Towards Application Energy Measurement
and Modelling Tool Support

Kenneth O’Brien' ™) Alexey Lastovetsky, Ilia Pietri2,
and Rizos Sakellariou?

! Heterogeneous Computing Laboratory,

School of Computer Science and Informatics, University College Dublin,
Dublin, Ireland
kenneth.obrien@ucdconnect.ie, alexey.lastovetskyQucd.ie
http://hcl.ucd.ie
2 The University of Manchester, Manchester, UK

Abstract. We present a prototype toolkit for researchers to accurately
measure and model their application’s power and energy usage. We pro-
vide an analysis of a matrix multiplication application using our api
libhclenergy.

Keywords: Energy efficiency + Energy measurement - Software tools -
High performance computing

1 Introduction

Energy has emerged as a new finite resource that must be considered by appli-
cation developers. Currently, developers optimise their applications for perfor-
mance by making the most efficient use of processor clock cycles, memory hier-
archies and network bandwidth, in order to reduce execution time.

In recent years Dennard scaling has ended. Dennard scaling was a law that
stated as transistor sizes decreased, the power a processor constructed of these
transistors requires, remained proportional to the area of that chip.

The practicalities of this breakdown are that processor manufacturers can-
not develop processors consisting of smaller transistors without drawing more
power and producing more heat. These factors have resulted in the stagnation of
processor clock frequencies and the rise of multicore and accelerator computing,
as performance improvements can be achieved by adding more cores without
shrinking transistors. This is not a complete solution as increasing the number
of cores in a processor increases the overall power consumption, more so than
what could be achieved if Dennard scaling had held.

This research is supported by the Structured PhD in Simulation Science which is
funded by the Programme for Research in Third Level Institutions (PRTLI) Cycle 5
and co-funded by the European Regional Development Fund. This work is partially
supported by EU under the COST Program Action IC1305: Network for Sustainable
Ultrascale Computing (NESUS).

© Springer International Publishing Switzerland 2015

V. Malyshkin (Ed.): PaCT 2015, LNCS 9251, pp. 91-101, 2015.
DOI: 10.1007/978-3-319-21909-7_10

92 K. O’Brien et al.

Our background is in application performance optimisation, therefore we
focus our efforts to application power monitoring and analysis. Efforts at the
hardware and data center configuration levels are beyond the scope of our study.

In order to optimise for this new resource we require tool support similar
to that which exists for performance optimisation. We first need the ability to
measure an application’s energy usage, as well as the application’s power usage,
which is the rate of consumption over time.

Advanced mathematical modelling methods and tool support exists for appli-
cations with respect to performance [9]. For application energy modelling to
develop further, we require equally advanced tool support.

In Sect. 2 we introduce our api for application power and energy monitoring.
In Sect. 3 we introduce a tool for power and energy model construction. In Sect. 4,
we demonstrate the capabilities of our tools. In Sect. 5 we describe related efforts
and in Sect. 6 we conclude and describe our future works.

2 Libhclenergy

2.1 Measurement Infrastructure

There are two application metrics we wish to study, power and energy. Power
is a rate of consumption of electricity, measured in units of Watts. Energy is a
measure of work done. It is measured in Watt Hours (Wh) or Watt Seconds,
commonly known as Joules (J). Power and energy are related by Eq. 1, where F
is energy in Joules, P is power in Watts and ¢ is time in seconds.

E=Pxt (1)
GRID5000
Metrology
APl Server
b C. e b
Compute| @- | Power .. |Compute| @a. | Power
Node 0 Meter 0 Node N Meter N

Fig. 1. Power measurement infrastructure

For our measurements we assume the existence of an external measurement
device that records the power consumption of our node at regular intervals with-
out affecting the nodes consumption. Figure 1 shows the mechanism by which
we obtain our data.

Towards Application Energy Measurement and Modelling Tool Support 93

Our Compute Node 0 is instrumented by an external power measurement
device (Power Meter 0) which records the power draw through the mains elec-
tricity socket (shown as a). This data is reported from all compute nodes to
a centralised server(c), which can then be requested via HTTP, by any web
capable device (b).

Given the hostname of node and a time frame, the API returns a series of
measurements and the resolution at which the measurements were made. We use
this infrastructure at GRID5000 as the basis for our api libhclenergy.

2.2 Experimental Platform

We chose GRID5000 [4] as our prototyping platform. It is large scale testbed
for parallel computing. It provides a highly heterogeneous platform that can be
configured by the researcher for their experiments. Many of the nodes contain
accelerators and high speed interconnects representative of the current landscape
in supercomputing. These include Nvidia GPU, Intel Xeon Phi and Infiniband.
We believe our work here to be easily portable to other infrastructure. Recently
the HPC job scheduling software Torque [1] added support for power measure-
ment and management providing a suitable basis for production implementations
of our libhclenergy.

2.3 Measurement of Distributed Applications

In the case of a single process, our API will measure energy and power between
start and end time events as specified by the programmer. There can be multiple
events and they may overlap, providing the programmer with the granularity of
measurement that they require.

For the case of an application with multiple processes, we expose the total
value for the node only at present.

In the case of an MPI application, we produce an energy reading for each
participating node executing the application.

apg — a1 ao ai

bp — by bp ——— b1

cg — C1 g — C1

| | |
Time — Time —

Fig. 2. Multiple processes on single node, both cases

There are two cases to be considered when measuring multiprocess or dis-
tributed applications. Firstly we can measure the power of all processes from
the launch of the application until the final process exits. This is useful in the

94 K. O’Brien et al.

context of a grid, where resources are reserved and the idle machines must be
taken into account. Secondly we can measure each node only when it’s executing
our application. This is the actual power of our application. We do not want to
measure a node with a high power draw if we’re only using it for a small unit
of time. Both cases are shown graphically in Fig.2 for processes a,b and c. In
the first diagram, the energy calculated will be the same for either method of
calculation. For the second diagram however, the energy could be calculated for
all processes a,b and ¢ for the duration of process a’s execution. Our alterna-
tive measurement method only accounts for energy of processes while they’re
executing.

2.4 API Features

Power consumption of a node can be characterised by the static(or idle) power
of the components powered on, and the dynamic power, which is the power
consumed by devices performing work. Our idle power consumption function
allows the user to measure both the static and dynamic power of their application
by simple subtraction.

We provide a utility function to calculate the idle power consumption of a
node. This function puts the calling process to sleep, after which it requests
the consumption for that period. The idle power is the baseline from which
deviations are considered characteristic of the running application. In addition,
we provide the energy cost in euros of running the application for a given price
per kWh, provided by the utility company.

Table 1 demonstrates our API’s key functions. Functions 1-3 provide a way
to initialise, start and stop a measurement. Functions 4-6 provide measurements.
The Raw variant of the PowerSeries function captures measurements for all par-
ticipating processes at all times, as opposed to only when executing. Functions 7
and 8 are only available when instrumenting MPI applications. Function 7 gath-
ers all measurements from all compute processes to the root process. Functions
9-11 are utilities, providing idle power of a compute node, average power of a
series of power measurements and cost of electricity for a given event.

As researchers we want to be confident in the accuracy of our measurements.
As such the developer may specify a confidence level and a tolerance for both
power and energy measurements. For a segment of instrumented code, the mea-
surements are repeated until the confidence level falls within tolerance or a set
maximum iterations is reached.

Figures 3 and 4 show examples of our API in use. Each time an application
is measured, the raw data is written to a file. In order to attain our required
accuracy we script a repetitive execution until the confidence interval is below
tolerance.

3 Greenman

We have developed a tool to profile applications, measure their energy consump-
tion and fit existing state of the art statistical models. To the authors’ knowledge,

Towards Application Energy Measurement and Modelling Tool Support 95

int main() {
hclenergy_t *event = hcl_init();

hcl_start(event);
// Execute code for instrumentation
hcl_stop(event) ;

double energy = energy_consumed(event) ;

}

Fig. 3. Libhclenergy example of energy measurement

int main() {
hclenergy_t *event = hcl_init();

hcl_start(event);
// Execute code for instrumentation
hcl_stop(event) ;

struct host_power_series *power = getPowerSeries(event);

}

Fig. 4. Libhclenergy example of power measurement

these are representative of the current models found in the literature. This tool
builds on our hclenergy API to gather power and energy measurements.

Presented in Table 2 are some of the existing models we have implemented in
the tool. They are all statistical regression models. U components of the models
denote utilisation as a percentage of clock cycles for CPU, and total bytes written
and read in the cases of memory, disk and network.

The models parameterise the power consumed by a compute node. Energy
can be derived from Eq.1 when execution time is known.

All models are fitted using a variety of standard and robust methods (bisquare,
cauchy, fair, huber, welsch and ordinary) from GSL [14]. Robust methods are used
to counteract the effect of outliers in the data. As a system is composed of many
processes, another scheduled process may interfere with data collection. Robust
methods dampen their effect on our model fitting.

We collect statistics at a per core granularity for c-state and p-state occu-
pancy, as well as percentage of clock cycles spent in our application. Modern
processor cores operate in various states of alertness known as c-states. In the
highest c-state C0, all features of the processor including clocks, caches and
voltages are at maximum capacity. In the lowest c-state C6 in the case of the
Core 2 Duo, a processor can reduce the voltage of it’s cores as low as 0 volts,
with all internal clocks and caches disabled. There are gradual steps between
these two extremes. Processors cores also have p-states representing each of the
discrete frequencies a processor core can execute. Lower frequencies mean lower
power consumption, but also lower performance. An application running at a low

96 K. O’Brien et al.

Table 1. Key hclenergy API calls

No | Function

helenergy_t *hcl init();

void hcl_start(hclenergy_t *event);

void hcl_stop(hclenergy_t *event);

double energy_consumed (hclenergy_t *event);

struct host_power_series *getRawPowerSeries(hclenergy_t *event)

struct host_power_series *getPowerSeries(hclenergy_t *event);

struct host_power_series *gatherHostSeries(struct host_power_series *local);

double *energy_per_host(hclenergy_t *event);
double idlePower();

double avg_series(struct timeseries *series);

O |00 ||| Ut x| W N+

[y
o

—_
—_

double cost(hclenergy_t *event, double price);

Table 2. Selection of models currently implemented

Model

P = Cbase + Cl * Ucpua [13]

P = Chase + ZZorei:1 Peore; s (6]

P = Chase + C1 % Uepu + Co x Uy, [20]

P = Cbase + Cl * ngu + CQ * UI/O» [21]

P = Cyase + C1 % Ucpu + C2 * Ugisi + Cs % Unet, [17]

P = Chase + C1 * Ugpu + C2 * Ugisk + C3 % Upet + Ca % Upmem, [12]
P= Cbase + Zn Cl * f37 [22}

core;=1

frequency taking a longer time may use more energy. We also record network
packets per second per interface, memory footprint of the application, and bytes
read and written to disk drives.

The sample rate of our power measurements is relatively low compared to
our sample rate of application statistics. We interpolate our power readings in
order to approximate the correct measurement for the given point in time. We
provide approximation by akima, linear, cspline and polynomial splines.

The tool is executed on the Linux commandline as:

greenman <greenmanArguments> <resultsFolder> <Application> <Arguments>

As such the application under analysis does not require alteration. Any exe-
cutable can be non intrusively instrumented. The source code of the application
is not required for analysis.

If the user wishes to instrument segments of code in an application, the
user must alter their code to tell greenman where to start and stop measuring.
Models within this segment are calculated only using measurements collected
inside these segments.

Towards Application Energy Measurement and Modelling Tool Support 97

For each model we provide the researcher R?, R?Adj, F statistic, and p value
for each model parameter, x2, covariance matrix and correlation.

The tool is available as opensource software and is extensible as newer models
arise. New models can be added by implementing a standard interface we pro-
vide. All models implemented so far use this interface, providing many examples
on which to base new ones. We foresee new measurements to be required in
the future and so we implement our measurement code in a similar extensible
fashion.

As our tool is built in part on top of the PAPI library [24], any counters
exposed now or in the future by it are supported.

When greenman is executed, it calls the fork() and exec() system calls to
begin executing the researcher’s application. We use the ptrace API which is
primarily designed for implementing system call tracing and breakpoint debug-
ging of applications. Ptrace allows us to control the application under analysis,
frequently sampling it’s application data from the/proc filesystem to build a
time-series profile of the applications performance.

4 Applying Our API

Here we demonstrate the use of our tools to analyse a matrix multiplication appli-
cation. We measure only during the kernel’s execution. Allocation and initialisa-
tion of memory are not considered. We wish to understand the effect of number
of the number of threads used in the computation. Using a non-distributed multi-
threaded implementation we vary the number of threads and measure the energy
consumed separately on two compute nodes (Sagittaire 30 and 72). Both nodes
are of dualcore x86.64 architecture(AMD Opteron 250) and are identical, with
the exception of Sagittaire 72 having an additional hard disk drive and 16 GB
instead of Sagittaire 30’s 2 GB of ram.

The results of our experiment are shown in Table3. We report confidence
intervals at the 95% level. We note that Power while executing the applica-
tion does not vary with the number of threads used, but that it is heavily
influenced by the idle power of the machine. As the CPU is the most power
demanding component of most servers [13], the similarity between idle and active
power led us to investigate if the CPU was not using frequency scaling features.
We confirmed this to be true in our environmental setup. Enabling these features
would cause a reduction in power consumption.

We also observe that the execution time for both machines is similar for the
given number of threads. Energy however varies dramatically. For the same com-
putation, Sagittaire-72, uses 727.17J and 369.12 J more than Sagittaire-30 for 1
and 2 threads respectively. This analysis tells us that we should use Sagittaire-30
for this computation as we will use less energy and not suffer any performance
degradation.

The cost of energy is shown in Table4. Though the costs are low, we must
consider how they scale for longer running applications on a greater number of
compute nodes.

98 K. O’Brien et al.

Table 3. Power and energy measurements
Machine #Threads | Power (W) | Energy (J) Idle Time(s)
Sagittaire-30 | 1 175.14 £0.40 | 2900.37 £6.90 |174.58 = 0.38 | 16.56
Sagittaire-30 | 2 175.28 £ 0.32 | 1560.72 + 3.33 | 174.586 + 0.38 | 8.90
Sagittaire-72 | 1 218.53 +4.26 | 3627.53 4+ 70.81 | 215.975 + 0.69 | 16.60
Sagittaire-72 | 2 217.29 £ 0.91|1929.84 £8.21 |215.975£0.69 | 8.88

Table 4. Energy costs

Machine #Threads|Cost(4.125 c/KWh)

Sagittaire-30|1 €0.0033

Sagittaire-30 2 €0.0017

Sagittaire-72|1 €0.0041

Sagittaire-72|2 €0.0022

5 Related Works

Related tools for model prediction include JouleTrack [26], a web based tool for
application profiling and energy estimation for StrongARM and Hitachi SH-4
processors. Dunkels [11], provides an energy estimation framework for small sen-
sor web devices based on work by [29] which assumes that a larger infrastructure
would be able to measure it’s own energy via ACPI [2]. While power measure-
ment via ACPI is part of the standard since version 4, we do not have access
to machines that support it. Neither of these tools target the architectures and
infrastructure that we do.

Barrachina [5] presents pmlib, a software package for measuring energy states
on CPUs. This library provides whole node level measurements accurately, but
does not capture finer grained measurements such as that of components and
accelerators. However, it has the advantageous ability to interface with high
frequency external measurement devices.

Cabrera provides EML [8] which are similar contributions to our libhclenergy,
but lacks the ability to report statistical confidence and also to transparently
calculate per node power in MPI applications.

In addition to these software methods, there are such as PowerPack [15] and
PowerMon?2 [7] that intercept power rails of components to give component level.
These methods are difficult to deploy in real systems and are disadvantaged by
the complexity of measuring devices with multiple power rails [18].

To the authors’ knowledge there is no existing tool for energy profiling and
model testing.

Towards Application Energy Measurement and Modelling Tool Support 99

5.1 Existing Tools

We limit ourselves to a node level granularity, but should the reader be interested
in finer grained measurement at the device level, we advise you to consult the
following tools which are performance counter based.

Intel provide the RAPL interface [10] which is a software power model and
similarly AMD provides APM [3]. Though easily accessible, both have disadvan-
tages. Intel RAPL fails to provide power measurements, only providing energy
with no timestamp data, hindering indepth analysis [16] and AMD APM has
been shown to be inaccurate due to assumptions during sleep modes [16].

Likwid [28], a lightweight performance tool offers RAPL measurements from
Intel SandyBridge and IvyBridge x86 processors.

Nvidia, through their management library (NVML [25]) provides access to
milliwatt power consumption metrics, accurate to 5 %, as well as current Pstate
of each graphics card in a system. NVML also provides related metrics such a
fan speed and temperature.

6 Conclusion

We have provided a prototype implementation of a power and energy monitoring
API for a modern parallel infrastructure as well as a tool for model fitting. These
tools allow us to test a variety of schemes for power approximation when the
origin sample frequency is low. Both tools will be released under an opensource
license in the coming weeks.

Future hardware will likely by necessity include higher precision energy mea-
surement capability. Current accelerator devices are capable of updating their
power consumption data as frequently as 10 Hz.

7 Future Works

A current limitation of greenman is an inability to profile MPI applications due
to the design patterns used to construct the tool. We aim to resolve this in
subsequent releases.

Our api provides us with the ability to instrument sections of code. We plan
to use this api to instrument different tasks of workflow applications to best
allocate tasks for energy efficiency.

Current generations of Nvidia GPGPU and Intel Xeon Phi accelerators have
the facility to report their own board power consumption through their vendor
APIs [19,25]. As these are essentially performance counters, we will be adding
them to the metrics that greenman can record. From there, we will implement
existing accelerator power models [23,27] and provide an extensible interface for
researchers to add their own models.

We will be exploring functional models of applications on heterogeneous plat-
forms. The Heterogeneous Computing Lab has produced Fupermod [9] for pro-
ducing optimal data partitioning in heterogeneous environments. We will be
augmenting this software with energy measurements.

100 K. O’Brien et al.

Acknowledgment. Experiments presented in this paper were carried out using the
Grid’5000 experimental testbed, being developed under the INRIA ALADDIN devel-
opment action with support from CNRS, RENATER and several Universities as well
as other funding bodies (see https://www.grid5000.1r).

References

1. Adaptive Computing, I: Torque resource manager (2015). http://www.
adaptivecomputing.com/products/open-source/torque/

2. HP.C.,, et al: Acpi v4.0a (2010). http://www.acpi.info/DOWNLOADS/
ACPIspec40a.pdf

3. AMD: Bios and kernel developer$ guide(bkdg) for amd family 15h models 00h—0fh
processors (2013). http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/
2012/10/42301-15h-Mod_00hOFh_BKDG1.pdf

4. Balouek, D., et al.: Adding virtualization capabilities to the Grid’5000 testbed.
In: Ivanov, Ivan I., van Sinderen, Marten, Leymann, Frank, Shan, Tony (eds.)
CLOSER 2012. CCIS, vol. 367, pp. 3-20. Springer, Heidelberg (2013)

5. Barrachina, S., Barreda, M., Catalan, S., Dolz, M.F., Fabregat, G., Mayo, R.,
Quintana-Orti, E.S.: An integrated framework for power-performance analysis of
parallel scientific workloads. In: ENERGY 2013, The Third International Confer-
ence on Smart Grids, Green Communications and IT Energy-Aware Technologies,
pp. 114-119 (2013)

6. Basmadjian, R., Ali, N., Niedermeier, F., de Meer, H., Giuliani, G.: A methodology
to predict the power consumption of servers in data centres. In: Proceedings of the
2nd International Conference on Energy-Efficient Computing and Networking, pp.
1-10. ACM (2011)

7. Bedard, D., Lim, M.Y., Fowler, R., Porterfield, A.: Powermon: fine-grained and
integrated power monitoring for commodity computer systems. In: Proceedings of
the IEEE SoutheastCon 2010 (SoutheastCon), pp. 479-484, March 2010

8. Cabrera, A., Almeida, F., Arteaga, J., Blanco, V.: Measuring energy consumption
using EML (energy measurement library). Comput. Sci. Res. Dev. 30(2), 135-143
(2015). http://dx.doi.org/10.1007/s00450-014-0269-5

9. Clarke, D., Zhong, Z., Rychkov, V., Lastovetsky, A.: Fupermod: a software tool
for the optimization of data-parallel applications on heterogeneous platforms. J.
Supercomput. 69(1), 61-69 (2014)

10. David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: Rapl: memory
power estimation and capping. In: 2010 ACM/IEEE International Symposium on
Low-Power Electronics and Design (ISLPED), pp. 189-194, August 2010

11. Dunkels, A., Osterlind, F., Tsiftes, N., He, Z.: Software-based on-line energy esti-
mation for sensor nodes. In: Proceedings of the 4th Workshop on Embedded Net-
worked Sensors, pp. 28-32. ACM (2007)

12. Economou, D., Rivoire, S., Kozyrakis, C., Ranganathan, P.: Full-system power
analysis and modeling for server environments. In: Proceedings of Workshop on
Modeling, Benchmarking, and Simulation, pp. 70-77 (2006)

13. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized
computer. ACM SIGARCH Comput. Archit. News 35(2), 13-23 (2007)

14. Galassi, M., et al.: Gnu Scientific Library Reference Manual, 3rd edn. Network The-
ory Ltd., Bristol (2009). http://www.gnu.org/software/gsl/manual/gsl-ref.ps.gz

https://www.grid5000.fr
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/42301_15h_Mod_00h0Fh_BKDG1.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/42301_15h_Mod_00h0Fh_BKDG1.pdf
http://dx.doi.org/10.1007/s00450-014-0269-5
http://www.gnu.org/software/gsl/manual/gsl-ref.ps.gz

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Towards Application Energy Measurement and Modelling Tool Support 101

Ge, R., Feng, X., Song, S., Chang, H.C., Li, D., Cameron, K.: Powerpack: energy
profiling and analysis of high-performance systems and applications. IEEE Trans.
Parallel Distrib. Syst. 21(5), 658671 (2010)

Hackenberg, D., Ilsche, T., Schone, R., Molka, D., Schmidt, M., Nagel, W.: Power
measurement techniques on standard compute nodes: A quantitative comparison.
In: 2013 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 194-204, April 2013

Heath, T., Diniz, B., Horizonte, B., Carrera, E.V., Bianchini, R.: Energy conser-
vation in heterogeneous server clusters, pp. 186-195 (2005)

Hsu, C.H., Poole, S.: Power measurement for high performance computing: state
of the art. In: 2011 International Green Computing Conference and Workshops
(IGCCQC), pp. 1-6, July 2011

Intel Corporation: Intel manycore platform software stack (2015). https://software.
intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss

Jung, G., Hiltunen, M.A., Joshi, K.R., Schlichting, R.D., Pu, C.: Mistral: dynam-
ically managing power, performance, and adaptation cost in cloud infrastructures.
In: 2010 IEEE 30th International Conference on Distributed Computing Systems
(ICDCS), pp. 62-73. IEEE (2010)

Kansal, A., Zhao, F.: Fine-grained energy profiling for power-aware appli-
cation design. ACM SIGMETRICS Perform. Eval. Rev. 36(2), 26 (2008).
http://portal.acm.org/citation.cfm?doid=1453175.1453180

Kim, K.H., Beloglazov, A., Buyya, R.: Power-aware provisioning of virtual
machines for real-time cloud services. Concurrency Comput. Pract. Exp. 23(13),
1491-1505 (2011)

Lai, Z., Lam, K.T., Wang, C.L., Su, J.: A power modelling approach for many-core
architectures. In: 2014 10th International Conference on Semantics, Knowledge
and Grids (SKG), pp. 128-132, August 2014

Mucci, P.J., Browne, S., Deane, C., Ho, G.: Papi: a portable interface to hardware
performance counters. In: Proceedings of the Department of Defense HPCMP Users
Group Conference, pp. 7-10 (1999)

Nvidia Corporation: Nvidia management library (2015). https://developer.nvidia.
com/nvidia-management-library-nvml

Sinha, A., Chandrakasan, A.P.: Jouletrack: a Web based tool for software energy
profiling. In: Proceedings of the 38th Annual Design Automation Conference, pp.
220-225. ACM (2001)

Song, S., Su, C., Rountree, B., Cameron, K.W.: A simplified and accurate model
of power-performance efficiency on emergent gpu architectures (2013)

Treibig, J., Hager, G., Wellein, G.: Likwid: a lightweight performance-oriented tool
suite for x86 multicore environments. In: 2010 39th International Conference on
Parallel Processing Workshops (ICPPW), pp. 207-216. IEEE (2010)

Zhao, Y.J., Govindan, R., Estrin, D.: Residual energy scan for monitoring sensor
networks. In: 2002 IEEE Wireless Communications and Networking Conference,
WCNC 2002, vol. 1, pp. 356-362. IEEE (2002)

https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
http://portal.acm.org/citation.cfm?doid=1453175.1453180
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml

	Towards Application Energy Measurement and Modelling Tool Support
	1 Introduction
	2 Libhclenergy
	2.1 Measurement Infrastructure
	2.2 Experimental Platform
	2.3 Measurement of Distributed Applications
	2.4 API Features

	3 Greenman
	4 Applying Our API
	5 Related Works
	5.1 Existing Tools

	6 Conclusion
	7 Future Works
	References

