package [4], which
provides a set of BLAS routines that utilize multiple GPUs and MAGMA
[5], which provides out-of-core dense matrix factorizations. However, from
our experiments, it is observed that vendor out-of-core implementations
(such as [4]) are not the best in terms of performance.

Out-of-core Implementation for Accelerator Kernels on Heterogeneous Clouds 5

In this paper, we present a library (HCLOOC) that allows programmers
to write out-of-core implementations of data-parallel kernels for accelerators
such as GPUs, PHIs, and FPGAs. The library is a wrapper that reuses the
fundamental building blocks such as OpenCL command queues [6] for FPGAs,
Intel offload streams [7] for Intel Xeon Phis, and CUDA streams and events
that allow concurrent utilization of the copy and execution engines provided
in NVidia GPUs [8], [9].

The library contains two principal components. The first component, Par-
titioner, partitions the workload into blocks where each block can fit into the
accelerator’s main memory. The second component, Stream FEngine, uses a
configurable software pipeline to overlap data transfers from host CPU to the
accelerator and back and kernel invocations in the accelerator. This compo-
nent reuses the vendor-supplied optimization engines for the data transfers.
For example, for the out-of-core implementation of matrix multiplication that
we present in this paper, the Stream Engine uses a five-stage pipeline.

In this paper, we present the essence of the principal components of the
library. The library interface design contained creation of a uniform interface
for the fundamental building blocks, OpenCL command queues [6] for FPGAs,
Intel offload streams [7] for Intel Xeon Phis, and CUDA streams and events [8],
which have disparate interfaces. This turned out to be a considerably difficult
task, which we aim to present in our future work.

We elucidate the key features of our library by implementing out-of-core
execution of matrix multiplication of large dense matrices on a hybrid node,
which contains three accelerators including NVidia K40c GPU, Intel Xeon Phi
3120P, and a Xilinx FPGA. Based on experiments on an Intel Haswell multi-
core CPU server hosting a NVidia K40c GPU, we show that our out-of-core im-
plementation achieves 82% of the peak double-precision floating performance
of the GPU and a speedup of 2.7 times over the NVidia’s CUBLAS-XT out-of-
core DGEMM solver. We also demonstrate that our implementation exhibits
0% drop in performance when the problem size exceeds the main memory of
the GPU. We observe this 0% drop also of our implementations for Intel Xeon
Phi and Xilinx FPGA.

Our main contributions can be summarized as follows:

— A library (HCLOOCQ) that allows programmers to write out-of-core imple-
mentations of data-parallel kernels for accelerators such as GPUs, Xeon
Phis, and FPGAs. The key contributions of the library are:

— Interfaces that allow programmers to employ configurable software pipelines
to overlap data transfers from host CPU to the accelerator and back
and invocations of in-core kernels in the accelerator.

— A uniform interface for the fundamental building blocks, OpenCL com-
mand queues [6] for FPGAs, Intel offload streams [7] for Intel Xeon
Phis, and CUDA streams and events [8], which have disparate inter-
faces.

— An efficient out-of-core implementation written using HCLOOC' of matrix
multiplication for NVidia GPU that outperforms the NVidia’s out-of-core

6 Hamidreza Khaleghzadeh et al.

implementation ([4]) and that exhibits 0% drop in performance when prob-
lem sizes exceed the main memory of the accelerator.

— An efficient out-of-core implementation written using HCLOOC' of matrix
multiplication for Intel Xeon Phi that exhibits 0% drop in performance
when problem sizes exceed the main memory of the accelerator.

— The very first out-of-core implementation of matrix multiplication for Xil-
inx FPGA that also exhibits 0% drop in performance when problem sizes
exceed the main memory of the accelerator.

The paper is organized as follows. Section 2 contains related work on HPC
in cloud, hardware acceleration in cloud, and research works focusing on out-of-
core implementations for accelerators. Section 3 presents HCLOOC. Section
3.1 describes out-of-core implementation of matrix multiplication using the
core features of the library. Section 4 presents experimental results. Finally,
section 5 concludes the paper.

2 Related Work

Our survey is divided into three parts. In the first part, we review prominent
works that present efforts to facilitate execution of HPC in a cloud environment
and also works that highlight the adverse effect on performance introduced by
virtualisation. In the second part, we review notable works that present virtu-
alization of hardware acceleration in commercial clouds. In the final part, we
focus entirely on efforts presenting out-of-core implementations for accelerator
kernels.

2.1 HPC in Cloud Environments

Ostermann et al. [10] study the performance and reliability of a production
cloud and find them to be low. Iosup et al. [11] analyze the performance of
cloud computing services for scientific computing workloads for four commer-
cial clouds and conclude that current clouds need a performance improvement
by an order of magnitude in order to be useful to the scientific community.

Gupta et al. [12] present a HPC-aware scheduler of virtual instances that
aim to lessen the impact of cross-VM interference on the performance. Parashar
et al. [13] look at usage modes for HPC in cloud. They propose a concept of
HPC' as a Service that provides bare-metal performance that is usually re-
quired for HPC applications.

Mauch et al. [14] present an overview of high performance cloud computing
efforts and virtualization techniques. They propose a new model for HPC
Infrastructure as a Service (IaaS).

Out-of-core Implementation for Accelerator Kernels on Heterogeneous Clouds 7

2.2 Hardware Acceleration in Cloud Environments

Giunta et al. [15] propose a GPU virtualization and sharing service that en-
ables a virtual machine instance to access GPUs in a transparent and hy-
pervisor independent way with a moderate overhead over real GPU. Byma
et al. [16] present an approach for integrating virtualized FPGA-based hard-
ware accelerators into commercial cloud environments with minimal virtual-
ization overhead. Hong et al. [17] surveyed GPU virtualization techniques and
scheduling methods. They considered virtualization techniques implemented
at the GPU library, driver, and hardware levels. In addition, the survey in-
volves GPU scheduling methods that address performance and fairness issues
between multiple virtual machines sharing GPUs.

2.3 Out-of-core Implementation of Accelerator Kernels

Gu et al. [18] present an out-of-core implementation of FFT kernel for a single
GPU. The authors co-optimized both CPU-GPU data transfer via PCI-E bus
and on-GPU computation for 1D, 2D and 3D FFTs by using the Cooley-Tukey
decomposition framework. The framework is used for decomposing a large
sized FFT into smaller sub-FFTs, which are then transferred to the GPU in
batches. A recursive kernel is proposed to compute on-card FFT. To achieve
high throughput on the CPU-GPU data channel, a blocked buffer technique
for 1D FFTs was developed. The effect of sub-array size on data transfer
performance is also studied in this paper. They find that PCI-E bus bandwidth
decreases when sub-array size decreases due to the consequent increase in the
number of cudaMemcpyAsync calls. To deal with small sub-arrays and to
increase the PCI-E bus bandwidth, the buffering of continuous sub-arrays and
the transfer of all of them using a single cudaMemcpyAsync call are proposed.
Mu et al. [19] introduced an out-of-core algorithm for LU decomposition. The
proposed approach is based on the left-looking factorization on GPU/CPU
platform where it uses both the host memory and the hard disk for out-of-
core computations.

In 2012, Ziming et al. [20],[21] proposed an out-of-core implementation
for matrix multiplication routine (DGEMM) for NVidia GPU. However, the
implementation placed some constraints on the dimensions of the matrices
that are allowed in the matrix multiplication. In this work, we removed these
constraints and applied additional optimizations to improve the performance
of our proposed out-of-core library. In 2016, Wu et al. [22] presented an out-
of-core dense matrix multiplication implementation for CPU-GPU platforms
similar to [20],[21]. They performs matrix decomposition according to peak
bandwidth of PCI-E links and the bandwidth required by application.

The CUBLAS-XT library [4] provides a set of BLAS routines that utilize
multiple GPUs connected to the same motherboard. It uses CUDA streams
[8] and events to efficiently manage data transfers across PCI-Express bus and
kernel invocations on the GPUs. The routines in the library also support out-

8 Hamidreza Khaleghzadeh et al.

of-core operation where the size of the matrices are limited only by the system
memory size. However, we show in this work that our out-of-core implemen-
tation of the DGEMM routine out-performs that provided in CUBLAS-XT
library. SciGPU-GEMM |[23] is a library of wrapper functions to help use
the GEMM routines from CUBLAS on GPUs with limited memory and no
double precision hardware. HPL-CUDA [24] is a library for high performance
computing Linpack benchmark for CUDA. It does not contain out-of-core im-
plementation for level 3 BLAS matrix multiplication routine.

3 Out-of-core Library for Accelerator Kernels (HCLOOC)

In this section, we present a library, called HCLOOC, which allows program-
mers to write out-of-core implementations for their kernels on accelerators
such as GPUs, PHIs, and FPGAs.

HCLOOC consists of two principal components: Partitioner and Stream
Engine.

Partitioner contains interfaces, which allow partitioning of input and out-
put data structures into partitions that fit into an accelerator’s main memory.

Stream Engine uses a configurable software pipeline to overlap data trans-
fers from host CPU to the accelerator and back and invocations of in-core ker-
nels in the accelerator. It is a wrapper that utilizes the fundamental building
blocks such as OpenCL command queues [6] for FPGAs, Intel offload streams
[7] for Intel Xeon Phis, and CUDA streams that allow concurrent utilization of
the copy and execution engines provided in NVidia GPUs [8], [9]. For example,
for the out-of-core implementation of matrix multiplication that we present in
this paper, the Stream Engine uses a five-stage pipeline.

3.1 Implementation for Dense Matrix Multiplication on a GPU using

HCLOOC

In this section, we elucidate the core logic in the two components (Partitioner
and Stream Engine) by describing our out-of-core implementation of matrix
multiplication of large dense matrices on NVidia GPUs.

The implementation computes C' = a x A x B+ x C, where A, B, and C
are matrices of size M x K, K x N, and M x N, respectively and « and 3 are
constant floating-point numbers. If workload size (M x K + K x N + M x N)
fits into the memory of GPU, all three matrices are transferred to the device,
the kernel CUBLAS DGEMM [25] is then invoked to update matrix C, and
the resultant matrix C' is returned to the host. But, when the workload size
exceeds the main memory of the accelerator, the data transfer of the matrices
will fail.

First step in our out-of-core implementation is partitioning of matrices A,
B, and C. Partitioner splits matrix A into h equal horizontal slices, matrix B
into v equal vertical slices, and matrix C' into h X v equal rectangular blocks

Out-of-core Implementation for Accelerator Kernels on Heterogeneous Clouds 9

.
K N
- - >
a, Coo Co1
a, Cio Cyy
s : * b, b, = s
a, Ca Co
a, Ca Car
Matrix A Matrix C
A,
Matrix B

Fig. 1 Using Partitioner module for decomposition of matrix A into 4 horizontal slices,
matrix B into 2 vertical slices, and matrix C into 8 (= 4 x 2) blocks.

ensuring that the data required for updating of any two blocks of C in the
same column is small enough to fit in the accelerator’s memory.

For example, suppose M, N and K to be 4, 4 and 8 respectively, resulting
in the total workload size equal to 80 (4 x 8 + 8 x 4 + 4 x 4) matrix elements.
Suppose the GPU’s main memory can only store 44 matrix elements. Then
Partitioner will be applied, and it will split matrix A into 4 horizontal slices,
matrix B into 2 vertical slices and consequently matrix C' into eight 1x 2 blocks
guaranteeing that the data required for updating of any two blocks of C' in
the same column will fit in the memory of the accelerator. Figure 1 shows
the matrix decomposition. Although other decompositions are possible (for
example, partitioning A, B and C into 2, 4 and 8 sub-blocks respectively),
Partitioner will return the decomposition, which additionally optimizes the
work of the target software pipeline. In this particular case, the pipeline uses
two sets of buffers and two parallel streams, and in order to optimize the use
of the resources, Partitioner is instructed to select the decomposition with the
smallest possible v.

Stream Engine is then employed to execute the out-of-core implementation.
CUDA streams and asynchronous communications are used to optimally utilize
concurrent access of copy and execution engines provided in NVidia GPUs
thereby achieving optimal overlapping of communication with computation.

The columns of blocks C' are computed one after the other. In each column,
the blocks are computed going from the top to the bottom. Each iteration
is associated with multiple transfers of the matrix blocks between the host
memory and device memory, which leads to a significant communication cost.
To reduce the communication overhead, HCLOOC overlaps data transfers and
kernel invocations. To achieve this, two sets of data buffers are allocated in
the GPU’s main memory. Each set is used for updating one block of C'. While
one block of C' is being updated, the required data for the second block of C
is transferred into the second set of buffers.

Stream Engine uses a five-stage software pipeline to execute the out-of-core
implementation. Figure 2 presents the pipeline structure for three matrices A,
B and C' decomposed in the Figure 1. The stages of pipeline are described as
following:

— S(b;): Sending a i_th slice of matrix B (b;) from host to device.

Hamidreza Khaleghzadeh et al.

10

py) P

88 gy i

Lo i I8
Stream, [S(@)5(c,,|5®,] DGEMM R(cy) OIS F 1
Stream, [s@@)s(c,)| | DGEMM R(c,)) o 3 §
Stream, S@,)[S(c,)| | DGEMM R(c, -~ O g §
@ mn

(%e)oay
“Coyoay

Sweam, 4 [S@)(c,] | DGEMM R(c,)
b b [S@lst.) b DeEMM Rec,)
4

e
oy

Stream, o O
Stream, g rg’ g g R > S(al)S(C“)’ DGEMM R(c,,) v
Stream, I GG I R S(a,)/S(c,.) | DGEMM R(c,,) vy
Stream, g g § g’ g b S@,)[S(c,,)] | DGEMM R(c,,)
5 2EHE oo
A 1
s =
Time

Fig. 2 Pipeline structure in Stream FEngine module for sample matrices shown in Figure
1 on a GPU with dual copy engines and one execution engine which supports concurrent
data transfers in two directions (represented by S() calls) and overlapping of data transfers
and kernel executions (represented as DGEMM). Events, Rec(z) and Wait(x), are used for

synchronization of data transfers.

— S(a;): Sending a i_th slice of matrix A (a;) from host to device.

— S(cij): Sending a rectangular block of matrix C' (¢;;) from host to device.
— DGEMM: Vendor-supplied optimized DGEMM (CUBLAS) invocation.
— R(c;j): Sending the updated block ¢;; of C back from device to host.

Since blocks on matrix C' are updated in the column order, the first stage
of pipeline (S(b;)) occurs every h step (h is the number of horizontal slices).
The stream, which updates ¢;;, transfers horizontal slice a;, vertical slice b; (if
it has not already been transferred into the accelerator memory), and block
cij from host to the accelerator memory. After updating c;; by invoking in-
core CUBLAS DGEMM, it is sent back to the host. In figure 2, it is supposed
that GPU is provided with dual copy engines, which supports concurrent data
transfers in two directions. Since creating a new stream has some overhead,
we exploit and reuse just two streams in a round robin order so that while one
stream is involved in doing computation, the other is transferring.

To make sure data stored in device buffers will not be overwritten until
kernel executions that operate on the data have completed, we create events for
each sub-matrix existing in A and C. As shown in figure 2, Rec(x) represents
recording the event associated with block z, and Wait(z) makes the process
wait for the event associated with block z until it is recorded.

We have explained HCLOOC using dense matrix multiplication which is
one of level 3 BLAS routines. To implement out-of-core matrix-vector opera-
tions (level 2 BLAS routines) using HCLOOC, matrix A is partitioned. Vector
b is completely transferred to the device and stored from start to completion
of the out-of-core operation. Vector c is also partitioned and updated during
the course of the out-of-core operation. In our future work, we will consider

triangular and banded matrices.

Out-of-core Implementation for Accelerator Kernels on Heterogeneous Clouds 11

3.1.1 Stream Engine: Further Details

Stream FEngine is responsible for transferring input data from host CPU to
GPU, invocations of in-core CUBLAS_DGEMM [25], an implementation of
BLAS (Basic Linear Algebra Subprograms) on top of the NVidia CUDA run-
time, and transferring the resultant output blocks back to the host.

Since out-of-core computation is associated with lots of data transfer be-
tween host CPU and the accelerator, we use two sets of buffers on the GPU
which include 5 buffers. Two out of 5 buffers, dA[0] and dA[1], store two slices
of A, one buffer, dB, stores one slice of B and the remaining two buffers, dC|0]
and dC[1], are used for sub-blocks of C. Employing two sets of buffers along
with two CUDA streams enables communication-computation overlapping on
the accelerator.

Algorithm 1 illustrates the work of Stream Engine for NVidia GPUs. Inputs
to the module are matrices A, B and C, with sizes of M x K, K x N and M x N
respectively, and h and v which are determined by Partitioner (section 3.1.2).
There exist two CUDA streams (Line 2). Operations issued into a stream are
executed in issue-order, while operations submitted to different streams can
be executed concurrently. Since the GPU supports concurrent copy and exe-
cution engines, the designed out-of-core matrix multiplication implementation
utilizes concurrent data transfers in both directions. For synchronization of
data communications, we create two sets of CUDA event arrays (Line 3).

At the beginning, slices ag, by and block ¢y are transferred into device
buffers dA[0], dB and dC[0] (Lines 9-13). While dC[set], set = {0, 1}, is being
updated by in-core CUBLAS_DGEMM kernel (line 15), next sub-matrices of
A, C (Lines 17-22) and following sub-matrix of B (if it is applicable) (Lines
23-27) are asynchronously transferred to the device by the other stream. After
finishing its computation, the current stream records event, to release buffer
dA (Line 16). Line 28 is responsible for sending the result back to the host.
Then, the current stream releases its dC' (Line 29) to be reused by the other
stream. Finally, the last block, c¢(,—1)(j—1), is updated and sent back to the
host memory (Lines 31, 32).

The amount of communication that could be overlapped with the compu-
tation depends on the ratio of the communication time and the computation
time. If the CUBLAS_DGEMM execution dominates the total execution time,
then, the smaller the ratio, the more communication could be overlapped. How-
ever, if the communication over the PCI-E bus dominates the total execution
time, the communication would always be a bottleneck.

We have elucidated the principal components of HCLOOC by implement-
ing out-of-core dense matrix multiplication for NVidia GPUs. For out-of-
core implementations for PHIs and FPGAs, Stream Engine uses Intel offload
streams (for PHIs) and OpenCL command queues (for FPGAs). Computa-
tional kernels for PHIs and FPGAs would be vendor-optimized BLAS library
routine DGEMM.

12 Hamidreza Khaleghzadeh et al.

Algorithm 1 Stream Engine using CUDA streams and events to execute
out-of-core DGEMM implementation

1: function Stream Engine(A, B,C, M, N, K, h,v)

2: Stream stream[2]

3 Event eventq[h * v], eventc[h * v)

4 for j =0;j <v;5++ do
5: for i =0;i < h;t+ + do
6.
7
8

ide < i+ j*h

set «— idx % 2, set_ < (ide+1) % 2
: i (idw+1) % h, jo+ ol
9: if ide = 0 then

10: MEMCPYASYNC(bg— > dB, stream[idz%2])

11: MEMCPYASYNC(ap— > dA[set], stream[idz%2])

12: MEMCPYASYNC(co,0— > dC|[set], stream[idz%2])

13: end if

14: if ide < (h*v — 1) then

15: CUBLAS_DGEMM(dA[set],dB, dC[set], stream[idz%2])

16: EVENTRECORD(event,[idx], stream[idz%2])

17: if idx > 0 then

18: STREAMWAITEVENT(stream/[(idz + 1)%2], eventq[ide — 1])
19: MEMCPYASYNC(a;_— > dA[set], stream[(idz + 1)%2])

20: STREAMWAITEVENT(stream/[(idx + 1)%2], event.[ide — 1])
21: MEMCPYASYNC(¢;_ j_— > dC|[set], stream[(idz + 1)%4]))
22: end if

23: if i=(h—1) AND j < (v—1) then

24: STREAMWAITEVENT (stream|(idz + 1)%2], eventq[idzx)])

25: STREAMWAITEVENT(stream/|(idz + 1)%2], eventq[ide — 1])
26: MEMCPYASYNC(b; 41— > dB, stream/[(idx + 1)%2]))

27: end if

28: MEMCPYASYNC(dC[set]— > ¢; j, stream[idz%2])

29: EVENTRECORD(event.[idzx], stream[idz%2])

30: else

31: CUBLAS_DGEMM(dA[set],dB, dC|set], stream[idz%2])

32: MEMCPYASYNC(dC[set]— > ¢; j, stream[idz%2])

33: end if

34: end for

35: end for
36: end function

3.1.2 Partitioner: Further Details

Partitioner decomposes matrix A into h horizontal slices, a; (0 <i < h —1),
B into v vertical slices, b; (0 < j < v — 1), and matrix C' consequently into
h x v blocks, c¢; ;. Partitioning of the matrices is performed such that certain
constraints and optimization criteria are satisfied:

— Every matrix is decomposed into sub-matrices of approximately the same
size. This ensures load balancing and maximum concurrency.

— GPU’s main memory is divided between 5 buffers organized into two sets:
dA[0] and dC0] in one set, dA[1] and dC[1] in the other set. dB is shared
between the sets.

— The number of slices in matrix B should be as small as possible. There
is only one buffer on the accelerator for matrix B. Since the buffer is

Out-of-core Implementation for Accelerator Kernels on Heterogeneous Clouds 13

shared between two streams, data transfer from CPU to GPU cannot be
overlapped with computation for matrix B slices, and this degrades the
communication-computation overlap in the pipeline structure. Therefore,
Partitioner decomposes matrices so to minimize the number of slices of B.

— Minimizing the number of slices in B may result in too many slices in
A. We have experimentally found that the performance of HCLOOC de-
grades when matrix A is partitioned into too many slices. To prevent this,
Partitioner minimizes the product: h x v.

Algorithm 2 shows the core logic of Partitioner in this specific case where
the inputs are matrix sizes, M, N and K, and the memory size of the accelera-
tor is mem_size. Outputs are h, v, heights and widths. heights is an array of
size h where heights[i] contains the number of rows in the i-th slice of matrix
A. Similarly, widths is an array of size v where widths[i] contains the number
of columns in the i-th slice of matrix B.

We know that the size of dA[set] is & x K, dB is K x £, and dC/[set] is

% X %, where set = {0, 1}. Since all 5 buffers should fit into the accelerator

memory, buffer sizes must satisfy the following equation (1).

M N M N
2X — X K+ KX —+2xX — x — =mem_size (1)
h v h v

From equation 1, we derive the following expression for v:

v 2XxMxN+NxK xh)
T mem_size x h—2x M x K

The valid values for h are {2,3,---, M}. Algorithm 2 initializes h to 2,
and v is then calculated using the formula 2 (Lines 3). Then the number of
horizontal slices is increased (Rtemp) until the best decomposition is achieved,
which minimizes the number of slices in matrix B (Lines 5-14). Finally, rows
of matrix A are distributed amongst h slices, and columns of matrix B are
distributed amongst v slices (Lines 18-21).

4 Experimental Results

In this section, we demonstrate the performance of our out-of-core implemen-
tations of matrix multiplication for large dense matrices on GPUs, PHIs and
FPGAs. For this purpose, three packages ZZGemmOOC [26], XeonPhiOOC
[27] and FPGAOOC [28] have been developed, which use the interfaces defined
in HCLOOC. We also study the speedup of ZZGemmOOC over NVidia’s out-
of-core BLAS package CUBLAS-XT [4].

4.1 Evaluation Platform

Our experiments are executed on a server containing an Intel Haswell multicore
CPU, NVidia K40c GPU, Intel Xeon Phi, and a Xilinx FPGA (specifications
in Tables 1, 2, 3 and 4 respectively). NVidia K40c GPU is provided with three
engines including dual copy engines and one kernel invocation engine.

14 Hamidreza Khaleghzadeh et al.

Algorithm 2 Partitioning of matrices A, B, and C' using the Partitioner
1: function PARTITIONER(M, N, K, mem_size)

2: h <+ 2
. 2XMXNANXKXh
3 v l—mem,sizexh—2><lw><K
4 htemp ~— 3 s Utemp < OO
5. while hiemp < M AND (Viemp < 0 OR viemp > 1) do
6: 2XMXN+NXKXhtemp
: Vtemp < ’Vmem,sizexhtemp72><]\/[><K
7 if viemp > 0 then
8 if v <0 OR (Vtemp < v AND h X v > htemp X Vtemp) then

9: h hiemp

10: V < Vtemp
11: end if

12: end if

13: htemp — htemp +1

14: end while

15: if v <0 OR v > N then

16: There is no distribution to fit into the accelerator memory, exit.
17: end if

18: heights[i] + 5, i€ [0,h—1]

19: widthsli] < &, i€ [0,v — 1]

20: heights[i] + +, i € [0, M%h)

21: widths[i] + +, i € [0, N%v)

22: end function

4.2 Performance of Out-of-core Implementations

We have developed three packages based on HC LOOC library which perform
out-of-core matrix multiplication of large dense matrices on GPUs, Xeon Phis
and FPGAs. For GPU, ZZGemmOOC out-of-core package [26] is developed
that reuses CUBLAS for in-core DGEMM invocations. For Xeon Phi, Xeon-
PhiOOC out-of-core package [27] is developed that reuses MKL BLAS [29]
for in-core DGEMM invocations. For FPGA, FPGAOOC out-of-core package
[28] is designed that reuses a user-defined kernel for in-core invocations. The
user-defined kernel calculates matrix multiplication using the straightforward
algorithm with three nested loops. The kernel is not fully optimized for FPGA
and just uses work item pipelining. All packages use the interface defined by
HCLOOC. However, they are different in terms of implementation details.
For instance, while Stream FEngine in ZZGemmOOC package is implemented
using CUDA, XeonPhiOOC uses Intel offload streams, and FPGAOOC adapts
OpenCL command queues. The Intel MKL and CUDA versions used are re-
spectively 2017.0.2 and 7.5.

To evaluate the efficiency of our out-of-core implementations, we measure
the execution speed of our packages. The speed of multiplication of two ma-
trices with sizes M x K, K x N is calculated as w where t represents
the execution time, which includes the time taken for matrix multiplication
and data transfers from host to device and vice versa.

We show the speeds for ZZGemmOOC and XeonPhiOOC for problem sizes
in the set, {64%,1282, ..., 44800%}. Since FPGAOOC is very slow for all prob-
lem sizes, we evaluate this package for very small problem sizes. To study the

Out-of-core Implementation for Accelerator Kernels on Heterogeneous Clouds 15

out-of-core computation on the FPGA, the memory size of FPGA is manu-
ally set to 64 KB. Matrix sizes used for this implementation is the set, {162,
322, ..., 5122}. In these experiments, when workload size fits into the accel-
erator memory, all three matrices are transferred to the device, and result is
calculated using in-core computations.

Figure 3 compares the speed functions of ZZGEMOOC with CUBLAS-
XT on TESLA K40c GPU. In this figure, z-axis represents the size of square
matrices and y-axis represents speed in GFLOPS. It is apparent that ZZGem-
mOOC outperforms CUBLAS-XT for all work-sizes. The gap between ZZGem-
mOOC and CUBLAS-XT becomes wider as the matrix size grows. The peak
double-precision floating point performance of TESLA K40c is 1.43 TFLOPS.
The maximum double-precision floating point performance of ZZGemmOOC
is 1.17 TFLOPS, which constitutes 82 percent of the peak. ZZGemmOOC pro-
vides 1.5x speedup over CUBLAS-XT for small matrix sizes and achieves up to
2.7x speedup for larger ones. The vertical green line in the figure separates the
results for in-core matrix multiplication and out-of-core matrix multiplication.

Figure 4 shows the speed function for XeonPhiOOC on Intel Xeon Phi
3120P. We could not find any good third-party implementation for perfor-
mance comparison. The green line in the figure separates the results for in-
core matrix multiplication and out-of-core matrix multiplication. The peak
double-precision floating point performance of Intel Xeon Phi 3120P is 1003
GFLOPS. Using XeonPhiOOC, the maximum double-precision floating point
performance is 725 GFLOPS, which constitutes 72 percent of the peak.

Figure 5 illustrates the speed function for matrix multiplication on Xilinx
Virtex 7 690T FPGA. The green line in the figure highlights the data point
where out-of-core computation starts. It is clear that FPGAOOC exhibits no
drop in speed for out-of-core computations in comparison with in-core results.
There exists no third-party implementation that could be used for performance
comparison.

The software implementations of HCLOOC presented in this paper can
be downloaded from [26], [27] and [28] for GPUs, Xeon Phis and FPGAs,
respectively.

5 Conclusion

Cloud service providers are furiously strengthening the pace of their efforts
to entice HPC users to migrate their workloads by catering to their unique
needs. One such need is the provision of the capability of high performance
heterogeneous computing through the provision of hybrid nodes that contain
multicore CPUs hosting one or more widely used hardware accelerators such
as GPUs, PHIs, and FPGAs.

Hardware acceleration of scientific kernels in cloud poses two prominent
challenges. First, virtualization of hardware accelerators must be made possi-
ble to meet the core principles of the cloud model, which includes elasticity
and on-demand computing. Second, efficient utilization of accelerators to solve

16 Hamidreza Khaleghzadeh et al.

ZZGemmOOC Speed Function vs cuBLAS-XT Speed Function
1600
1400
1200
1000

o ®
Q Q
S o

Speed (GFLOPS)

N
Q
=]

N
Q
o o

0 500000000 1000000000 1500000000 2000000000
N*N

CuBLAS-XT Peak Performance

ZZGemmOOC

Fig. 3 Comparison of vendor-optimized library CUBLAS-XT with ZZGemmOOC on
NVidia K40c GPU. The green line separates in-core computations from out-of-core ones.
The dotted yellow line represents the theoretical peak double precision performance of the

GPU.

Speed Function of XeonPHIOOC
1200

2000 = === === === = m e o e emm—man

o ®
Q Q
S o

N
Q
=]

Speed (GFLOPS)

200 /
0
0 500000000 1000000000 1500000000 2000000000

N*N

XeonPHIOOC = = = = = Peak Performance

Fig. 4 Speed function of XeonPhiOOC on Intel Xeon Phi 3120P. The green line separates
in-core computations from out-of-core ones. The dotted red line represents the theoretical
peak double-precision performance.

big instances of data-parallel applications must be facilitated. While virtual-
ization of hardware accelerators at zero performance loss remains a formidable
research challenge, we address the second challenge in this paper.

In this paper, we proposed a library containing interfaces (HCLOOC) to
cope with the limitations that beset execution of data parallel applications for
large problem sizes on accelerators including limited main memory size of the
accelerator and limited bandwidth of the PCI-E communication link between
a host CPU and an accelerator. An optimal software pipelines is adopted for
communication-computation overlapping. It is designed using the fundamen-
tal building blocks, which are OpenCL command queues for FPGAs, Intel
offload streams for Intel Xeon Phis, and CUDA streams that allow concurrent
utilization of the copy and execution engines provided in NVidia GPUs.

Out-of-core Implementation for Accelerator Kernels on Heterogeneous Clouds 17

FPGAOOC Speed Function

n
o

N

P
o

Speed(MFLOPS)
=

o
3

0 50000 100000 150000 200000 250000 300000
N*N

Fig. 5 Speed function of FPGAOOC on Xilinx Virtex 7 690T FPGA. The green line sep-
arates in-core computations from out-of-core ones.

The library is evaluated using an out-of-core implementation of matrix mul-
tiplication of large dense matrices on a hybrid node, an Intel Haswell multicore
CPU server integrated with NVidia K40c GPU, Intel Xeon Phi 3120P, and a
Xilinx FPGA. We achieves 82% of peak double-precision floating performance
of the GPU and a speedup of 2.7 times compared to NVidia’s out-of-core ma-
trix multiplication implementation (CUBLAS-XT). Our experiments showed
that the proposed library exhibits 0% drop in performance when the problem
size exceeds the main memories of accelerators for GPU, Intel Xeon Phi and
Xilinx FPGA.

6 Acknowledgement

This publication has emanated from research conducted with the financial
support of Science Foundation Ireland (SFI) under Grant Number 14 /1A /2474.

References

1. C. K. Filelis-Papadopoulos, E. N. G. Grylonakis, P. E. Kyziropoulos, G. A. Gravvanis,
and J. P. Morrison, “Characterization of hardware in self-managing self-organizing cloud
environment,” in Proceedings of the 20th Pan-Hellenic Conference on Informatics, ser.
PCI’16. ACM, 2016, pp. 56:1-56:6.

2. T. Lynn, H. Xiong, D. Dong, B. Momani, G. Gravvanis, C. Filelis-Papadopoulos, A. El-
ster, M. M. Z. M. Khan, D. Tzovaras, K. Giannoutakis, D. Petcu, M. Neagul, I. Dragon,
P. Kuppudayar, S. Natarajan, M. McGrath, G. Gaydadjiev, T. Becker, A. Gourinovitch,
D. Kenny, and J. Morrison, “CLOUDLIGHTNING: A framework for a self-organising
and self-managing heterogeneous cloud,” in Proceedings of the 6th International Con-
ference on Cloud Computing and Services Science - Volume 1 and 2, ser. CLOSER
2016. SCITEPRESS - Science and Technology Publications, Lda, 2016, pp. 333—-338.

3. C. H. Hong, I. Spence, and D. Nikolopoulos, “Fairgv: Fair and fast gpu virtualization,”
IEEE Transactions on Parallel and Distributed Systems, vol. PP, no. 99, pp. 1-1, 2017.

4. CUBLAS-XT, “CUBLAS-XT: Multi-GPU version of CUBLAS library supporting
out-of-core routines,” 2016. [Online]. Available: https://developer.nvidia.com/cublas

18

Hamidreza Khaleghzadeh et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear algebra for hybrid

GPU accelerated manycore systems,” Parallel Computing, vol. 36, no. 5-6, pp. 232—240,
Jun. 2010.

. Khronos OpenCL Registry. (2017) OpenCL Command Queues. [Online]. Available:

https://www.khronos.org/registry/OpenCL/specs/opencl-2.2.pdf

Intel. (2017) Programming for Intel MIC architecture. [Online]. Available: https:
/ /software.intel.com/en-us/node /684368

NVIDIA. (2016) CUDA C Programming Guide. [Online]. Available: https:
//docs.nvidia.com/cuda/cuda-c-programming-guide/

. ——. (2013) Tesla K40 GPU accelerator. [Online]. Available: http://www.nvidia.com/

content/PDF /kepler/Tesla- K40- PCle- Passive- Board-Spec- BD-06902-001_v05.pdf

S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema, “A
performance analysis of EC2 cloud computing services for scientific computing,” in
International Conference on Cloud Computing. Springer, 2009, pp. 115-131.

A. Tosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema,
“Performance analysis of cloud computing services for Many-Tasks scientific comput-
ing,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 6, June 2011.
A. Gupta, L. V. Kal, D. Milojicic, P. Faraboschi, and S. M. Balle, “HPC-Aware VM
placement in infrastructure clouds,” in 2018 IEEE International Conference on Cloud
Engineering (IC2E), March 2013, pp. 11-20.

M. Parashar, M. AbdelBaky, I. Rodero, and A. Devarakonda, “Cloud paradigms and
practices for computational and data-enabled science and engineering,” Computing in
Science Engineering, vol. 15, no. 4, pp. 1018, July 2013.

V. Mauch, M. Kunze, and M. Hillenbrand, “High performance cloud computing,” Future
Generation Computer Systems, vol. 29, no. 6, pp. 1408-1416, 2013.

G. Giunta, R. Montella, G. Agrillo, and G. Coviello, A GPGPU Transparent Virtualiza-
tion Component for High Performance Computing Clouds. Springer Berlin Heidelberg,
2010.

S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow, “FPGAs in
the cloud: Booting virtualized hardware accelerators with OpenStack,” in 2014 IEEE
22nd Annual International Symposium on Field-Programmable Custom Computing
Machines, May 2014, pp. 109-116.

C.-H. Hong, I. Spence, and D. S. Nikolopoulos, “Gpu virtualization and scheduling
methods: A comprehensive survey,” ACM Computing Surveys (CSUR), vol. 50, no. 3,
p. 35, 2017.

L. Gu, J. Siegel, and X. Li, “Using GPUs to compute large out-of-card FFTs,” in
Proceedings of the International Conference on Supercomputing, ser. ICS ’11. ACM,
2011, pp. 255-264.

X. Mu, H.-X. Zhou, K. Chen, and W. Hong, “Higher order method of moments with
a parallel out-of-core lu solver on gpu/cpu platform,” IEEE Transactions on Antennas
and Propagation, vol. 62, no. 11, pp. 5634-5646, 2014.

Z. Zhong, V. Rychkov, and A. Lastovetsky, “Data partitioning on heterogeneous mul-
ticore and Multi-GPU systems using functional performance models of Data-Parallel
applications,” in 2012 IEEE International Conference on Cluster Computing (Cluster
2012), 24-28 September 2012, pp. 191-199.

Z. Zhong, “Optimization of Data-Parallel scientific applications on highly heterogeneous
modern HPC platforms,” Ph.D. dissertation, University College Dublin, 2014.

J. Wu and J. Jaja, “Achieving native GPU performance for out-of-card large dense
matrix multiplication,” Parallel Processing Letters, vol. 26, no. 02, p. 1650007, 2016.
R. Edgar, “SciGPU-GEMM,” 2009. [Online]. Available: https://github.com/
YaohuiZeng/scigpugemm

D. Martin, “High performance computing linpack benchmark for CUDA,” 2010.
[Online]. Available: https://github.com/avidday/hpl-cuda

NVIDIA, “CUDA toolkit documentation,” 2017. [Online]. Available: http://docs.
nvidia.com/cuda/cublas/index.html#axzz4kRVc206B

H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky., “ZZGemmOOC:
Multi-GPU out-of-core routines for dense matrix multiplization,” 2017. [Online].
Available: https://git.ucd.ie/hcl/zzgemmooc.git

Out-of-core Implementation for Accelerator Kernels on Heterogeneous Clouds 19

27. H. Khaleghzadeh, R. Reddy, Z. Zhong, and A. Lastovetsky., “XeonPhiOOC:
Out-of-core package for out-of-core DGEMM on Xeon Phi,” 2017. [Online|. Available:
https://git.ucd.ie/manumachu/xeonphiooc.git

28. H. Khaleghzadeh, Z. Zhong, R. Reddy, and A. Lastovetsky., “FPGAOOC: Out-
of-core package for out-of-core dgemm on FPGA,” 2017. [Online]. Available:
https://git.ucd.ie/hcl/fpgagemm.git

29. Intel MKL BLAS. [Online]. Available: https://software.intel.com/en-us/mkl

