Optimisation of Parallel Scientific Applications on Highly Heterogeneous Modern Multicore and Multi-GPU Computing Nodes

Vladimir Rychkov Ziming Zhong

Heterogeneous Computing Laboratory School of Computer Science and Informatics University College Dublin

May 11, 2012

Vladimir Rychkov (HCL/UCD) Optimisation of Applications on Multicore and Multi-GPU

• Hybrid multi-CPU/GPU architectures in HPC

How to utilise highly heterogeneous hardware and software stack?

Introduction

• Target platforms and applications

Dedicated multicore and multi-GPU nodes and clusters Data-parallel applications dependent on data locality

• Hybrid multi-CPU/GPU architectures in HPC

ntroduction

How to utilise highly heterogeneous hardware and software stack?

- Target platforms and applications Dedicated multicore and multi-GPU nodes and clusters Data-parallel applications dependent on data locality
- **Performance modeling and model-based optimisation** Realistic models of processors executing data-parallel application Accurate measurement of performance on each processor Optimal data partitioning based on the models

• Functional performance models

Heterogeneous uniprocessor clusters

Hybrid multi-CPU/GPU architectures in HPC

How to utilise highly heterogeneous hardware and software stack?

- Target platforms and applications Dedicated multicore and multi-GPU nodes and clusters Data-parallel applications dependent on data locality
- **Performance modeling and model-based optimisation** Realistic models of processors executing data-parallel application Accurate measurement of performance on each processor Optimal data partitioning based on the models

• Functional performance models

Heterogeneous uniprocessor clusters

• How to model performance of devices on a hybrid platform? Different programming models and software Shared resources of different speed and capacity

Hybrid HPC Platform

Industrial part of a factorial part

- Highly heterogeneous devices
- Memory: shared and distributed
- Resource contention: memory, PCI Express

Hybrid HPC Platform

Multicore Host

 Core 1
 ...
 Core n

 cache
 PCle
 Device Memory

 shared cache
 PCle
 GPU

 Main Memory
 PCle
 GPU

Lotter Det a Local date of the

- Highly heterogeneous devices
- Memory: shared and distributed
- Resource contention: memory, PCI Express
- Can be modelled as a heterogeneous distributed-memory system Functional performance models of devices Intra-node data partitioning between devices

Outline

• Functional performance models of multiple cores and GPUs

Introduction

- Accurate measurement of performance of devices
- Optimisation of computational kernels
- Intra-node data partitioning based on FPMs of devices

Heterogeneous Data-Parallel Application

• Heterogeneous matrix multiplication

Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix Multiplication on Heterogeneous Platforms. IEEE Trans. Parallel Distrib. Syst. 12(10), 1033-1051 (2001)

• Representative kernel, GEMM: $C_i + = A_{(b)} \times B_{(b)}$

Computation is proportional to the area of submatrix C_i The same memory access pattern as the whole application

Functional Performance Models of Devices

• Optimised GEMM routines: MKL/ACML(CPU), CUBLAS(GPU)

Functional Performance Models of Devices

• Optimised GEMM routines: MKL/ACML(CPU), CUBLAS(GPU)

• CPU cores compete with each other within a socket $s_c(x)$ - speed of a socket executing CPU GEMM on c cores, with submatrices x/c

Functional Performance Models of Devices

• Optimised GEMM routines: MKL/ACML(CPU), CUBLAS(GPU)

• CPU cores compete with each other within a socket $s_c(x)$ - speed of a socket executing CPU GEMM on c cores, with submatrices x/c

- GPU depends on a host process, which handles data transfers
- GPU performance can be measured only within some range g(x) - combined speed of a GPU and its dedicated core executing CUBLAS, can be defined at [0,∞) for out-of-core GEMM

Performance Measurement on Hybrid Platforms

- Bind processes to cores
 - to avoid potential performance degradation resulting from automatic rearranging of processes by operating system
- Synchronise processes
 - to ensure resources are shared between processes
- Repeat experiments multiple times
 - until the results are proved statistically reliable

Performance Measurement on Hybrid Platforms

- Bind processes to cores
 - to avoid potential performance degradation resulting from automatic rearranging of processes by operating system
- Synchronise processes
 - to ensure resources are shared between processes
- Repeat experiments multiple times
 - until the results are proved statistically reliable
- Performance of multiple cores and GPUs can be measured separately
- Simultaneous benchmark of multiple cores on a socket
- Combined benchmark for a GPU and its dedicated core

Experimental Platform

Multicore multi-GPU node ig.eecs.utk.edu

Innovative Computing Laboratory, University of Tennessee, USA

	CPU (AMD)	GPUs (NVIDIA)	
Architecture Core Clock Number of Cores Memory Size Memory Bandwidth	Opteron 8439SE 2.8 GHz 8×6 cores 64 GB	GeForce GTX480 700 MHz 480 cores 1536 MB 177 4 GB/s	Tesla C870 600 MHz 128 cores 1536 MB 76 8 GB/s
5		/	,

Functional Performance Models of Multiple Cores

Functional Performance Models of Multiple Cores

- s₅(x), s₆(x) speed functions for
 5 and 6 cores on a socket
- s₅(x) remains stable when sharing resource with GPU

Functional Performance Models of GPUs

Functional Performance Models of GPUs

- Out-of-core implementation extends the range of problem sizes
- Overlapping improves performance
- Performance decreases around 10% from resource contention

Functional Performance Models of GPUs

Optimisation of the Kernel

• Out-of-core computations

• Overlap data transfers and computation

FPM-based Data Partitioning on Hybrid Platform

Execution time of the parallel matrix multiplication application on different configurations on the hybrid server

	Execution time (sec)		
Matrix size	CPUs	GPUs	CPUs+GPUs
12800 imes 12800	14.6	10.5	5.8
19200×19200	43.4	32.5	16.2
25600×25600	99.8	147.9	38.2
32000×32000	189.2	265.3	114.1

Ongoing and Future Study

Target platform: multi-GPU servers - more resource contention

Ongoing and Future Study

- Accurate measurement technique
- FPM of multiple GPUs on the same server
- Design of computational kernel for multi-GPU servers
- Experiments on data partitioning with different models

Publications

 Zhong, Z., Rychkov, V., Lastovetsky, A. "Data Partitioning on Heterogeneous Multicore Platforms", Cluster 2011, Austin, Texas, USA, IEEE Computer Society, pp. 580-584 (2011).

Output

 Zhong, Z., Rychkov, V., Lastovetsky, A. "Functional Performance Models of Scientific Applications for Heterogeneous Multicore and Multi-GPU Systems" (submitted to Euro-Par 2012, Rhodes Island, Greece).

Output

Project web page: http://hcl.ucd.ie/project/fupermod

Output

Software

- Implemented in the FuPerMod package, developed at HCL
- Based on system and mathematical software: C/C++, MPI, Autotools, GNU Scientific Library, Boost C++ libraries, BLAS, CUDA Toolkit

Team

- 1 postdoctoral researcher: Vladimir Rychkov
- 2 PhD students: David Clarke, Ziming Zhong

Collaboration

Hardware

 Multicore multi-GPU servers (Innovative Computing Laboratory, University of Tennessee, USA)

Output

- Multicore multi-GPU cluster (High Performance Computing & Architectures group, University Jaume I, Spain)
- Grid'5000 (INRIA, CNRS, RENATER, France)

Collaboration

- Leonel Sousa, Alexandar Ilic (Institute of System Engineering, Computer Research and Development, Portugal)
- Enrique Quintana Orti (High Performance Computing & Architectures, University Jaume I, Spain)

Financial Support

