Using Multidimensional Solvers for Optimal Data Partitioning on Dedicated Heterogeneous HPC Platforms

Vladimir Rychkov Alexey Lastovetsky David Clarke

Heterogeneous Computing Laboratory School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland http://hcl.ucd.ie

PaCT'2011

Vladimir Rychkov, Alexey Lastovetsky, David Clarke

Using Multidimensional Solvers for Optimal Data Partitioning

向下 イヨト イヨト

Outline

Problem Outline

Geometrical Data Partitioning Algorithm

Geometrical Solution Piecewise Linear Interpolation of Speed Functions

New Numerical Data Partitioning Algorithm

Multidimensional Root-Finding Akima Spline Interpolation of Speed Functions

Application: Dynamic Load Balancing of Iterative Routines

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

Conclusions

イロト イポト イヨト イヨト

- Data-intensive parallel computational routines: computational workload is divisible and proportional to data size number of processors: p data partition: n = d₁ + d₂ + ··· + d_p
- Dedicated heterogeneous HPC platforms: load is balanced when the execution times are equal:

 $t_1 = t_2 = \cdots = t_p$

(日) (四) (王) (王) (王)

- Data-intensive parallel computational routines: computational workload is divisible and proportional to data size number of processors: p data partition: n = d₁ + d₂ + ··· + d_p
- Dedicated heterogeneous HPC platforms: load is balanced when the execution times are equal:

$$t_1 = t_2 = \cdots = t_p$$

• Processor speed:
$$s_i = \frac{d_i}{t_i}$$

Data partitioning problem:

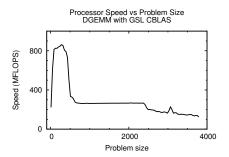
$$\begin{cases} \frac{d_1}{s_1} = \frac{d_2}{s_2} = \dots = \frac{d_p}{s_p} \\ d_1 + d_2 + \dots + d_p = n \end{cases}$$
(1)

(日) (同) (E) (E) (E)

Problem Outline

Geometrical Data Partitioning Algorithm New Numerical Data Partitioning Algorithm Application: Dynamic Load Balancing of Iterative Routines Conclusions

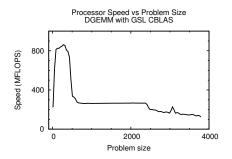
- Traditionally, processor performance is defined by a constant number: s = const
- In reality, speed is a function of problem size: s = s(x)



Problem Outline

Geometrical Data Partitioning Algorithm New Numerical Data Partitioning Algorithm Application: Dynamic Load Balancing of Iterative Routines Conclusions

- Traditionally, processor performance is defined by a constant number: s = const
- In reality, speed is a function of problem size: s = s(x)
- Partitioning algorithms based on constant performance models are only applicable for limited problem sizes
- How to solve (1) with speed functions?



イロン イヨン イヨン イヨン

Geometrical Solution Piecewise Linear Interpolation of Speed Functions

・ロン ・回と ・ヨン ・ヨン

Layout

Problem Outline

Geometrical Data Partitioning Algorithm

Geometrical Solution

Piecewise Linear Interpolation of Speed Functions

New Numerical Data Partitioning Algorithm

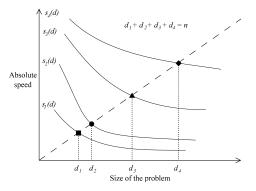
Multidimensional Root-Finding Akima Spline Interpolation of Speed Functions

Application: Dynamic Load Balancing of Iterative Routines

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

Conclusions

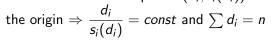
Geometrical solution: points $(d_i, s_i(d_i))$ on a line passing through the origin $\Rightarrow \frac{d_i}{s_i(d_i)} = const$ and $\sum d_i = n$

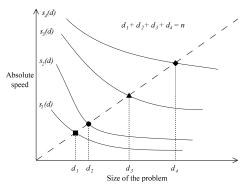


・ロト ・回ト ・ヨト ・ヨト

3

Problem Outline
Geometrical Data Partitioning Algorithm
New Numerical Data Partitioning Algorithm
Application: Dynamic Load Balancing of Iterative Routines
ConclusionsGeometrical Solution
Piecewise Linear Interpolation of Speed FunctionsGeometrical solution: points ($d_i, s_i(d_i)$) on a line passing through

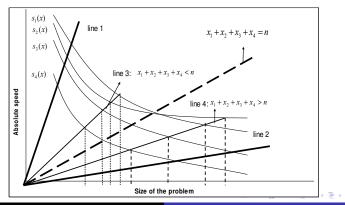




(2) Assumption: any straight line passing through the origin intersects speed functions only once

Vladimir Rychkov, Alexey Lastovetsky, David Clarke

- > The space of solutions: all lines passing through the origin
- ► Initial bounds for some $n^U < n$ and $n^L > n$: x_1^U, \ldots, x_p^U : $\sum x_i^U = n^U$, and x_1^L, \ldots, x_p^L : $\sum x_i^L = n^L$
- The region between two lines is iteratively bisected and the bounds are updated



Geometrical Solution Piecewise Linear Interpolation of Speed Functions

・ロン ・回と ・ヨン ・ヨン

Layout

Problem Outline

Geometrical Data Partitioning Algorithm

Geometrical Solution Piecewise Linear Interpolation of Speed Functions

New Numerical Data Partitioning Algorithm

Multidimensional Root-Finding Akima Spline Interpolation of Speed Functions

Application: Dynamic Load Balancing of Iterative Routines

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

Conclusions

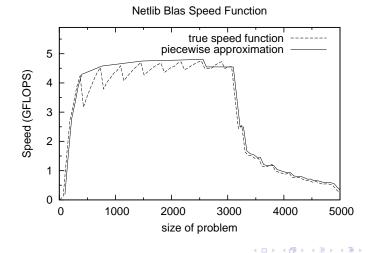
Restrictions on the shape of a speed function s(x) to satisfy the assumption (2):

- Increasing and convex on [0, X]
- ▶ Decreasing on [X,∞]

Fixes to the piecewise linear interpolation $\overline{s}(x)$ after adding a new data point (d^j, s^j) :

(日) (同) (E) (E) (E)

Result: inaccurate approximation of speed function



Multidimensional Root-Finding Akima Spline Interpolation of Speed Functions

イロト イヨト イヨト イヨト

Layout

Problem Outline

Geometrical Data Partitioning Algorithm Geometrical Solution Piecowice Linear Interpolation of Speed Func

New Numerical Data Partitioning Algorithm

Multidimensional Root-Finding

Akima Spline Interpolation of Speed Functions

Application: Dynamic Load Balancing of Iterative Routines

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

Conclusions

Multidimensional Root-Finding Akima Spline Interpolation of Speed Functions

・ロン ・回 と ・ ヨ と ・ ヨ と

3

 Speeds are approximated by continuous differentiable functions of arbitrary shape

(日) (同) (E) (E) (E)

- Speeds are approximated by continuous differentiable functions of arbitrary shape
- Data partitioning problem (1) can be formulated as multidimensional root finding for the system of nonlinear equations f(x) = 0, where

$$F(\mathbf{x}) = \begin{cases} n - \sum_{i=1}^{p} x_i \\ \frac{x_i}{s_i(x_i)} - \frac{x_1}{s_1(x_1)} & 2 \le i \le p \end{cases}$$
(3)

 $\mathbf{x} = (x_1, ..., x_p) \in \mathbb{R}^p$ represents data partition

• Optimal data partition is obtained after rounding of the root $\mathbf{x}^* = (x_1^*, \dots, x_p^*)$ and distribution of the remainders

Problem (3) can be solved by the Newton-Raphson method:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - J(\mathbf{x}^k)f(\mathbf{x}^k) \tag{4}$$

Initial guess: the equal data distribution

$$\mathbf{x}^0 = (n/p, \dots, n/p) \tag{5}$$

・ロン ・回と ・ヨン ・ヨン

• Jacobian
$$J(\mathbf{x})$$
: (6)

$$J(\mathbf{x}) = \begin{pmatrix} -1 & -1 & \dots & -1 \\ -\frac{s_1(x_1) - x_1 s_1'(x_1)}{s_1^2(x_1)} & \frac{s_2(x_2) - x_2 s_2'(x_2)}{s_2^2(x_2)} & 0 & 0 \\ \dots & 0 & \dots & 0 \\ -\frac{s_1(x_1) - x_1 s_1'(x_1)}{s_1^2(x_1)} & 0 & 0 & \frac{s_p(x_p) - x_p s_p'(x_p)}{s_p^2(x_p)} \end{pmatrix}$$

Multidimensional Root-Finding Akima Spline Interpolation of Speed Functions

소리가 소문가 소문가 소문가

To solve (4)-(6), we use the HYBRJ algorithm, a modified version of Powell's Hybrid method, implemented in the MINPACK library:

- retains the fast convergence of the Newton method
- reduces the residual when the Newton method is unreliable
- requires differentiable speed functions

Multidimensional Root-Finding Akima Spline Interpolation of Speed Functions

・ロン ・回と ・ヨン ・ヨン

Layout

Problem Outline

Geometrical Data Partitioning Algorithm

Geometrical Solution Piecewise Linear Interpolation of Speed Functi

New Numerical Data Partitioning Algorithm

Multidimensional Root-Finding Akima Spline Interpolation of Speed Functions

Application: Dynamic Load Balancing of Iterative Routines

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

Conclusions

・ロン ・回と ・ヨン ・ヨン

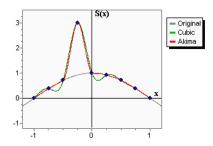
Approximations of speed function

- Piecewise linear interpolation: undefined derivative at breakpoints
- Splines of higher orders: differentiable but may yield significant oscillations

Multidimensional Root-Finding Akima Spline Interpolation of Speed Functions

Approximations of speed function

- Piecewise linear interpolation: undefined derivative at breakpoints
- Splines of higher orders: differentiable but may yield significant oscillations
- Akima spline interpolation: non-linear but stable to outliers



イロン イヨン イヨン イヨン

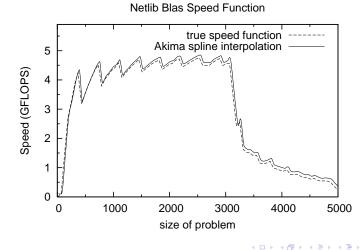
・ロン ・四マ ・ヨマ ・ヨマ

Akima spline interpolation

- Built from piecewise third order polynomials
- Computationally efficient:
 - no need to solve large equation systems
 - a small number of the neighbour points is taken into account
- Interpolation error in the inner area $O(h^2)$

Akima Spline Interpolation of Speed Functions

Result: accurate approximation of speed function



Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

イロン 不同と 不同と 不同と

Layout

Problem Outline

Geometrical Data Partitioning Algorithm

- Geometrical Solution
- Piecewise Linear Interpolation of Speed Functions

New Numerical Data Partitioning Algorithm

Multidimensional Root-Finding Akima Spline Interpolation of Speed Functions

Application: Dynamic Load Balancing of Iterative Routines Parallel Computational Iterative Routine

Dynamic Building of Functional Models Experimental Results: Jacobi Method

Conclusions

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

Parallel Computational Iterative Routine

 $\mathbf{x}^{k+1} = f(\mathbf{x}^k) \qquad \mathbf{x}^k \in \mathbb{R}^n \qquad f: \mathbb{R}^n o \mathbb{R}^n$

- ▶ Data is partitioned over all processors: $n = d_1^k + d_2^k + \cdots + d_p^k$
- Some independent calculations are carried out in parallel
- Some data synchronisation takes place

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

Parallel Computational Iterative Routine

 $\mathbf{x}^{k+1} = f(\mathbf{x}^k) \qquad \mathbf{x}^k \in \mathbb{R}^n \qquad f: \mathbb{R}^n o \mathbb{R}^n$

- ▶ Data is partitioned over all processors: $n = d_1^k + d_2^k + \cdots + d_p^k$
- Some independent calculations are carried out in parallel
- Some data synchronisation takes place

Model-based Dynamic Load Balancing

- At each iteration, execution times measured and sent to root
- ▶ Approximations of speed functions s
 _i(x) updated by adding the point (d^k_i, d^k_i/t^k_i)
- ► If relative difference between times > \epsilon, data partitioning algorithm calculates new data partition d^{k+1}
- \mathbf{d}^{k+1} broadcasted to all processors; data redistributed

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

イロン 不同と 不同と 不同と

Layout

Problem Outline

Geometrical Data Partitioning Algorithm

- Geometrical Solution
 - Piecewise Linear Interpolation of Speed Functions

New Numerical Data Partitioning Algorithm

Multidimensional Root-Finding Akima Spline Interpolation of Speed Functions

Application: Dynamic Load Balancing of Iterative Routines

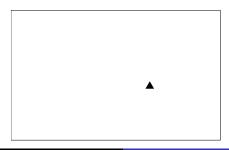
- Parallel Computational Iterative Routine
- Dynamic Building of Functional Models
- Experimental Results: Jacobi Method

Conclusions

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

Э

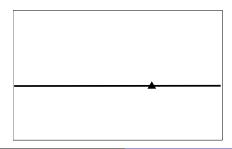
First iteration Point
$$(n/p, s_i^0)$$
 with speed $s_i^0 = \frac{n/p}{t_i(n/p)}$
First function approximation $\bar{s}_i(x) \equiv s_i^0$



Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

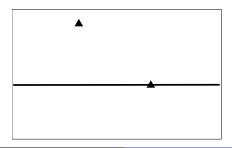
Э

First iteration Point
$$(n/p, s_i^0)$$
 with speed $s_i^0 = \frac{n/p}{t_i(n/p)}$
First function approximation $\bar{s}_i(x) \equiv s_i^0$



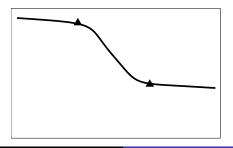
Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

First iteration Point $(n/p, s_i^0)$ with speed $s_i^0 = \frac{n/p}{t_i(n/p)}$ First function approximation $\bar{s}_i(x) \equiv s_i^0$ Subsequent iterations Point (d_i^k, s_i^k) with speed $s_i^k = \frac{d_i^k}{t_i(d_i^k)}$ Approximation $\bar{s}_i(x)$ updated by adding the point



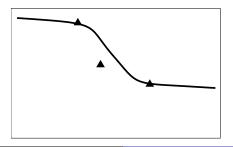
Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

First iteration Point $(n/p, s_i^0)$ with speed $s_i^0 = \frac{n/p}{t_i(n/p)}$ First function approximation $\bar{s}_i(x) \equiv s_i^0$ Subsequent iterations Point (d_i^k, s_i^k) with speed $s_i^k = \frac{d_i^k}{t_i(d_i^k)}$ Approximation $\bar{s}_i(x)$ updated by adding the point



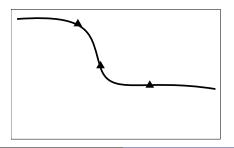
Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

First iteration Point $(n/p, s_i^0)$ with speed $s_i^0 = \frac{n/p}{t_i(n/p)}$ First function approximation $\bar{s}_i(x) \equiv s_i^0$ Subsequent iterations Point (d_i^k, s_i^k) with speed $s_i^k = \frac{d_i^k}{t_i(d_i^k)}$ Approximation $\bar{s}_i(x)$ updated by adding the point



Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

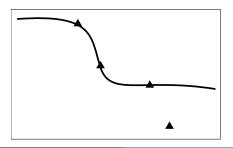
First iteration Point $(n/p, s_i^0)$ with speed $s_i^0 = \frac{n/p}{t_i(n/p)}$ First function approximation $\bar{s}_i(x) \equiv s_i^0$ Subsequent iterations Point (d_i^k, s_i^k) with speed $s_i^k = \frac{d_i^k}{t_i(d_i^k)}$ Approximation $\bar{s}_i(x)$ updated by adding the point



Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

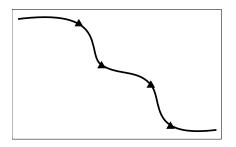
3.0

First iteration Point $(n/p, s_i^0)$ with speed $s_i^0 = \frac{n/p}{t_i(n/p)}$ First function approximation $\bar{s}_i(x) \equiv s_i^0$ Subsequent iterations Point (d_i^k, s_i^k) with speed $s_i^k = \frac{d_i^k}{t_i(d_i^k)}$ Approximation $\bar{s}_i(x)$ updated by adding the point



Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

First iteration Point $(n/p, s_i^0)$ with speed $s_i^0 = \frac{n/p}{t_i(n/p)}$ First function approximation $\bar{s}_i(x) \equiv s_i^0$ Subsequent iterations Point (d_i^k, s_i^k) with speed $s_i^k = \frac{d_i^k}{t_i(d_i^k)}$ Approximation $\bar{s}_i(x)$ updated by adding the point



Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

・ロン ・回と ・ヨン ・ヨン

Layout

Problem Outline

Geometrical Data Partitioning Algorithm

- Geometrical Solution
- Piecewise Linear Interpolation of Speed Functions

New Numerical Data Partitioning Algorithm

Multidimensional Root-Finding Akima Spline Interpolation of Speed Functions

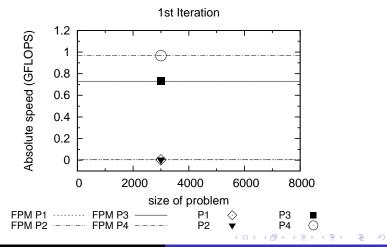
Application: Dynamic Load Balancing of Iterative Routines

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

Conclusions

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

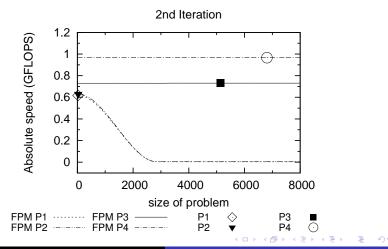
Experimental Results: Jacobi Method



Vladimir Rychkov, Alexey Lastovetsky, David Clarke

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

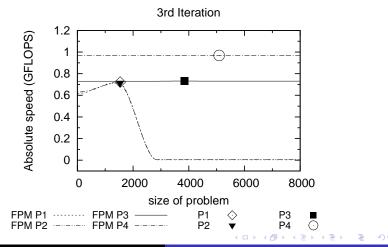
Experimental Results: Jacobi Method



Vladimir Rychkov, Alexey Lastovetsky, David Clarke

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

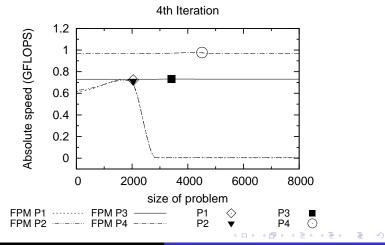
Experimental Results: Jacobi Method



Vladimir Rychkov, Alexey Lastovetsky, David Clarke

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

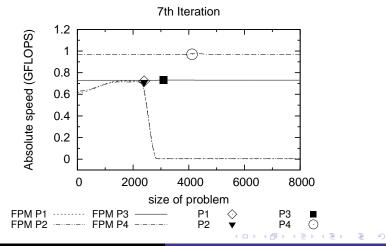
Experimental Results: Jacobi Method



Vladimir Rychkov, Alexey Lastovetsky, David Clarke

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

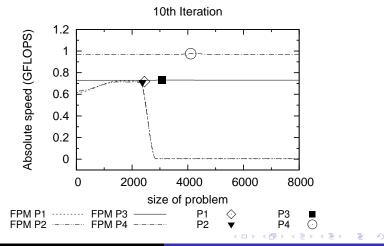
Experimental Results: Jacobi Method



Vladimir Rychkov, Alexey Lastovetsky, David Clarke

Parallel Computational Iterative Routine Dynamic Building of Functional Models Experimental Results: Jacobi Method

Experimental Results: Jacobi Method



Vladimir Rychkov, Alexey Lastovetsky, David Clarke

Conclusions

- Traditional data partitioning algorithms only work for problems which fit into the main memory of all processors.
- The proposed algorithm, based on accurate functional performance models, can balance for all problem sizes.
- No prior information about the heterogeneity and memory hierarchy of the platform needed as inputs into the algorithm.
- Can be deployed self adaptively on any dedicated platform.

소리가 소문가 소문가 소문가

Project web page: http://hcl.ucd.ie/project/fupermod

Heterogeneous Computing Laboratory

DUBI

Science Foundation Ireland

イロト イヨト イヨト イヨト