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mpC 
Introduction 

The mpC language was developed to support efficiently portable modular parallel 
programming for wide range of distributed memory machines, especially, for 
heterogeneous networks of computers. The language is an ANSI C superset based on 
the notion of network comprising processor nodes of different types and 
performances, connected with links of different bandwidths. The user can describe a 
network topology, create and discard networks, distribute data and computations 
over networks. The mpC programming environment uses the topological information 
in run time to ensure the efficient execution of the application on the underlying 
hardware.  
The mpC language is a superset of the C[] programming language. C[] is an ANSI C 
superset for vector and superscalar computers. It supports vector computations. 
When programming in mpC, the user doesn't need to know C[] in details. To write 
good mpC programs one should first of all be familiar with operator [] allowing to 
specify sending and receiving buffers in communication operations.  
It is very useful to learn sample mpC programs available at the mpC homepage. Not 
all of these programs are good mpC programs (from the point of view of their 
efficiency/portability/modularity), but all of them are correct.  
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Basic Concepts 
In order to understand how to implement parallel applications in mpC, it is helpful to 
understand some of the key concepts of the language. In this chapter the following 
basic concepts of mpC are described: 
! Computing space and network objects. When programming in mpC, user could 

imagine that there is some accessible set of virtual processors connected with 
links, and he can manage this resource allocating network objects (regions) 
there. Managing network objects in mpC is similar to managing data objects in 
C. 

! Subnetworks. Subnetwork is another key feature of mpC language. It allows a 
user to specify sub regions of already allocated regions of the computing space.  

! Distribution of data. In mpC there is introduced the notion of distributed data 
objects. Data object distributed over a region of the computing space comprises 
a set of components of any one type, so that every processor of the region holds 
one component. 

! Distribution of computations. In mpC any expression can be evaluated not only 
on one processor but also on a region of computing space or on entire 
computing space.  

! Network functions. To support modular parallel programming as well as the 
writing of libraries of parallel programs, so-called network functions are 
introduced in mpC. It is a function that is called and executed on some region 
of the computing space. 

! Pointer to function. As mpC function call can be distributed then the distributed 
function call shall include the distributed pointer to the corresponding 
functional components. 

Computing space and network objects 

When programming in C, user could imagine that there is an accessible storage and 
he can manage this storage allocating data objects there. When programming in 
mpC, user could also imagine that there is some accessible set of virtual processors 
connected with links, and he can manage this resource allocating network objects 
there.  
In mpC, the notion of computing space is defined as a set of typed virtual processors 
connected with links of different bandwidth accessible to the user for management. 
There are three processor types: memory, scalar, and vector. A processor of the 
memory type can rather store data than operate with them. A processor of the vector 
type can perform vector operations more efficiently. Finally, most common 
processors are of the scalar type.  
Besides, processor has an additional attribute characterizing its relative performance. 
A directed link connecting two virtual processors is a one-way channel for 
transferring data from the source processor to the destination processor. There can 
exist no more than one directed link from source to destination. A link has an 
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attribute called length that characterizes its bandwidth. A pair of opposite directed 
links between two processors could be considered as a single undirected link.  
The basic notion of the mpC language is a so-called network object or simply 
network. Network comprises processor nodes of different types and performances 
connected with links of different lengths. Network is a region of the computing space 
that can be used to compute expressions and to execute statements.  
Allocating network objects in the computing space and discarding them is performed 
in similar fashion as allocating data objects in the storage and discarding them. 
Conceptually, the creation of a new network is initiated by a processor of an existing 
network. This processor is called a parent of the created network. The parent belongs 
to the created network.  
The only processor defined from the beginning of program execution till the program 
termination is the pre-defined host-processor of the scalar type and ordinary 
performance.  
Every network object declared in mpC program has a type. The type specifies the 
number, types and performances of processors, links between the processors and 
their lengths and separates the parent. For example, the type declaration  

/* Line 1 */          nettype Rectangle { 
/* Line 2 */              coord I=4; 
/* Line 3 */              node { 
/* Line 4 */                 I<2:  fast scalar;  
/* Line 5 */                 I>=2: slow scalar;  
/* Line 6 */              }; 
/* Line 7 */              link { 
/* Line 8 */                 I>0:  [I]<->[I-1]; 
/* Line 9 */                 I==0: [I]<->[3]; 
/* Line 10 */             }; 
/* Line 11 */             parent [0]; 
/* Line 12 */         }; 

introduces the network type named Rectangle that corresponds to networks 
consisting of 4 processors of the scalar type and different performances 
interconnected with undirected links of normal length in rectangular structure.  
In this example, line 1 is a header of the network type declaration. It introduces the 
name of the network type.  
Line 2 is a coordinate declaration declaring the coordinate system to which 
processors are related. It introduces the integer coordinate variable I ranging from 0 
to 3.  
Lines 3-6 are a node declaration. It relates processors to the coordinate system and 
declares their types and performances. Line 4 stands for the predicate for all I<4 if 
I<2 then fast processor of the scalar type is related to the point with the coordinate 
[I]. Line 5 stands for the predicate for all I<4 if I>=2 then slow processor of the 
scalar type is related to the point with the coordinate [I]. The performance specifiers 
fast and slow specify relative performances of processor nodes of the same type. For 
any network of this type, this information allows the compiler to associate the weight 
with each processor of the network, normalizing it in relation to the weight of the 
parent processor. Note, that the host-processor is always of the scalar type and 
ordinary performance.  
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Lines 7-10 are a link declaration. It specifies links between processors. Line 8 stands 
for the predicate for all I<4 if I>0 then there exists undirected link of normal length 
connecting processors with coordinates [I] and [I-1], and line 9 stands for the 
predicate for all I<4 if I==0 then there exists undirected link of normal length 
connecting processors with coordinates [I] and [3]. Note, that if a link between two 
processors is not specified explicitly, it is meant that there is a link whose length is 
longest for this network.  
Line 11 is a parent declaration. It specifies that the parent processor has the 
coordinate [0].  
With the network type declaration, one can declare a network object identifier of this 
type. For example, the declaration  

net Rectangle r1; 

introduces the identifier r1 of network object of the type Rectangle.  
By definition, data object distributed over a region of the computing space comprises 
a set of components of any one type so that every processor of the region holds one 
component. For example, the declarations  

net Rectangle r2; 
int [*]de, [r2]da[10]; 
repl [*]di; 

declare the integer variable de distributed over the entire computing space, the array 
da of 10 ints distributed over the network r2, and the integer variable di replicated 
over the entire computing space. By definition, a distributed object is replicated if all 
its components is equal to each other (see sections Distribution of data, Explicit 
declaration of distributed data objects, Explicit declaration of undistributed data 
objects, Implicit declaration of data objects and Declaration of replicated data 
objects).  
Besides the network type, a parameterized family of network types called topology 
or generic network type can be declared. For example, the declaration  

/* Line 1 */          nettype Ring(n, p[n]) { 
/* Line 2 */              coord I=n; 
/* Line 3 */              node { 
/* Line 4 */                 I>=0: fast*p[I] scalar;  
/* Line 5 */              }; 
/* Line 6 */              link { 
/* Line 7 */                 I>0:  [I]<->[I-1]; 
/* Line 8 */                 I==0: [I]<->[n-1]; 
/* Line 9 */              }; 
/* Line 10 */             parent [0]; 
/* Line 11 */         }; 

introduces the topology named Ring that corresponds to networks consisting of n 
processors of the scalar type interconnected with undirected links of normal length in 
a ring structure. The header (line 1) introduces parameters of the topology Ring, 
namely, the integer parameter n and the vector parameter p consisting of n integers. 
Correspondingly, the coordinate variable I ranges from 0 to n-1, line 4 stands for the 
predicate for all I<n if I>=0 then fast processor of the scalar type, whose relative 
performance is specified by the value of p[I], is related to the point with the 
coordinate [I], and so on. Here, the performance specifier fast*p[I] includes the so-
called power specifier *p[I]. In general, the value of the expression in a power 
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specifier can be positive integer. Any operand in the expression can consist only of 
coordinate variables, constants and generic parameters (if any). If the value of the 
expression is equal to 1, the power specifier can be omitted. It is meant that in the 
framework of the same network-type declaration any performance specifier with the 
keyword fast specifies more powerful processor than a performance specifier with 
the keyword slow. It is also supposed that the greater the value of the expression in a 
power specifier is the more performance is ascribed to the processor. Note, that in 
this case the following simplified form of line 4  

I>=0: p[I]; 

can be used (see also Node declaration).  
With the topology declaration, one can declare a network object identifier of the 
proper type. For example, the fragment  

repl [*]a[4]={10,20,30,40}; 
net Ring(4,a) r; 

introduces the integer array a replicated over the entire computing space, the network 
type Ring(4,a) as an instance of the topology Ring as well as the identifier r of the 
network object of this type.  
An instance of topology can be derived not only statically, but also dynamically. For 
example, the fragment  

repl [*]m, [*]n[100]; 
/* Computation of m,n[0],...,n[m-1]*/  
{ 
  net Ring(m,n) rr; 
  ...  
} 

introduces the identifier rr of the network object, the type of which is defined 
completely only in run time.  
A network object has a computing space duration that determines its lifetime. There 
are two computing space durations: static and automatic.  
A network declared with static computing space duration is created only once, either 
on the first entry into the block in which it is defined (for local static networks), or on 
the first entry into any of basic functions (see sections Distribution of computations, 
Network functions) being in scope of its identifier (for global static networks). Once 
created, the static network exists until the entire program terminates.  
A new instance of a network declared with automatic computing space duration is 
created on each entry into the block in which it is declared. The network is discarded 
when execution of the block terminates.  
Declaration of a network object identifier specifies the scope and the linkage of the 
identifier and the computing space duration of the network object almost under the 
same rules that are used for specification of storage duration of data objects and 
scopes and linkages of their identifiers. For example, the following fragment of mpC 
file  
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net Ring(3,p1) r3; 
static net Ring(4,p2) r4; 
extern net Ring(5,p3) r5; 
int [*]f(repl int k) 
{ 
    net Ring(k,pk) rk; 
    static net Ring(k+1,pk1) rk1; 
    ... 
} 

specifies that identifiers r3 and r5 of static network objects have file scope and 
external linkage, the identifier r4 of the static network object has file scope and 
internal linkage, the identifier rk of the automatic network object and the identifier 
rk1 of the static network object has block scope. (Note, that the header of the 
definition of the function f includes the construct [*] that specifies the kind of the 
function (see sections Distribution of computations, Network functions)).  
Network object declaration that also causes computing space to be reserved for the 
network object named by an identifier is a network object definition. In the above 
fragment, except the declaration of r5, all the rest declarations are network object 
definitions. The parent of all these network objects is the host-processor. The 
following example shows how one can specify another parent:  

net Ring(6,p6) r6; 
net Ring (7,p7) [r6:I==3] r7; 

Here, the network r6 has the host-processor as its parent, while the network r7 has 
the processor of the network r6 with the coordinate [3] as its parent. Note, that a 
processor node of an automatic network cannot be a parent of a static network. For 
example, if r6 is an automatic network, then the declaration  

static net Ring (8,p8) [r6:I==0] r8; 

is incorrect, while the equivalent declaration  
static net Ring (8,p8) r8; 

is correct.  

Subnetworks 

A new network object can be allocated not only in unused computing space but also 
in a region of the computing space that already holds another network object. This 
can be achieved by explicit or implicit definition of a subnetwork of the existing 
network object.  
Unlike an implicitly defined subnetwork, an explicitly defined subnetwork has a 
name introduced by the subnetwork declaration. A subnetwork declaration that 
causes computing space to be reserved for the subnetwork named by an identifier is 
just an explicit subnetwork definition. Computing space duration of explicitly 
defined subnetwork, scope and linkage of its identifier are specified in the same way 
as for network objects. Note, that a static subnetwork cannot be allocated in an 
automatic region of the computing space. The lifetime of an implicitly defined 
subnetwork is defined by the compiler.  
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For example, the mpC file fragment  
/*Line 1 */    nettype Web(m,n) { 
/*Line 2 */        coord R=m, Phi=n; 
/*Line 3 */        node { 
/*Line 4 */            R==0&&Phi>0:  void; 
/*Line 5 */            R==0&&Phi==0: fast scalar; 
/*Line 6 */            default:      scalar; 
/*Line 7 */        }; 
/*Line 8 */        link { 
/*Line 9 */            R==0:       [0,0]<->[1,Phi]; 
/*Line 10*/            R>0:        [R,Phi]<->[R-1,Phi]; 
/*Line 11*/            Phi>0&&R>0:  length*1 [R,Phi]<->[R,Phi-1]; 
/*Line 12*/            Phi==0&&R>0: length*1 [R,0]<->[R,n-1]; 
/*Line 13*/        }; 
/*Line 14*/        parent [0,0]; 
/*Line 15*/    }; 
/*Line 16*/    net Web(10,20) web10x20; 
/*Line 17*/    subnet [web10x20: Phi%2==0] seastar10x10; 
/*Line 18*/    int [*]f(void) 
/*Line 19*/    { 
/*Line 20*/       subnet [web10x20: R<5] subweb5x20; 
/*Line 21*/       static subnet [web10x20: R>=5] grid5x20; 
/*Line 22*/       subnet [seastar10x10: R<5] seastar5x5; 
/*Line 23*/       ... 
/*Line 24*/    } 

introduces the topology Web and defines the network object web10x20 of the 
Web(10,20) type as well as its subnetworks seastar10x10, subweb5x20, grid5x20 and 
seastar5x5.  
Here, in line 4, the keyword void in the position of the processor type indicates that 
no processors are related to the points with the corresponding coordinates. The 
equivalent interpretation is that processor of the void type has no memory and can 
execute no operations.  
The topology Web corresponds to the web structure networks with n radial threads, 
each of them stringed with m-1 normal speed scalar processors. In the center of the 
web there is placed a fast scalar processor. That means that the computation load of 
this processor will be more intensive than those of the other processors. Radial links 
between processors are of normal length (the attribute length is equal to 0), while the 
circular links are longer (their attribute length is equal to 1). It means that data 
exchange through radial links will be more intensive than through the circular ones. 
In general, the attribute length for normal links is equal to 0 and cannot be specified 
explicitly, while this attribute for long links is greater than 0 and for short links is 
less than 0 and must be specified explicitly.  
Line 17 is an explicit definition of the static subnetwork of the network object 
web10x20 named by the identifier seastar10x10 having file scope and external 
linkage. The construct [web10x20: Phi%2==0] specifies the processors of the 
web10x20 that constitute the subnetwork. Namely, a processor of web10x20 with 
coordinates [R,Phi] belongs to the subnetwork seastar10x10 if and only if 
Phi%2==0.  
Similarly, lines 20 and 21 are explicit definitions of the automatic subnetwork 
subweb5x20 and the static subnetwork grid5x20 of the network web10x20 both 
named by identifiers with block scope.  



 11

Line 22 is an explicit definition of the automatic subnetwork seastar5x5 whose 
identifier has block scope. The subnetwork seastar5x5 is a subnetwork of the 
subnetwork seastar10x10 and, hence, of the network web10x20.  
A subnetwork always inherits the coordinate system of its supernetwork. So, in the 
subnetwork any processor has the same coordinates as in its supernetwork. In 
addition, for any network or subnetwork the so-called natural numeration of 
processors from 0 to n-1, where n is the number of processors, can be defined. This 
numeration is determined by lexicographic ordering of the set of coordinates of (non-
void) processors. Evidently, a processor may have different natural numbers in the 
network and its subnetwork. The notion of natural number is used to set up the 
correspondence between processors of different subnetworks in distributed 
operations.  
The partial order "to be a subnetwork of" is defined on a set of subnetworks of the 
same network. It can be specified with a subnetwork declaration, similar to the 
declaration in line 22 that specifies that seastar5x5 is a subnetwork of seastar10x10.  
Finally, there are hard and flexible subnetworks. Hard subnetworks can be used 
everywhere, where networks can be used. On the other hand, there are some 
restrictions in the use of flexible subnetworks. In particular, flexible subnetworks 
cannot be used to evaluate postfix reduction operators, network functions cannot be 
called on such subnetworks. Any implicitly-defined subnetwork is flexible. An 
explicitly-defined subnetwork is flexible only if its declaration includes the keyword 
flex. The only advantage of flexible subnetworks is their less cost of creation 
compared with the creation of hard networks.  

Distribution of data 

The concept of distributed data object is introduced. Namely, data object distributed 
over a region of the computing space comprises a set of components of any one type, 
so that every processor of the region holds one component. So, a distributed data 
object is characterized by the type and attributes of the region over which it is 
distributed as well as the type and attributes of components.  
In particular, data object can be distributed over the entire computing space. It means 
that creation of any network includes the creation of the corresponding component of 
the data object on every processor of the network.  
Except implicit specification, to declare an identifier designating a distributed object, 
it is necessary to place a specifier of the corresponding region of the computing 
space in the corresponding declaration just before the identifier. For example, the 
declarations  

net Ring(11) Net1; 
int [*]Derror, [Net1]Da[10], *[Net1:I<7]Dpi[5]; 

declare Derror as an integer data object distributed over the entire computing space, 
declare Da as an array of 10 ints distributed over the network object Net1, declare 
implicitly a subnetwork of the network object Net1, and declare Dpi as an array of 5 
pointers to int distributed over this subnetwork.  
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In general, in mpC one can declare both distributed and undistributed data objects 
specifying precisely their locations – a network object, a subnetwork, or a single 
processor (for undistributed ones). For example, the declaration  

int [web10x20:R==2&&Phi==3] x; 

declares the undistributed data object x located on the processor of the network 
object web10x20 with coordinates [2,3].  
A distributed object all the components of which are equal to each other during all 
the time of program execution is a replicated data object. To specify replicated data 
objects, the qualifier repl is used in the manner similar to the use of the type 
qualifiers const and volatile. For example, the declaration  

int repl [*]n=10; 

defines the variable n replicated over the entire computing space.  
The concept of distributed value is introduced similarly. A value distributed over a 
region of the computing space comprises a set of components of any one type so that 
every processor of the region holds one component. the notions of value distributed 
over the entire computing space and replicated value are introduced similarly.  

Distribution of computations 

An expression can be evaluated by the host-processor, by a single processor of a 
network, by a network or a subnetwork, by a set of networks/subnetworks, or by the 
entire computing space. In the latter three cases, the expression is called a distributed 
expression. The value of a distributed expression may be also distributed. If so, the 
latter should be distributed over a subregion of the region of the computing space 
evaluating the expression. 
If an expression is evaluated by the entire computing space, it is called an overall 
expression. No other computations can be performed parallel with the evaluation of 
the overall expression. 
A special type of the distributed expression called an asynchronous expression is 
introduced. In fact, an asynchronous expression doesn't need communications 
between processors of the evaluating region of the computing space during its 
evaluation. The property of asynchronity of an expression is determined by the 
property of asynchronity of operators forming the expression. Most of operators of 
the mpC language are asynchronous in the sense that either both operands and the 
result belong to the same processor, or they both are distributed over the same region 
of the computing space, and the distributed operator is divided into a set of 
independent undistributed operators each of which operates on corresponding 
components of the operands. If an expression consists of such operators only, and all 
of them are distributed over the same region of the computing space, then the entire 
expression will be asynchronous. 
A statement of the mpC language can be executed on the host-processor, on a single 
processor of a network, on a network or subnetwork, on a set of 
networks/subnetworks, or on the entire computing space. In the latter three cases, the 
statement is called a distributed statement. A set of distributed statements includes 
the sequential C statements extended with distributed data as well as the special 
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parallel statements fan, par and pipe. If a statement is executed on the entire 
computing space, it is called an overall statement. No other computations can be 
performed in parallel with execution of the overall statement. 
The concept of asynchronous statement is introduced. An asynchronous statement 
does not need communications between processors of the executing region of the 
computing space during its execution. In particular, if all expressions and 
substatements of a sequential statement are asynchronous and distributed over the 
same region of the computing space, then the entire statement is asynchronous. In 
this case, the distributed statement is divided into a set of independent undistributed 
statements each of which is executed on the corresponding processor using the 
corresponding data components. 
Execution of an mpC program begins from a call of the function main on the entire 
computing space. 
The following simple mpC program computes the sum of two vectors.  

/*Line 1 */    nettype Star(n) { 
/*Line 2 */        coord I=n; 
/*Line 3 */        node { 
/*Line 4 */            default: scalar; 
/*Line 5 */        } 
/*Line 6 */        link { 
/*Line 7 */            I>0: [0]<->[i]; 
/*Line 8 */        } 
/*Line 9 */        parent [0]; 
/*Line 10*/    }; 
/*Line 11*/    #define M 4 /*The number of virtual processors*/ 
/*Line 12*/    #define N 300 
/*Line 13*/    #define NM N*M 
/*Line 14*/    void [*]main() 
/*Line 15*/    { 
/*Line 16*/       double [host]x[NM], [host]y[NM], [host]z[NM]; 
/*Line 17*/       int [host]i; 
/*Line 18*/       void [*]parsum(); 
/*Line 19*/       int printf(); 
/*Line 20*/       .../* Input of the arrays x and y */ 
/*Line 21*/       parsum((void*)x, (void*)y, (void*)z); 
/*Line 22*/       for(i=0; i<NM; i++) 
/*Line 23*/         ([host]printf)("%f ", z[i]); 
/*Line 24*/    } 
/*Line 25*/    void [*]parsum(double *[host]x[N], 
/*Line 26*/                   double *[host]y[N], 
/*Line 27*/                   double *[host]z[N]) 
/*Line 28*/    { 
/*Line 29*/       net Star(M) Sn; 
/*Line 30*/       double [Sn]dx[N], [Sn]dy[N], [Sn]dz[N]; 
/*Line 31*/        
/*Line 32*/       dx[]=x[]; 
/*Line 33*/       dy[]=y[]; 
/*Line 34*/       dz[]=dx[]+dy[]; 
/*Line 35*/       z[]=dz[]; 
/*Line 36*/    } 

The program includes 3 functions - main and parsum defined here and the library 
function printf. Lines 14-21 contain the main definition. Line 16 contains the 
definition of the arrays x, y and z all belonging to the host-processor. Line 17 
contains the definition of integer variable i belonging to the host-processor. Lines 18-
19 contain the declaration of function identifiers parsum and printf. In general, mpC 
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allows 3 kinds of functions. Here, functions of two kinds are used: main and parsum 
are basic functions, and printf is a nodal function. 
Basic function is a function that is called to by all the virtual processors in the 
computing space. A call to basic function is an overall expression. Its arguments (if 
any) shall either belong to the host-processor or be distributed over the entire 
computing space, and the returning value (if any) shall be distributed over the entire 
computing space. In contrast to another kind of functions, it can define network 
objects. In lines 14, 18 and 25, the construct [*], placed just before the function 
identifier, specifies that an identifier of basic function is declared. 
Nodal function is a function that can be called to by any virtual processor and is 
executed by the calling virtual processor only. Call to a nodal function is 
asynchronous. Only local data objects of the executing processor can be created in 
such a function. In addition, the corresponding component of an externally-defined 
distributed data object can be used in the function. A declaration of nodal function 
(e.g., in line 19) does not need any additional specifiers. All pure C functions are 
nodal from the point of view of mpC. 
Line 23 contains an undistributed statement executed on the host-processor. It 
includes a call to the nodal function printf on the host-processor. Line 21 contains a 
call to the basic function main and is executed on the entire computing space. 
Lines 25-36 contain the definition of the function parsum. Line 29 contains the 
definition of the automatic network Sn. Line 30 contains the definition of automatic 
arrays dx, dy and dz all distributed over Sn. 
Line 32 contains the unusual unary postfix operator []. The point is that mpC is a 
superset of the vector extension of ANSI C named the C[] language, where the 
notion of vector defined as an ordered sequence of values of any one type is 
introduced. In contrast to an array, a vector is not a data object but just a new kind of 
value. In particular, the value of an array is a vector. The operator [] was introduced 
to support access to arrays as a whole. It has operand of the type "array of type" and 
blocks (forbids) conversion of the operand to pointer. So, the expression dx[] 
designates the distributed array dx as a whole. In addition, mpC allows to apply the 
operator [] not only to expressions having the type "array of type", but also to 
expressions having the type "pointer to type". The result is treated as an array of 
types of undefined size. So, the expression x[] designates the array of undefined size 
whose members have the type double[300]. The expression dx[]=x[] scatters the 
elements of the array x[] to components of dx. The number of scattered elements is 
equal to the number M (=4) of components of dx. 
Similarly, the statement in line 33 scatters the elements of the array y[] to 
components of the distributed dy. 
The statement in line 34 performs asynchronously the sum of the vector values of 
distributed arrays dx and dy and assigns the result to the distributed array dz. 
Finally, the statement in line 35 gathers components of the distributed vector value of 
the distributed array dz to the host-processor putting then in sequential members of 
the array z[] of undefined size. 
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Network functions 

Like in ANSI C, in mpC the minimum translation unit is a source file. This file 
consists of network type declarations, external network/subnetwork declarations, 
external data object declarations, function definitions, and possibly some other 
external declarations (here, an external declaration is a declaration appearing out of 
functions). 
In order to support modular parallel programming as well as writing libraries of 
parallel programs, in addition to basic and nodal functions, the so-called network 
functions are introduced in mpC. 
In general, a network function is called and executed on some network or hard 
subnetwork, and its arguments and value (if any) is also distributed over this region 
of the computing space. The header of a network function definition either specifies 
an identifier of static network or subnetwork having file scope, or declares an 
identifier of network being a special formal parameter of the function. In the first 
case, the function can be called only on the region of the computing space specified. 
In the second case, it can be called on any network or subnetwork of an appropriate 
type. In any case, no network other than the network specified in the function 
definition header can be created or used in the function definition body. But it is 
allowed to create and use its subnetworks. Only data objects belonging to the region 
of the computing space specified in the header can be defined in the body. In 
addition, the corresponding components of an externally-defined distributed data 
object can be used. For example, in the fragment  

/* Line 1 */   net Ring(5) r5; 
/* Line 2 */   int [r5]da,[*]db,[host]a[5],[host]b[5],[host]x[5]; 
/* Line 3 */   void [*]main() 
/* Line 4 */   { 
/* Line 5 */     int [r5]dx; 
/* Line 6 */     int [r5]f(); 
/* Line 7 */     ([host]Input)(a,x); 
/* Line 8 */     [r5]db=da=a[]; 
/* Line 9 */     dx=x[]; 
/* Line 10 */    dx=f(dx); 
/* Line 11 */    x[]=dx; 
/* Line 12 */    ([host]Output)(x); 
/* Line 13 */  } 
/* Line 14 */  int [r5]f(int dx) 
/* Line 15 */  { 
/* Line 16 */    int result; 
/* Line 17 */    result=da+db*dx; 
/* Line 18 */    return result; 
/* Line 19 */  } 

line 10 contains the call to the network function f, and line 6 contains the function 
declaration being in scope for f. The definition of this function is contained in lines 
14-19. The function f is related with the network r5. This is specified by means of the 
construct [r5] both in the declaration of its identifier (line 6) and in its definition (line 
14). Note, that it is meant that the formal parameter dx declared in line 14 is 
distributed over the network r5. In addition, in line 17, expression db*dx is 
equivalent to expression [r5]db*dx, where operator [r5] cuts from db the components 
belonging to r5. 
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If a function has the network formal parameter, the declaration of this parameter in 
the function definition header specifies its network type. This network type may be 
either completely defined or parameterized. For example, in the fragment  

/* Line 1  */    nettype Grid(n) { 
/* Line 2  */       coord I=n, J=n; 
/* Line 3  */       node { 
/* Line 4  */          default: scalar; 
/* Line 5  */       } 
/* Line 6  */       link { 
/* Line 7  */          default: [I,J]<->[I+1,J], [I,J]<->[I,J+1]; 
/* Line 8  */       } 
/* Line 9  */       parent [0,0]; 
/* Line 10 */    } 
/* Line 11 */    #define N 100 
/* Line 12 */    void [*]main() 
/* Line 13 */    { 
/* Line 14 */       net Grid(N) gN; 
/* Line 15 */       int [net Grid(2)] sum(),[host]x[N][N],[gN]dx; 
/* Line 16 */       int repl [gN]i; 
/* Line 17 */       ([host]Input)(x); 
/* Line 18 */       dx=((int*)x)[]; 
/* Line 19 */       for(i=N-2; i>=0; i--) { 
/* Line 20 */          subnet [gN:I>=i&&J>=i&&I<i+2&&J<i+2] g; 
/* Line 21 */          [g]dx=[()g]sum([g]dx); 
/* Line 22 */       } 
/* Line 23 */       ([host]Output)([host]dx); 
/* Line 24 */    } 
/* Line 25 */    int [net Grid(2) g2] sum(int dx) 
/* Line 26 */    { 
/* Line 27 */       int [g2:I==0]d0, [g2:I==0&&J==O]d00; 
/* Line 28 */       d0=[g2:I==1]dx; 
/* Line 29 */       dx+=d0; 
/* Line 30 */       d00=[g2:I==0&&J==1]dx; 
/* Line 31 */       dx+=d00; 
/* Line 32 */       return dx; 
/* Line 33 */    } 

line 21 contains the call to the network function sum, and line 15 contains the 
function declaration being in scope for sum. The definition of this function is 
contained in lines 25-33. The header of this definition (line 25) contains the 
declaration of the special formal parameter g2 corresponding to the network on 
which this function is called. 
In general, if a network formal parameter has a completely defined type, the 
corresponding argument should be either a network or a hard subnetwork conforming 
to the formal parameter. By definition, the network (or subnetwork) A conforms to 
the network (or subnetwork) B if and only if they have the same number of (non-
void) processors. 
Line 14 defines the automatic network gN representing NxN grid of scalar 
processors. In line 16 the distributed variable i is declared with the specifier repl 
meaning that if the value of this variable is defined then all its components are equal 
to each other. The statement in line 18 sends the value of x[i][j] to the component 
[gN:I==i&&J==j]dx for all i, j from 0 to N-1. 
The iteration statement in lines 19-22 is performed on the network gN. Line 20 
contains the definition of the automatic subnetwork g of gN representing a rectangle 
on the main diagonal of the grid. Line 21 contains the call to sum on g. The value of 
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the function call is distributed over g. The component of the value with the 
coordinates I==i and J==i is equal to the sum of the components of the argument 
[g]dx. The assignment in line 21 modifies the corresponding components of dx. So, 
the execution of the iteration statement produces the value of component 
[gN:I==0&&J==0]dx (or equally [host]dx) equal to the sum of the values of the dx 
components disposed on the three diagonals of the grid gN. 
Note, that mpC allows one of operands of an asynchronous operator to be distributed 
over a subregion of the computing space region through which the other operand is 
distributed. In this case, the operator is performed on this subregion. So, the 
expression dx+=d0 in line 29 is equivalent to the expression [g2:I==0]dx+=d0, and 
the expression dx+=d00 in line 31 is equivalent to the expression 
[g2:I==0&&I==0]dx+=d00. 
If a network formal parameter has a parameterized type, the corresponding 
topological parameters are also declared in the header of the function definition 
being also special formal parameters. In the function body, each scalar topological 
parameter is treated as an unmodifiable variable of the type int replicated over the 
network formal parameter, and the vector topological parameter - as an unmodifiable 
indexed set of integer variables replicated over the network formal parameter. (The 
only operation is applicable to an indexed set of integer variables, namely, access to 
an element via its indices). The number of indices of the latter and their ranges (can 
be defined dynamically) are detected by the compiler from the declaration of the 
corresponding topology. 
When calling the function, the corresponding topological arguments specify a 
network type as an instance of the corresponding topology, and the network 
argument specifies a region of the computing space treated by the function as a 
network of this type. An argument corresponding to the scalar topological parameter 
should be of the type int and replicated over the network argument. An argument 
corresponding to the vector topological parameter should be a distributed pointer (of 
any type) to the initial member of an integer array replicated over the network 
argument. For example, in the fragment  
 

/* Line 1  */     void [*]main() 
/* Line 2  */     { 
/* Line 3  */        net Ring(5) r5; 
/* Line 4  */        net Rectangle r; 
/* Line 5  */        int [r5]dx, [r]dy; 
/* Line 6  */        void [net Ring(n)] shift(); 
/* Line 7  */        ... 
/* Line 8  */        [(5)r5]shift(&dx); 
/* Line 9  */        [(4)r]shift(&dy); 
/* Line 10 */        ... 
/* Line 11 */     } 
/* Line 12 */     void [net Ring(n) rn] shift(int *da) 
/* Line 13 */     { 
/* Line 14 */        int [rn]me, [rn]he; 
/* Line 15 */        me = I coordof da; 
/* Line 16 */        he = (me==n-1)?0:(me+1); 
/* Line 17 */        [rn:I==me](*da) = [rn:I==he](*da); 
/* Line 18 */     } 
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lines 8-9 contains the calls to the network function shift, and line 6 contains the 
function declaration being in scope for shift. The definition of this function is 
contained in lines 12-18. The header of this definition (line 12) contains the 
declaration of the network formal parameter rn, corresponding to the network on 
which this function is called, as well as the topological formal parameter n treated in 
the function body as if it was declared with the declaration  

int const repl [rn]n; 

As a result of a call to the function, all the components of n should have the same 
value specifying the type of rn as an instance of the topology Ring.  
So, in line 8 the function shift is called on the network r5 that is just a network 
argument. This network is of the type Ring(5), therefore the constant 5 is used as a 
topological argument. 
In line 9, the function is called on the network r that is a network argument in this 
case. This network has the type Rectangle not being an instance of the topology 
Ring. The topological argument (the constant 4) specifies that in this case the 
function called shall treat its network argument (that is, the network r) as having the 
type Ring(4). The call is correct, because a network of the type Rectangle conforms 
to a network of the type Ring(4). 
The result of the binary operator coordof in line 15 is an integer value distributed 
over rn each component of which is equal to the value of the coordinate I of the 
processor to which the component belongs. The right operand of the operator coordof 
is not evaluated and used only for specification of the region of the computing space. 
The statements in lines 15-16 are asynchronous. The statement in line 17 shifts 
clockwise the distributed data object *da. Note, that the coordinate variable I is 
treated as an integer variable distributed over rn.  

Pointer to function 

In C, a function call includes the pointer to the function called. In mpC, a function 
call on a region of the computing space is treated as a set of undistributed function 
calls, each of which is performed on its single processor of the region. In other 
words, the distributed function call can be treated as a distributed call to 
undistributed functions called functional components of the distributed call. 
Therefore, the distributed function call includes the distributed pointer to the 
corresponding functional components. 
So, the C language concept of function as an entity that can be pointed to, is 
transformed to the mpC language concept of undistributed function. A nodal 
function, as well as a functional component of basic or network function, represents 
undistributed functions. 
When declaring an identifier of the pointer to undistributed function, one can 
describe the function pointed to detailed enough. For example, whether it is a nodal 
function, or whether it is a functional component of basic function, or whether it is a 
functional component of network function with special formal parameters (in the 
latter case, the number of topological parameters as well as the type of the network 
parameter should be specified). If such a declaration is in scope for the identifier 
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used in a function call, compiler shall check the correctness of the function call. 
Otherwise, the correctness of the function call is the responsibility of the user. 
For example, the declaration  

int [*](*[net1]pf)(); 

declares the identifier pf as a distributed over the network net1 pointer to functional 
component of basic function. The declaration  

int (*[net2]pf)(); 

declares the identifier pf as a distributed over the network net2 pointer to nodal 
function. The declaration  

int [net Ring(3)](*[net3]pf)(); 

declares the identifier pf as a distributed over the network net3 pointer to functional 
component of network function whose network formal parameter has the type 
Ring(3). The declaration  

int [net Web(4,n)](*[net4]pf)(); 

declares the identifier pf as a distributed over the network net3 pointer to functional 
component of network function having two special formal parameters the network 
formal parameter belonging to the type family Web(4,n). 
Except when used as an operand where a function designator is permitted, a basic 
function identifier is converted to a distributed over the entire computing space 
pointer to undistributed function; a nodal function identifier is converted to pointer to 
nodal function distributed over the region of the computing space on which the 
calling function is called; an identifier of network function without special formal 
parameters is converted to a distributed over the corresponding region pointer to 
functional component of network function without special formal parameters; an 
identifier of network function with special formal parameters is converted to pointer 
to functional component of network function having the specified special formal 
parameters distributed over the region of the computing space on which the calling 
function is called.  
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Managing the computing space 
In mpC the notion of the computing space is defined as a set of virtual processors of 
different performances connected with links of different communication speeds 
accessible to the user for management by means of allocating networks and 
subnetworks. Every network defined in mpC has a type. Network type specifies 
number and performances of virtual processors, links between these processors and 
communication speeds of links. 
The following declarations are used for computing space management: 
! Network type declaration  
! Network declarations  
! Subnetwork declaration  

Network type declaration 

Syntax  
 

<network_type_declaration>: 
    <network_type_class_specifier>(opt) 
        nettype <identifier> 
        <generic_parameter_declaration>(opt) 
        { <network_declaration_list> } ; 
 
<generic_parameter_declaration>: 
    (<generic_parameter_list>) 
 
<generic_parameter_list>: 
    <generic_parameter_declarator> 
    <generic_parameter_list> , <generic_parameter_declarator> 
 
<generic_parameter_declarator>: 
    <identifier> 
    <generic_parameter_declarator> [ <expression> ] 
 
<network_declaration_list>: 
    <coordinate_declaration> 
        <node_declaration>(opt) 
        <link_declaration>(opt) 
        <parent_node_declaration>(opt) 
 
<network_type_class_specifier>: 
    static 
    extern 

 
Constraints  
A network type declaration can not appear in a function. 
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Semantics  
A network-type declaration introduces a network-type identifier and specifies 
attributes of the network type, such as the number, types and relative performances 
of processors, links and their lengths, as well as the parent processor. A network type 
can be either simple or parameterized (generic). A declaration of generic network 
type called also a topology should contain a generic parameter declaration. There are 
scalar and vector generic (or topological) parameters. A scalar generic parameter is 
treated as an integer. A vector generic parameter is treated as an indexed set of 
integers. The generic parameter declarator specifies the number of indices and their 
ranges. The expression in the generic parameter declarator can be built only from 
integer constants and scalar generic parameters. The scope of generic parameters is 
the corresponding network-type declaration. 
A network-type declaration can include the specifier extern or static. 
A network-type declaration that also causes compiler to generate components of the 
target program, that provide access to topological information about networks of a 
relevant type, is a network-type definition. 
A network-type declaration without the specifier extern is a network-type definition. 
The specifier static specifies internal linkage for the network-type identifier declared. 
The network-type declaration without any specifier specifies external linkage. 
A network-type declaration with the specifier extern is not a network-type definition 
and is used by a compiler to access correctly to the corresponding topological 
information. In this case, somewhere in the set of source files that constitutes the 
entire program there exists a definition for the given identifier.  
EXAMPLE 

extern nettype _3Dim_net (P,Q,l,k,grid[P*Q]) 
{ 
  coord I=P,J=Q; 
  node  
  { 
    I>=0&&J>=0: grid[I*Q+J]; 
  }; 
  parent [l,k]; 
}; 

 

Coordinate declaration 

Syntax  
 

<coordinate_declaration>:  coord <coordinate_list> ; 
 
<coordinate_list>: 
     <coordinate_declarator> 
     <coordinate_list> , <coordinate_declarator> 
 
  <coordinate_declarator>: <identifier> = <expression> 
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Constraints  
The expression in the coordinate declarator must be integer. The operands in the 
expression consist only of constants and generic parameters of the generic network 
type (if any). 

Semantics  
A coordinate declaration declares a coordinate system, to which processor nodes of 
the declared network are related. A coordinate declarator introduces an identifier of a 
coordinate variable and specifies its attributes. Coordinate names belong to the same 
name space as ordinary identifiers. The scope of an identifier of a coordinate variable 
extends from the completion of its declarator but is not continuous; it includes the 
network declaration list that contains the corresponding coordinate declaration, all 
relevant subnetwork specifiers as well as left operands of relevant coordof operators. 
If a declaration of a lexically identical identifier exists in this scope, it is hidden. 
A coordinate variable has the type int and is characterized by the number in the list 
of coordinates and the range of values. Correspondingly, if the coordinate variable 
occurs in an expression in a link descriptor or in the parent node description, the 
number of expressions in an expression list shall agree with the number of coordinate 
variables in the coordinate list. The range of values of the coordinate variable is 
specified by the expression in the coordinate declarator and includes integers from 0 
to N-1, where N is the value of the expression. 
EXAMPLE  
The coordinate declaration  

coord x=100, y=10, z=N; 

declares the 3-D coordinate system, to which a network containing up to 100*10*N 
nodes may be related.  
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Node declaration 

Syntax  
 

<node_declaration>: node {<node_declarator_list>}; 
 
<node_declarator_list>: 
    <node_declarator> 
    <node_declarator_list> <node_declarator> 
 
<node_declarator>: 
    <expression>':'<performance_specifier>(opt) <node_type> (opt); 
    default ':' <performance_specifier>(opt) <node_type> (opt); 
 
<node_type>: 
    void 
    memory 
    scalar 
    vector 
 
<performance_specifier>: 
    <expression> 
    fast <power_specifier>(opt) 
    slow <power_specifier>(opt) 
 
<power_specifier>: 
<expression> 

 

Constraints  
The expression in the node declarator must be integer. The operands in the 
expression consist only of coordinate variables, constants and generic parameters (if 
any). 
Either the performance specifier or the node type should appear in the node 
declarator. 
There may exist at most one default node declarator in a node declarator list. 
The expression in the performance specifier must be integer. The operands in the 
expression should consist only of coordinate variables, constants and generic 
parameters. 
The expression in the power specifier must be integer. The operands in the 
expression should consist only of coordinate variables, constants and generic 
parameters (if any). 

Semantics  
A node declaration relates processor nodes to the given coordinate system and 
declares their types and performances. 
A processor node of the type void has no data and does not take part in computations. 
The equivalent interpretation is that the type void indicates that no processor is 
related to the positions with the corresponding coordinates. A processor of the type 
memory can rather store data than operate on it. A processor of the type vector can 
perform vector operations efficiently. Finally, most common processors are of the 
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type scalar. If the node type does not appear in the node declarator, it specifies a 
processor of the scalar type. 
Performance specifiers specify relative performances of processor nodes of the same 
type. The value of the expression in the power specifier shall be positive. If it is 
equal to 1, the power specifier may be omitted. It is meant that any performance 
specifier with the keyword fast specifies more powerful processor than a 
performance specifier with the keyword slow. It is meant also that the greater value 
of the expression in a power specifier the more performance is specified. For every 
network of relevant type, this information allows the compiler to associate a weight 
with each processor of the network normalizing it in relation to the weight of the 
parent processor. Note, that the host-processor is always of the scalar type and the 
regular performance. 
It is meant that a simplified performance specifier having the form of expression is 
fast and of the scalar type. 
When processing a node declarator, the compiler evaluates the (logical) expression 
for every permissible set of values of the coordinate variables. If the value is non-
zero (that corresponds to the logical value true), a processor of the specified type and 
performance is related to the coordinates. If the same coordinates satisfy more than 
one logical expressions, it depends in implementation processor of which type and 
performance will be associated with the coordinates. 
The default node declarator declares the type and performance of all the processor 
nodes whose coordinates don't satisfy any (logical) expression in the rest of the node 
declarators of the node declaration. If there does not exist a default node declarator, 
these processor nodes shall have the type void. 
If a network declaration list does not contain a node declaration, all the processor 
nodes of the network shall have the type scalar and the regular performance. 
EXAMPLE  
The declaration  

net Star(N) { 
    coord i=N; 
    node { 
        default: scalar; 
    } 
    ... 
}; 

declares all the processor nodes to be of the type scalar. The declaration  
net Star2(M, N) { 
    coord i=M; 
    node { 
        !i   : memory; 
        i % N  : scalar; 
        default : vector; 
    } 
 ... 
}; 

declares a generic network type with different types of nodes whose relation to 
coordinates depend on the generic parameters.  
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Link declaration  

Syntax  
<link_declaration>: 
    link { <link_declarator_list> } ; 
    link <free_coordinate_list> { <link_declarator_list> } ; 
 
<link_declarator_list>: 
    <link_declarator> 
    <link_declarator_list> <link_declarator> 
 
<link_declarator>: 
    <expression> ':' <single_link_declarator_list> ; 
    default ':' <single_link_declarator_list> ; 
 
<single_link_declarator_list>: 
    <single_link_declarator> 
    <link_length_specifier>(opt) <single_link_declarator> 
    <single_link_declarator_list>,<single_link_declarator> 
 
<single_link_declarator>: 
    [ <expression_list> ] <direction_specifier> 
        [ <expression_list> ] 
 
<free_coordinate_list>:  ( <coordinate_list> ) 
 
<link_length_specifier>: 
    length * <expression> 
 
<direction_specifier>: 
    -> 
    <-> 

 

Constraints  
The expression in the link declarator must be integer. The operands in the expression 
can consist only of constants, generic parameters (if any), and coordinate variables 
including free coordinates variables (if any). 
The expression in the link-length specifier must be integer. The operands in the 
expression can consist only of constants, generic parameters (if any), and coordinate 
variables including free coordinates variables (if any). 

Semantics  
A link declaration declares links between processor nodes. A link is characterized by 
the length and the direction. 
If a free coordinate list appears in the link declaration, it declares additional 
coordinate variables (named free coordinate variables) and specifies their ranges of 
values. The declaration of free coordinate variables does not change the coordinate 
system that has been declared. The scope of an identifier of a free coordinate 
includes the link declarator list that follows the corresponding free coordinate list. 
Free coordinate variables are used if the network topology can not be specified with 
only regular coordinate variables. 
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Link declarators in the link declarator list are processed sequentially. When 
processing a link declarator, the compiler evaluates the (logical) expression for every 
permitted set of values of the coordinate variables (including free coordinate 
variables, if any). If a set of values satisfies the logical expression (makes it non-
zero), for every single link declarator in the single link declarator list all the 
expressions in both expressions lists are evaluated, and the link between the 
processor node, whose coordinates are determined by the left part of the single link 
declarator, and the processor node, whose coordinates are determined by the right 
part of the single link declarator, is established. The direction of the link is specified 
by the direction specifier. 
The length of a link is specified by a link-length specifier. The value of the 
expression in the link-length specifier characterizes the length of the link. If it is 
equal to 0, the link-length specifier may be omitted, and the link shall be of the 
regular length. It is meant that the greater value of the expression in the link-length 
specifier the longer length is specified. So, negative values correspond to short links, 
and positive value correspond to long links. For every network of relevant type, this 
information allows the compiler to associate a weight with each link of the network. 
If there exists a default link declarator, it is processed as if it is the last link declarator 
in the link declarator list, whose logical expression is non-zero for all permissible 
sets of values of the coordinate variables. 
If a network declaration list does not contain a link declaration, there exists a link of 
the regular length between any two processor nodes. 
If the link declaration does not specify a link between some pair of processor nodes, 
it means existence of a very long link connecting them rather than absence of any 
link. 
EXAMPLE  
The declaration  

net Star(N) { 
    coord i=N; 
    node { 
        default:scalar; 
    } 
    link { 
    i>0: [0] -> [i] , [i] -> [0];  
    } 
    ... 
}; 

declares a generic type of networks of the star topology. The declaration  
net Star2(N) { 
    coord i=N; 
    node { 
       default: scalar; 
    } 
    link { 
        i>0 && i%2    :    length*(-1) [0] -> [i+1], [i] -> [0] ; 
        i>0 && !(i%2) :    length*1  [0] -> [i-1], [i] -> [0] ; 
    } 
    ... 
}; 
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declares a generic type of networks of the star topology with links of different length. 
EXAMPLE  
The following declaration illustrates the usage of free coordinate variables:  

net All_To_All(N) { 
    coord i=N; 
    node { 
        default: scalar; 
    } 
    link (j=N) { 
        i!=j && i%2 && j%2 : length*(-1) [i] -> [j]; 
         default: [i] -> [j]; 
    } 
   ... 
}; 

 

Parent node declaration 

Syntax  
 

<parent_node_declaration>: parent [<expression_list>]; 

 

Constraints  
An expression in the expression list must be integer. The operands in the expression 
must consist only of constants and generic parameters of the generic network type (if 
any). The number of expressions in the expression list should agree with the 
dimension of the coordinate system that has been declared. 

Semantics  
The parent node declaration specifies the coordinates of the parent processor node in 
the given coordinate system. 
If a network declaration list does not contain a parent node declaration, the parent has 
zero number in the natural numeration of processor nodes (remember, that it is 
supposed that all non-void processor nodes are numerated in correspondence with the 
lexicographic order of their coordinates).  
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EXAMPLE  
The following complete generic network type declaration  

net SeaStar(M, N) { 
    coord r=M, fi=N; 
    node { 
        r==0 && fi>0 : void; 
        default: scalar; 
    } 
    link { 
        r==0 : [0,0] -> [1,fi], [1,fi] -> [0,0]; 
        r>1  : [r-1,fi]->[r,fi], [r,fi]->[r-1,fi]; 
    } 
    parent [0,0]; 
}; 

introduces the sea-star topology.  

Network declarations 

Syntax  
 

<network_declaration>: 
   <computing_space_class_specifier> (opt) 
      <network_type_specifier> <network_list> ; 
 
<network_list>: 
   <network_declarator> 
   <network_list> , <network_declarator> 
 
<computing_space_class_specifier>: 
   <storage_class_specifier> 

 

Constraints  
Only extern, static, auto or typedef can be used as computing-space-class specifiers 
in a network declaration. 

Semantics  
A network declaration introduces a set of identifiers, which are interpreted as names 
of networks, as well as specifies attributes of the identifiers (such as network type, 
parent, class of computing space duration). A network declaration that also causes 
computing space to be reserved for an network named by an identifier is a network 
definition. 
The network declaration may contain specifiers extern, static, auto, or typedef. 
Like in ANSI C, the typedef specifier is called a "storage-class specifier" for 
syntactic convenience only. Within the scope of a declaration whose computing-
space-class specifier is typedef, each identifier declared therein becomes a synonym 
for the network type specified by the network type specifier. Such a name shares the 
same name space as other identifiers declared in ordinary declarators. 
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A network declaration with the specifier extern indicates that in one of the source 
files constituting the source code of the entire program there exists an external 
definition for the given network identifier. Such a network declaration cannot serve 
as a network definition. 
If the network declaration without specifier extern occurs outside a function, the 
network identifier is declared with global static computing space duration, and serves 
as the definition. The specifier static specifies internal linkage for the network 
identifier declared. The network declaration without any storage-class specifier 
specifies external linkage. 
Within a function, a declaration of a network with specifier static, auto, or without 
any computing-space-class specifier also serves as a network definition. The network 
declaration with specifier static declares the network identifier with local static 
computing space duration. The network declaration with specifier auto or without 
any computing-space-class specifier declares the network identifier with automatic 
computing space duration.  
EXAMPLE  

net HeteroGrid(p,q) w; 

Network type specifier 

Syntax  
 

<network_type_specifier>: 
    net <identifier> 
    net <identifier> ( <argument_expression_list> ) 

 

Constraints  
All expressions in the argument expression list must be integer. If the network type 
specifier is a part of an external network declaration, the expressions must be 
constant. Otherwise, they must either be replicated over the entire computing space 
or belong to (or replicated over) the parent of the network declared. 
An expression in the argument expression list corresponding to a scalar generic 
parameter shall be of the type int. If the network type specifier is a part of an external 
network declaration, the expression shall be constant. Otherwise, it shall be 
replicated over the entire computing space. 
An expression in the argument expression list corresponding to a vector generic 
parameter shall be a distributed pointer (of any type) to the initial member of an 
integer array replicated over the network argument. 

Semantics  
In mpC, one can declare a single network type, as well as parameterized (generic) 
network type. Correspondingly, when declaring a network, one can specify its type 
either with the identifier of single network type, or by means of generic instantiation 
of a generic network type. The generic instantiation consists in replacement generic 



 30

parameters with values of generic arguments. The number of the generic arguments 
shall agree with the number of generic parameters. An array corresponding to a 
vector topological argument should be of the enough size. It is meant that it holds an 
indexed set of integers in such a way that the right index is faster then the left one.  

Network declarator 

Syntax  
 

<network_declarator> : 
   <network_or_subnetwork_specifier>(opt) <identifier> 
 
<network_or_subnetwork_specifier>: 
   [ host ] 
   [ <identifier> ] 
   <subnetwork_specifier> 
 
<subnetwork_specifier>: 
   [ <identifier> ':' <expression> ] 

 

Constraints  
A network declarator including a network-or-subnetwork specifier must not appear 
in a declaration with the typedef specifier. 
The identifier in the network-or-subnetwork specifier should designate a network or 
an explicitly declared subnetwork. 
The expression in the subnetwork specifier must be asynchronous (in relation to the 
region R designated by the corresponding identifier) expression without side effects, 
each subexpression of which that does not include coordinate variables is replicated 
over the region R or its superregion. If the identifier in the subnetwork specifier 
designates a network, then the keyword parent can be used instead of the expression 
specifying the parent of the network.  

Semantics  
Each network declarator declares one identifier of network object or network type. 
If the network declarator appears in a network declaration without the typedef 
specifier and does not include a network-or-subnetwork specifier, a single network, 
whose parent is the host-processor, is declared. If there exists such a specifier, but it 
specifies a single processor node, then a single network, whose parent is the 
processor node specified, is declared.  
Neither an automatic network nor its subnetwork (including a one-processor ones) 
can be the parent of a static network.  
 
 
 



 31

Declaration of subnetworks 

Syntax  
 

<subnetworks_declaration>: 
   <computing_space_class_specifier>(opt) 
      subnet <subnetwork_declarator_list>; 
 
<subnetwork_declarator_list>: 
   <subnetwork_declarator_list>,<subnetwork_declarator> 
   <subnetwork_declarator> 
 
<subnetwork_declarator>:  <subnetwork_specifier><identifier> 
 

 

Constraints  
Only extern, static, auto or flex may be used as computing-space-class specifiers in a 
subnetwork declaration.  

Semantics  
A subnetwork declaration specifies attributes of a set of subnetwork identifiers. The 
subnetwork declarator consists of the subnetwork specifier and the subnetwork 
identifier being declared.  
The subnetwork specifier includes an identifier of the region (network or 
subnetwork), whose subnetwork is specified, and a (logical) expression separating 
the processor nodes included in the specified subnetwork. The expression shall be 
asynchronous (in relation to the supernetwork R designated by the corresponding 
identifier) expression without side effects, each subexpression of which that does not 
include coordinate variables is replicated over the region R. Each processor of the 
supernetwork, whose component of the value of this expression is not equal 0, is 
included in the declared subnetwork.  
A subnetwork inherits the coordinate system of its supernetwork. It means that any 
processor included in the subnetwork has there the same coordinates as in the 
corresponding supernetwork. At the same time, its natural number in the subnetwork 
may differ from its natural number in the supernetwork. 
A subnetwork declaration that also causes computing space to be reserved for an 
subnetwork named by an identifier is an explicit subnetwork definition. In any case, 
the lifetime of a subnetwork does not continue over the lifetime of its supernetwork. 
A subnetwork declaration with specifier extern indicates that somewhere in the set of 
source files that constitutes the entire program there exists an external definition for 
the given subnetwork identifier. Such declaration cannot serve as a definition. 
If a subnetwork identifier declaration without specifier extern occurs outside a 
function, then it serves as the definition. Conceptually, such a subnetwork is created 
once, when the program begins execution, but after creation of the corresponding 
supernetwork, and exists till the end of the execution of the entire program. The 
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specifier static specifies internal linkage for the subnetwork identifier. The 
declaration without any computing-space-class specifier specifies external linkage. 
Within a function, a subnetwork identifier declaration with specifier static serves as 
the definition. Conceptually, such subnetwork is created only on first entry into the 
block, in which it is declared, and exists till the end of its supernet lifetime. 
Within a function, a subnetwork identifier declaration without any computing-space-
class specifier or with the auto specifier serves as the definition. A new instance of 
the subnetwork is created on each entry into the block in which it is declared. The 
subnetwork is discarded when execution of the block ends in any way. Note, that a 
static subnetwork cannot be declared as a subnetwork of an automatic network. 
A subnetwork declaration with specifier flex is an auto declaration with a suggestion 
that the creation of the subnetwork declared has the less cost. In addition, there are 
the same constraints in the use of such subnetworks as for implicitly defined 
subnetworks, namely: they cannot be used in postfix reduction operations, and 
network functions cannot be called on such subnetworks. 
Subnetwork declarations specify the partial order "to be a subnetwork of" on the set 
of defined subnetworks of the same network. This partial order is built as follows. 
Let s1 and s2 be identifiers of subnetworks of the same network. Then if the 
declaration of s1 specifies s2 as a supernetwork, then s1 "is a subnetwork of" s2. The 
partial order is defined as reflexive and transitive closure of this relation.  

Regions and  subregions 

A set of nodes allocated as a network or specified as a subnetwork is called a region. 
The notion of a subregion is defined as follows: 

1. Any region is a subregion of the whole computing space. 
2. The region A is a subregion of region B if A is declared as a subnetwork of B 

with subnet clauses. 
3. The region declared as [host]  is a subregion of any network, declared with host 

as a parent. 
The reflexive and transitive closure of rules 1-3 defines a relation "to be a 
subregion". 
There is a special kind of regions, so-called single-node region designed especially 
for accessing regions consisting of exactly one node. The notion of a single-node 
predicate is introduced for these purposes: 

 
< single_node_predicate>: <coordinate_predicate> 
    < single_node_predicate> && 
               <coordinate_predicate> 
 
 <coordinate_predicate>: 
    <identifier> == <coordinate_expr> 
  <coordinate_expr> == <identifier> 
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Here <identifier> is a name of a coordinate variable and <coordinate_expr> should 
not contain identifiers of the coordinate variables. 

1. Regions are called single-node in the following three cases: 
2. The region is declared as [host]. 
3. The region is declared as [<network_name>:parent]. 
4. The region is a subnetwork whose all supernetworks are declared with single-

node predicate. Each coordinate variable shall appear exactly one time in the set 
comprising all predicates of those supernetworks. 

EXAMPLE. Consider the following declaration of network type NT an a network 
mynet of this type: 

nettype NT  

{ 

  coord I=3,J=3; 

  parent [0,0]; 

}; 

 
net NT mynet; 

subnet [mynet : I == 0] w; 

The following subnet declarations define single-node regions: 
subnet [mynet : parent] w1; 

subnet [mynet : I == 1, J == 1] w2; 

subnet [w : J == 0] w3; 

The following declaration introduces the region w4, which consists of one node but 
is not a single-node region: 

subnet [mynet : I < 1, J < 1] w4; 
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Declarations of data objects 
A “declaration” specifies the interpretation and attributes of a set of identifiers. A 
declaration that also causes storage to be reserved for the object or function named 
by the identifier is called a “definition.” 
In mpC the notion of distributed data object is introduced. Data object distributed 
over a region of the computing space is comprised of a set of components of the 
same type i.e. each virtual processor of the region holds one component of the object 
distributed over this region. Replicated data object is such a distributed data object 
that values of all components of this object equal to each other.  

Constraints 
All the expressions in an initializer for an object that has static storage duration or in 
initializer list for an object of aggregate type or in initializer for a distributed object 
shall be constant expressions or string literals. 
In this chapter there are described how data objects can be declared in mpC: 
! Explicit declaration of distributed data objects  
! Explicit declaration of undistributed data objects  
! Implicit declaration of data objects  
! Declaration of replicated data objects  

Explicit declaration of distributed data objects 

Syntax  
 

<distribution_specifier>: 
    [*] 
    [host] 
    [<identifier>] 
    [<network_identifier>:parent] 

 

Constraints  
The identifier in the distribution specifier should be an identifier of network or 
subnetwork. 

Semantics  
In general, to declare an identifier designating a distributed data object, it is 
necessary to place in the corresponding declaration just before the identifier the 
distribution specifier specifying the region of the computing space, over which the 
declared data object is distributed. 
Distribution specifier [*] specifies the entire computing space, [host] specifies the 
host-processor, and identifier in brackets specifies a network or explicitly defined 
subnetwork. If parent is specified the corresponding identifier should belong to the 
network. 
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EXAMPLE  
The declaration  

int [*]Derror, [Net1]Da[10], *[Net1:I==J]Dpi[5]; 

declares Derror as an integer variable distributed through the entire computing 
space, declares Da as an array of 10 ints distributed through the network Net1, 
declares implicitly a subnetwork of Net1, and declares Dpi as an array of 5 pointers 
to int distributed through this subnetwork.  

Explicit declaration of undistributed data objects 

Except the cases considered below, to declare an identifier designating an 
undistributed data object, it is necessary to place in the corresponding declarator just 
before the identifier one of the following language constructs:  
• specifier [host]; 
• a subnetwork specifier with keyword parent instead of an expression; 
• a subnetwork specifier of the form [s:c1==e1&&...&&cN==eN], where s is an 

identifier of network or subnetwork having N coordinate variables c1,...,cN, 
and e1,...,eN are asynchronous integer expressions replicated over s; 

• a specifier of the form [s], where s is an identifier designating a 1-processor 
network or subnetwork (if it designates a subnetwork, it should be declared 
with one of above specifiers as a subnetwork specifier, and if it designates a 
network, the type of the network should be defined completely in compile 
time).  

EXAMPLE  
The declaration  

double [host]x; 

declares the undistributed variable x belonging to the host.  

Implicit declaration of data objects 

A declaration of a formal parameter of network or nodal function shall not include a 
distribution specifier. A formal parameter of nodal function belongs to the processor 
executing the function. A formal parameter of a network function is distributed over 
the region executing the function. 
A formal parameter of basic function shall either belong to the host or be distributed 
over the entire computing space. A declaration of a formal parameter of a basic 
function without a distribution specifier indicates that the formal parameter is 
distributed over the entire computing space. 
If a data object declaration without a distribution specifier appears out of a function 
or in the body of a basic function, it declares a data object distributed over the entire 
computing space.  
If a declaration of a data object appears in the body of a nodal function, it can not 
include a distribution specifier. If such a declaration is a definition, it specifies an 
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undistributed data object belonging to the processor executing the function. 
Otherwise, it specifies the corresponding component of a distributed data object, 
external definition of which exists somewhere in the set of source files that 
constitutes the entire program. So, in the body of a nodal function any identifier of a 
data object defined out of the function designates the corresponding component of 
the data object. 
If a declaration of data object without a distribution specifier appears in a network 
function, it declares a data object distributed over the region on which the function is 
executed. If this declaration is not a definition, it specifies the corresponding 
components of a distributed data object, whose external definition exists in the set of 
files constituting the whole program. So, inside a network function, a identifier of the 
data object defined out of the function designates the corresponding cutting from this 
data object.  

Declaration of replicated data objects 

The qualifier repl, specifying that the values of all components of the corresponding 
data object are equal each other throughout the lifetime of the data object, is 
introduced. Such data object is called replicated. The compiler shall warn about all 
changes of the value of a replicated data object that could violate this property. 
The attribute "to be replicated" is associated not only with lvalue but with any 
expression also. 
EXAMPLE 
In the fragment  

/* Line 1 */    int repl [*] n=10; 
/* Line 2 */    void [*]main() 
/* Line 3 */    { 
/* Line 4 */      net Ring(n) rn; 
/* Line 5 */      net Ring(n+1) [rn]rn1; 
/* Line 6 */      ... 
/* Line 7 */    } 

the variable n is replicated over the entire computing space. The expressions n and 
n+1, which are used as topological arguments in lines 4-5, are replicated over the 
entire computing space also.  
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Expressions 
This chapter describes mpC expressions. Expressions are sequences of operators and 
operands that are used for one or more of these purposes:  
• Computing a value from the operands. 
• Designating objects or functions. 
• Generating "side effects." (Side effects are any actions other than the 

evaluation of the expression — for example, modifying the value of an object.) 
Except postfix reduction operators, a simple assignment, and function calls (except 
calls to nodal function), all the rest operators are asynchronous. 
An expression, all components of the value of which are equal to each other, is called 
a replicated expression. 
The following topics are covered in this chapter: 
! Primary expressions  
! Asynchronous unary operators  
! Asynchronous binary operators  
! Asynchronous ternary operators  
! Cutting operator  
! Simple assignment  
! The coordof operator  
! Postfix reduction operators  
! Function call  

Primary expressions 

If an identifier is declared as designating a distributed object, it is an asynchronous 
expression. 
It depends on the context, if a constant or a string literal are distributed expressions. 
If so, they are asynchronous replicated expressions.  

Asynchronous unary operators 

Unary ++, --, &, *, +, -, ~, !, sizeof, [], [*], [/], [%], [?<], [?>], [+], [&], [^], [|] 
operators and scalar cast operators of the C[] language can have operand with the 
value distributed over some region of the computing space. In this case, the operator 
is performed asynchronously on all components of the value of the operand, and its 
result is distributed over the same region. In addition, if the operand is an 
asynchronous expression, the whole expression will be also asynchronous. 
Note, that in mpC the sizeof operator is not a compile-time operator. At the same 
time, the compile-time operator mpc_sizeof, that yields the size of its operand in the 
translation environment, is introduced. 
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If a type name in a cast operator specifies a type of pointer to function, it may 
include the corresponding specifiers specifying attributes of function pointed to. 
EXAMPLE  
The type name  

int [host](*)() 

specifies the type of pointer to functional component of basic function returning int. 
The type name  

int [*](*)() 

specifies the type of pointer to nodal function returning int. The type name  
int [net Web(n,4)](*)() 

specifies the type of pointer to functional component of network function that has 
two special formal parameters, the network formal parameter having the type 
belonging to the network type family Web(n,4).  

Asynchronous binary operators 

Both operands of binary *, /, %, ?<, ?>, +, -, <<, >>, <, >, <=, >=, ==, !=, &, ^, |, 
&&, ||, *=, /=, %=, ?<=, ?>=, +=, -=, <<=, >>=, &=, ^=, |=, [] operators of the C[] 
language can be expressions with the values distributed over any region of the 
computing space. In this case, an operator is applied asynchronously to components 
of values of operands, and its result is distributed through the same region. In 
addition, if both operands are asynchronous expressions, then the entire expression is 
also asynchronous. 
The language permits the value of one of the operands to be distributed over a 
subnetwork of the region over which the value of another operand is distributed (for 
example, the value of one of the operands may belong to a processor belonging to the 
region over which the value of another operand is distributed). In this case, the 
operator is performed asynchronously on the subnetwork, and its result is also 
distributed over the subnetwork.  
The operators . and -> may have the left operand, value of which is distributed over a 
region of the computing space. In this case, an operator is applied asynchronously to 
all the components of the value of the operand, and its result is distributed through 
the same region. In addition, if the operand is an asynchronous expression, then the 
entire expression is also asynchronous.  

Asynchronous ternary operators 

All operands of the ternary ?: and [:] operators of the C[] language can be 
expressions, values of which are distributed over any region of the computing space. 
In this case the operator is performed asynchronously on components of values of 
operands, and its result is distributed through the same region. In addition, if both the 
operands are asynchronous expressions, then the whole expression is also 
asynchronous.  
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Cutting operator 

Syntax  
 

<cutting>: 
    <unary_expression> 
    <distribution_specifier> <cutting> 

 

Constraints  
The expressions (if any) in the distribution specifier must be asynchronous (in 
relation to the corresponding supernetwork) expressions without side effects. The 
distribution specifier shall either have the form "[identifier]" or specify the single 
node subnetwork. 
 

Semantics  
The cutting operator is specified by the distribution specifier specifying the region 
(say, r1) of the computing space, which should be a subregion of region r2 over 
which the value of the operand is distributed. The result is the corresponding 
segment of the distributed value of the operand. The operator is executed 
asynchronously, and if the operand is an lvalue then the whole expression is an 
lvalue also. 

Simple assignment 

Execution of a simple assignment shall not cause sending unions or bit arrays. 
Let the left and right operands of an assignment to be distributed over regions R1 
and R2 respectively. The operator is performed on the region R where R, R1, R2 
satisfy the following conditions: 

1. R is a network or a hard subnetwork. 
2. R1 is a subnetwork declared with a subnetwork specifier of the form 

[R:expression] or R is a network with a parent R1 or R and R1 are the same 
regions. 

3. R2 is a subnetwork declared with a subnetwork specifier of the form 
[R:expression] or R is a network with a parent R2 or R and R2 are the same 
regions. 

If there is no region R satisfying these conditions mentioned above the assignment is 
invalid. 
The following extensions of the simple assignment operator with distributed 
operands are admissible: 
! Asynchronous assignment  
! Broadcast/scatter assignment  
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! Parallel-send assignment  
! Gather assignment  

Operands for broadcast/scatter, parallel-send and gather assignment must be 
distributed over subnetworks of one network. 

Asynchronous assignment 

The values of both operands are distributed over the same region of the computing 
space (see Asynchronous binary operators). In this case, the operator is performed 
asynchronously on components of the values of the operands, and its result is 
distributed over this region. In addition, if both operands are asynchronous 
expressions, then the whole expression is also asynchronous. 

Broadcast/scatter assignment 

 Distribution of the left operand is some region R and distribution of the right 
operand is a single-node region. 
If the component of the object designated by left operand may be assigned to the 
value of right operand without type conversion, then the execution of the operator 
consists in storing the value of the right operand in each component of the object 
designated by the left operand. 
Otherwise, the value of the right operand shall be a vector, whose elements may be 
assigned without a type conversion to components of the left operand, and the 
number of elements of the vector is either equal to the number N In this case, the 
execution of the operator consists in storing the value of i-th element of the vector in 
the i-th component of the object designated by the left operand for all i from 0 to N-
1. 
EXAMPLE 1 illustrates Broadcast assignment 

/*Line 1*/net SimpleNet(N) cube; 
/*Line 2*/int [cube]a, [cube]b; 
          … 
/*Line 3*/{ 
/*Line 4*/flex subnet [cube:I == ri] cur_pr; 
          … 
/*Line 5*/a = [cur_pr]b;  
/*Line 6*/} 
          … 

Line 1 contains definition of network cube. Line 2 contains definition of two 
variables a and b distributed over cube network. Line 4 contains definition of flexible 
subnetwork cur_pr. This network consists of one node. Line 5 contains broadcast 
itself. In fact the expression at Line 5 means that the value of the distributed variable 
b, which belongs to the node [cube:I == ri], is broadcasted through the whole 
network cube and the value of b is assigned to a on each node of the network cube.  
EXAMPLE 2 illustrates scatter assignment 

/*Line 1*/net SimpleNet(4) cube; 
/*Line 2*/int [cube]a[5], [cube:parent]b[4][5]; 
          … 
/*Line 3*/a [] = b []; 
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Parallel-send assignment 

The left operand and the value of the right operand are distributed over different 
subnetworks of the same network (say, S0 and S1 correspondingly) consisting of the 
same number of nodes, say N. Types of components of the operands shall be 
compatible in relation to assignment and not cause type conversion. For all i from 0 
to N-1 the i-th (in the natural numeration) component of the value of the right 
operand is is stored in the object designated by the i-th component of the distributed 
object designated by the right operand. 
EXAMPLE 1  

/*Line 1*/net SimpleNet(4) cube; 
/*Line 2*/int [cube]a, [cube]b; 
          … 
/*Line 3*/{ 
/*Line 4*/flex subnet [cube:I == ri] cur_pr; 
/*Line 5*/flex subnet [cube:I == cur_i] partner; 
/*Line 6*/[cur_pr]a = [partner]b; 
/*Line 7*/} 

Line 1 contains network cube definition. At line 2 two distributed over network cube 
variables are defined. Lines 4-5 contain definitions of flexible subnets. Line 6 
contains the assignment itself. The component of b, which belongs to virtual 
processor called partner is sent to the virtual processor called cur_pr and value of b is 
assigned to a on the virtual processor called cur_pr.  
EXAMPLE 2 

/*Line 1*/nettype _2Dim_Net (N) { coord I = N, J = N; }; 
          … 
/*Line 2*/net _2Dim_Net (2) _2dn; 
/*Line 3*/int [_2dn]a, [_2dn]b; 
/*Line 4*/{ 
/*Line 5*/subnet [_2dn:I == 0] sbn1; 
/*Line 6*/subnet [_2dn:I == 1] sbn2; 
          … 
/*Line 7*/ [sbn1]a = [sbn2]b; 
          … 
/*Line 8*/} 

At line 1 _2Dim_Net network type is declared. Line 2 contains declaration of 
network _2dn. At line 3 two distributed over _2dn network variables – a and b – are 
declared. At lines 5-6 there are declared two hard subnets – sbn1 and sbn2. Line 7 
contains parallel-send assignment. The component of distributed variable a, which 
belongs to the virtual processor [_2dn:I==0&&J==0], will be assigned to the value of 
component of distributed variable b, which belongs to the virtual processor 
[_2dn:I==1&&J==0]. Similarly, component of distributed variable a, which belongs 
to the virtual processor [_2dn:I==0&&J==1], will be assigned to the value of 
component of distributed variable b, which belongs to the virtual processor 
[_2dn:I==1&&J==1]. 

Gather assignment 

The value of the right operand is distributed over some region R of the computing 
space, and the left operand is distributed over a  single-node region. In this case, the 
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left operand shall be an lvector whose length is either equal to the number N of 
components of the value of the right operand or not specified, and the type of 
elements of the lvector shall be compatible in relation to assignment with the type of 
components of the value of the right operand and not cause a type conversation. The 
execution of the operator consists in storing the i-th component of the value of the 
right operand to the i-th element of the vector designated by the left operand. 
EXAMPLE 

/*Line 1*/net SimpleNet(4) sn; 
/*Line 2*/int [sn:parent]a [4], [sn]b; 
          … 
/*Line 3*/a [] = b; 
          … 

Line 1 contains network sn definition. At line 2 two distributed over network sn 
variables are defined. Line 3 contains gather assignment. i-th member of a will be 
assigned to the i-th component of distributed value of b. 
 

The coordof operator 

Syntax  

<coordinate_expression>: 
    <identifier> coordof <unary_expression> 

Semantics  
The left operand is a coordinate name associated with a region of the computing 
space over which the value of the right operand is distributed. The result is an integer 
value distributed over this region each component of which is equal to the value of 
the specified coordinate of the processor to which the component belongs. The right 
operand is not evaluated, but only used to specify the region of the computing space.  

Postfix reduction operators 

Postfix unary [*], [+], [?<], [?>], [&], [^], [|], [&&], [||] operators are introduced. The 
result of an operator is distributed over the same region of the computing space as the 
value of the operand. Note, that the region should be either a network or a hard 
subnetwork. Each component of the resulting value equals to the value of the 
applying of reduction operator with the same operator's sign to the vector consisting 
of components of the operand. 
EXAMPLE 

/*Line 1*/net SimpleNet (5) sn; 
/*Line 2*/int [sn]a [4], [sn]b [4]; 
          … 
/*Line 3*/a [] = b [][+]; 
          … 

This example illustrates postfix reduction operator [+]. For all i from 0 to 3 i-th 
elements of all components of distributed variable a are assigned to the sum of i-th 
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elements of all components of distributed value b. In other words, on each virtual 
processor vector a is assigned to the sum of components of distributed vector b. 
 

Function call 

Syntax  

<function_call>: 
     <special_argument_expression>(opt) 
          <function_designation> ( <ordinary_argument_list>(opt) ) 
<special_argument_expression>: 
     ( [ ( <topological_argument_list>(opt) ) <idendifier> ] ) 

Semantics  
If the function designation has type "pointer to functional component of basic 
function", its value shall be distributed over the entire computing space. In this case, 
the special argument expression shall not appear, and the value of an ordinary 
argument (if any) shall either belong to the host or be replicated over the entire 
computing space. In this case, the function call shall be an overall expression, and the 
returning value (if any) shall be distributed over the entire computing space. 
If the function designation has type "pointer to function" (without additional 
attributes) or type "pointer to nodal function", the special argument expression shall 
not appear. In this case, the value of the function designation and the values of 
ordinary arguments (if any) shall either belong to the same virtual processor (say, P) 
or be distributed over the same region of the computing space (say R). In the first 
case, the function call shall be performed on processor P, and the returning value (if 
any) shall belong to P also. In the second case, the function call shall be performed 
on the region R, and the returning value (if any) shall distributed over P also. In 
addition, if the ordinary arguments and the function designation are asynchronous 
expressions and the function designation has type "pointer to nodal function", then 
the function call is an asynchronous expression also. 
If the function designation has type "pointer to functional component of network 
function", then its value will be distributed over a region of the computing space 
enclosing the region R that is specified by the identifier in the special argument 
expression. The values of all arguments (if any) will be distributed over R. The value 
of a scalar topological argument (if any) will be replicated over R. In this case, the 
function call shall be performed on R, and the returning value (if any) shall be 
distributed over R.  
EXAMPLE 1 illustrates call to network function. 

/*Line 1*/net SimpleNet (nnodes) sn; 
/*Line 2*/repl int [sn]if_ok; 
           … 
/*Line 3*/ [sn]: {if_ok = ([(nnodes)sn])Watermp (nnodes);} 
           … 
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EXAMPLE 2 illustrates call to basic function. 
/*Line 1*/void [*]MakeProcGrid (repl int *nnodes, repl int **powe) 
/*Line 2*/{ 
            … 
/*Line 3*/}  

/*Line 4*/int [*]main () 
/*Line 5*/{ 
/*Line 6*/  repl int nnodes, *powe; 

/*Line 7*/  MakeProcGrid (&nnodes, &powe);  
            … 
/*Line 8*/} 
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Statements 
Statements are the program elements that control how and in what order objects are 
manipulated. 
A statement may be executed either on a single processor, or on a region of the 
computing space (a network or a subnetwork), or on a set of regions, or on the entire 
computing space. 
If statement S0 follows statement S1 and the sets of processors executing the 
statements are disjoint, then it depends on the compiler whether the statements are 
executed in parallel. Otherwise, they are executed as if all computations specified in 
statement S0 end before any computation specified in statement S1 begins. But in the 
latter case, the compiler can also overlap executions of these statements, if it does not 
break functional semantics of their successive execution. 
By definition, a set of processors executing a statement, execution of which causes 
the creation of a network, includes all free (at the moment of execution of the 
statement) processors of the computing space. Therefore, if execution both S0 and S1 
causes creation of networks, then the intersection of the sets of processors executing 
these statements can not be empty (although the intersection can not be computed in 
compile time).  
The following categories of statements are covered in this chapter: 
! Labeled Statements  
! Compound statements. These statements are groups of statements enclosed in 

curly braces ({ }). They can be used wherever the grammar calls for a single 
statement. 

! Expression statements. These statements evaluate an expression for its side 
effects or for its return value. 

! Selection statements. These statements perform a test; they then execute one 
section of code if the test evaluates to true (nonzero). They may execute 
another section of code if the test evaluates to false. 

! Iteration statements. These statements provide for repeated execution of a block 
of code until a specified termination criterion is met. 

! Jump statements. These statements either transfer control immediately to 
another location in the function or return control from the function. 
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Labeled statements 

New kind of labeled statements is introduced in mpC. 

Syntax  
 

<labeled_statement>: 
    <distribution_specifier> ':' <statement> 

 

Constraints  
Only jump statements may be labeled by the specifier [*]. 

Semantics 
If a statement labeled by a distribution specifier is syntactically built from 
expressions and substatements, it is equivalent to the statement obtained from the 
initial statement by both applying the corresponding cutting operator to every 
identifier appearing in the expressions (except for the cases considered below) and 
labeling the substatements by the distribution specifier. Obtained expressions shall 
not violate semantic constraints for cutting operator. The result of recursive 
application of the described procedure should be a correct mpC statement not having 
to be asynchronous. 
If a substatemnet of the labeled statement is, in its turn, labeled by a distribution 
specifier, then the above procedure does not apply to the substatement. 
The cutting operator determined by the distribution specifier does not apply to an 
identifier appearing in an expression if:  
• the identifier is distributed over a subregion of the region determined by the 

distribution specifier;  
• the identifier appears in the right operand of a coordof operator;  
• the identifier is the right operand of a . or -> operator.  

If a jump statement is labeled by the distribution specifier, it is divided into a set of 
independent jump statements each of which is executed by the corresponding 
processor of the region specified by the distribution specifier.  
A null statement labeled by a distribution specifier is distributed over the 
corresponding region of the computing space.   

Compound statement (block) 

Statements that are grouped into a block can be distributed. If no network or hard 
subnetwork is defined in a block, and all the statements are asynchronous and 
distributed over the same region, then the block is also asynchronous.  



 47

Expression statement 

The expression in an expression statement may be distributed. If it is asynchronous, 
the expression statement is also asynchronous.  

Selection statements 

Syntax  
 

<selection_statement>: 
    if ( <expression> ) <statement> 
    if ( <expression> ) <statement> else <statement> 
    switch ( <expression> ) <statement> 

 

Semantics  
If the value of a controlling expression in a selection statement is undistributed, the 
selection statement selects among a set of statements depending on this value. 
Execution of such a selection statement includes evaluation of its controlling 
expression and sending the value of the controlling expression to all processors of the 
least set of networks enclosing the set of regions taking part in the execution of the 
statements among which selection is done. 
If the value of the controlling expression of the selection statement is distributed over 
a region of the computing space (in particular, over the entire computing space), the 
statements, among which the selection is done, shall be asynchronous statements 
distributed over the same region. If the controlling expression and these statements 
are asynchronous, the selection statement is also asynchronous, and it is divided into 
a set of independent selection statements each of which is executed by the 
corresponding processor of the region.  
Finally, if the value of the controlling expression and the statements, among which 
the selection is done, are distributed over the same region and at least one of these 
statements is asynchronous in relation to this region, then the controlling expression 
shall be replicated. Otherwise, the behavior is undefined.  

Iteration statements 

Iteration statements cause statements (or compound statements) to be executed zero 
or more times, subject to some loop-termination criteria. When these statements are 
compound statements, they are executed in order, except when either the break 
statement or the continue statement is encountered. (For a description of these 
statements, see The break Statement and The continue Statement.) 

Syntax  
 

<iteration_statement>: 
     while ( <expression> ) <statement> 
     do <statement> while ( <expression> ) ; 
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     for ( <expression>(opt); 
           <expression>(opt); 
           <expression>(opt) ) <statement> 

  

The while and do statements 

If the value of a controlling expression in a while or do statement is undistributed, 
the iteration statement causes the loop body to be executed repeatedly until the 
controlling expression evaluates to zero. Execution of such an iteration statement 
includes broadcasting the value of the controlling expression to all processors of the 
least set of networks enclosing the set of regions taking part in the evaluation of the 
controlling expression and the execution of the body loop. 
If the value of the controlling expression is distributed over a region of the 
computing space (in particular, over the entire computing space), then the loop body 
shall be an asynchronous statement, distributed over the same region. If the 
controlling expression and the loop body are asynchronous, then the iteration 
statement is also asynchronous and divided into a set of independent iteration 
statements each of which is executed by own processor node of the region.  
Finally, if the value of the controlling expression and the loop body are distributed 
over the same region, but the loop body is asynchronous in relation to this region, 
then the controlling expression shall be replicated. Otherwise, the behavior is 
undefined.  
  

The for statement 

Except for the behavior of the continue statement in the loop body, the statement  
 for ( expression-1; expression-2; expression-3 ) statement  

and the statement  
{ 
    expression-1; 
    while ( expression-2 ){ 
        statement 
        expression-3; 
    } 
} 

are equivalent.  

Jump statements 

The mpC language constrains essentially the usage of jump statements. 
If a jump statement is labeled (explicitly or implicitly) by a distribution specifier, 
then it is distributed over the region defined by the specifier. 
If a jump statement not labeled by a distribution specifier appears in a network 
function, it is distributed over the region on which the function is called. 
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If a jump statement not labeled by a distribution specifier appears in a basic function, 
it is an overall statement (that is, executed on the entire computing space). 
A jump statement, that appears in a nodal function, shall not be labeled by a 
distribution specifier and executed by the processor executing the function. 

Syntax 
 

<jump_statement>: 
break; 
continue; 
return <expression>(opt) ; 
goto <identifier>;   

 

The goto statement 

Constraints  
An undistributed goto statement and the label used in it can appear somewhere inside 
an undistributed statement executed by the same processor as the goto statement. 
A distributed goto statement is considered to be correct only in the following two 
cases:  
• both the goto statement and the statement labeled by the label used in the goto 

statement are (high-level) elements of the statement list constituting a block, 
and both of them are distributed over the region of the computing space 
executing the block;  

• both the goto statement and the label used in it appear somewhere inside an 
asynchronous statement.  

Semantics  
A goto statement causes an unconditional jump to the named label in the current 
function.  

The continue statement 

Constraints  
An undistributed continue statement can appear only inside the loop body of an 
undistributed iteration statement executed by the same processor as the continue 
statement. 
A distributed continue statement can appear only inside the loop body of an 
asynchronous iteration statement. 

Semantics  
A continue statement causes a jump to the loop-continuation portion of the smallest 
enclosing iteration statement; that is, to the end of the loop body.  
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The break statement 

Constraints  
An undistributed break statement must appear either in the switch body of an 
undistributed switch statement or in the loop body of an undistributed iteration 
statement executed by the same processor as the break statement. 
A distributed break statement must appear either in the switch body of an 
asynchronous switch statement, or in the loop body of an asynchronous iteration 
statement, or in the body of a fan statement, or in the body of a pipe statement. 

Semantics  
A break statement terminates execution of the smallest enclosing switch or iteration 
statement, or terminates execution of the body of the smallest enclosing fan 
statement, or terminates execution of the smallest enclosing pipe statement. The 
latter means that the processor executing the break statement terminates its execution 
of the pipe statement and sends the signal of preschedule termination to processors 
taking part in the execution of the pipe statement.  

The return statement 

Constraints  
A return statement cannot be labeled explicitly by a distribution specifier. 
A return statement cannot appear in any place of a function body where it may be 
executed in parallel with another statement of the function body. 
A return statement with an expression cannot appear in a function returning type 
void. 

Semantics  
A return statement terminates execution of the current function and returns control to 
its caller. A function may have any number of return statements, with or without 
expressions. If a return statement with an expression is executed, the value of the 
expression is returned to the caller. If the expression has a type different from that of 
the function in which it appears, it is converted as if it were assigned to an object of 
that type. If a return statement without an expression is executed, and the value of the 
function call is used by the caller, the behavior is undefined. Reaching the} that 
terminates a function is equivalent to executing a return statement without an 
expression.  
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Library functions 
The mpC library functions are developed to make mpC programming and debugging 
easier and more convenient. There are three categories of library functions: 
! Nodal library functions  
! Basic library functions  
! Network library functions  

All the library functions are declared in the header file <mpc.h>. 

Nodal library functions 

Nodal function is a function that can be called to by any virtual processor and is 
executed by the calling virtual processor only. Call to a nodal function is 
asynchronous. All pure C functions are nodal from the point of view of mpC. 
In this chapter there described the following nodal library functions: 
! The MPC_Printf function  
! The MPC_Wtime function  
! The MPC_Total_nodes function  
! The MPC_Processors_static_info function   
! The MPC_Abort function  
! The MPC_Get_processor_name function  

Function MPC_Printf 

Synopsis  
 

#include <mpc.h> 

int MPC_Printf( const char* format, ...); 

 

Description  
MPC_Printf allows to output formatted strings to stdout on the host virtual processor 
from any virtual processor of the computing space. Syntax strictly follows standard 
printf syntax. 

Returned value  
The function returns 0 if all is OK, and non-zero otherwise. 
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Function MPC_Wtime 

Synopsis  
 

#include <mpc.h> 

int MPC_Wtime(void); 

 

Description  
MPC_Wtime returns a floating-point number of seconds, representing elapsed wall-
clock time since some time in the past. The "time in the past" is guaranteed not to 
change during the life of the process, but can be different on different virtual 
processors of the computing space. The user is responsible for converting large 
numbers of seconds to other units if they are preferred. 
This function is portable (it returns seconds, not "ticks"), it allows high-resolution, 
and carries no unnecessary baggage.  
EXAMPLE: 

{ 
    int starttime, endtime; 
    starttime = int MPC_Wtime(); 
    ...stuff to be timed ... 
    endtime = int MPC_Wtime(); 
    printf("That took %f seconds\n",endtime-starttime); 
} 

 

Function MPC_Total_nodes 

Synopsis  
 

#include <mpc.h> 

int MPC_Total_nodes(void); 

 

Description 
MPC_Total_nodes returns the total number of virtual processors in the computing 
space. 

Function MPC_Get_processor_name 

Synopsis  
 

#include <mpc.h> 

char * MPC_Get_processor_name(void); 
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Description 
MPC_Get_processor_name returns the hostname of the physical processor, to which 
the calling virtual processor is mapped. 

Function MPC_Processors_static_info 

Synopsis  
 

#include <mpc.h> 

int MPC_Processors_static_info(int *num_of_processors,  
    double **relative performance); 

 

Description  
After a call to MPC_Processors_static_info object *num_of_processors will contain 
the total number N of physical processors of the underlying distributed memory 
machine. Object *relative_performance will contain a pointer to the initial element of 
N-element double array, containing relative performances of the processors. 

Returned value  
The function returns 0 if all is OK, and non-zero otherwise. 

Function MPC_Abort 

Synopsis  

#include <mpc.h> 

int MPC_Abort(repl errcode); 

Description  
MPC_Abort tries to abort all processes in the computer space. The value of error 
code will be returned to a command shell. 

Return value  
Ignored  
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Basic library functions 

Basic function is a function that is called to by all the virtual processors in the 
computing space. A call to basic function is an overall expression. Its arguments (if 
any) shall either belong to the host-processor or be distributed over the entire 
computing space, and the return value (if any) shall be distributed over the entire 
computing space. 
In this chapter there described the following basic library functions: 
! The MPC_Exit function  
! The MPC_Global_barrier function  

Function MPC_Exit 

Synopsis  
 

#include <mpc.h> 

int [*]MPC_Exit(repl exitcode); 

 

Description 
MPC_Exit terminates execution of an mpC program. A call to MPC_Exit is a point 
of global synchronization (i.e. all virtual processors from the computing space call it 
in synchronous manner). The value of exit code will be returned into the command 
shell. 

Return value  
Ignored  

Function MPC_Global_barrier 

Synopsis  
 

#include <mpc.h> 

int [*]MPC_Global_barrier(void); 

 

Description  
A call to MPC_Global_barrier is a point of global synchronization. 

Return value  
The function returns 0 if all is OK, and non-zero otherwise. 
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Network library functions 

Network function is called and executed on some network or hard subnetwork, and 
its arguments and value (if any) is also distributed over this region of the computing 
space. 
In this chapter there described the following network library functions: 
! The MPC_Barrier function  
! The MPC_Assign function  
! The MPC_Bcast function  
! The MPC_Scatter function  
! The MPC_Gather function  

Nettype SimpleNet 

Synopsis  
 

#include <mpc.h> 

nettype SimpleNet(n) { coord I=n; }; 

 
Description 
One-dimensional network type. 

Function MPC_Barrier 

Synopsis  

#include <mpc.h> 

int [net SimpleNet(n) w]MPC_Barrier(void); 

Description  
A call to MPC_Barrier is a point of synchronization of all virtual processors of w. 

Return value  
The function returns 0 if all is OK, and non-zero otherwise. 
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Function MPC_Assign 

Synopsis  
 

#include <mpc.h> 

int [net SimpleNet(n) w]MPC_Assign( 
    repl const *source, 
    <s_type> *s_buffer,  
    int const s_step, 
    repl const count, 
    repl const *destination, 
    <d_type> *d_buffer, 
    int const d_step); 

 

Description  
MPC_Assign sends count elements of type <s_type> from virtual processor of w the 
coordinate of which is equal to *source, to a virtual processor of w the coordinate of 
which is equal to *destination. Parameters s_buffer and s_step are significant only at 
the sender and specify the initial address of the source buffer and the step between 
elements in the buffer, respectively. Similarly, parameters d_buffer and d_step are 
significant only at receiver and specify initial the address of the receive buffer and 
the step between elements in the buffer, respectively. For every element to send 
matching element to receive must be specified. In other words, types <s_type> and 
<d_type> must contain equivalent sequences of basic types. If this condition is not 
satisfied, the compiler should detect such a situation as erroneous. 
The value of the parameter n is ignored, so the corresponding actual parameter may 
be arbitrary integer (for example 0). 

Return value  
The function returns 0 if all is OK, and non-zero otherwise. 

Function MPC_Bcast 

Synopsis  
 

#include <mpc.h> 

int [net SimpleNet(n) w]MPC_Bcast( 
    repl const *source, 
    <s_type> *s_buffer, 
    int const s_step, 
    repl const count, 
    <d_type> *d_buffer, 
    int const d_step); 

 

Description  
MPC_Bcast sends count elements of the type <s_type> from a virtual processor w, 
the coordinate of which is equal to *source, to all virtual processors (including the 
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sender) in w. Parameters s_buffer and s_step are significant only at the sender and 
specify the initial address of the source buffer and the step between elements in the 
buffer, respectively. Parameters d_buffer and d_step specify the initial address of the 
receive buffer and the step between elements in the buffer, respectively. For every 
element to send the corresponding element to receive must be specified. In other 
words, types <s_type> and <d_type> must contain equivalent sequences of basic 
types. If this condition is not satisfied, the compiler should detect this situation as 
erroneous. 
The value of the parameter n is ignored, so the corresponding actual parameter may 
be arbitrary integer (for example 0). 

Return value  
The function returns 0 if all is OK, and non-zero otherwise. 

Function MPC_Scatter 

Synopsis  
 

#include <mpc.h> 

int [net SimpleNet(n) w]MPC_Scatter( 
    repl const *source, 
    <s_type> *s_buffer, 
    int const *disps, 
    int const *lengths, 
    repl const count, 
    <d_type> *d_buffer); 

 

Description  
MPC_Scatter scatters the values of a number of elements of type <s_type> from a 
virtual processor of w, the coordinate of which is equal to *source, over all virtual 
processors of w. Parameter s_buffer is significant only at the sender and specifies the 
initial address of the source buffer. Parameters disps and lengths are significant only 
at sender, and disps points to an integer array, the i-th element of which specifies the 
displacement (relative to s_buffer) from which lengths[i] elements will be taken to 
send to the i-th virtual processor of w. 
Parameter d_buffer specifies the initial address of the receive buffer. Parameter count 
specifies the number of elements in the receive buffer. For every element to send 
matching element to receive must be specified. In other words, types <s_type> and 
<d_type> must contain equivalent sequences of basic types. If this condition is not 
satisfied, the compiler should detect this situation as erroneous. 
The value of the parameter n is ignored, so the corresponding actual parameter may 
be arbitrary integer (for example 0). 

Return value  
The function returns 0 if all is OK, and non-zero otherwise. 
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Function MPC_Gather 

Synopsis  
 

#include <mpc.h> 

int [net SimpleNet(n) w]MPC_Gather( 
    repl const *destination, 
    <d_type> *d_buffer, 
    int const *disps, 
    int const *lengths, 
    repl const count, 
    <s_type> *s_buffer); 

 

Description  
MPC_Gather gathers on a virtual processor of w the coordinate of which is equal to 
the value of *destination, a number of <s_type> elements from all virtual processors 
(including the receiver) of w. Parameter d_buffer is significant only at the receiver 
and specifies the initial address of the receive buffer. Parameters displs and lengths 
are also significant only at the receiver, and displs points to an integer array, i-th 
element of which specifies the displacement (relative to d_buffer) to which lengths[i] 
elements to receive from the i-th virtual of w will be placed. 
Parameter s_buffer specifies the initial address of the send buffer. Parameter count 
specifies the number of elements in the send buffer. For every element to receive the 
matching element to send must be specified. In other words, types <s_type> and 
<d_type> must contain equivalent sequences of basic types. If this condition is not 
satisfied, the compiler should detect this situation as erroneous. 
The value of the parameter n is ignored, so the corresponding actual parameter may 
be arbitrary integer (for example 0). 

Return value  
The function returns 0 if all is OK, and non-zero otherwise. 
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Implementation restrictions 
The current implementation does not support full implementation of parallel 
statements fan, par, and pipe, so their descriptions were omitted. In addition, 
following features are not supported in the current implementation:  
• negative steps in arrays;  
• user-defined postfix reduction operations;  
• vectors as return values  
• void as a processor node type;  
• any expression, other than a identifier, in the left expression list of a single link 

declarator, if the expression contains a coordinate variable (including a free 
coordinate variable);  

• 2-operand versions of ?:;  
• [:], [#] and vector forming C[] operators;  
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C[] 
Introduction 

The C[] (pronounced "see brackets") programming language is a Fortran90-like C 
extension. While preserving all ANSI C syntax and semantics, new powerful 
facilities for array processing are introduced.  
The C[] programming language is aimed at producing portable, tunable and efficient 
code for a variety of modern platforms. In particular, systems with multilevel 
memory hierarchy and instruction level parallelism are supported. 
Support of array-based computations is provided. The language permits to 
manipulate arrays as single objects. The C[] syntax offers natural form to express 
array-based computations which also allows compiler to fully utilize the performance 
potential of a target platform.  
The key C[] features are:  
• Access to an array as a whole as well as access to both regular and irregular 

segments of an array  
• Variable-size (dynamic) arrays  
• Variety of elementwise and reduction operators  

C[] is a subset of the mpC programming language. While C[] addresses instruction 
level parallelism and memory hierarchy of a single-chip platform, mpC is aimed at 
exploiting parallelism of distributed memory architectures. Thus, mpC provides a 
way for comprehensive utilization of the performance potential of a target platform 
(for example, a network of UNIX workstations) at all levels. 
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Types 
Vectors  

The basic new notion of the C[] language is a notion of vector. A vector is defined as 
an ordered sequence of elements of the same valid vector element type. The number 
of vector elements is called vector size. A valid vector element type is any type 
excepting function type, void type, or any incomplete C type (recall that an 
incomplete type is an array of unknown size or structure or union of unknown 
content).  
The C[] language introduces a new kind of derived types - vector type. A vector type 
describes a set of objects or values with a particular member object type, called the 
element type. The element type must be a valid vector element type. A vector type is 
characterized by its element type T and by the number N of elements in the vector. A 
vector type is said to be derived from its element type, and if its element type is T, 
the vector type is called vector of N elements of type T or simply vector of T. Unlike 
any other type, a vector type can not be explicitly specified and hence can not appear 
in declarations. But C[] expressions may have a vector type.  
The simplest way to construct an expression of a vector type is to apply a special 
blocking postfix operator [] to an expression of an array type. If the expression e 
designates an array of N elements of a non-array valid vector element type, then the 
expression e[] designates a vector of N elements and the i-th element of that vector is 
just the i-th element of the array e, namely, e[i]. If the expression e designates an 
array of N elements of an array type, then the expression e[] designates a vector of N 
elements and the i-th element of that vector is the result of applying the blocking 
operator to the array designated by e[i].  
In this document we often use the term "vector a[]" instead of "vector designated by 
a[]".  
EXAMPLE: 
Let the array a be defined and initialized by the declaration  

int a[3][2];  

Then the expression a[] has the type "vector consisting of three vectors, each of 
which consists of two integers" with elements {{a[0][0], a[0][1]}, {a[1][0], 
a[1][1]}, {a[2][0], a[2][1]}} .  
Vectors and arrays are similar in many features, but there is one principal difference, 
namely, in expressions, arrays are converted to pointers meanwhile vectors do not. 
For example, if array a is declared as int a[8], then the expression a+1 has type 
"pointer to int" and points to the first element of the array a. At the same time, the 
expression a[]+1 has type "vector of 8 ints", and the i-th element of that vector is 
equal to a[i]+1. See the section Vector Operators for a comprehensive explanation 
of vector operators. 
The blocking operator [] is also applicable to pointers. If e is an expression of type 
"pointer to a non-array valid vector element type", then the expression e[] designates 
a vector of N elements (N is determined from the context according to rules 
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explained later in the document), and the i-th element of that vector is e[i]. If e is a 
pointer to array type T, and T is also a valid vector element type, then the expression 
e[] designates a vector of N elements (N is determined from the context), and the i-th 
element of that vector is the result of applying the blocking operator to the array 
designated by e[i].  
The blocking operator [] is applied to an expression designating an array of 
unspecified length in the same manner as it is applied to a pointer. 
Here are more intricate examples of use of the blocking operator. 
EXAMPLE:  

int a[10];  
int b[10];  
int *p;  
a[]=b[]+p[];  

Here the expression p[] is a vector of 10 elements. The vector length is determined 
from the context.  
EXAMPLE: 
Let pointers p1 and p2 be declared as follows:  

int (*p1)[10];  
int **p2;  

Then the expression p1[] has the type "vector of N of vectors of 10 elements of type 
int", where N depends on the context. The expression p2[] has the type "vector of M 
pointers to int", where M depends on the context.  

Arrays 

In the C language an array comprises "a contiguously allocated set of elements of 
any one type of object". In the C[] language an array comprises a sequentially 
allocated elements (with a positive 'step') of any one type of object. Thus, in the C[] 
language an array has at least three attributes, namely, the type of its elements, the 
number of elements and the allocation step. In the C[] language, the array declarator 
syntax differs from the standard in following way. The rule  

<direct-declarator>:  
<direct-declarator> [ <expression>(opt)]  

is replaced with the rules  

<direct-declarator>:  
    <direct-declarator> [ <expression>(opt) <step>(opt)]  
<step>: ':' <expression>  

If step is not specified, then it is equal to 1. The step should be a positive integral 
value.  
Unlike the C language, C[] allows arrays to have variable length, i.e. an array length 
may be any expression of an integral type. Similarly, a variable array step is also 
permitted. Arrays with non-constant steps or lengths must have an automatic storage 
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durations, i.e. must be declared either with auto storage class specifier or must be 
declared within function body without storage class specifiers. 

Constraints 
Objects of array type with step exceeding 1 shall not be initialized. Objects of array 
type with non-constant length shall not be initialized. 
EXAMPLES:  
The declarations int a[3:1] and int a[3] both define an array of the form  

 
The size of the slot between elements of the array is equal to zero.  
The declaration int a[3:3]; defines an array of the form  

 
The size of the slot between array elements is equal to 2*sizeof(int) bytes.  
In the following example the array a of N+M elements is declared: 

int N,M; 
... 
f(){  
  int A[N+M];  
  ...  
}  

Pointers  

In the C language a pointer has only one attribute, namely, the type of object it points 
to. This attribute is necessary for the correct interpretation of values of objects it 
points to as well as the address operators + and - . These operators are correct only if 
the pointer's operands and the pointer's results point to elements of the same array 
object.  
The same rule is valid for the C[] language. Therefore, to support the correct 
interpretation of the address operators, one additional attribute of pointer is 
introduced, namely, step.  
In the C language Standard, "when an expression that has integral type is added to or 
subtracted from a pointer, the integral value is first multiplied by the size of the 
object pointed to". In the C[] language , the multiplier is equal to the product of the 
pointer step and the size of the object pointed to. In the C language, "when two 
pointers to elements of the same array object are subtracted, the difference is divided 
by the size of a element". In the C[] language, the divisor is equal to the product of 
the pointer step and the size of an element.  
In the C[] language, the pointer declarator is defined as follows:  

<pointer>:  
    * <step>(opt) <type-specifier-list>(opt)  
    * <step>(opt) <type-specifier-list>(opt) <pointer>  
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If step is not specified, it is equal to 1. The step may be any expression of an integral 
type. Pointers with non-constant steps must have an automatic storage durations, i.e. 
must have either auto or register storage class specifiers or must be declared within 
function body without storage class specifiers. 
 
EXAMPLE: 
The declaration int a[]={0,1,2,3,4} defines an array of the form  

 
The pointer declaration int *:2 p=(void*)a forms the following structure of storage  

 
| 

p+1 

and address expressions (p+1) points to the a[2] element of the array a.  

Dynamic types 

The C[] language allows to use non-constant expressions as specifier of array 
dimension, array step or pointer. Such arrays and pointers are called dynamic. Only 
arrays with automatic storage class can be dynamic. By analogy with the draft 
standard of the C language performing of the side effect in the expression for the 
array dimension is not secure. The same rules are used in the C[] also for pointers. 
EXAMPLE 
Access to the diagonal elements with the help of pointer to array with step. 

typedef (* tDiag)[N+1]; 

int A[N][N]; 
tDiag p; 

... 
p=(tDiag)A; 
... 
(*p)[i]=1; 

Arrays and pointers with step are convenient tools for access to different sets of 
elements of the array. Thus, in this example the pointer p to the array allows to 
access diagonal elements of the matrix stored in the array A. 
The type tDiag is a type of pointer to array with step N+1. As arrays in the C 
language are stored in the memory by rows, the diagonal elements are stored with 
step N+1, and the expression (*p)[i] designates the i-th element of the diagonal. 
 

Expressions 
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Lvectors  

A vector comprising modifiable lvalues is called lvector. In C[], the left operand of a 
simple or compound assignment operator or the operand of postfix/prefix 
increment/decrement operators must be either modifiable lvalue or lvector. 
EXAMPLE: 
Expressions a[] and b[] are lvectors, but the expression a[]+b[] is not.  
Note, that the result of applying the blocking operator is always an lvector. Lvectors 
may also be the result of applying operators other then the blocking one. For 
example, if array p is declared as int* p[3], then the expression *(p[]) is an lvector, 
and, hence, the expression *(p[])=1 is correct.  

Access to the Elements of an Array  

In the C[] language, e2-th element of an array object e1 is accessed with the help of 
one of the expressions e1[e2] and (e2)[e1] . Both are identical to (*(e1+(e2))) . Here, 
e2 is an integral expression, e1 is an lvalue that has the type "array of type". This 
lvalue is converted to an expression that has the type "pointer to type" and that points 
to the initial element of the array object (the attribute step of this pointer is identical 
to the attribute step of the array object).  
EXAMPLE 1 
In this example to all the elements of the i-th row of the array A there is assigned the 
value of the i-th element of the array b: 

int A[M][N]; 
int b[M]; 
... 
... 
A[:][:]=b[:]; 

EXAMPLE 2 
In this example to the elements of the array A with the indices 0, 1, 3 there is 
assigned the value 1: 

int A[M]; 
int ind[3]={0,1,3}; 
... 
... 
A[ind[:]]=1; 

  

Access to Subarrays  

In this section it is described, how the blocking operator can be used to access 
subarrays.  
By definition, a (data) object belongs to an array, if it is an element of the array or it 
belongs to an element of the array. Any set of objects belonging to the same array is 
called a subarray, iff this set can be described as an array (using bounds and step 
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attributes as defined above). In addition, any subarray can be referred to as an object 
belonging to its superarray.  
In principle, the facilities introduced are sufficient to access subarrays. For example, 
if the array object a is defined by the declaration  

int a[5][5];  

then the expression  
(*(int(*)[5:6])a)[] (1)  

designates a vector of five ints that contains the main diagonal of the matrix a , and 
the expressions  

(*(int(*)[4:6])(a[0]+1))[] (2)  

and  
(*(int(*)[4:6])(&a[0][1]))[] (3)  

designate a vector of four ints that contains the diagonal of the matrix a which is 
placed above the main diagonal.  
The more compact notation results, if variables of type "pointer to array" are used. 
So, if the pointer objects p1 and p2 are defined by declarations  

int (*p1)[5:6]=(void*)a;  
int (*p2)[4:6]=(void*)(a[0]+1);  

then the expression (*p1)[] can be used instead of (1) and the expression (*p2)[] can 
be used instead of (2) and (3).  

Array Segments  

Not every regular set of objects belonging to an array is a subarray. For example, the 
rectangular segment of the array a represented in Fig.1 is not a subarray.  

  
Figure 1: Rectangular 2x3 segment of array A 

Access to such array segments is provided by so-called grid operator [:], the only 
quaternary operator in C[]. The general notation for the grid operator is:  

e [ l : r : s ],  

where expression e either is of a pointer type or designates an array, and expressions 
l, r, s are of any integral type. l, r , s denotes the left bound, the right bound and the 
step correspondingly, and e [ r : l : s ] designates a vector of (r-l)/s + 1 elements 
whose i-th element is e[l+i*s] .  
 
EXAMPLE:  
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If array a is declared as int a[5], then the expression a[2:4:2] designates a two-
element vector comprising a[2] and a[4] .  
The step operand may be omitted, and in that case the second semicolon in the grid 
notation is optional. One or both bounds are also may be omitted. The omitted left 
bound is replaced by 0, while the omitted right bound is replaced by N-1 , where N is 
the number of array elements, if the fist operand designates an array, or determined 
from the context, if the operand is a pointer. Fig. 2 gives some examples of grid 
expressions with various combinations of omitted operands.  

 
Figure 2. Various combinations of omitted values in grid expressions. 

The first operand of the grid operator may have a vector type. In that case the 
operator is applied elementally. Consider the array A which is declared as int 
A[4][5]. The expression A[1:2] is a vector of 2 arrays corresponding to second and 
third rows of A. In the expression A[1:2][1:3], the second grid operator ( [1:3] ) is 
applied to each of the arrays selecting their second, third and fourth elements (Fig. 
1). Successive grid operators are very convenient to access segments of a multi-
dimensional array.  
The operand of the blocking operator [] also may have vector type. In that case, the 
operator is applied elementally. If the array A is declared as int A[5][5][5], then the 
expression A[1:3] has type "vector of 3 arrays". In the expression A[1:3][], the 
blocking operator is applied to each of the arrays. Thus, the expression A[1:3][] 
designates the 3x5x5 array segment.  
One can see that the expression A[1:3][] has an equivalent representation, 
A[1:3][:][:]. Thus, the blocking operator can be considered as more compact 
notation to express successive grid operators with omitted steps and bounds.  
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Irregular Segments  

As we have mentioned, operands of the subscript operator may have vector types. 
Any subset of array elements can be accessed by means of some subscript 
expression, whose right operand is of vector type (so-called vector subscripting). In 
other words, access to the vector consisting of i1-th, i2-th, ..., in-th elements of array 
a is provided by the expression a[i[]], where i[] is the n-element vector whose 
elements are i1, i2, ..., in.  
EXAMPLE: 
If the array a is declared as int a[5] and the array i is declared as int i[4]={0,1,3,4}, 
the expression a[i[]] designates a vector of a[0], a[1], a[3], a[4].  
EXAMPLE: 
In the following C[] code portion  

int A[5][5]; 
int i[4]={0,1,3,4}; 

A[ i[] ][ i[] ]=1;  

the value 1 is assigned to all elements of the irregular array A region depicted in Fig. 
3.  

  
Figure 3: Irregular segment of the array A  

In fact, the grid operator provides more convenient but less flexible way to access 
subsets of array elements then vector subscripting. If access to regular segments is 
required, the grid operator is preferable. Of course any grid operator may be replaced 
by some equivalent subscript operator. Indeed, consider the array a declared as int 
a[5]. Expressions a[1:3:2] and a[i[]], where vector i[] is a two-element integral 
vector whose elements are 1 and 3 correspondingly, designate the same vector. 
Similarly, any combination of successive grid operators can be expressed by means 
of appropriate vector subscripting.  
 

Unary vector operators  

The operand of unary &, *, +, -, ~, ?, %, !, ++ (postfix and prefix form), and -- 
(postfix and prefix form) operators and scalar cast operators may have a vector type. 
In that case, the operator is applied to the elements of vector; if they are also vectors, 
the operator is applied to their elements and so on.  
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Note that the operand of the decrement and increment operation (both postfix and 
prefix) must be Lvector. 
The type name in cast operator can be any scalar type of the C[] language.  
EXAMPLE:  

int a[3]; 
int b[3]; 
a[]=-b[];  

In this example, the i-th element of the vector a[] is set to -b[i] for i=0, 1, 2.  

Binary vector operators 

One or both operands of binary =, *, /, %, ?<, ?>, +, -, <<, >>, <, >, <=, >=, ==, !=, 
&, ^, |, *=, /=, %=, +=, -=, <<=, >>=, &=, ^=,   and |= operators may have vector 
type. In this case both operands must be vectors of the same size, otherwise the 
behavior is undefined.  
In the following C[] code portion  

int a[10], b[10], c;  
a[]=b[]*c;  

b[i]*c is assigned to the i-th element of array a for all i (0 <= i <10).  
If elements of the operands are vectors of the same size, the operator is applied to 
their elements and so on. If the elements of one operand are vectors of the size N, 
and elements of the second one are scalars then the scalars are converted to vectors 
of the size N, all elements of which are equal to the corresponding scalar value. 
However, a binary operator is applicable to vector operands of different number of 
dimensions. In the following example  

double a[10], B[10][20];  
B[] *= a[];  

each element of the i-th row of B is multiplied by a[i].  
Conditional operator may also have vectors as its operands. If the first operand of 
conditional operator is a scalar and the second or third operand or both are of vector 
type then the result of the operator has the same vector type as for binary operators 
discussed above. The first operand of a conditional operator may have vector type. In 
that case the second or the third operand but not both of them may be omitted. If 
none of the operands is omitted then unlike the C language all three operands are 
evaluated. If all three operands are vectors of the same length then the result is 
produced by elementwise application of the operator. If vector operands of a 
conditional operator have different lengths then behavior is undefined. If the second 
or the third operand is non-vector then the length of that operand is converted to the 
length of the vector operands. If the first and the second (or the third) operands are 
vectors, the third (the second) operand is omitted, and the elements of the first 
operand have scalar type, then the result will be the vector of the same type as the 
second (the third) operand; the i-th element of the result is equal to the k(i)-th 
element of the second (the third) operand where k(i) is the index of the i-th non-zero 
(zero) element of the first operand. The other elements have indefinite values.  
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For example, execution of  
int a[5]={1,2,3,4,5}; 
int b[5]={3,3,3,2,6};  
int c[5];  

c[]=a[] < b[] ? A[]:;  

results in the vector c[] equal to {1,2,5,w,w}, where w denotes an undefined value.  
If the first and the second (or the third) operands are vectors, the third (the second) 
operand is omitted, and the elements of the first operand have vector type, then the 
result is achieved by elementwise application of the operator.  
Subscript operator also allows vector operands. Remember that the C language 
expression e[f] is defined as *(e+f). In C[] the subscript operator is treated exactly in 
the same way.  
EXAMPLE: 
In the following C[] program the last column of the array A is set to 1:  

int A[2][3];  
int* p[2];  

p[0]=&A[0][0];  
p[1]=&A[1][0];  
p[][2]=1;  

Indeed, the expression p[][2] has an equivalent form, *(p[]+2), that is clearly a 
vector consisting of pointers to the last matrix A column elements.  
The blocking operator is applicable to vectors in elementwise fashion. See section 
Array Segments for details.  

Access to structure and union members 

The first operand of the "." operator may have vector type. In this case the second 
operand is identifier – union or structure member name. The result of the expression 
lexpr.rexpr is vector of the same size as lexpr. Its elements have values of the named 
structure member of the corresponding vector elements.  
The expression lexpr->rexpr is equivalent to the expression (*lexpr).rexpr. 

Determining Undefined Vector Size from Context  

If one of the operands of a binary operator is a vector of undefined size, and another 
is a vector of a definite size, N, then the size of the operand of undefined size is 
assumed to be equal to N. Similarly, if one of the operands of a ternary operator is a 
vector of definite size N, then the size of a vector operand of undefined size is 
assumed to be equal to N.  
EXAMPLE:  

int a[3]; 
int b[3]; 
int *p 

a[]=b[]+p[];  
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Here, the size of vector p[] is 3, because the size of the left operand of the binary + 
operator (b[]) in the expression b[]+p[] is 3.  
EXAMPLE:  
If the pointer p is declared as int **p and the array A is declared as int A[], then the 
element size of the vector p[][] in the expression a[]+p[][] can not be determined 
from the context regardless the element size of array a is definite.  
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Reduction operations 
The unary reduction [*], [?<], [?>], [+], [&], [^], and [|] operators correspond to 
binary *, ?<, ?>, +, &, ^, and | operators. These operators are applicable only to 
vector operands. Let v[0], v[1],...,v[N] denote the elements of vector operand v. 
Then the expression [op] v[] has the same semantics as the expression of (...((v[0] op 
v[1]) op v[2]) op ... op v[N]) kind.  
EXAMPLE: 
In the following code portion  

int a[]={0,1,2,3,4}, sum;  

sum=[+]a[];  

the value of sum is equal to the value of the expression  
((((a[0]+a[1])+a[2])+a[3])+a[4])  

which is equal to 10.  
EXAMPLE:  

double A[2][3];  
double s[3];  
double sum;  

s[]=[+]A[]; 
sum=[+][+]A[];  

Here the sum of the rows of the array A is assigned to the vector s[], and the sum of 
all elements of the array A is assigned to sum.  
In the C[] language there are defined maximum ?> and minimum ?< binary 
operators. The corresponding [?>] and [?<] reduction operators are used to evaluate 
the maximum and minimum values among array elements.  
EXAMPLE: 
The following C[] code portion is aimed at evaluating the maximum among elements 
of matrix A:  

int A[2][3];  
int max;  
max=[?>][?>]A[];  
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