
Communication Performance
Models for Heterogeneous
Computational Clusters

Maureen O’Flynn

The thesis is submitted to University College Dublin

for the degree of Doctor of Philosophy

June 2009

Head of Department: Joe Carty

Supervisor of Research : Alexey Lastovetsky

School of Computer Science and Informatics,

College of Engineering, Mathematical and Physical

Sciences,

University College Dublin,
Belfield, Dublin.

I would like to dedicate this thesis to my husband Tony.

Acknowledgements

I would like to thank my supervisor, Alexey Lastovetsky, for an unfail-
ing support, help and advice. From the very beginning he provided
a very focused and specific guidance that meant my research never
drifted and was always rewarding towards our goals, in the vast and
complex subject arena of parallel communications. I am especially
grateful for his encouragement through the difficult times. I would
like to give special thanks to Vladimir Rychkov who helped me with
every aspect of this thesis with great interest and enthusiasm, spend-
ing many hours in discussions. I would like to thank Is-Haka Imwawa
for his help and encouragement at the early stages of the project, he
fostered our early ideas and provided me with guidance when starting
out. I would like to thank Ravi Reddy for his ideas and help also.

I would like to thank Science Foundation Ireland for their financial
support with my grant funding. I would like thank Brett Becker
for his work with the cluster throughout the project, and to thank
the other postgraduates of our group, Thomas, Robert and Michele,
and the administrative and technical staff of the computer science
department. Finally I would like to thank all the friends and family,
in particular my father, for their constant faith and motivation. Most
of all I would like to acknowledge my husband, who made this journey
one of happiness.

Abstract

The parallel systems of the past are made up of specialist homoge-
neous processors dedicated to their task. These systems are evolved
so they may now harness the power of ordinary switched networks.
The networks of today are heterogeneous with a variety of comput-
ers with different power and communication speeds. The design of
applications for parallel computing is greatly assisted by predictive
models for estimation of communications costs. However these mod-
els are traditionally designed for the homogeneous systems, and no
longer reflect the challenges presented by heterogeneous networks of
computers.

We present a new intuitive performance model, the LMO model that
is designed for both homogeneous and heterogeneous switched net-
works. The model is an innovative formulation that can map parts
of parallel communication operations in a much more flexible way
than traditional models to date. It has the advantage that it also
includes empirical readings rather than a purely analytical approach
as before. The model can adapt to each network and has highlighted
previously uncharted regions of nonlinear response for some data sizes
that give rise to severe performance degradation. Our model is unique
in allowing the user to avoid such problem regions with its predictive
assessment.

There are two key issues with a communications software model, its
design and the estimation of its parameters. The new model for het-
erogeneity gives rise to a greater number of parameters that allow for
its flexible mapping abilities. Previous models were limited to only a
few parameters due to their simple estimation techniques. Therefore
without suitable estimation methods the model has little applicability
or use. We design an innovative estimation method and add efficiency
with the calculations being performed in parallel. The method over-
comes the limitations of the simple parameter estimation techniques of
the past, these methods had restricted the design of the models to be
non-intuitive and inflexible for the switched heterogeneous networks
of today.

The ultimate usefulness of the predictive performance model is condi-
tioned by the ability to accurately and efficiently measure the parame-
ters of these models. Accurate timing methods are essential to ensure
the performance model can accurately represent the overall execution
time of the applications. Our first task was to address the shortcom-
ings of current benchmarking methods. We address the problem of
accurate and efficient timing of communications performance on a het-
erogeneous single switched network with a new software benchmarking
library MPIBlib. This is a library that can be easily integrated with
parallel applications.

We also present revised traditional models that we have extended
to be heterogeneous. We implement a new software tool, the CPM,
that allows the efficient and effective calculation process for the LMO
model and the heterogeneous extended traditional models. The soft-
ware provides an API for application developers that is easy to use
and readily extensible in design. Finally we present some examples of
applications that use the models we have developed. Using the CPM
software we demonstrate the possibilities that these models present
in assisting the applications designer to tune and optimize parallel
computing applications.

Contents

1 Introduction 1
1.1 Project Scope . 2
1.2 A New Heterogeneous Communication

Performance Model . 3
1.3 A New Benchmarking Library . 6
1.4 A Software Tool for Accurate Estimation of Heterogeneous Com-

munication Performance Models 7
1.5 Model-based Optimization of

Collective Algorithms . 7
1.6 New Work . 8
1.7 Thesis Structure . 9

2 State of the Art 10
2.1 Benchmarking MPI Communications 10

2.1.1 Timing Methods . 11
2.1.2 MPI Benchmarking Suites 14

2.1.2.1 Intel MPI Benchmarks 16
2.1.2.2 MPIBench . 19
2.1.2.3 SkaMPI . 19

2.1.3 Summary . 20
2.2 Traditional Communication Performance

Models . 21
2.2.1 Hockney Model . 22
2.2.2 LogP Model . 22
2.2.3 LogGP . 23
2.2.4 PLogP Model . 24
2.2.5 Summary . 27

2.3 Optimization of MPI Collective Communication Operations . . . 30
2.3.1 MPICH-2 Collectives . 31
2.3.2 The OCC Library . 32
2.3.3 MagPIe Software . 33

v

CONTENTS

2.3.4 Summary . 34

3 MPIBlib: MPI Benchmarking Library 35
3.1 MPIBlib Software Design . 36
3.2 Point-to-point Benchmarks . 39

3.2.1 Container Paradigm . 40
3.2.2 Using the Point-to-point Benchmark 42

3.3 Collective Benchmarks . 44
3.3.1 API for Timing Methods 44
3.3.2 API for MPI Collective Communication Operations 46
3.3.3 Using the Collective Benchmark library 50

3.4 Experiments . 51
3.5 Summary . 54

4 LMO: An Advanced Heterogeneous Communication Performance
Model 56
4.1 The Point-to-Point Parameters 57

4.1.1 The Point-to-Point Model 57
4.2 The LMO Model for One-to-Many 59
4.3 The LMO Model for Many-to-One 61
4.4 Estimation of Parameters . 64

4.4.1 Estimation of the Threshold Parameters 65
4.4.2 Estimation of the Point-to-Point Parameters 67
4.4.3 Estimation of Point-to-Point Parameter Values 69

4.5 Summary . 70

5 Comparison with Extended Heterogeneous Traditional Models 72
5.1 Extended Hockney Model . 73
5.2 Extended LogP-based Models . 76
5.3 Experimental Results . 77

5.3.1 A Comparison of Model Predictions 79
5.4 Summary . 82

6 A Software Tool for the Estimation of Heterogeneous Commu-
nications Models 84
6.1 The Measurement module: benchmarking specific communication

experiments . 84
6.2 The Models Module: API for heterogeneous communication per-

formance models . 86
6.3 Use of the Software Tool . 89
6.4 Summary . 90

vi

CONTENTS

7 Model Based Optimization of Collective Operations 91
7.1 Extended Hockney Models . 91
7.2 Optimization of Collective Operations 94
7.3 Matrix Multiplication . 96
7.4 Summary . 97

8 Conclusions 102
8.1 MPIBLib: A New Benchmarking Library 103
8.2 The LMO and Heterogeneous Extended

Versions of Traditional Models . 103
8.3 Models and Communication Optimization 106
8.4 Future Work . 107

A The 16 node heterogeneous cluster. 109
A.1 Switches . 109
A.2 Processors . 110

References 111

vii

List of Figures

1.1 Point-to-point versus a switched network collective operation . . . 3

2.1 IMB benchmark on a 16-node heterogeneous cluster: single/mul-
tiple scatter measurements . 17

2.2 IMB benchmark on a 16-node heterogeneous cluster: single/mul-
tiple gather measurements . 18

2.3 Message transmission as modeled by parameterized LogP (left);
fast measurement procedure (right) Kielmann et al. (2000)) 24

2.4 Measured send overhead and gap; over Myrinet (left) and over
TCP (right) Kielmann et al. (2000) 26

3.1 MPIBlib design . 36
3.2 MPIBlib modules . 37
3.3 Statistical parameters . 38
3.4 Container paradigm for point-to-point benchmarking 41
3.5 Extension of collective benchmarks: timing methods, communica-

tion operations, algorithms . 47
3.6 Comparison of different timing methods for native (linear) LAM

scatter on 16 node heterogeneous cluster 52
3.7 Comparison of different timing methods for native (linear) LAM

gather on 16 node heterogeneous cluster 53

4.1 Mapping a One-to-Many Communication Operation, serial and
parallel on a single switched network 60

4.2 Threshold Parameters for One-to-Many Operations 61
4.3 Many-to-One Non-linearity for Medium Messages Sizes 62
4.4 Communications both parallel and serial for Many-to-One Opera-

tion on a single switched network 63

viii

LIST OF FIGURES

5.1 The binomial communication tree for scatter (gather) involving 16
processors. The nodes represent the processors. Each arc repre-
sents a logical communication link and is marked by the number
of data block communication over this link 75

5.2 Comparison of the predictions of the point-to-point models for a
single point-to-point communication. 78

5.3 The prediction of the execution time of linear scatter on the 16-
node heterogeneous cluster . 81

5.4 The prediction of the execution time of linear gather on the 16-
node heterogeneous cluster. 82

5.5 The performance of the linear and binomial algorithms of scatter
vs the heterogeneous Hockney and LMO predictions. 83

6.1 Library Structure . 85
6.2 Model-based collective operations 86

7.1 The prediction of the execution time of linear scatter on the 16-
node heterogeneous cluster . 93

7.2 The prediction of the homogeneous and heterogeneous Hockney
models vs the observation of the binomial scatter. 94

7.3 Performance of (a) MPI Gather, (b) LMO Gather, (c) MPI Scatter,
(d) LMO Scatter on 16-nodes heterogeneous cluster LAM-Ethernet. 99

7.4 Performance of (a) MPI Gather, (b) LMO Gather, (c) MPI Scatter,
(d) LMO Scatter on 64-nodes OpenMPI-Myrinet cluster. 100

7.5 Matrix operation C=AB with matrices A, B, and C. Matrices A
and C are horizontally sliced such that the number of elements in
the slice is proportional to the speed of the processor. (b) Serial
matrix multiplication A2 ×B of dense matrix A2 of size n− 1× n
and dense matrix B of size n×n to estimate the absolute speed of
processor 2. 101

ix

Chapter 1

Introduction

Distributed systems of computers have with the advent of high-speed networks
given rise to a platform of networks of computers. The power of parallel com-
puting, that was previously restricted to specialist computers, can be applied to
the widely available switched network systems. The traditional high-performance
computing platforms made up of large dedicated systems of homogeneous pro-
cessors can now be substituted by less expensive and widely available ordinary
networks of computers. The heterogeneity of these clusters refers to networks
of processors with computational diversity. These heterogeneous computational
clusters have become more popular and accessible with the availability of low-cost
computers.

Communication performance models are used by application developers to
estimate speeds and execution times of parallel communications operations. The
application can then be optimized and redesigned to allow for better communi-
cation cost. Many applications were originally designed for the more traditional
homogeneous platforms used by parallel computing in the past. They used simple
analytical models to predict performance of parallel applications. These models
for prediction were designed for homogeneous systems with a uniformity that no
longer exists with heterogeneous systems. The current models used to optimize
the applications design are not fully representative of the diversity of the system
and are therefore liable to be inaccurate in their estimation. This means that the
efficiency of the application becomes less determined.

As today’s networks can be made up of a variety of computers with different
power and communication speeds, so the purpose of this thesis is to explore ex-
tending the current performance models from a point of view of heterogeneity,
and to propose our own model and its innovative estimation methods as a better
solution. Traditional models are limited in their abilities to accurately repre-
sent the parallel communications operations for a variety of reasons. The models
are designed for specialist parallel systems of the past based on homogeneous

1

1.1 Project Scope

networks of dedicated processors. The models are too simplistic for new hetero-
geneous switched networks as they do not allow for adequate representation of
MPI collective operations. This is because they are limited to a few simple pa-
rameters that cannot map the communications operations correctly or intuitively.
The models are analytical in nature and cannot reflect the empirical irregularities
that arise due to congestion for some message sizes.

The solution proposed in this thesis is a new heterogeneous communication
performance model, LMO, (Lastovetsky, Mkwawa, O’Flynn) that allows for easy
and intuitive expression of the execution time of collective operations, Lastovetsky
et al. (2006a), Lastovetsky et al. (2006b), Lastovetsky & OFlynn (2007), Lastovet-
sky et al. (2009). We provide a software tool, CPM, Lastovetsky et al. (2008b),
with innovative parameter estimation techniques, Lastovetsky et al. (2007) that
allows for the deployment of heterogeneous extensions of traditional models and
the new LMO model, for estimation and optimization of parallel communications.
We also developed our own benchmarking software, MPIBLib Lastovetsky et al.
(2008a), that is used for estimation of models and can be integrated as a library
in parallel applications.

1.1 Project Scope

The platform for our performance model is a cluster of heterogeneous proces-
sors connected by a single network switch. Its key property is that processors
in the cluster may not be identical, leading to heterogeneity. This is arguably
the most common platform for parallel computing, with MPI (Message Pass-
ing Interface), Nagle (2005), Forum (2008), Gabriel et al. (2004), Gropp et al.
(1996), as the principle programming system for parallel applications. MPI is a
message-passing library interface specification, it is a language-independent com-
munications protocol used to program parallel computers. Both point-to-point
and collective communications are supported. The networks considered are Lo-
cal Area Network (LAN) clusters of single processor computers. The network is
connected by a switch with port-to-port connections between computers, with
full duplex communications. We base our project on the most commonly avail-
able type of LAN, that is the single-switched network with computers of various
speeds and power.

The prediction for parallel scientific computing applications uses a perfor-
mance model to include the computation and communication costs. The subject
of this thesis is only the communication costs, computational costs are beyond
the scope of our modeling process. The model is for estimation of application
level programming with communication operations across the switched cluster.
The accuracy of this model depends on the accurate assessment of model’s pa-

2

1.2 A New Heterogeneous Communication
Performance Model

rameters. In this thesis the current models are revised and extended, and a new
model is proposed, as well as new methods of assessing the parameters of the
communication performance model.

1.2 A New Heterogeneous Communication

Performance Model

Traditionally, communication performance models for high performance comput-
ing are analytical and built with the assumption that the processors of the cluster
are homogeneous. There is another problem with these models however, and that
is a lack of intuitiveness that is very significant, as these models need to be easy
to use for applications developers.

Figure 1.1: Point-to-point versus a switched network collective operation

Traditional communication performance models have a small number of pa-
rameters and are designed for homogeneous transfer. They provide a simple
representation of point-to-point operations, but they do not intuitively represent
the parallel collective communications in an easy way. In Figure 1.1 we can
see how the simple point-to-point mapping differs from a more complex map-
ping to represent a collective communications operation over a switched network.
The collective operation is in fact a serial communication of messages from the
root processor that then becomes a parallel communication of messages from the
switch to each destination node. A simple point to point representation from tra-
ditional models cannot map this combination of message transfers for collective
operations with MPI on a switched network. This is a critical problem leading
to significant inaccuracies that our model is designed to overcome. It separates
the contributions of different origin, that is constant and variable parts of the
communication. This allows the collective operations to be better modeled with
our extra parameters in a clearer and more accurate way.

3

1.2 A New Heterogeneous Communication
Performance Model

The basis of the traditional models is a set of integral point-to-point param-
eters, having the same value for each pair of processors. The execution time of
other operations (which are, in fact, collective), is then expressed by the model
as a combination of the point-to-point parameters, and is analytically predicted
for different message sizes and numbers of processors involved. The core of this
approach is the choice of such a point-to-point model that then allows a combi-
nation of parameters to be an expression of the different algorithms of collective
operations. For homogeneous clusters, the point-to-point parameters are found
statistically from communication experiments between any two processors. A
communication model can be seen as consisting of two key issues, the design of
the model itself and the method of its estimation. The analytical communica-
tion performance models currently available are limited in their design by their
method of accurate estimation of its parameters on targets platforms. These
models are restricted to a few simple parameters since only this small number of
parameters can be estimated using traditional methods of point-to-point commu-
nication experiments. Thus the estimation part of the model is very important
and can exert significant influence on the design.

The accuracy of the analytical prediction provided by a communication per-
formance model depends on how easy and natural the execution time of collective
operations can be expressed via a combination of the model’s parameters. An
ideal intuitive communication performance model for a homogeneous or hetero-
geneous cluster with a single switch should have the following features:

• It is based on the point-to-point parameters that reflect constant and vari-
able contributions of processors and network. Note: The constant contribu-
tion of the processors and network is the fixed communication costs found
using zero sized message transmission, while the variable contributions are
those additional costs both from the processor and network as a result of
increasing message size. This is important as the full separation of the con-
tributions of a different nature that arise from different sources will lead
to more intuitive analytical expressions of the communication execution
time. In contrast, for the traditional communication performance models,
the constant and variable contributions of processors and network are not
fully separated.

• The execution time of any collective communication operation can be repre-
sented by a combination of maximums (parallel part) and sums (sequential
part) of the point-to-point parameters. The formula of the execution time
should also include empirical parameters that reflect possible irregular be-
havior of the collective operation. Current models are analytical only and
they assume a linear response in execution time to message size. Non-linear

4

1.2 A New Heterogeneous Communication
Performance Model

responses in execution time may be found empirically for a particular plat-
form. Traditional models do not include such empirical parameters that
can reflect these changes.

• There is a set of communication experiments that allows for the accurate
estimation of the parameters. Traditional models are designed so that their
parameters can be estimated from point-to-point communication experi-
ments. The attempts to separate the contributions lead to a model whose
parameters cannot be estimated from the point-to-point experiments only.
We outline some of the most popular traditional models, and propose their
straightforward heterogeneous extensions.

The above criteria form a problem definition and specification for our new
model, Lastovetsky et al. (2009).

We demonstrate the importance of estimation methods as the main factor
limiting the expressive power of the traditional communication models. They
do not allow for parameters that can represent the constant and variable con-
tributions separately, originating from different sources in the communication
cost. To achieve this goal there is an innovative estimation strategy to estimate
beyond the standard point-to-point communication experiments. Therefore the
estimation of such communication models is a new and non-trivial problem. This
thesis proposes a solution of this problem, as well as the intuitive and practical
performance LMO model. The idea is to introduce additional collective commu-
nication experiments involving more than two processors. To make use of the
results of these additional independent experiments, we proposed to extend the
heterogeneous point-to-point communication model by a model of these collec-
tive operations. We can then use this extended model to obtain the additional
independent equations for the estimated parameters.

The heterogeneous models have a larger number of parameters and will require
a significantly larger number of measurements. We can address this problem by
performing most of the communication experiments in parallel, using the fact
that the network switches provide no-contention point-to-point communications,
appropriately forwarding packets between sources and destinations.

We also show how traditional models may be extended, Lastovetsky et al.
(2009), to the heterogeneous switched network, and how our new model compares
favorably with these attempts. Chapter 5 describes our heterogeneous versions of
traditional models, this work is significant as to the best of the author’s knowl-
edge, there are no publications by others describing heterogeneous extensions of
communication performance models. We determine new heterogeneous versions
of the traditional homogeneous models, Hockney and PLogP. We demonstrate
with experimental results that the LMO model is a more accurate predictor of

5

1.3 A New Benchmarking Library

the execution time of collective operations than traditional models, even when
extended for a heterogeneous switched network. The heterogeneous versions of
current models are an improvement on their homogeneous counterparts, but our
new LMO model is a far more versatile and accurate approach to the problem of
estimation of performance for MPI collective communications.

1.3 A New Benchmarking Library

The use of advanced intuitive heterogeneous communication models for optimiza-
tion of communication operations has a potential to improve their performance
(and hence the performance of the corresponding applications) on heterogeneous
computational clusters. However, utilization of this potential is conditioned by
the ability to accurately and efficiently estimate the parameters of these models.
Given the parameters are estimated inaccurately, implementation of the opti-
mization algorithms in applications running on heterogeneous clusters will not
have a positive effect on their performance. Accurate timing methods are there-
fore important to ensure an accurate performance model to estimate the overall
execution time of the applications. Our first task was to address the shortcom-
ings of current benchmarking methods. We designed a new integrative library,
the MPIBlib, Lastovetsky et al. (2008a), for benchmarking as a solution.

The first problem with current benchmarking tools is that they restrict the
user to one choice of timing method, our library provides a choice of timing
methods to allow the user to select the most suitable for their needs. This is
particularly relevant when the user wishes to tune applications at run-time for
optimization of application performance. The second limitation is that previous
benchmarking software is designed in the form of a standalone executable pro-
grams, there is a need for a benchmarking library that can be used and integrated
easily and efficiently into application-level software.

Our new approach to benchmarking software addresses these limitations and
offers a choice of timing that can be easily integrated with the application as a
simple software library. This library is used as a basis to estimate parameters for
our new model more accurately, and so assist its effectiveness as a performance
estimator for parallel communications.

6

1.4 A Software Tool for Accurate Estimation of Heterogeneous
Communication Performance Models

1.4 A Software Tool for Accurate Estimation of

Heterogeneous Communication Performance

Models

The goal of our work is to facilitate and assist applications designers with new
heterogeneous models, therefore we present a software tool for easy deployment
of the performance models. We designed and implemented this software tool to
estimate our model and also our heterogeneous extended versions of the tradi-
tional models, Lastovetsky et al. (2008b),Lastovetsky et al. (2009). We described
the design of the CPM (Communication Performance Modeling) software that
automates the estimation of parameters of both traditional and the heterogeneous
communication performance models, including our new LMO model. The soft-
ware assists the designer by automating the estimation process for the model pa-
rameters, the heterogeneous models having a greater number of parameters than
traditional homogeneous approaches. Our research has developed new estimation
techniques, these new methods make the new LMO model possible, and allow a
model to be built with much greater intuitive mapping of collective operations.
The model building is also completely automated by the software. The process
includes detection of platform specific features such as possible performance ir-
regularity and performance degradation that found from empirical readings. The
applications designers do not need to know of or adjust the underlying system, as
the software will automatically find the model’s representation on their behalf.

The CPM software tool consists of both a library and command-line utilities.
The library provides an API for measurement of the execution time of commu-
nication experiments (Measurement Module) and for estimation of models and
prediction of the execution time of collective algorithms with the models (Models
Module). The library is implemented in C/C++ on the top of MPI with help of
some third-party software. The third-party software is mainly used for statistical
and regression analysis, and for estimation of traditional homogeneous models.

1.5 Model-based Optimization of

Collective Algorithms

Our final area of new work is with the use of the models, and we present the CPM
software tool with its use for optimization. The use of analytical predictive com-
munication models in the design of applications with MPI collective operations
can significantly improve their performance on homogeneous and heterogeneous
clusters. We showed how our software is used to improve applications using col-
lective operations. Our research has found from empirical observations of some

7

1.6 New Work

platforms that significant non-deterministic escalations of the execution time for
medium-sized messages within some range were observed for different platforms
and MPI implementations. The new LMO communication performance model is
the only model that can address this issue, and allows the performance degrada-
tion from the non-deterministic escalations of the execution time to be avoided
with application design adjustment. The software tool has implemented a choice
of traditional models that have been extended to be heterogenous, as well as the
new LMO model. We show by a number of examples how the models may be used
to optimize MPI collective communications with different parallel applications.

1.6 New Work

This thesis presents the following new work to accurately assess the performance
of collective communications for applications software on parallel systems:

• An accurate model depends on accurate measurement techniques. We ad-
dress the problem of accurate and efficient timing for benchmarking of com-
munications performance on a heterogeneous single switched network with
a new library MPIBlib, Lastovetsky et al. (2008a). This is a benchmarking
library that can be used in parallel applications for the accurate estimation
of communication operations execution times. The MPIBlib can be linked
to other applications and used at runtime. The library is used as the basis
for the accurate estimation of performance model parameters.

• We design a new intuitive performance model, the LMO model that is de-
signed for heterogeneous switched networks. The model is an innovative
formulation that separates constant and variable parts of collective com-
munication to allow for a new direct way of mapping the communications
form. It is based on empirical readings that are adapted to each network
for a new range of message sizes, previously uncharted, Lastovetsky et al.
(2006a), Lastovetsky & OFlynn (2007), Lastovetsky et al. (2009). A model
for heterogeneity gives rise to a greater number of parameters. We extend
the traditional point-to-point estimation methods with innovative estima-
tion methods. We add efficiency to the measurments with the option of
calculations to be performed in parallel.

• We present revised traditional models extended to be heterogeneous, this
work is previously unpublished by other authors to the best of our knowl-
edge, Lastovetsky et al. (2009).

• We implement a new software tool, CPM, Lastovetsky et al. (2008b), that
allows the efficient and effective calculation process for the LMO model and

8

1.7 Thesis Structure

heterogeneous extensions of traditional models. These include traditional
Hockney-based and PLogP-based collective operations where the models
are extended to be heterogeneous, and the new LMO model collective op-
erations, Lastovetsky et al. (2007), Lastovetsky et al. (2009). The software
provides an API for application developers that is easy to use and readily
extensible in design.

1.7 Thesis Structure

This thesis is organized with the three main sections - the benchmarking software
MPIBlib library to measure model parameters, the new LMO performance model
and extended traditional models, and finally optimization using the models. First
we describe the ‘Related Works’ in current research to date in Chapter 2. The
chapter outlines the related work in the key three areas, beginning with timing
and benchmarking methods, and then describing the traditional communication
performance models and then the former work in the optimization of communi-
cation with models. In Chapter 3 we begin the main body of the thesis, the new
benchmarking library software is presented. We demonstrate the MPIBlib library
of routines for the measurement of execution time that can be integrated with
parallel applications for communication performance modeling and the tuning
communication operations. This benchmarking software is the basis for accurate
measurement of parameters of the models, the next topic of the thesis. Chapter
4 presents the LMO model, a new model designed for heterogeneity for the as-
sessment of execution time of MPI collective communications. The chapter also
discusses the innovative estimation methods that are used to find the additional
parameters of the heterogeneous model. In Chapter 5 we take the current popular
traditional models and present our own heterogeneous versions of these models,
extending the homogeneous models to a heterogeneous environment. Chapter 6
describes the new software tool, the CPM, that automates the estimation of the
heterogeneous communication performance models. The last topic is how the
models may be used, and therefore Chapter 7 shows how the models and the
software tool are used to optimize MPI collective operations in parallel applica-
tions. The examples include using the implementation of the traditional model
software extended to be heterogeneous. There are also further examples of an ap-
plication using the new LMO model and the CPM software library tool. Finally
conclusions are presented in Chapter 8.

9

Chapter 2

State of the Art

Three main areas of Related Works concerning the timing estimation by commu-
nication performance models are described in this chapter. The first relates to the
implementation of our new software tool for benchmarking methods of measure-
ment. The chapter begins by explaining the importance of the role that accuracy
plays in the estimation of the execution time of MPI communication operations.
The current benchmarking suites are discussed and compared to highlight areas
of potential improvement.

The second area of innovative research in the thesis is that of a new per-
formance model for MPI communications, therefore we give an overview of the
current models that are used to date. We review the current models for collective
MPI operations that allow a software developer to design a parallel application
for better performance. By examining the limitations of current models we define
a basis of criteria for design of the new model.

The third area of research reviewed is the use of the models and model-based
optimization of MPI collective communication operations. The final section of
this chapter describes current work in this area.

2.1 Benchmarking MPI Communications

Accurate estimation of the execution time of MPI communication operations
plays an important role in optimization of parallel applications. A priori infor-
mation about the performance of each MPI operation allows a software devel-
oper to design a parallel application in such a way that it will have maximum
performance. This data can also be useful for tuning collective communication
operations and for the evaluation of different available implementations. The
choice of collective algorithms becomes even more important in heterogeneous
environments. Before considering the performance models however, we examine

10

2.1 Benchmarking MPI Communications

the timing methods and benchmarking they may use, as the accuracy and effi-
ciency of the model depends directly on the measurements that are taken in the
first place. MPI benchmarking suites use different timing methods to estimate
the execution time of the MPI communications. Each of these methods provides a
certain accuracy and efficiency. The efficiency of the timing method is particularly
important in self-adaptable parallel applications using runtime benchmarking of
communication operations to optimize their performance on the executing plat-
form. In this case, less accurate results can be acceptable in favor of a rapid
response from the benchmark.

Most of the MPI benchmarking suites are designed in the form of a standalone
executable program that takes the parameters of communication experiments
and produce a lot of output data for further analysis. As such, they cannot be
integrated easily and efficiently into application-level software.

In this section, different timing methods are described, and the existing bench-
marking suites are reviewed. We begin with a discussion of what timing methods
mean and then describe the benchmarking suites currently available. We sum-
marize their limitations, and this provides a basis for design of the MPIBlib
benchmarking suite presented in the next chapter.

2.1.1 Timing Methods

In order to evaluate the accuracy of the estimation given by different suites, we
first provide a unified definition of the execution time and we suggest the following
as a natural definition.

The execution time of a communication operation is defined as
the real (wall clock) time elapsed from the start of the operation,
given all the participating processors have started the operation si-
multaneously, until the successful completion of the operation by the
last participating processor.

Mathematically, this time can be defined as the minimum execution time of
the operation, given that the participating processors do not synchronize their
start and are not participating in any other communication operation. It is
important to note that the definition assumes that we estimate the execution
time for a single isolated operation.

Estimation of the execution time of the communication operation includes:

• Selection of two events marking the start and the end of the operation
respectively.

• Measuring the time between these events.

First of all, the benchmarking suites differ in what they measure, which can
be:

11

2.1 Benchmarking MPI Communications

• The time between two events on a single designated processor.

• For each participating processor, the time between two events on a proces-
sor.

• The time between two events, but on different processors.

The first two approaches are natural for clusters as there is no global time
in these environments where each processor has its own clock showing its own
local hour. The local clocks are not synchronized and can have different clock
rates, especially in heterogeneous clusters. The only way to measure the time
between two events on two different processors is to synchronize their local clocks
before performing the measurement. Therefore, the third approach assumes the
local clocks to be regularly synchronized. Unlike the first two, this approach
introduces a measurement error as it is impossible to keep the independent clocks
synchronized all the time with absolute accuracy.

In order to measure time, most of packages rely on the MPI Wtime function.
This function is used to measure the time between two events on the same pro-
cessor (the local time). For example, the execution time of a roundtrip can be
measured on one process and used as an indication of the point-to-point commu-
nication execution time, Int (2007), and Worsch et al. (2002).

The execution time of a collective communication operation can also be mea-
sured at a designated process. For collective operations with a root, the root can
be selected for the measurement. As for many collective operations the comple-
tion of the operation by the root does not mean its completion by all participating
processes, short or empty messages can be sent by the processors to the root to
confirm the completion. A barrier, reduce, or empty point-to-point communica-
tions can be used for this purpose. The final result must be corrected by the
average time of the confirmation. The drawback of this approach is that the
confirmation can be overlapped with the collective operation and hence it can-
not simply be subtracted. As a result, this technique may give negative values
of the execution time for very small messages. The accuracy of this approach
(root timing) is strongly dependent on whether all processes have started the
execution of the operation simultaneously. To ensure the more or less accurate
synchronization of the start, a barrier, reduce, or empty point-to-point communi-
cations can be used. They can be overlapped with the collective operation to be
measured and previous communications as well. To achieve even better synchro-
nization, multiple barriers are used in the benchmarking suites Int (2007), Grove
& Coddington (2001), and Worsch et al. (2002).

The local times can be measured on all processes involved in the communi-
cation and the maximum can be taken as the communication execution time.

12

2.1 Benchmarking MPI Communications

This approach (maximum timing)is also dependent on synchronization of the
processes before communication, e.g. with a barrier.

To measure the time between two events on different processors, the local
clocks of the processors have to be synchronized. Such synchronization can be
provided by the MPI global timer if the MPI WTIME IS GLOBAL attribute is
defined and is true. Alternatively, local clocks of two processors A and B can
be synchronized by the following simple algorithm (implemented in MPIBench
Grove & Coddington (2001)). Processor A sends a message to processor B, which
contains the current time, plus half of the previously observed minimum roundtrip
time. Processor B receives the message and returns it to A, which calculates the
total time that the roundtrip took to complete. If the roundtrip time is the
fastest observed so far, then the estimated time of arrival of the initial message
is the most accurate yet. If so, processor B calculates the current approximation
of the time offset as the message’s value received in the next iteration. The
processors repeat this procedure until a new minimum roundtrip time has not
been observed for a prearranged number of repetitions. Given A being a base
processor, this synchronization procedure is performed sequentially for all pairs
(A, B). A similar procedure is implemented in SKaMPI, Worsch et al. (2002), to
find offsets between local times of the root and the other processes.

As local clocks can run at different speeds, especially in heterogeneous environ-
ments, the synchronization has to be regularly repeated. These synchronization
procedures are quite costly and introduce a significant overhead in benchmark-
ing when used. As soon as the global time has been set up, the time between
two events on different processors can be measured, Grove & Coddington (2001),
Worsch et al. (2002). The accuracy of this approach will depend on the accuracy
of the clock synchronization and on whether processors start the communication
simultaneously. The global timing usually gives a more accurate estimate be-
cause its design is closer to the natural definition of the communication execution
time given in the beginning of the first chapter. However, as well as being more
time-efficient, the other methods based on local clocks can also provide quite
accurate results for many popular platforms and MPI implementations.

In some cases the operation-specific methods may work faster than their
universal counterparts, and can be used as time-efficient alternatives. The ef-
ficiency of timing methods is particularly important in self-adaptable parallel
applications that optimize their performance using runtime benchmarking of com-
munication operations. Some particular collective operations and their implemen-
tations allow for the use of more accurate and efficient methods that cannot be
applied to other collective operations. One example is the method of measurement
of linear and binomial implementations of the MPI broadcast on heterogeneous
platforms proposed in Supinski & Karonis (1999). It is based on measuring indi-
vidual tasks rather than the entire broadcast and therefore it does not need the

13

2.1 Benchmarking MPI Communications

global time. An individual task is a part of the broadcast communication between
the root and the i-th process. In each individual task, the broadcast is followed
by sending an acknowledgement message from the i-th process to the root. The
execution time of the task is then corrected by the value of the point-to-point
execution time.

Practically, the execution time of the communication operation is estimated
from the results of an experiment that in addition to the operation, includes other
communications and computations. As parallelism introduces an element of non-
determinism, there is a problem of reproducibility of such experiments. The
methodology of designing reproducible communication experiments is described
in Gropp & Lusk (1999). It includes:

• Repeating the communication operation multiple times to obtain the reli-
able estimation of its execution time,

• Selecting message sizes adaptively to eliminate artifacts in a graph of the
output of the communication operation, and

• Testing the communication operation in different conditions: cache effects,
communication and computation overlap, communication patterns, non-
blocking communication, etc.

To obtain a statistically reliable estimate of the execution time, a series of
the same experiments are typically performed in the benchmarking suites. If the
communications are not separated from each other in this series, the successive
executions may overlap, resulting in a so-called pipeline effect (Bernaschi & Ian-
nello (1998)), when some processes finish the current repetition earlier and start
the next repetition of the operation before the other processes have completed
the previous operation. The pipeline affects the overall performance of the series
of the operations, resulting in inaccurate averaged execution time.

In order to find the execution time of a communication operation that is
not distorted, it should be measured in isolation from other communications. A
barrier, reduce, or point-to-point communications with short or empty messages
can be used between successive operations in the series. The approach with
isolation gives results that are more accurate.

2.1.2 MPI Benchmarking Suites

There are several commonly used MPI benchmarking suites mpptest (Gropp &
Lusk (1999)), Netpipe (Turner et al. (2003)), IMB (Int (2007), MPIBench
Grove & Coddington (2001), and SkaMPI Worsch et al. (2002)). Some of them
include tests for collective operations.

14

2.1 Benchmarking MPI Communications

In the mpptest suite, Gropp & Lusk (1999), a suite of performance mea-
surement programs is developed for MPI benchmarking of point-to-point com-
munications in a reproducible way. The execution time of communication opera-
tions depends on the MPI library, native software, and hardware configurations.
NetPIPE (Turner et al. (2003)) provides benchmarks for different layers in the
communication stack. It is based on the ping-pong communication experiments
that are implemented over memcpy, TCP, MPI etc. In addition to evaluation of
communication performance, this suite helps to identify where inefficiencies may
be.

Regarding both the reproducibility of communication experiments and the
dependency on communication layers, we focus on benchmarking not only point-
to-point operations but also collective ones. Therefore, we analyzed several
MPI benchmarking suites that include tests for collective operations (IMB,
MPIBench and SkaMPI). Despite the different approaches to what and how
to measure, they have several common features:

• Computing an average, minimum, maximum execution time of a series of
the same communication experiments to get accurate results;

• Measuring the communication time for different message sizes – the number
of measurements can be fixed or adaptively increased for messages when
time is fluctuating rapidly;

• Performing simple statistical analysis by finding averages, variations, and
errors.

The MPI benchmarking suites are also very similar in terms of the software
design. Usually, they provide a single executable that takes a description of
communication experiments to be measured and produces an output for plotting
utilities to obtain graphs.

As more than two processors are involved in collective communications and
connected in different ways (communication trees), there are two main issues
concerned with the estimation of execution time of MPI collective operations:

• Measuring the execution time, and

• Scheduling the communication experiments.

In the next sections we describe the IMB, MPIBench and SkaMPI bench-
marking suites in more detail.

15

2.1 Benchmarking MPI Communications

2.1.2.1 Intel MPI Benchmarks

IMB (Int (2007)) is widely used in parallel processing to measure the performance
of important MPI functions. Benchmarks are written in ANSI C using a message-
passing paradigm comprising 10,000 lines of code. The IMB 2.0 version has three
parts (a) IMB for MPI-1, (b) MPI-2 one sided communication, and (c) MPI-2
I/O. In standard mode, the message size can be set to 0,1, 2, 4, 8,... 4194304
bytes. There are three classes of benchmarks, namely single transfer, parallel
transfer and collective benchmarks.

The IMB measures the communication execution times locally on each pro-
cess, and the minimum, maximum, and average times are then returned. The
communication experiments in a series are not isolated. Figure 2.2 shows the
results returned by the IMB on a 16-node heterogeneous cluster for scatter and
gather operations when single and multiple repetitions are used in the experi-
ments. One can see that for the scatter experiments with a single repetition, the
minimum time represents the execution time of a non-blocking send on the root
and is therefore relatively small. In the gather experiments with a single repe-
tition, the maximum time is observed on the root, reflecting the communication
congestion. The difference between the minimum and maximum times decreases
with an increase in the number of repetitions. In both cases, we observe a clear
impact of the pipeline effect on the measured execution time of the operation:

• Scatter : For small and large messages, the execution time of a repetition
in the series is smaller than that measured in a single experiment. For
medium-sized messages, escalations of the execution time are observed that
do not happen in single experiments.

• Gather : Escalations of the execution time for medium-sized messages, ob-
served for single experiments, disappear with the increase of the number of
repetitions due to the pipelining.

Thus, the pipeline effect can significantly distort the actual behavior of the com-
munication operation, given that we are interested in accurate estimation of the
time of its single and isolated execution.

16

2.1 Benchmarking MPI Communications

 0

 0.004

 0.008

 0.012

 0.016

 0 20 40 60 80 100

E
xe

cu
tio

n
tim

e
(s

ec
)

Message size (KB)

Scatter

single (min)
single (max)

multi (avg)

Figure 2.1: IMB benchmark on a 16-node heterogeneous cluster: single/multiple
scatter measurements

17

2.1 Benchmarking MPI Communications

 0

 0.075

 0.15

 0.225

 0.3

 0 20 40 60 80 100

E
xe

cu
tio

n
tim

e
(s

ec
)

Message size (KB)

Gather

single (min)
single (max)

multi (avg)

Figure 2.2: IMB benchmark on a 16-node heterogeneous cluster: single/multiple
gather measurements

18

2.1 Benchmarking MPI Communications

2.1.2.2 MPIBench

The MPI benchmarking package called MPIBench (Grove & Coddington (2001))
overcomes some of the drawbacks of other existing MPI benchmark tools. It uses
a portable and accurate global clock to obtain timing data on many individual
MPI communications calls in order to produce timing distributions that show
the performance variability of these routines. MPIBench has built-in support
for measuring the end-end and local completion times of the most common mes-
sage passing primitives such as MPI Send, MPI Isend, MPI Recv, MPI Sendrecv,
MPI Bcast and MPI Reduce. The compound communications patterns can be
easily inserted within the timing framework. The main limitations of MPIBench
are that it is a stand-alone form rather than a library that can be integrated with
applications software. The use of a global clock may be too sophisticated and
inefficient for simpler user requirements at run-time.

2.1.2.3 SkaMPI

SkaMPI software by Worsch et al. (2002) is a publicly available benchmark-
ing tool that is a database providing performance data for operations of MPI
that can be measured on several different platforms. SKaMPI is comprehen-
sive as it covers most of MPI including point-to-point communication collective
communications derived datatypes one-sided communication. SKaMPI can be
configured and tuned in many ways - operations, measurement precision, com-
munication modes, packet sizes, number of processors used etc. The SKaMPI
benchmark package consists of three parts:

• The benchmarking program itself,

• A postprocessing program,

• A report generation tool.

For ease of portability the benchmarking and postprocessing program are both
ANSI C programs. The report calls gnuplot and LaTeX. The .skampi runtime
parameter file describes all measurements with specific parameters specified by
the user in order to identify the measurement configuration. Many other cus-
tomizations are also possible without changing the source code. The benchmark
program produces an ASCII text file skampi.out in a documented format. The
adjustable report generator reads the output file and generates a postscript file
containing a graphical representation of the results

SKaMPI is easy to compile, once any MPI application is run with it repeat-
edly it uses a human readable configuration file to select the measurements to

19

2.1 Benchmarking MPI Communications

be get readable benchmark results. SKaMPI is extensible, if there are miss-
ing measurements for a certain MPI feature, they may be added with some C
programming.

The performance measurement of MPI operations using SkaMPI while de-
signing programmes allows the software developer:

• To select the fastest implementation,

• To write performance portable software, that is showing high performance
on several platforms without platform-specific tuning, and

• To quantify the tradeoff between performance and portability for different
platforms.

The software uses a simple ping-pong experiment, with repetition for accuracy.
The main limitations are similar to MPIBench in that it is a stand-alone

form rather than a library that can be integrated with applications software. A
large amount of data is generated that is not easily assimilated by applications
software. The use of a global clock may be too inefficient for some networks that
require a quicker more efficient solution provided by simpler timing methods.

2.1.3 Summary

The existing MPI benchmarking suites that are currently available have several
significant restrictions that prevent them from a wider use in applications and
programming systems. In summary, the following limitations need to be overcome
with the current benchmarking suites:

• They restrict the user to one choice of timing method. A choice of timing
methods provides a balance of accuracy and efficiency. The efficiency of
timing methods will be particularly important in self-adaptable parallel
applications using run-time benchmarking of communication operations to
optimize their performance on the executing platform.

• They are designed in the form of a standalone executable program and
cannot be integrated easily and efficiently into application-level software.
Therefore, there is a need for a benchmarking library that can be used in
parallel applications or programming systems for communication perfor-
mance modeling and tuning communication operations.

We developed a benchmarking library, called MPIBlib, described in Chapter 3
that provides a wide range of efficient methods of measurement of MPI communi-
cation operations, both universal and operation specific. The variety of methods

20

2.2 Traditional Communication Performance
Models

available with the library allows users to optimize the cost of benchmarking by
choosing the most efficient method for a given operation and a required accuracy
of estimation. In contrast to existing MPI benchmarking suites, implemented
as standalone applications together with some plotting scripts for graphical rep-
resentation of results, MPIBlib is designed as a library that can be used as an
integral part of parallel applications.

2.2 Traditional Communication Performance

Models

The communication performance model plays a pivotal role in the design and
optimization of applications using MPI collective communications. This section
reviews the current communication performance models and compares their mer-
its, first we introduce ideas forming the basis for their most significant design
limitations.

The basis of these models is a set of integral point-to-point parameters, based
on the homogeneous network. The values of parameters are found from point-
to-point experiments between the homogeneous processors, so each pair has the
same values. Typical experiments include sending and receiving messages of dif-
ferent sizes, with the communication execution time being measured on one side.
The models are an analytical prediction for different message sizes and numbers of
processors involved. The execution time of collective operations are expressed as a
combination of these point-to-point parameters. The approach has shortcomings
when considering the heterogeneity of the network with processors of different
types. The homogeneous communication model can be applied to a cluster of
heterogeneous processors by averaging values obtained for every pair of proces-
sors. If some processors or links in the heterogeneous cluster significantly differ in
performance, predictions based on the homogeneous communication model may
become inaccurate.

One limitation of the traditional communication performance models, pre-
venting them from the accurate prediction of the execution time of collective
communication operations on homogeneous and, especially, heterogeneous clus-
ters, is that they combine the contributions in the execution time that have
different nature and arise from different sources. Therefore, they do not allow
for intuitive analytical expressions of the execution time of the most of efficient
algorithms of collective communication operations. In the case of heterogeneous
clusters, the intuitive models are of the utmost importance as the heterogeneous
communication performance models have much larger a number of parameters. If
the most of these parameters are not intuitive then the model will be absolutely
useless. There is general lack of software automating the estimation of commu-

21

2.2 Traditional Communication Performance
Models

nication performance models. The logp mpi library Kielmann et al. (2000) is a
rare exception. It estimates the PLogP parameters for a pair of processors and,
therefore can only be used directly for homogeneous platforms.

2.2.1 Hockney Model

Let us start with a traditional model proposed by Hockney (1994). The parame-
ters of the Hockney model combine the processor and network contributions. The
execution time of point-to-point communication is expressed as α + βM , where
α is the latency (constant contributions from processors and network), β is the
bandwidth (variable contributions from processors and network) and M is the
message size. The Hockney parameters are estimated with help of series of the
point-to-point communications in one of two ways:

• Two series of roundtrips with empty messages (to get the latency parameter
from the average execution time), and with non-empty ones (to get the
bandwidth), or

• A series of roundtrips with messages of different sizes (to perform a linear
regression, which fits the execution time into a linear combination of the
Hockney parameters and a message size).

The Hockney model is the simplest of traditional models that uses only two
parameters to describe communication between two processors. These parameters
represent an accumulation of the contributions of the processors timings together
with the communication layer timings. This makes it non-intuitive to model the
communication operations for the single-switched platform, where the operation
is split between a serialization and parallel transfer of messages.

2.2.2 LogP Model

The LogP model, Culler et al. (1993), is a more elaborate model that predicts
the time of network communication for small fixed-sized messages in terms of
the latency, L, the overhead, o, the gap per message, g, and the number of
processors, P. The latency, L, is an upper bound on the time to transmit a message
from its source to destination; it reflects the constant contribution of network.
The overhead, o, is the time period during which the processor is engaged in
sending or receiving a message (a constant processor contribution). The gap, g,
is the minimum time between consecutive transmissions or receptions; it is the
reciprocal value of the end-to-end bandwidth between two processors, so that
the network bandwidth can be expressed as L/g. According to LogP, the time
of point-to-point communication can be estimated by L + 2o. The LogP model

22

2.2 Traditional Communication Performance
Models

assumes that a large message is decomposed to a series of short messages. In the
formula for a series the gap parameter will be used: L+2o+Mg. Therefore the
gap can be attributed to the variable contributions of processors and the network.

The method of estimation of the LogP parameters is presented in Culler et al.
(1996), with the sending time, os, and receiving time, or, so that the overheads
being sent and received are distinguished. The set of experiments used for esti-
mation of the LogP parameters is as follows:

• Finding os, a small number of messages are sent consecutively in one di-
rection in order to estimate the sending overhead parameter. The average
time is then measured on the sender side for the value of os.

• Finding receiving overhead, or, directly from the time of receiving a message
in the roundtrip between source and destination. There is a time delay at
the sender side to allow for the posting of each receive, and the average of
the receive operation is or.

• The latency is found from the execution time of the roundtrip with a small
message: L = RTT/2− os − or.

• To find the gap parameter, g, a large number of messages are sent in one
direction consecutively, that is one-direction consecutive sendings with a

confirmation, and g is estimated as (i

2x︷ ︸︸ ︷
M̄...M̄←−−−−→

0
j) with g = Ts/s, where

s = 2x is a number of messages sent and T is the total execution time
measured on the sender processor.

The number of messages sent consecutively is chosen to be large to ensure that
the communication time is dominated by the factor of bandwidth rather than
latency. This saturation method has the disadvantage that it takes a long time.
In contrast to the Hockney model, LogP is not designed for the communications
with arbitrary message sizes, so there are some derivatives, such as the LogGP
and PLogP model, that address this issue next.

2.2.3 LogGP

The LogGP model by Alexandrov et al. (1995), an extension of LogP, takes
into account the message size by introducing the gap per byte parameter, G.
The point-to-point communication time is estimated by L + 2o + (M − 1)G.
The original gap parameter, g, is also used in the model to represent the delays
between consecutive communications. For example, the execution time of m

23

2.2 Traditional Communication Performance
Models

sendings of M bytes is estimated as follows: L + 2o + (m − 1)G + (m − 1)g.
The g gap parameter combines the contributions of processors and network, the
G parameter is network only. The gap g represents the constant and variable
contribution, while the gap per byte G represents the variable contribution.

2.2.4 PLogP Model

In the PLogP (parameterized LogP) model by Kielmann et al. (2000), all param-
eters except for latency are piecewise linear functions of the message size, and
the meaning of parameters differs slightly from LogP. The meaning of latency, L,
is not intuitive; it is a constant that combines all fixed contribution factors such
as copying to/from the network interfaces and the transfer over the network.
The send, os(M), and receive, or(M) overheads are the times that the source
and destination processors are busy for the duration of communication (variable
contributions of processors). They can be overlapped for sufficiently large mes-
sages. The gap, g(M), is the minimum time between consecutive transmissions
or receptions; it is the reciprocal value of the end-to-end bandwidth between two
processors for messages of a given size M. The gap is assumed to cover the over-
heads (g(M) ≥ os(M), g(M) ≥ or(M)) and represents mixed processor-network
variable contributions. According to the PLogP model, the point-to-point execu-
tion time is equal to L + g(M).

Figure 2.3: Message transmission as modeled by parameterized LogP (left); fast
measurement procedure (right) Kielmann et al. (2000))

The times for sending and receiving a message of size m, s(m) and r(m),
are determined from when both sender and receiver simultaneously start their
operations. The s(m)=g(m) is the time at which the sender is ready to send the
next message; r(m)=L+g(m) is the time at which the receiver has received the

24

2.2 Traditional Communication Performance
Models

message, here the latency and the gap added denotes the time a message occupies
the network. The latency L is the time it takes for the first part of a message to
travel from sender to receiver.

The message gap is the time after this until the last bit of the message has
been received, see Figure 2.3 (left). The parameters of the LogP-based models
are estimated by more complicated point-to-point experiments. In addition to

roundtrips (i
M←−−→
0

j and i
0←−−→
M

j), one-direction consecutive sendings with a

confirmation (i

s︷ ︸︸ ︷
M...M←−−−−→

0
j) are used to estimate the gap parameter: g = Ts/s,

where s = 2x. The number of messages is chosen to be sufficiently large in order
to ensure that the point-to-point communication time is dominated by the factor
of bandwidth rather than latency. This experiment, also known as saturation,
reflects the nature of the gap parameter but takes a long time.

The estimation of the functional PLogP parameters, especially g(M), will be
time consuming because these experiments are performed for multiple message
sizes, which are selected adaptively. For example, if the g(Mk) is not consistent
with the linearly extrapolated value based on g(Mk−2) and g(Mk−1) then another
measurement will have to be performed for the message size M∗

k = (Mk+Mk−1)/2.
The estimation of the PLogP parameters includes the experiments which are

similar to those for LogP and have the advantage of the ability to be performed for
different message sizes. The disadvantage is that the total number of parameters
may become too large, although this model is adaptive in nature, because of the
number and location of breaks of piecewise linear functions are determined while
the model is being built.

Kielmann et al. (2000) measure the gap for each message size with a new
method that does not need to saturate the link. The method only has to do this
for messages of size zero. It starts by measuring how long it takes to send 100
messages in a row. Then this number is doubled repeatedly until the time per
message sent increases by less than a threshold value (e.g. 1%). We take that time
as g(0). All other parameters can be determined by the procedure that starts with
a synchronization message by which the so-called mirror process (receiver that
will send back) indicates being ready. For each size m, two message roundtrips are
necessary from measure to mirror and back. They are repeated until the measured
times stabilize. In the first roundtrip, measure sends an m-bytes message and in
turn receives a zero-bytes message. They measure the time for just sending and
for the complete roundtrip. The send time directly yields os(m). The g(m) can
be determined from the roundtrip times: RTT (0) = 2(L + g(0)) and RTT (m) =
L + g(m) + L + g(0). This yields g(m) = RTT (m) − RTT (0) + g(0) and L =
(RTT (0)−2g(0))/2. The second roundtrip yields RTT

′
(m). Here, measure sends

a zero-bytes message, waits for a 4 > RTT (m) time and then receives a m-bytes

25

2.2 Traditional Communication Performance
Models

message. With RTT
′
(m) = os(0) +4+ or(m) we get or(m) = RTT

′
(m)−4−

os(0). The measurement procedure assumes that network links are symmetrical,
such that sending from measure (sending node) to mirror (receiving node) has
the same parameters as for the reverse direction.

Figure 2.4: Measured send overhead and gap; over Myrinet (left) and over TCP
(right) Kielmann et al. (2000)

The measurement procedure experimentation was done on four clusters that
are made up of Pentium Pros with Myrinet connected by dedicated 6Mbit/s
ATM networks, using MPI based on TCP. They measured the LogP parameters
for MPI Send and MPI Recv as described above. They also compare the two
methods of estimation for g(m) with the fast fast method, and also by the link
saturation method. The graphs in Figure 2.4 show os (for comparison) and g, the
curves for g are very close to each other, validating the new method.

Unlike the LogP/LogGP and Hockney models, the PLogP model is not linear
and therefore can more accurately approximate the execution time of point-to-
point operations. However, this feature in no way can help toward more accurate
analytical predictions of collectives algorithms because its functional parameters
still combine the contributions of different origin. Indeed, larger numbers of such
non-intuitive parameters (each piecewise linear function can be considered as a set
of constant parameters) do not make analytical expression of the execution time
of collective operations more intuitive. The LogP-based models can be applied
to heterogeneous clusters in the same way as the Hockney model. Namely, the
parameters are first found for all pairs of processors, with the above experiments
being performed for each link. Then, these parameters (heterogeneous version)
or their average values (homogeneous version) are used in modeling.

26

2.2 Traditional Communication Performance
Models

2.2.5 Summary

The models described above are traditionally designed for homogeneous plat-
forms, with the same values of parameters for each pair of processors. The pa-
rameters are found statistically from the communication experiments between any
two processors. The models are summed up in Table 2.1.

27

2.2 Traditional Communication Performance
Models

Table 2.1: Summary of the Performance Models from Related Works

Model p2p Experiments

Hockney α + βM
{

i
0←−−→
0

j + i
M←−−→
M

j
}R

k=0
or

{
i

Mk←−−→
Mk

j

}R

k=0

LogP L + 2o
{

i
M←−−→
M

j + i
M←−−→
0

j + i
0←−−→
M

j
}R

k=0
+ {i

2x︷ ︸︸ ︷
M...M←−−−−→

0
j}S

x=0

LogGP L + 2o+ LogP experiments + {i

2x︷ ︸︸ ︷
M̄...M̄←−−−−→

0
j}S

x=0, large M̄

G(M − 1)

PLogP L + g(M)

{
i

Mm←−−→
0

j + i
0←−−→

Mm

j

}R

k=0

+ {i
2x︷ ︸︸ ︷

Mm...Mm←−−−−−−→
0

j}S
x=0

N

m=0

 n e t w o r k
 on l y

n e t w o r k
a n d
p r o c e s s o r s
c o m b i n e d

p r o c e s s o r s
o n l y

cons tan t cons tan t va r i ab l e
only and on ly
 var iab le
 combined

28

2.2 Traditional Communication Performance
Models

The colors explain the parameters contribution between network and proces-
sors, and if its constant or variable. For example Hockney’s α represents the
constant combination of network and processor involvement, while o is the con-
stant processor only contribution and differs from os, or from the PLogP model
that represents the variable processor contribution.

The elaboration of communication performance models in order to separate
the constant and variable contributions of processors and network can lead to
more accurate prediction of the communication execution time. In Lastovet-
sky et al. (2006b), Lastovetsky & Rychkov (2007), an analytical heterogeneous
communication performance model which separates the variable contributions of
processors and network is proposed. The model, called the LMO, is designed
for both homogeneous and heterogeneous clusters based on a switched network.
While this LMO model provides more intuitive and accurate expression of the
execution time of MPI collective operations, its parameters cannot be estimated
from the traditional point-to-point experiments only. A solution of this problem,
proposed in Lastovetsky & Rychkov (2007), Lastovetsky et al. (2009), is to intro-
duce additional collective communication experiments involving more than two
processors. These experiments are designed to give us sufficient data in order to
build and solve simple systems of equations to find the point-to-point parameters.
The software tool presented Chapter 6 automates the estimation of the straight-
forward heterogeneous extensions of the traditional models, such as Hockney,
LogP, LogGP, and PLogP. Thus the presented software tool can estimate both
traditional and advanced models, and can be used both for heterogeneous clusters

29

2.3 Optimization of MPI Collective Communication Operations

and for homogeneous ones as a particular case.

2.3 Optimization of MPI Collective Communi-

cation Operations

Analytical communication performance models play an important role in op-
timization of parallel applications on computational clusters. Optimization of
collective communications may be achieved by a number of different approaches
to models and algorithms. Different models may be used together or switched.
There is also the use of empirical readings directly:

• Model-based switch between algorithms;

• Multi-model based vs. empirical based switch;

• Mapping of processors and model-based mapping.

Traditional communication models, such as the Hockney model by Hockney
(1994), LogP by Culler et al. (1993), LogGP by Alexandrov et al. (1995), and
PLogP by Kielmann et al. (2000), are often used for estimation of the execution
time of different algorithms of MPI collective communication operations on ho-
mogeneous clusters. For example, Chan et al. (2004) and Thakur et al. (2005)
applied the Hockney model to compare the communication cost of different al-
gorithms of the same collective operation in order to choose the fastest one for
different message sizes and numbers of processors. Chan et al. (2004) found that
using different algorithms for different data sizes (vector lengths) for optimization
is better than finding one general algorithm for all cases, consistently outperform-
ing nearly all the MPICH implementations. Their preposting method that splits
the send and receives in an algorithm was illustrated using MPI Allreduce. It
did not give significant performance gains for small message sizes, but with a
zero-length message method of preposting, using Reduce-Scatter they achieved
gains of a factor of three difference for long messages.

In the case of heterogeneous clusters, there is another application of commu-
nication performance models to the optimization of MPI collective operations.
Namely the performance of a collective operation can be improved by the op-
timal mapping of heterogeneous processors to the nodes of the communication
tree of the operation. Traditional communication performance models are usu-
ally homogeneous, with parameters having the same values for all processors and
links. Therefore they give the same prediction for any mapping. Heterogeneous
communication models do distinguish the contributions of different links and pro-
cessors and hence may be used for this purpose. Bhat et al. (2003) and Hatta

30

2.3 Optimization of MPI Collective Communication Operations

& Shibusawa (2000) build optimal communication trees for collective operations
with help of heterogeneous extension of the Hockney model.

Vadhiyar et al. (2000) developed automatically tuned collective communi-
cation algorithms. They measured the performance of different algorithms of
collective communications for different message sizes and numbers of processes
and then used the best algorithm. They also discuss a dynamic topology method
that uses the tuned static topology shape, but re-orders the logical addresses
to compensate for changing run-time variations. A series of experiments were
conducted comparing the tuned collective communication operations to various
native vendor MPI implementations. The use of the tuned collective communi-
cations resulted in about 30%-650% improvement in performance over the native
MPI implementations.

All works on the optimization of collective operations are based on determin-
istic linear communication models. Implementation of the optimized versions of
collective operations in HeteroMPI, Lastovetsky & Reddy (2006), uses the LMO
performance model (of this thesis) that takes into account non-deterministic esca-
lations of the execution time of Many-to-One MPI communications for medium-
sized messages, and the leap in the execution time of One-to-Many communica-
tions for large messages.

2.3.1 MPICH-2 Collectives

Thakur et al. (2005) used a simple linear cost model of a point-to-point single
communication in selection of algorithms for a particular collective communica-
tion operation. They use the Hockney model to estimate the communication
performance of different algorithms of collective operations. For a particular
collective operation they suggested switching between algorithms to choose the
fastest one for each given message size and number of processors.

They identify the best algorithms and improve on them or develop new algo-
rithms where necessary, and implement them efficiently. For each collective op-
eration, they use multiple algorithms based on message size: The short-message
algorithms aim to minimize latency, and the long-message algorithms aim to
minimize bandwidth use. They use experimentally determined cutoff points to
switch between different algorithms depending on the message size and number of
processes. They have implemented new algorithms in MPICH for all the MPI col-
lective operations, namely, scatter, gather, allgather, broadcast, all-to-all, reduce,
allreduce, reduce-scatter, scan, barrier, and their variants.

31

2.3 Optimization of MPI Collective Communication Operations

2.3.2 The OCC Library

The Hockney, LogP, LogGP, and PLogP models are directly compared in the
paper Pješivac-Grbović et al. (2005) to analyze parallel algorithm performance
that are used for optimization of collective operations. The models are found to be
generally pessimistic and reasonably representative of the operations. They apply
different approaches to the switch-optimization: analytical methods based on
communication performance models, Pješivac-Grbović et al. (2005), and empirical
methods based on graphical, Pješivac-Grbović et al. (2007a), or statistical analysis
of observations, Pješivac-Grbović et al. (2007b). They demonstrate that generally,
empirical methods better reflect the behavior of different algorithms, and the
switch between the algorithms based on empirical methods results in smaller
performance penalty. The practical use of empirical methods is limited by non-
changeable computational clusters, because these methods require conducting
exhaustive communication experiments to collect performance data for different
collective algorithms, number of processors and message sizes.

The Hockney model was the simplest and more adaptable for message size
than LogP, but was found to be the least accurate. Since none of the models
could represent congestion, the authors omit these readings. This is a critical
shortcoming mentioned in the cases of all the models investigated.

They compare their predictions from the models to the experimentally gath-
ered data and the findings were used to optimize the implementation of collective
operations in the FT-MPI library. This is a new library allowing the best model
selection of a particular algorithm implementation for the optimization of the
communication. This saves a lot of time by the user in testing out various op-
timizations of the MPI collective operation. This information is combined with
predictions from parallel communication models to make run-time decisions to
select near-optimal algorithms and segment sizes for a given operation, commu-
nicator, message size, and the rank of the root process.

They propose a decision tree solution to the optimization process, the ex-
perimental and analytical analysis of collective algorithm performance is used
to determine switching points between available methods. They have a frame-
work for performance testing known as the Optimized Collective Communication
(OCC) library, it is an MPI collective library built on top of MPI’s point-to-point
operations. It provides a simple interface for addition of new collective algorithms
and provides basic verification tools for the existing methods. The performance
module provides measurement tools for the library. The OCC library currently
supports five different virtual topologies: flat-tree/linear, pipeline (single chain),
binomial tree, binary tree, and k-chain tree. For a given a collective operation,
message size, and number of processes, the OCC shows which topologies can be
beneficial for some combination of parameters.

32

2.3 Optimization of MPI Collective Communication Operations

The FT-MPI uses the OCC library for experimental and analytical analy-
sis of collective algorithm performance was used to determine switching points
between available methods. At run time, a particular method is thus selected
based on the number of processes in the communicator, message size, and the
rank of the root process. They did performance tests for different Barrier, Broad-
cast, Reduce, Scatter, and Alltoall collective operations implementations using
their library FT-MPI compared to MPICH and MPICH-2. They analyzed the
algorithm performance and the optimal implementation of different collective op-
erations. They discuss the limitations of current performance models in mapping
to collective operations for MPI, finding Hockney, LogP, PLogP and LogGP are
too pessimistic in general, with Hockney being too optimistic for large messages.
They also have the disadvantage of requiring too many experiments for all map-
pings and processes with too much empirical data produced. Predictions from
the PLogP and LogGP model were sufficiently close that one could use either of
the models to reach similar conclusions. They found the PLogP model has more
flexible parameters and that the predictions were the closest to the experimental
results of collective communications.

2.3.3 MagPIe Software

Kielmann et al. (1999) developed the MagPIe library that implements new algo-
rithms for collective communications for Wide Area Networks optimised for wide
area systems. MagPIe’s algorithms send the minimal amount of data over the
slow wide area links and only incurs a single wide area latency. Existing MPI
applications may be run unmodified on geographically distributed systems, Mag-
PIe is found to run up to 10 times faster than MPICH. This library is based on
MPICH, but the collective communication primitives use new algorithms opti-
mized for wide area systems. The basic assumption is that the wide area system
is hierarchically structured and a computational grid to consist of many parallel
computers connected by wide area networks. Therefore algorithms need to be
adapted to a hierarchical system.

Collective communication algorithms are usually designed for local area net-
works, which have a low latency. Wide area systems however, have a high latency
(and a lower bandwidth) and the performance of collective communication oper-
ations is dominated by the traffic over the wide area links. Thus their algorithms
are designed to reduce traffic over the slow links, resulting in a markedly different
communication structure. Nodes within a local cluster are connected by slower
wide area links, by reducing traffic over these the speedup is achieved. They
find a flat tree algorithm implementation the best for interconnection between
clusters, rather than binomial tree, as it reduces the amount of data required for
interconnecting across the wide area.

33

2.3 Optimization of MPI Collective Communication Operations

2.3.4 Summary

The optimization of collective communications operations is achieved in different
ways. There are methods to swap between models for different implementations,
to rely on direct empirical readings or to map to processors for advantage. The
performance of different algorithms for collective operations is estimated in some
methods, switching between algorithms to choose the fastest one. The models are
used optimize communications operations using different algorithms for different
data sizes. There is also the idea of automatic tuning developed from testing
performances of different algorithms with different message sizes. A multi-model
approach with Hockney and LogP models is compared with a decision tree based
on empirical observations that switch between different algorithms, topologies,
and message segment sizes. Finally there the approach with the mapping of pro-
cessors and model-based mapping for an algorithm to optimize its communication
performance.

Our own work builds on these ideas, and presents a software tool that supports
both traditional and advanced communication performance models. While its
primary target platforms are heterogeneous clusters, the software tool can also
be used for homogeneous clusters as a particular case.

34

Chapter 3

MPIBlib: MPI Benchmarking
Library

We designed a new MPI benchmarking suite called MPIBlib (MPI Benchmarking
Library, Lastovetsky et al. (2008a)) for the accurate estimation of the execution
time of MPI communication operations. The accuracy of a communications per-
formance model depends on the accuracy with which its parameters are measured.
In Chapter 2 we discussed the current benchmarking methods available and took
note of their limitations. Our library offers the choice of a variety of timing
methods. This suite supports both the fast measurement of collective operations
and point-to-point benchmarking. It plays an important role in particular when
building the new LMO performance model in Chapter 4. The estimated data is
also useful for the tuning of collective communication operations and allows for
the evaluation of different available implementations.

Most of the MPI benchmarking suites are designed in the form of a standalone
executable program that takes the parameters of communication experiments
and produces a lot of output data for further analysis. As such it cannot be
integrated easily and efficiently into application-level software. Therefore there
is a need for a benchmarking library that can be used in parallel applications
or programming systems for communication performance modeling, and for the
tuning communication operations. MPIBlib is such a library that can be linked to
applications and used at runtime. The software provides some of the wide range
of choice of configuration that SkaMPI allows (see chapter 2) but also provides
the user with a choice of balance between speed of use and fine tuning of accuracy,
with the additional convenience of an integrative library format.

The package consists of a library and benchmark executables (Figure 3.1).
The library implements the main functionality. The executables perform point-
to-point and collective benchmarks and produce the output, including the results
of measurements. The results of measurements can be visualized by the gnuplot

35

3.1 MPIBlib Software Design

utility, Williams & Kelley (2007), and MPIBlib provides the basic gnuplot scripts.

Library:
libmpib.a

Benchmark executables:
p2p, collective

3d-party utilities:
gnuplot, dot

Measurement results,
Communication trees

Diagrams

Figure 3.1: MPIBlib design

This chapter describes the main features of MPIBlib that are used in commu-
nication performance modeling. We describe in detail the software design of the
MPIBlib suite, and the measurement module in particular. The point-to-point
and collective modules are described next with details of their software design
and functionality. Examples of the usage of the library is outlined and finally
there are experiments to demonstrate the benchmarking with graphical results.

3.1 MPIBlib Software Design

The MPIBlib software is made up of a number of modules. The main library
modules are shown in Figure 3.2. The modules marked grey can be extended,
providing the benchmarking of user-defined point-to-point and collective opera-
tions.

A summary of modules of the software includes:

• Measurement - Measurement module provides basic data structures and
functions for measurement.

• Point-to-point benchmark - Measures the point-to-point time with a
choice of sequential or parallel methods.

36

3.1 MPIBlib Software Design

GNU Scientific Library
(Statistics)

The Boost C++ Libraries
(Graph, Serialization)

Measurement

Operation-specific
benchmarks

Point-to-point
benchmark

Collective
benchmarks

Definitions of
MPI collectives

Basic
algorithms

Tree-based
algorithms

Containers for
point-to-point

operations

Containers for
collective
operations

Figure 3.2: MPIBlib modules

• Containers for point-to-point (p2p) communication operations -
Provides the containers for p2p communication operations to be measured
by p2p benchmark.

• Collective benchmarks - Measures the collective operation time with a
choice of root, max or global methods.

• Containers for collective communication operations - Provides the
containers for collective communication operations to be measured by col-
lective benchmark.

• MPI collective communication operations - This module contains the
definitions of types of MPI collective operations.

• Basic algorithms - This module provides basic, mostly linear, algorithms

37

3.1 MPIBlib Software Design

of MPI collective operations.

• Tree-based algorithms- This module provides tree-based algorithms of
MPI collective operations. Depends on the Boosh C++ libraries.

We begin with the measurement module as the core of the MPIBlib soft-
ware. There are two main data structures, MPIB precision and MPIB result.
The benchmark functions take MPIB precision as an input argument and return
MPIB result, as in Figure 3.3. The MPIB precision contains the parameters of
measurement as input parameters of benchmarking functions. The MPIB result
data structure contains the results of measurement and also its accuracy, its sta-
tistical reliability.

benchmark

MPIB_result

+ T : double
+ wtick : double
+ reps : int
+ ci : double

MPIB_precision

+ min_reps : int
+ max_reps : int
+ cl : double
+ eps : double

Figure 3.3: Statistical parameters

The MPIB precision contains the following fields:

• min reps ; minimum number of repetitions.

• max reps ; maximum number of repetitions.

• cl ; confidence level ∈ [0, 1] cl = Pr(|T̄ − µ| < ci) = Pr(|T̄−µ|
T̄

< ε) where µ
is the mean, T̄ is the average time obtained from several observations, Pr
is the probability, ci is confidence interval.

• eps ; relative error ∈ [0, 1] |T̄−µ|
T̄

< ci
T̄

< ε = eps.

The precision argument, precision in Figure 3.3, specifies how many times to
repeat the communication experiment in order to obtain an accurate result. It is
used in the following way:

• If parameters min reps and max reps (which represent minimum and max-
imum number of repetitions) have the same value, the communication ex-
periment will be repeated a fixed number of times, equal to this value. This
controls efficiency of benchmarking but does not provide a certain level of
accuracy.

38

3.2 Point-to-point Benchmarks

• If min reps < max reps, the communication experiment will be repeated
until the sample of the measured execution times satisfies the Student’s t-
test, estimations are using the GNU Scientific Library, Galassi et al. (2009),
with the confidence level, cl, and relative error, eps, or the number of repeti-
tions reaches its maximum, max reps. In this case, the number of repetitions
for different pairs of processors and for different message sizes will vary, but
a certain accuracy of benchmarking will be guaranteed.

An auxiliary function MPIB ci returns the confidence interval that contains
the average execution time with a certain probability Pr(|T̄ − µ| < ci) = cl. For
statistical analysis, the GNU Scientific Library, Galassi et al. (2009) is used.

double MPIB_ci(double cl, int reps, double* T);

The MPIB result data structure consists of:

• T ; execution time (The main results of measurement).

• wtick ; resolution of MPI Wtime (accuracy of the timer).

• reps ; number of repetitions the benchmark has actually taken.

• ci ; confidence interval, |T̄ − µ| < ci (statistical reliability).

These two data structures will be used in the benchmarking functions de-
scribed in the coming sections.

3.2 Point-to-point Benchmarks

The point-to-point benchmark measures the execution time of the point-to-point
communications between all pairs of processes in the MPI communicator. The
use of the results of the point-to-point benchmarks can be versatile in application.
They can be used for the estimation of parameters of the analytical communica-
tion performance models, such as Hockney, LMO.

The point-to-point benchmarking is performed by the function
MPIB measure p2p between all pairs of processors.

void MPIB_measure_p2p(MPIB_p2p_container *container, MPI_Comm comm,

int M, int parallel, MPIB_precision precision, MPIB_result *results)

It performs a point-to-point communication operation multiple times, as it is
defined by the precision argument.

39

3.2 Point-to-point Benchmarks

The function MPIB measure p2p returns the results array, which contains
C2

n values corresponding to each pair: estimations of execution time, timer res-
olutions, numbers of repetitions and confidence intervals. The point-to-point
benchmarks can be run either sequentially or in parallel on the communicator
consisting of more than two processors. If performed in parallel, each process
is involved in no more than one communication. This allows us to significantly
reduce the overall execution time of the point-to-point benchmark code and gives
us quite accurate results on the clusters based on switched networks.

3.2.1 Container Paradigm

The benchmarking functions are implemented with the programming paradigm
of a container, that can contain interchangeable communication operations to be
measured. The program creates an instance of the container and then passes the
instance to the measurement function, when the container has been ‘filled’ with
an inherited type of special container for a particular operation. The container
structures are defined as a cascading set of inherited types. By this mechanism
new and more specialized structures can be defined in terms of existing structures.
When a child structure (subclass) inherits from a parent structure (superclass),
the subclass then includes the definitions of all the attributes and methods that
the superclass defines. We can extend the superclass by adding its own attributes
and methods, in our case to adapt to the selected communication operation. The
base p2p container has pointers to functions that prepare buffers, performs the
operation, and then free buffers for the point-to-point operation. These are gen-
eral functions that are then allocated to the particular operation in an extensible
way.

typedef struct MPIB_p2p_container {

void (*initialize)(void* this, MPI_Comm comm, int M);

void (*execute_measure)(void* this, MPI_Comm comm, int M, int mirror);

void (*execute_mirror)(void* this, MPI_Comm comm, int M, int measure);

void (*finalize)(void* this, MPI_Comm comm); }

MPIB_p2p_container;

The MPIB p2p container data structure consists of the four functions, ini-
tializing, sending (execute measure) and receiving (execute mirror), and finaliz-
ing, see Figure 3.4. The MPIBlib library offers the possibility of extension by
creating a data structure with the first field of
MPIB p2p container. The container here is a basic data structure that encapsu-
lates point-to-point communication operations. The container is now extended
to become the Send/Recv container by inheritance, by creating a data structure
with the first field MPIB p2p container.

40

3.2 Point-to-point Benchmarks

typedef struct MPIB_Send_Recv_container{

MPIB_p2p_container base;

char* buffer;

} MPIB_Send_Recv_container;

Next we call the allocation function that constructs this container, this assigns
the function pointers for the Send/Recv operations in this case, as follows:

MPIB_p2p_container* MPIB_Send_Recv_container_alloc() {

MPIB_p2p_container* container =

(MPIB_p2p_container*)malloc(sizeof(MPIB_Send_Recv_container));

container->base.operation = "MPI_Send-MPI_Recv";

container->base.free = MPIB_p2p_container_free;

container->initialize = MPIB_Send_Recv_initialize;

container->execute_measure = MPIB_Send_Recv_execute_measure;

container->execute_mirror = MPIB_Send_Recv_execute_mirror;

container->finalize = MPIB_Send_Recv_finalize;

return container;

}

Figure 3.4: Container paradigm for point-to-point benchmarking

The four base functions of the MPIB Send Recv container are inherited from
the MPIB p2p container, and are assigned to be the operation Send/Recv’s. First
there is initialization of buffers required for the communication operation for a
message size. The point-to-point measuring operations now take place. The
operation has a measure function for the sending node, and a mirror for the
receiving of the point-to-point communication. The sending communication at
the measure side has M the message size, with the parameter mirror as the

41

3.2 Point-to-point Benchmarks

number identifying the mirror processor. The mirror function of the point-to-
point operation is the receiving processor’s function, as in Figure 3.4. Then there
is a finalization that frees buffers required for the communication operation.

void MPIB_Send_Recv_initialize(void* _this, MPI_Comm comm, int M)

{

MPIB_Send_Recv_container* container

= (MPIB_Send_Recv_container*)_this;

container->buffer = (char*)malloc(sizeof(char) * M);

}

void MPIB_Send_Recv_execute_measure(void* _this, MPI_Comm comm, int

M, int mirror) {

MPIB_Send_Recv_container* container(MPIB_Send_Recv_container*)_this;

MPI_Send(container->buffer, M, MPI_CHAR, mirror, 0, comm);

MPI_Recv(container->buffer, M, MPI_CHAR, mirror, 0, comm,

MPI_STATUS_IGNORE);

}

void MPIB_Send_Recv_execute_mirror(void* _this, MPI_Comm comm, int

M, int measure) {

MPIB_Send_Recv_container* container

= (MPIB_Send_Recv_container*)_this;

MPI_Recv(container->buffer, M, MPI_CHAR, measure, 0, comm,

MPI_STATUS_IGNORE);

MPI_Send(container->buffer, M, MPI_CHAR, measure, 0, comm);

}

void MPIB_Send_Recv_finalize(void* _this, MPI_Comm comm) {

MPIB_Send_Recv_container* container =

(MPIB_Send_Recv_container*)_this; free(container->buffer);

}

This approach has the advantage that the code is extendible to have different
types of operations to be measured by the same benchmarking function using
inheritance.

3.2.2 Using the Point-to-point Benchmark

The MPIBlib is a library that can be included with the parallel application. Con-
sider how this function is used, and in particular its precision argument, in the

42

3.2 Point-to-point Benchmarks

estimation of the heterogeneous Hockney model. The first method of estima-
tion (see the code below) measures empty and non-empty roundtrips (line 19)
and therefore requires a very high accuracy of measurements. The benchmarking
function will be called twice (lines 20, 21), first time with the message size argu-
ment equal to zero and second time with a message size M > 0. To guarantee the
high precision of the measurements, we set the maximum number of repetitions
to be sufficiently large, with the confidence level 95% and the relative error 2.5%
in the precision data structure. This is passed to the MPIB measure p2p function
as an argument.

1 void Hockney bui ld (MPI Comm comm, MPIB precis ion p r e c i s i on ,
MPIB msgset msgset , int pa r a l l e l , Hockney model∗∗ model)

2 {
3 int rank ;
4 MPI Comm rank(comm, &rank) ;
5 int s i z e ;
6 MPI Comm size (comm, &s i z e) ;
7 i f (s i z e < 2) {
8 i f (rank == 0)
9 f p r i n t f (s tde r r , ”Cannot compute Hockney parameters f o r %

d pro c e s s e s (must be >= 2) \n” , s i z e) ;
10 return ;
11 }
12 ∗model = rank == 0 ? Hockney a l loc (s i z e) : NULL;
13 MPIB result∗ r e s 0 = (MPIB result ∗) mal loc (s izeof (MPIB result) ∗

MPIB C2(s i z e)) ;
14 MPIB result∗ res M = (MPIB result ∗) mal loc (s izeof (MPIB result) ∗

MPIB C2(s i z e)) ;
15 MPIB p2p container∗ conta ine r = MPIB Send Recv conta iner a l loc ()

;
16 MPIB measure p2p (conta iner , comm, 0 , p a r a l l e l , p r e c i s i on , r e s 0)

;
17 MPIB measure p2p (conta iner , comm, msgset . max size , p a r a l l e l ,

p r e c i s i on , res M) ;
18 MPIB conta iner f ree (conta ine r) ;
19 i f (rank == 0) {
20 int i , n ;
21 for (i = 0 , n = s i z e ∗ (s i z e − 1) / 2 ; i < n ; i++) {
22 (∗model)−>a [i] = r e s 0 [i] . T / 2 ;
23 (∗model)−>b [i] = (res M [i] . T − r e s 0 [i] . T) / (2 ∗ msgset

. max s ize) ;
24 }
25 }
26 f r e e (r e s 0) ;
27 f r e e (res M) ;
28 }

43

3.3 Collective Benchmarks

The second method of the estimation of the Hockney model uses multiple
roundtrips with different message sizes and therefore requires a high-speed mea-
surement of each individual roundtrip. The accuracy of this method depends
on the number of message sizes, for which roundtrips are measured, returning a
satisfactory estimate even with low precision of individual measurements. In this
latter case, the MPIB measure p2p function will be called multiple times with
different message sizes in the low precision mode: min reps = max reps = 1.

3.3 Collective Benchmarks

The collective benchmarks measure the execution time of any MPI collective
communication operation, using one or another universal timing method. The
user has a choice of timing method and collective communication operation (with
its particular algorithms and implementations) to be measured. The benchmark
functions are defined to be operation-independent by the use of function pointer
referencing to an MPI collective operation, in a similar way to point-to-point
using the container paradigm. The software is structured so that the set of
communication operations and their implementations that can be benchmarked
by MPIBlib is open for extensions.

The collective benchmark software offers the user a choice of root, maximum
or global timing, as described in the previous chapter in detail. Root timing selec-
tion means the timing is taken from the chosen root processor, a barrier ensures
synchronization and short messages are sent to confirm completion of an opera-
tion. The maximum choice means taking the maximum of measured execution
times for a communication operation and also synchronizes with barriers. The
global timing is the most accurate estimate as it takes the differences in local
clocks of different processors into account when measuring communication exe-
cution time. However, it is more time consuming and less efficient than those
methods based on local clocks. The user may find the faster less accurate choices
to be accurate enough for their purposes, or they may wish to select the more
finely tuned global option.

3.3.1 API for Timing Methods

The measurement choice is made by the user, this is done by selecting the mea-
surement function at run-time - that is root, max or global, generally a collective
benchmark function is defined as follows:

typedef void(*MPIB_measure_coll)(MPIB_coll_container *container,

MPI_Comm comm, int root, int M, MPIB_precision precision,

MPIB_result *result)

44

3.3 Collective Benchmarks

The user assigns a function pointer, MPIB measure coll to the chosen mea-
surement function. The three measurement choices are described next.

void MPIB_measure_max(MPIB_coll_container *container, MPI_Comm comm,

int root, int M, MPIB_precision precision, MPIB_result

*result)

The function MPIB measure max is passed the allocated container, in this
way it is separate to the chosen operation and allows for interchangeability. It
measures the execution time of collective operation at all processes and finds a
maximum. In the loop, this function:

• Synchronizes the processes by double barrier.

• Measures the execution time of collective operation at all processes.

• Finds the maximum execution time by collective operation ‘Allreduce’ with
the values measured at all processors.

• Performs statistical analysis, Student’s t-test, at all processors.

Finally, if the sample (the measured execution times) satisfies the Student’s t-test,
the function returns the result.

void MPIB_measure_root(MPIB_coll_container *container, MPI_Comm

comm, int root, int M, MPIB_precision precision, MPIB_result

*result)

This is the root measurement function to measure the execution time of col-
lective operation at the root process. In the loop, this function:

• Synchronizes the processes by double barrier.

• Measures the execution time of collective operation with barrier confirma-
tion at the root process.

• Subtracts the average execution time of barrier.

• Performs statistical analysis, Student’s t-test, at root.

Finally, if the sample (the measured execution times) satisfies the Student’s t-test,
the function broadcasts and returns the result. This benchmarking function re-
quires the average execution time of barrier to be measured first. The barrier time
can be estimated only once for a communicator. At all processes we introduced
a global variable to store the average barrier time for the root benchmarking
function.

45

3.3 Collective Benchmarks

void MPIB_measure_global(MPIB_coll_container *container, MPI_Comm

comm, int root, int M, MPIB_precision precision, MPIB_result

*result)

The global timing function measures the execution time of collective operation
between processes using global time. It reuses already obtained offsets between
local clocks if the previous initialization was performed on the same MPI com-
municator. In the loop over repetitions:

• Synchronizes the processes by double barrier.

• Measures the moment of start at the root and the moment of finish at the
rest of processes.

• Having subtracted the offset, finds maximum by reducing to the root.

• Performs statistical analysis at root.

This benchmarking function requires the offset of each processor’s execution
time from the root processor time to be measured first. At all processors, we
introduced a global variable to store the offsets between the local clocks and the
clocks of other processors in the communicator. These values are used for the
global timing.

3.3.2 API for MPI Collective Communication Operations

The MPIBlib library code offers the possibility of extension by creating a base
data structure with the first field ‘MPIB coll container ’. The functions that
allocate and free the data structure for example MPIB Scatter container alloc has
an argument MPIB Scatter, pointer to a scatter implementation. This provides
three-level extension of measurement, as in Figure 3.5. The advantages of this
approach are that the buffering allocation and operation selection is separate from
the measurement functionality, making the code easy to interchange and extend.

The basic container for a collective operation is the MPIB coll container has
pointers to functions that initialise, execute and finish the collective operation:

typedef struct MPIB_coll_container {

void (*initialize)(void* this, MPI_Comm comm, int root, int M);

void (*execute)(void* this, MPI_Comm comm, int root, int M);

void (*finalize)(void* this, MPI_Comm comm, int root);

} MPIB_coll_container;

The following sequence demonstrates how to encapsulate the scatter operation
in order to benchmark it using different timing methods.

46

3.3 Collective Benchmarks

MPIB_ScatterMPIB_Scatterv

MPIB_coll_container

MPI_ScatterMPI_Scatterv

MPIB_measure_coll

MPIB_Scatter_containerMPIB_Scatterv_container

MPIB_measure_max MPIB_measure_root MPIB_measure_global

MPIB_Scatter_binomialMPIB_Scatterv_Traff

Figure 3.5: Extension of collective benchmarks: timing methods, communication
operations, algorithms

• Create a data structure with the first base field MPIB coll container, thus
inheriting the base container’s functions initialize, execute, finalize:

typedef struct MPIB_Scatter_container {

MPIB_coll_container base;

char * buffer;

MPIB_Scatter scatter;

} MPIB_Scatter_container;

• The allocation function for scatter returns the scatter container with its
scatter operation and initialize, execute, finalize functions allocated to that
operation, as below, and its function pointers now point to the operation
scatter functions:

MPIB_Scatter_container* MPIB_Scatter_container_alloc(MPIB_Scatter

47

3.3 Collective Benchmarks

scatter) {

MPIB_Scatter_container* container

=(MPIB_Scatter_container*)malloc(sizeof(MPIB_Scatter_container));

container->base.base.operation = "Scatter";

container->base.base.free = MPIB_Scatter_container_free;

container->base.initialize = MPIB_Scatter_initialize;

container->base.finalize = MPIB_Scatter_finalize;

container->base.execute = MPIB_Scatter_execute;

container->scatter = scatter;

return container;

}

• Next we implement the functions to initialize, execute, finalize routines,
where this argument is a function pointer that can be typecasted to the
above data structure. We use these functions of the container in the mea-
surement function for the particular operation eg. scatter.

void MPIB_Scatter_initialize(void* _this, MPI_Comm comm, int root,

int M) {

MPIB_Scatter_container* container = (MPIB_Scatter_container*)_this;

int rank;

MPI_Comm_rank(comm, &rank);

int size;

MPI_Comm_size(comm,&size);

container->buffer = rank == root ?

(char*)malloc(sizeof(char)*M* size):(char*)malloc(sizeof(char)*M);

}

void MPIB_Scatter_execute(void* _this, MPI_Comm comm, int root, int

M) {

MPIB_Scatter_container* container=(MPIB_Scatter_container*)_this;

container->scatter(container->base.buffer, M, MPI_CHAR,

container->base.buffer, M, MPI_CHAR, root, comm);

}

void MPIB_Scatter_finalize(void* _this, MPI_Comm comm, int root)

{

MPIB_Scatter_container* container = (MPIB_Scatter_container*)_this;

free(container->buffer);

}

48

3.3 Collective Benchmarks

The advantage of the container approach is that it allows the choice of timing
methods to be used with different containers. Implementing the scatter container
then means one can also measure the execution time of different algorithms of
scatter. In this way the code is extendible and reusable for both the timing
method and its algorithm implementation. The following code shows how the
container data structure is used in the collective benchmarks. We consider only
maximum timing method in detail. Other timing methods are implemented in
similar way.

1 void MPIB measure max (MPIB co l l conta iner ∗ conta iner , MPI Comm comm,
2 int root , int M, MPIB precis ion p r e c i s i on , MPIB result∗ r e s u l t) {
3 double∗ T = (double∗) mal loc (s izeof (double) ∗ p r e c i s i o n . max reps)

;
4
5 conta iner−> i n i t i a l i z e (conta iner , comm, root , M) ;
6 int stop = 0 ;
7 double sum = 0 ;
8 int reps = 0 ;
9 double c i = 0 ;

10 while (! stop && reps < p r e c i s i o n . max reps)
11 {
12 MPI Barrier (comm) ; MPI Barrier (comm) ;
13 double time = MPI Wtime () ;
14 conta iner−>execute (conta iner , comm, root , M) ;
15 time = MPI Wtime () − time ;
16 MPI Allreduce(&time , &T[reps] , 1 , MPI DOUBLE, MPI MAX, comm)

;
17 sum += T[reps] ;
18 reps++;
19 i f (reps >= pr e c i s i o n . min reps && reps > 2)
20 stop = (c i = MPIB ci (p r e c i s i o n . c l , reps , T)) ∗ reps /

sum < p r e c i s i o n . eps ;
21 }
22 conta iner−> f i n a l i z e (conta iner , comm, root) ;
23
24 r e su l t−>T = sum / reps ;
25 MPIB max wtick (comm, &re su l t−>wtick) ;
26 r e su l t−>reps = reps ;
27 r e su l t−>c i = c i ;
28 f r e e (T) ;
29 }

In line 6, the container allocates the buffers for collective communication
operation at all processors. In line 15, the communication operation is performed.
In line 23, the buffers are deallocated. These steps are common for all timing
methods. The communication execution time is measured at all processors (lines
14, 16), with maximum value found with help of allreduce (line 17).

49

3.3 Collective Benchmarks

3.3.3 Using the Collective Benchmark library

The following is an example of the collective benchmarking library in use. When
finding the threshold parameters for the LMO model (Chapter 4 has further
description of the model and its estimation), the benchmarks for linear scatter
and gather are performed (see the code below, lines 13, 19).

1 void LMO build (MPI Comm comm, MPIB precis ion p r e c i s i on , MPIB msgset
msgset , int pa r a l l e l , LMO model∗∗ model)

2 {
3 . . .
4 int n = max size / s t r i d e ;
5 int∗ M = (int ∗) mal loc (s izeof (int) ∗ n) ;
6 int i , s i z e ;
7 for (i = 0 , s i z e = 0 ; i < n ; i++, s i z e += s t r i d e)
8 M[i] = s i z e ;
9 MPIB result∗ r e s u l t s = (MPIB result ∗) mal loc (s izeof (MPIB result)

∗ n) ;
10
11 MPIB co l l conta iner ∗ conta ine r = (MPIB co l l conta iner ∗)

MPIB Scat t e r conta ine r a l l o c (MPIB Scatter l inear) ;
12 for (i = 0 ; i < n ; i++)
13 MPIB measure max (conta iner , comm, 0 , M[i] , p r e c i s i on , &

r e s u l t s [i]) ;
14 MPIB conta iner f ree (conta ine r) ;
15 Piecewi se l i n e a r r e g r e s s i o n ana l y s i s on M[] and r e s u l t s [] to

f i nd the S parameter .
16
17 MPIB co l l conta iner ∗ conta ine r = (MPIB co l l conta iner ∗)

MPIB Gather conta iner a l loc (MPIB Gather l inear) ;
18 for (i = 0 ; i < n ; i++)
19 MPIB measure max (conta iner , comm, 0 , M[i] , p r e c i s i on , &

r e s u l t s [i]) ;
20 MPIB conta iner f ree (conta ine r) ;
21 Piecewi se l i n e a r r e g r e s s i o n ana l y s i s on M[] and r e s u l t s [] to

f i nd the M1 nd M2 parameters .
22 . . .
23 }

In lines 11, 17, the containers for linear scatter and gather are created. Both
collective benchmarks are performed for multiple message sizes (lines 12-13, 18-
19). The method of estimation of the LMO threshold parameters is based on
the piecewise linear regression (lines 15, 21) and requires a large number of sin-
gle measurements, that is measurements made without any repetitions. In this
method we are looking for any escalation in the communication execution time, in
order to detect the structural changes in the linear regression models as accurately
as possible. Measuring with higher precision, in this case, would take longer and
provide the average execution time, which may lead to a wrong regression model.

50

3.4 Experiments

The MPIBlib suite also provides standalone applications for benchmarking
point-to-point and collective MPI communications, in addition to the library.
These are p2p and collective, and a set of gnuplot scripts for visualization of
the results of measurements. These executables allow the selection of options at
run-time to select the following choices below. These choices include message
sizes, accuracy selection, collective operation type and for point-to-point a choice
of measurements performed in sequential or parallel modes. Typical options for
executables are as follows:

• -i input file, and -o output file

• -O collective operation (required): MPI Scatter, MPI Gather,
MPIB Scatter linear, MPIB Gather linear MPIB Scatter binomial, etc.

• -t timing: max, root, global (default: max)

• -s message size stride, -m minimum message size, -M maximum message
size (default: 204800)

• -p 0/1 parallel p2p benchmarking (default: 1)

• -r minimum number, and -R maximum number of repetitions (default: 100)

• -c confidence level: 0 < D < 1 (default: 0.95)

• -e error: 0 < D < 1 (default: 0.025)

An example of its use with options to control message sizes and precision
variables is as follows, to benchmark the MPI Scatter operation is as follows:

$mpirun -np 16 collective -O MPI_Scatter -M 131072 -R 200 -c 0.97

3.4 Experiments

We performed experiments with scatter and gather benchmarks on homogeneous
and heterogeneous clusters with different MPI implementations. In this exper-
iment we present the results for a heterogeneous 16-node cluster (specified in
Appendix A).

51

3.4 Experiments

 0

 0.004

 0.008

 0.012

 0.016

 0 20 40 60 80 100

E
xe

cu
tio

n
tim

e
(s

ec
)

Message size (KB)

Scatter

root max global

Figure 3.6: Comparison of different timing methods for native (linear) LAM
scatter on 16 node heterogeneous cluster

52

3.4 Experiments

 0

 0.075

 0.15

 0.225

 0.3

 0 20 40 60 80 100

E
xe

cu
tio

n
tim

e
(s

ec
)

Message size (KB)

Gather

root max global

Figure 3.7: Comparison of different timing methods for native (linear) LAM
gather on 16 node heterogeneous cluster

53

3.5 Summary

Table 3.1: The execution time of scatter and gather benchmarks with different
timing methods on 16 node heterogeneous cluster.

Timing method Scatter, 0..100KB, Gather, 0..100KB,
1KB stride, 1 rep (sec) 1KB stride, 1 rep (sec)

Global 28.7 44.7
Maximum 0.8 15.6
Root 0.8 15.7

The importance of benchmarking collective operations for different message
sizes is demonstrated in Lastovetsky et al. (2007), we reported on the observations
of escalations of the execution time of gather caused by the use of TCP/IP layer
in the communication stack with switched networks, as in Figure 3.7.

The maximum and root methods are generally as accurate as that with global-
time (see Figures 3.6, 3.7) but much more efficient. The difference between overall
scatter and gather execution times is caused by escalations of the execution time
of gather for messages of middle sizes. It is interesting to note that the global
timing method tends to smooth the non-deterministic readings in the gather in
Figure 3.7 due to its averaging methods, and is thus less accurate that maximum
and root timing methods for non-linear escalations.

We use MPIBlib to compare the cost of different methods of the measurement
of native MPI scatter and gather operations on the target platform. For the cost
comparison we measured the overall benchmarking times for scatter and gather
operations. Table 3.1 shows the overall execution time of the benchmarks that
use different timing methods and consist of one collective communication for each
message size from 0 to 100 KB, with 1 KB stride. One can see that the global-
time approach is very costly compared to maximum and root timing methods.

3.5 Summary

The key advantage of the MPIBlib software is that it is integrative as a library
with the application sources. Previous benchmarking utilities are stand-alone and
do not allow such ease of use with applications. It includes p2p and collective
benchmarks that we will need for estimation of parameters for the performance
model described in the next chapter. The code has an extensible form to allow
for implementation of new operations for both point-to-point and collective, and
allows for the designing of new communication experiments.

MBIBlib is efficient and accurate as shown by our experimental results. There
is the option of running p2p in parallel or sequentially, to allow for extra efficiency.

54

3.5 Summary

The accuracy of previous benchmarking is questionable since it is assumed the
time for each clock of all processors to be the same, ignoring any disparity that
may arise from differences. Our software implementation MPIBlib addresses this
problem to improve the measurement of parameters. The choice of timing method
for collective benchmarks allows for the selection of ratio between accuracy and
efficiency, with global timing being the most accurate but takes more time. We
can chose this ratio to be most suited to our model selection, in this way the
basis for the estimation is more accurate and hence a better performance model
is possible.

55

Chapter 4

LMO: An Advanced
Heterogeneous Communication
Performance Model

This chapter presents a new model, the LMO model (Lastovetsky et al. (2006a),
Lastovetsky & OFlynn (2007), Lastovetsky et al. (2009)), to predict the perfor-
mance time of MPI collective communications. The performance model assesses
execution times of MPI collective operations to assist applications designers in
tuning programs for greater effectiveness. The traditional models use a small
number of parameters to describe communication between any two processors
and as a result the traditional point-to-point communication model can not be
used intuitively to map collective operations. There are difficulties as they cannot
be easily mapped to the communications in a heterogeneous switched network.
This thesis seeks to address this issue and presents a new model that is designed
to be more accurate as the solution. The essence of the problem is the nature
of the parameters themselves. Traditional models such as Hockney use a very
small number of parameters that do not allow the parts of communication to be
separated out. This means building the collective operations is non-intuitive and
difficult for the designers when modeling collective communications. The LMO
model expresses the linear response of execution times as a function increasing
message sizes, with a definition of regions of nonlinear escalation regions. The
model is a simple and understandable combination of parameters that represent
the heterogeneity of the system. It allows for the easy assessment of collective
operations for MPI applications without an need for knowledge or changes to the
underlying platform.

The model has key advantages over previous approaches:

• The new LMO model is a novel intuitive performance model with a new

56

4.1 The Point-to-Point Parameters

mapping of parameters for MPI collective communications in an easy and
clear way.

• The model is suitable for heterogeneous networks, and is more accurate and
efficient than other previous models.

• The model is defined for a full range of message sizes, and includes previ-
ously undocumented ranges of sizes where significant escalations in execu-
tion times are found. No other model to date charts these critical areas of
greatly elevated execution times.

• It is fully automated with parameter estimation at runtime with a software
tool, the CPM, described in Chapter 6.

The second part of the chapter describes how the parameters of the model
are found. The problem of heterogeneity is a key issue that is addressed for
the first time by our model. Finding the individual parameter values for different
nodes requires new innovative techniques for models designed for a heterogeneous
network. The model requires that the fixed and variable parameters are found
for each heterogeneous node. The model also has new threshold parameters that
divide the model into that for small, medium and large message sizes. The greater
number of parameters allows for the building of a intuitive model that reflects the
switched network topology in an understandable way. The method for finding
these parameters needs to be reasonably quick to allow for an efficient design tool
for application developers. First we describe the parameters of the new model,
and then how the point-to-point model is extended to map collective operations
for MPI communications.

4.1 The Point-to-Point Parameters

The model we build is made of a simple collation of the parameters that represent
the three stages of the point-to-point operation. The total execution time is the
time for the processor to send the message, added to the transfer time while on
the link to the other processor, and the time for the other processor to receive
the message.

4.1.1 The Point-to-Point Model

The LMO model is based on six parameters characterizing the point-to-point
communication. Like the most of traditional models, it represents the point-
to-point communication time by a linear combination of its parameters and the

57

4.1 The Point-to-Point Parameters

message size. The execution time of sending a message of M bytes from processor
i to processor j in a heterogeneous cluster is estimated by a simple combination
of the following parameters. The model is a simple addition of these constant
and variable contributions from both the network and the two processors.

• Ci and Cj, are the fixed or constant processor delays;

• ti, tj, are the variable delays of the processors for each byte;

• Lij is the latency, the constant contribution from the network;

• βij is the transmission rate, the variable network contribution.

The delay parameters, which are attributed to each processor, reflect the
heterogeneity of the processors. The latencies and transmission rates, which
correspond to each link, reflect the heterogeneity of communications. Notice how
we distinguish between the processors and network contributions with separate
parameters for the constant and variable parts of each for the point-to-point
execution time.

Hence the execution time of sending a message of M bytes from processor i to

processor j in a heterogeneous cluster (i
M−−→ j) is a straightforward summation,

and is estimated by the execution time with parameters as below. The point-to-
point execution time is the fixed processors sending and receiving times and link
latency added to the variable delays due to variations in message size.

i
M−−→ j: (Ci, ti)

(Lij ,βij)−−−−−→ (Cj, tj)
point-to-point execution time: Ci + Lij + Cj + M(ti + 1

βij
+ ti)

processor parameters: fixed (Ci, Cj) and variable (ti, tj) delays
network link parameters: latency (Lij) and transmission rate (βij)

we suppose Lij = Lji and βij = βji

2(n + C2
n) parameters

Hockney: αij = Ci + Lij + Cj

βij = ti + 1
βij

+ tj

For networks with a single switch, it is realistic to assume ÃLij = ÃLji and
βij = βji. In terms of the Hockney model, the parameters can be expressed as
a combination of constant and variable contributions that our model is able to
separate fully.

58

4.2 The LMO Model for One-to-Many

The model is extended to map the performance of different collective opera-
tions. We notice that this is more complex than the simple collation of point-to-
point communications. By examining the collective operations in detail we can
see that they are in fact a combination of parallel and sequential communications
for a single-switched network, see Figure 4.1. The collective communications
operations such as Scatter, Gather, Broadcast and Reduce are standard MPI
operations that applications developers wish to estimate to design applications.
Our model maps these collective operations as two distinct mapping patterns:

• One-to-Many for the linear scatter

• Many-to-One for the linear gather

The model is built with a combination of heterogeneous parameters to give a
linear representation of execution times for a message size.

The extended models also play a critical role in finding the estimations of
the parameters themselves. We have an additional number of parameters for the
new model that help make it more flexible and accurate in the representation
of collective operations. There is a key problem with this approach however,
as the traditional way of finding parameters using point-to-point communication
experiments do not provide sufficient data for finding the new extended amount
of parameters. We present an innovative solution to this problem, we use the
extended LMO model for three processors to obtain extra data to find the addi-
tional parameter values. In this way the model for point-to-point that is extended
to the One-to-Many and Many-to-One provides the solution to finding the extra
LMO model parameters. This is a significant as previous traditional models were
limited in their possible number of parameters as they were found by point-to-
point only. This method is explained in more detail in the coming section for
estimation in this chapter. First we describe the LMO model for collective com-
munications in detail, divided into One-to-Many operations such as scatter, and
Many-to-One operations such as gather.

4.2 The LMO Model for One-to-Many

The model is based on empirical observations of performance of collective op-
erations on a single-switched network. By observing the collective operations
directly, the behavior for that particular network may be modeled. Assessing an
example of the modeling process for the linear scatter operation on a switched
cluster in an intuitive way, we separate with our model the contribution of the
root processor, the communication layer and each of the receiving processors. We
can see that the scatter communication is mapped with two regions, one in serial

59

4.2 The LMO Model for One-to-Many

going toward the switch and then the messages leave the switch in parallel to
each receiving node, see Figure 4.1.

Figure 4.1: Mapping a One-to-Many Communication Operation, serial and par-
allel on a single switched network

Our model expresses the serialization of outgoing messages on the root pro-
cessor followed by their parallel transmission over the communication layer and
parallel processing on the receiving processors. This is a logical and intuitive ap-
proach that is described with difficulty in the corresponding traditional models,
see the example of Hockney in Chapter 5. The key idea is a greater separation of
the parts of the communication with a greater number of parameters. This allows
for a simple combination of parameters that mapped to the collective operations
in a clear and understandable way, as the extra parameters can represent both
serial and parallel aspects of the collective communication. There is a noticeable
difference in response with message size as messages increase for One-to-Many
type collective operations. We therefore divide the model into two regions for
small and large messages to represent this behavior, as in Figure 4.2.

The estimated time of operations such as MPI Scatter for messages of size
M from node 0 to nodes 1, ..., n is given by an intuitive combination of delay
times from the sending processor to the switch, that is C0 + t0M added to the
parallel communication from the switch to the receiving nodes, this means a

60

4.3 The LMO Model for Many-to-One

E
xe

cu
tio

n
tim

e

Message size

Scatter S

Figure 4.2: Threshold Parameters for One-to-Many Operations

simple addition of the processor’s serial sending of n messages to the switch +
maximum value of the parallel sending from the switch to the receiver nodes.

Hence taking the maximum of these parallel transfers and adding them to-
gether, the execution time for small message sizes is as follows:

(n− 1)(Cr + Mtr) +
n−1
max

i=0,i 6=r
{Lri + Ci + Mti +

M

βri

} (4.1)

where smaller messages are less than a threshold value of M < S.
The sequential part of this formula,(n − 1)(Cr + Mtr) , is related to the

root processor, which serially processes the messages to be sent to the rest n-
1 processors. The maximum reflects the parallel transmissions followed by the
parallel processing on the receivers. Thus, this formula conforms to the features of
network switches, which parallelize the messages addressed to different processors.
On computational clusters with a TCP/IP layer, we did observe a leap in the
execution time of the linear scatter, reflected in earlier versions of the model.
However, the scale of the leap is not that significant and therefore in the improved
version of the LMO model presented in this thesis, we use a linear approximation
of the scatter execution time, which appears sufficiently accurate in practice.
Despite this, we still estimate the message size, S, for which the leap is observed,
as an important parameter used in the design of communication experiments for
estimation of the LMO point-to-point parameters.

4.3 The LMO Model for Many-to-One

The model for standard MPI operations of type Many-to-One such as the linear
gather is again based on the empirical observations that are particular to a net-

61

4.3 The LMO Model for Many-to-One

work platform. Figure 4.3 for a switched network shows that the linear response
with increasing message size is different for small, medium and large messages.

For medium-sized messages with the Many-to-One operation we noted a very
significant change in behavior from the linear response found for small and large
messages. Based on the empirical readings from experiments it is indicated that
the Many-to-One collective communication often experienced very significant de-
lays as the message size was increased. This nonlinear behavior was manifested
by very large fluctuations in execution times (Figure 4.3). These extreme values
were observed to occur for different networks of various size, operating systems
and MPI implementation. Previous models in related works (Chapter 2) all ig-
nore this region of instability, our model provides a new and unique solution to
this critical issue.

E
xe

cu
tio

n
tim

e

Message size

GatherM1 M2

T1

T2

E
xe

cu
tio

n
tim

e

Message size

Gather

Figure 4.3: Many-to-One Non-linearity for Medium Messages Sizes

For large messages, the experimental observations show a return to a linear re-
sponse of the execution time to message size. This change in behavior occurs when
the size of the message exceeds some particular threshold value. Standard MPI
implementation changes the sending to synchronous rather than asynchronous for
large messages to allow reservation of resources for the communication operation.
This provides an explanation for the sudden resumption of linearity for Many-
to-One communications, as congestion is now avoided by resource reservation by
underlying communication protocols prior to sending.

The model is therefore based on three part approach, to allow for the ac-
commodation of the full range of small, medium and large message sizes. The
thresholds for each size are determined by observations for the particular platform
at installation, and the three message sizes give distinctive linear and non-linear
responses, as follows:

1. Small message sizes, where the model is linear .

62

4.3 The LMO Model for Many-to-One

2. Medium message sizes where the model gives thresholds for non-deterministic
non-linear behavior, with significant increases in execution times.

3. Large Message sizes where linearity of response to increasing message
size is resumed.

Figure 4.4: Communications both parallel and serial for Many-to-One Operation
on a single switched network

For the operations such as MPI Gather operation, we separate small, medium
and large messages by introducing parameters M1 and M2. For small messages,
M < M1, the execution time has a linear response to the increase of message size.
The model is a simple collation of parameters with mapping to the operation, on
a switched network this means a simple addition, (see Figure 4.4) of the maximum
value of the parallel sending from the switch from the sending nodes + receiver
processor’s serial receiving of n messages.

The execution time for small messages for the Many-to-One communication
involving n processors (n ≤ N , where N is the cluster size) is therefore estimated
by:

(n− 1)(Cr + Mtr) +
n−1
max

i=0,i 6=r
{Lri + Ci + Mti +

M

βri

} (4.2)

63

4.4 Estimation of Parameters

For medium messages, M1 ≤ M ≤ M2, we observed a number of extreme
levels of escalation, and the response to increasing message size is non-linear,
until the message size reaches the large message size threshold, M2.

For large messages, M > M2, the execution time resumes a linear pre-
dictability with increasing message size. Hence, this part is similar in design to
the model for small messages, but has a different slope of linearity that indicates
greater values due to extra communication overheads found for large messages.
This is reflected in the summation of parameters as follows:

(n− 1)(Cr + Mtr) +
n−1∑

i=0,i 6=r

{Lri + Ci + Mti +
M

βri

} (4.3)

4.4 Estimation of Parameters

As the point-to-point communication experiments do not provide sufficient data
for the estimation of the parameters, some particular collective experiments be-
tween small numbers of processors (in our experiments, between three proces-
sors) are introduced. To make use of the results of these additional experiments,
the heterogeneous point-to-point performance model is extended by using the
LMO model of these particular collective operations, with their execution time
expressed via the point-to-point parameters.

We propose an elaborated approach to the estimation of the parameters of the
advanced communication performance models such as LMO. Then we apply this
approach to the extended LMO model and present a modified set of experiments
required to estimate its parameters. This approach can be summarized as follows:

• A system of equations with the point-to-point parameters as unknowns and
the execution times of the communication experiments as a right hand side
is built and solved.

• Since more than two processors are participating in these additional exper-
iments, the execution time should be measured by an appropriate timing
method (Lastovetsky et al. (2008a)), which provides a reasonable balance
between the accuracy and efficiency. We propose to measure the execu-
tion time of the collective experiments on the sender side. This method is
proved fast and quite accurate for collective operations on a small number
of processors.

• The additional collective communication experiments should be designed
very carefully in order to avoid the irregularities in the execution time of
the used collective operations. We suggest performing a preliminary test of

64

4.4 Estimation of Parameters

the collective operations for different message sizes to identify the regions
of irregularities and avoid the use of message sizes from these regions.

• For reliable estimation of the parameters, we perform multiple repetitions
of the experiments and statistical analysis of their results.

The cost of the accurate estimation of a communication model of the heteroge-
neous cluster can be quite significant as it typically involves multiple repetitions of
the same communication experiments between different subsets of the processors,
and then the statistical processing of their results for a reliable approximation
of the parameters. As the efficiency of the estimation is an important issue,
especially if the model is supposed to be estimated at runtime, we employ the
following optimization techniques in the design of the experiments. The cost of
the estimation can be significantly reduced if we simultaneously execute several
independent communications involving non-overlapped sets of processors with-
out degradation of their performance. On clusters based on a single switch, the
parallel execution of the non-overlapping communication experiments does not
affect the experimental results and can be used for acceleration of the estimation
procedure. This optimization technique can be very efficient. For example, in our
experiments on the 16-node heterogeneous cluster, the parallel estimation of the
heterogeneous Hockney model with the confidence level 95% and relative error
2.5% took only 5 sec, while its serial estimation with the same accuracy took 16
sec. Both experiments give the same values of the parameters.

We applied this approach to estimation of the parameters of the extended
LMO model. The modified set of communication experiments is similar to one
that was proposed in Lastovetsky & Rychkov (2007). In addition to roundtrips, it

includes the parallel communications between three processors i
N←−−→
M

j, k, which

consist of the sending of M bytes from the processor i to the processors j,k and
the receiving of the N byte replies. The execution time of this communication
experiment can be represented as a sum of the execution times of linear scatter
and gather, Tscatter(M) + Tgather(M).

4.4.1 Estimation of the Threshold Parameters

The threshold parameters determine the range for small, medium and large mes-
sage sizes for the Many-to-One model, and small and large ranges for the One-to-
Many model. These parameters are very important as they distinguish different
responses in execution time for the full range of message sizes. These are found
from empirical measurements so that the model may be adapted specifically for
a particular platform. To estimate the threshold parameters, we use experiments
for MPI Scatter and MPI Gather to observe them for different message sizes.

65

4.4 Estimation of Parameters

The data rows for scatter and gather consist of the message sizes incremented
stride and the measured execution time {M i, T i}, M i+1 = M i + stride.

Typical data rows for heterogeneous clusters based on a switched network are
shown in Figures 4.2 and 4.3. One can see that:

• the execution time of scatter can be approximated by the piecewise linear
function with one break that corresponds to the threshold parameter S to
be found;

• the execution time of gather has the regions of linearity for small, M < M1,
and large, M > M2, messages and can also be approximated by the two
linear functions.

The threshold parameter S for One-to-Many corresponds to the leap in the
execution time, separating small and large messages. It may vary for different
combinations of clusters and MPI implementations. We conducted the observa-
tion experiments for a full range of message sizes for the collective operations.
We observed the leap in the execution time of scatter for large messages and the
non-deterministic escalations of the execution time of gather for medium-sized
messages (see Fig. 4.3).

These are the particular parameters for a range of message sizes, used to cat-
egorize the threshold the message size ranges where distinctly different behavior
of the collective MPI operations is observed. The nature of these regions is non-
linear, compared to the linear behavior of the smaller and larger message sizes
of the thresholds, as found in the previous sections.

To find the threshold parameters, we use the algorithm proposed in Bai &
Perron (1998). It considers the statistical linear models with multiple structural
changes such as with our measurements for collective operations. These mea-
surements may be found to change from linear to non-linear and then back to
linear with increasing message size. The algorithm uses dynamic programming
to identify optimal partitions with different numbers of segments. This is a com-
plex method, but the essential idea is that the linearity of the data is examined
segment by segment, and when the data is determined to change from linear to
non-linear, the breakpoint is found. The algorithm allows us to locate the break-
point in the execution time of scatter, S, and the range of large messages for
gather, M2. The R statistical package is used for analysis, Galassi et al. (2009).
The function for finding the One-to-Many S parameter finds the execution time
for the message sizes 0 < M < max size and performs the Bai & Perron algo-
rithm, using the F statistic to find the goodness of fit of its regression process to
the data. This algorithm finds the S breakpoint in the piecewise linear regression
of execution times for message size.

66

4.4 Estimation of Parameters

The model computes the parameters of Many-to-One thresholds M1 and M2, it
measures Many-to-One execution time for the message sizes 0 < M < max size
and performs the Bai & Perron algorithm with the F statistic for the data.
This is to find the M2 breakpoint in the piecewise linear regression for execution
times using the R statistical package. Then in a loop it measures Many-to-One
execution time for the message sizes 0 < M < m with the stride reduced twice
each time, where m is a message size for which a tenfold escalation of the execution
time has been observed on the previous step. As stride reaches 1-byte value m is
truncated to the nearest kb value.

4.4.2 Estimation of the Point-to-Point Parameters

To estimate the constant and variable parameters of the model for each hetero-
geneous node and link, we have an innovative approach to accurately evaluate
the heterogeneity of each processor. For a network consisting of n processors,
there will be 2(n + C2

n) unknowns: that is n for fixed processing delays for each
processor, n variable processing delays, and C2

n transmission rates and latencies.
The execution time of the roundtrip, namely sending A1 bytes and receiving B1

bytes between nodes. The key problem is that the roundtrip experiments will
give us only C2

n equations. The traditional approach to solving this problem to
find the 2n + 2C2

n parameters uses roundtrips with non-empty message, but this
will give only C2

n linearly independent equations. This is a critical issue that has
limited the design of analytical performance models to a small number of obtain-
able parameters. Therefore, the first challenge is to find a set of experiments that
gives a sufficient number of linearly independent linear equations to find the extra
parameters we want for heterogeneous communications on a switched network.

We begin with the constant parameters. Because we assume that the execu-
tion time of the copying of the root’s block on the root processor is negligibly
small, the constant parameters are estimated from the roundtrips and One-to-
Two communications with empty message as in (4.4). The innovative approach
we use here is to use the LMO model for One-to-Two communications as well
as point-to-point measurements. This gives the extra simultaneous equations we
need to solve for the greater number of parameters.

The expressions for the roundtrips (4.5) can be used to simplify the formula
for the One-to-Two communication. The solution of the system of equations is

67

4.4 Estimation of Parameters

shown in (4.6).

Tij(0) = 2(Ci + Lij + Cj) i
0←−−→
0

j

Tjk(0) = 2(Cj + Ljk + Ck) j
0←−−→
0

k

Tik(0) = 2(Ci + Lik + Ck) i
0←−−→
0

k

Tijk(0) = 2(2Ci + max
x=j,k

(Lix + Cx)) i
0←−−→
0

jk

Tjik(0) = 2(2Cj + max
x=i,k

(Ljx + Cx)) j
0←−−→
0

ik

Tkij(0) = 2(2Ck + max
x=i,j

(Lkx + Cx)) k
0←−−→
0

ij

(4.4)

Tijk(0) = 2(2Ci + max
x=j,k

(Lix + Cx)) = 2Ci + max
x=j,k

Tix(0) (4.5)

Ci = (Tijk(0)−max
x=j,k

Tix(0))/2

Cj = (Tjik(0)−max
x=i,k

Tjx(0))/2

Cj = (Tkij(0)−max
x=i,j

Tkx(0))/2

Lij = Tij(0)/2− Ci − Cj

Ljk = Tjk(0)/2− Cj − Ck

Lik = Tik(0)/2− Ci − Ck

(4.6)

The variable parameters are found with help of the same communication ex-
periments but with non-empty messages. Due to the irregularities of linear scatter
and gather observed on switched clusters, the size of messages should be care-
fully selected in the One-to-Two experiments (Lastovetsky & Rychkov (2007)).
We send the messages of medium size to avoid a possible leap in the execution
time of scatter observed for LAM and Open MPI, and receive empty replies to
eliminate the escalations in the execution time of gather. We build the system
of equations (4.7). Having replaced some items by the point-to-point execution
time, we obtain the expression (4.8) of the execution time of One-to-Two com-
munication. The variable processor delays and transmission rates are found as in

68

4.4 Estimation of Parameters

(4.9).

Tij(M) = 2(Ci + Lij + Cj + M(ti +
1

βij

+ tj)) i
M←−−→
M

j

Tjk(M) = 2(Cj + Ljk + Ck + M(tj +
1

βjk

+ tk)) j
M←−−→
M

k

Tik(M) = 2(Ci + Lik + Ck + M(ti +
1

βik

+ tk)) i
M←−−→
M

k

Tijk(M) = 2(2Ci + Mti) + max
x=j,k

(2(Lix + Cx) + M(
1

βix

+ tx)) i
M←−−→
0

jk

Tjik(M) = 2(2Cj + Mtj) + max
x=i,k

(2(Ljx + Cx) + M(
1

βjx

+ tx)) j
M←−−→
0

ik

Tkij(M) = 2(2Ck + Mtk) + max
x=i,j

(2(Lkx + Cx) + M(
1

βkx

+ tx)) k
M←−−→
0

ij

(4.7)

Tijk(M) = 2(2Ci + Mti) + max
x=j,k

(2(Lix + Cx) + M(
1

βix

+ tx))

= 2Ci + Mti + max
x=j,k

(Tix(0) + Tix(M))/2
(4.8)

ti = (Tijk(M)−max
x=j,k

(Tix(0) + Tix(M))/2− 2Ci)/M

tj = (Tjik(M)−max
x=i,k

(Tjx(0) + Tjx(M))/2− 2Cj)/M

tj = (Tkij(M)−max
x=i,j

(Tkx(0) + Tkx(M))/2− 2Ck)/M

1

βij

= (Tij(M)/2− Ci − Lij − Cj)/M − ti − tj

1

βjk

= (Tjk(M)/2− Cj − Ljk − Ck)/M − tj − tk

1

βik

= (Tik(M)/2− Ci − Lik − Ck)/M − ti − tk

(4.9)

4.4.3 Estimation of Point-to-Point Parameter Values

The values of each parameter are now found by executing these roundtrip and
triplet experiments across the entire cluster. This gives rise to a full set of exper-
iments that comprises of C2

n roundtrips and 3C3
n One-to-Two communications.

69

4.5 Summary

As the parameters of our point-to-point model are found from a small number
of experiments, they can be sensitive to inaccuracies of measurement. Therefore
it makes sense to perform the series of the measurements for One-to-One and
One-to-Two experiments for the entire cluster, and to use the averaged execution
times in the corresponding linear equations.

The processing delays, Ci and ti, can be obtained from C2
n−1 different triplets,

the processor i takes part in and can be averaged; the latencies, Lij, and the
transmission rates, βij, can be averaged from n− 2 values:

C̄i =

∑
j,k 6=i

Ci

C2
n

t̄i =

∑
j,k 6=i

ti

C2
n

L̄ij =

∑
j,k 6=i

Lij

n− 2
β̄ij =

∑
j,k 6=i

βij

n− 2
(4.10)

The total execution time of the estimation of the parameters depends on:

• The number of measurements (2C2
n One-to-One and 3C3

n One-to-Two mea-
surements)

• The execution time of every single measurement (fast roundtrips between
2 and 3 processors), and

• The complexity of calculations (3C3
n comparisons, 12C3

n simple formulas for
calculation of the values of the parameters of the model, and 2(n + C2

n)
averagings).

Minimization of the total execution time of the experiments is another issue
that we address. The advantage of the proposed design is that these series do
not have to be lengthy (typically, up to ten in a series) because all the param-
eters have already been averaged during the process of their finding. Another
optimization is related to the target platform, that is a switched cluster. All
communication experiments are performed in parallel on non-overlapped pairs
or triplets of processors. As network switches provide forwarding packets be-
tween sources and destinations without contentions, the parallel execution does
not affect the accuracy of the estimation.

4.5 Summary

The LMO model is a new performance model for MPI communications operations
that expresses the linear response of execution times as a function increasing
message sizes. The model also includes the definition of regions of nonlinear

70

4.5 Summary

escalation regions, that are unrecognized by previous models. Previous models are
restricted to a few parameters that do not map intuitively or easily to collective
operations. Our model is a simple and understandable combination of parameters
that can represent the heterogeneity of a system of different processors. It allows
for the mapping of collective operations for MPI applications in a more intuitive
way without an need for knowledge or changes to the underlying platform.

The method for determining the message threshold parameters allows for a
new comprehensive approach to assessing the full range of message sizes for a given
network. The parameters for threshold values demonstrate how the model can be
used to determine the full range of message sizes, and is not as limited compared
to more traditional models. These threshold parameters chart a distinct region
of non-linear escalation that is determined by our model that was previously
undocumented by methods to date.

The heterogeneity of the model means we have more parameters to represent
it. We describe a new approach that performs a series of the measurements
for One-to-One and One-to-Two experiments using the Many-to-One paradigm
to estimate these parameters. This allows for sufficient linear equations to find
the parameter values. The innovative method for node parameter determination
exploits the new model itself, and we use parallelism to provide a quick and
accurate assessment method.

71

Chapter 5

Comparison with Extended
Heterogeneous Traditional
Models

The chapter presents our heterogeneous versions of traditional models, Lastovet-
sky et al. (2009). We determine the new heterogeneous versions of the traditional
homogeneous models, Hockney and LogP variants, and then we compare them to
our new LMO model for accuracy and effectiveness. The chapter concludes with
experimental results demonstrating that the LMO model can more accurately
predict the execution time of collective operations than the traditional models.

In this chapter, we analyze the limitations of traditional communication per-
formance models that are preventing them from the accurate estimation of the
execution time of collective communication operations on computational clus-
ters with a single switch. Usually, communication performance models for high
performance computing are analytical and built for homogeneous clusters. The
basis of these models is a point-to-point communication model characterized by
a set of integral parameters, having the same value for each pair of processors.
The execution time of collective operations is expressed as a combination of the
point-to-point parameters and predicted for different message sizes and numbers
of processors. For homogeneous clusters, the point-to-point parameters are found
statistically from the measurements of the execution time of communications be-
tween any two processors. Typical experiments include sending and receiving
messages of different sizes, with the communication execution time being mea-
sured on one side.

The design of traditional models based on point-to-point measurements can
be extended for networks of heterogeneous processors in several ways. The per-
formance models can be applied to heterogeneous clusters by averaging values
obtained for every pair of processors. In this case, the heterogeneous cluster

72

5.1 Extended Hockney Model

will be treated as homogeneous in terms of the performance of communication
operations. Another way is the heterogeneous extension of traditional models,
where different pairs of heterogeneous processors are characterized by different
parameters. The small number of parameters is an obvious advantage of the first
approach. It allows the expression of the execution time of any communication
operation by a simple compact formula, which is independent of the processors
involved in the operation. While simpler to use, the homogeneous models are
less accurate than the heterogeneous ones. When some processors or links in the
heterogeneous cluster significantly differ in performance, predictions based on the
homogeneous models may become quite inaccurate.

5.1 Extended Hockney Model

We start with a traditional model proposed by Hockney (1994). We can extend
the Hockney model for heterogeneous clusters by introducing the different pa-
rameters αij and βij for different pairs of processors i, j. These heterogeneous
parameters also combine the processor and network contributions in a similar
way to the homogeneous model, α+βM (see Chapter 2 for the full model defini-
tion). The communication experiments are performed for each pair of processors
in order to estimate the parameters of both the original and extended models for
a heterogeneous cluster.

Let us consider how these models can be used for estimation of the execu-
tion time of MPI collective communication operations, for example for different
algorithms of scatter. We begin with a simple linear algorithm, when messages
are sent in a flat tree. There are only two ways to model this operation with
this model. The first option is to assume that all point-to-point communications
between the root and destination processors are performed sequentially. In this
case, the total execution time will be expressed as a sum of n-1 point-to-point

execution times: (n− 1)(α + βM) (homogeneous Hockney) or
n−1∑

i=0,i6=r

(αri + βriM)

(heterogeneous Hockney). The second option is to assume that the point-to-point
communications are fully parallel. In that case, the predictions will be α + βM

with the homogeneous Hockney models and
n−1
max

i=0,i6=r
(αri + βriM) with the hetero-

geneous version.
Unfortunately, both these assumptions do not accurately reflect the way the

operation is executed on a switched cluster. On this platform, the linear scat-
ter combines serial execution at the sending processor and parallel execution
in the network and at the receiving nodes. Figure 4.1 in the previous chapter
demonstrates this combination of serial and parallel communications within the

73

5.1 Extended Hockney Model

operation on a single switched network. The lack of parameters separating the
contributions of the processors and the network in the Hockney model does not
allow for expressing such effects, unlike the LMO model. For this reason we say
the model lacks intuitiveness. As a result, both homogeneous and heterogeneous
sequential Hockney predictions of the linear scatter are pessimistic, while their
parallel counterparts are too optimistic. Because of the design of the Hockney
model, the same formulas can be applied to the estimation of linear gather and
presents the same issues of accuracy.

In general, heterogeneous extensions of traditional models can provide more
accurate predictions of collective operations on heterogeneous platforms, at least
for algorithms with some inherent parallelism. Examples of such algorithms are
the algorithms of scatter and gather based on binomial communication trees. The
communication tree for scatter/gather and 16 participating processors is shown
in Figure 5.1. The nodes of the tree represent the processors. The arcs represent
the logical communication links between the processors. Given 16 data blocks
of the same size are to be scattered/gathered, each arc is marked by the number
of blocks communicated over the corresponding link during the execution of the
algorithm. With the use of the homogeneous Hockney model, the execution
time of the binomial algorithm of scatter/gather can be approximated by the
following formula by Chan et al. (2004): (log2n)α+(n−1)βM , where M is a size
of the receive (scatter) and send (gather) buffers. In each sub-tree, the largest
messages 2kM are sent first (scatter) or received last (gather), with k starting
with log2(n − 1). The formula includes parallel (constant contributions in sub-
trees of the same order, (Ck, k = 1, ..., 4) and sequential (accumulated variable
contributions) parts.

In this formula communications in sub-trees of the same order are assumed
simultaneous, which is unrealistic in the case of a heterogeneous cluster. The
communication execution times in two sub-trees of the same order may be differ-
ent. Moreover, the communication execution time associated with each sub-tree
will also depend on mapping of the processor of the cluster to the nodes of the
binomial communication tree. The homogeneous Hockney model is not detailed
enough to express these nuances. At the same time, the use of the heteroge-
neous Hockney model allows us to propose the following more accurate formula
for binomial scatter/gather:

T (k) = αrs + βrs2
k−1 + max

c∈Ck−1

Tc(k − 1) (5.1)

where k is an order of the sub-tree (starts with log2n - the whole tree), r is a
root processor of the sub-tree (0, for the whole tree), and s is a root of a sub-sub-
tree with the highest order (8, for the whole tree in Figure 5.1). Tc(k − 1) is the
execution time of the sub-tree c of order k− 1 from the set Ck−1. For the tree in

74

5.1 Extended Hockney Model

Figure 5.1, C3 consists of two sub-trees, with roots 0 and 8. The execution times
of sending/receiving of the largest block in each sub-tree are summed (sequential
part). Maximums and recursion correspond to parallel communications in the
sub-trees of the same height. For 8 participating processors with the root 0 the
formula will look as follows:

α04 + 4β04 + max

α02 + 2β02M + max

{
α01 + β01M

α23 + β23M

}

α46 + 2β46M + max

{
α45 + β45M

α67 + β67M

}

(5.2)

1 2 4

1 1 2 1 2 4

1 1 21

1

8

0

1 2

3

4

5 6

7

8

9 1 0

1 1

1 2

1 3 1 4

1 5

Figure 5.1: The binomial communication tree for scatter (gather) involving 16
processors. The nodes represent the processors. Each arc represents a logical
communication link and is marked by the number of data block communication
over this link

One can see that the formula for the homogeneous Hockney model is a special
case of this formula. If all the point-to-point parameters are the same in the case
of 8 processors, it will be rewritten as:

α + 4βM + 2βM + α + βm ≈ log28α + (8− 1)βM (5.3)

75

5.2 Extended LogP-based Models

An example of the advantages of the Hockney model with algorithms such
as binomial with inherent parallelism is demonstrated by experiments with a
16-node cluster in Chapter 7.

5.2 Extended LogP-based Models

All the traditional models designs (as reviewed in Chapter 2) combine the contri-
butions of different nature in a communications operation, as we will show next.
The more elaborated traditional models such as LogP, LogGP and PLogP are
shown to have this problem as well as Hockney.

The LogP-based models can be applied to heterogeneous clusters in the same
ways as before the previous section, for Hockney. The parameters are found for
all pairs of processors, with the above experiments being performed for each link.
Then these parameters (heterogeneous version) or their average values (homoge-
neous version) will be used in modeling. However, there are options with how to
build heterogeneous extensions of these models for heterogeneous clusters with
single switch. For example, since the PLogP overheads, os(M) and or(M), corre-
spond to the processor variable contributions, it is sensible to assume that they
should be the same for all point-to-point communications in which the processor
can be involved. This means that in the heterogeneous extension of the PLogP
model, the average processor overheads should be used (averaged from the values
found in the experiments between all pairs included the given processor). On the
other hand, the latency, L, and the gap, g(M), parameters (which are connected
with the overheads in the design of above communication experiment) represent
a combination of both processor and network contributions, and cannot therefore
be averaged in this way. For this reason, it is not trivial and straightforward to
extend the LogP-based models.

Let us consider how these models can be used for estimation of the exe-
cution time of linear scatter/gather. Similarly to the Hockney model, the ex-
ecution time of both operations can be approximated by the same formulas:
L + 2o + (n− 1)(M − 1)G + (n− 2)g (LogGP), L + (n− 1)g(M) (PLogP, Kiel-
mann et al. (2000)), where M is a block size. Pješivac-Grbović et al. (2005)
demonstrated that the analytical prediction of the execution time of collectives
provided by these models was not accurate. There are major difficulties in ex-
pressing the execution time of these operations with the combination of heteroge-
neous parameters of the LogP-based models. The new LMO model allows for the
separation of the constant and variable contributions of processors and network,
that allows for an intuitive mapping of parameters to the communication opera-
tion. This elaboration on traditional models lead to more accurate prediction of
the communication execution time. In Lastovetsky et al. (2006a), Lastovetsky &

76

5.3 Experimental Results

OFlynn (2007), Lastovetsky et al. (2009) we proposed an analytical heterogeneous
communication performance model, LMO, designed for both homogeneous and
heterogeneous clusters based on a switched network. The model was described in
detail in the last chapter, it includes the parameters that reflect the contributions
of both links and processors to the communication execution time. This allows us
to represent the aspects of heterogeneity for both links and processors and solves
the problem of representing the serial and parallel aspects of the communications
operations.

5.3 Experimental Results

In this section we present the experimental results demonstrating that our LMO
model is more accurate than the other traditional models. We also show that our
model is more efficient, that it is faster to build and it outperforms the others in
accurate predictions.

We measured the execution time of point-to-point communications and com-
pared it with the predictions provided by the heterogeneous LogGP, PLogP and
LMO models. We present the experimental results obtained on the 16-node het-
erogeneous cluster described in Appendix A. For the measurements, we used the
MPIBlib, the MPI benchmarking library, which provides accurate and efficient
benchmarking of MPI communication operations Lastovetsky et al. (2008a). The
LogGP and PLogP parameters were found for all pairs of processors with help of
the logp mpi library from Kielmann et al. (2000). In Figure 5.2, the results for
one pair of processors are shown. The linear predictions provided by the LogGP
and LMO models are almost the same and acceptably accurate for small and
medium sized messages. The PLogP point-to-point model is piecewise linear. It
includes a lot of empirical data stored in the functional parameters, and reflects
the deviations of the execution time from the linear predictions.

All point-to-point models considered in this section use a lot of measurements
and very simple computations. Therefore, the measurements are the most time
consuming part in the finding of the parameters of these models. In Table 5.1,
the number of measurements is estimated for each model and the time they
take on 16-node heterogeneous cluster is shown. In Table 5.1, we compare the
measurement costs of the point-to-point models of a heterogeneous cluster. For
a cluster of n processors there will be C2

n single point-to-point communications.
The parameters of the Hockney model for a single point-to-point communication
are found by linear regression of k execution times of the roundtrips with different
message sizes. Larger k provides a more accurate prediction. The execution time
of each measurement depends on the message size. In our experiments, we used
10 message sizes ranging from 0 to 100 kb.

77

5.3 Experimental Results

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0 10 20 30 40 50 60 70 80 90

E
xe

cu
tio

n
tim

e
(s

ec
)

Message size (KB)

hetero-PLogP
hetero-LogGP

LMO
observation

Figure 5.2: Comparison of the predictions of the point-to-point models for a single
point-to-point communication.

Estimation of the PLogP parameters for each pair of processors includes:

• s experiments on saturating the link by empty messages, the i -th experi-
ment of which consists of 2i sendings, and

• 2mr experiments on i
M←−−→
0

j and i
0←−−→
M

j roundtrips, where: r is the

number of roundtrips required to obtain more accurate send and receive

overheads (the averaged execution time of the roundtrips) i
M←−−→
0

j is

also used for estimation of g(M), and m is the number of message sizes,
necessary for accurate piecewise linear approximation of the execution time
of point-to-point communication.

The numbers s, r and m are found experimentally and can be different for differ-
ent pairs of processors. In formulae in Table 5.1 that estimate the total number
of measurements, we use the averaged values of s, r and m. The saturation
experiments take much more time than single roundtrips as they include up to

78

5.3 Experimental Results

2s sendings. The direct measurements of the gap for each message size require
(m− 1)s more experiments.

The LogGP model requires three saturation processes with message of 0, 1,
and M bytes to estimate the gap values and two roundtrips with the message of
1 byte to estimate the values of the send/receive overheads. The execution time
of the estimation of the parameters is omitted because they were found via the
PLogP parameters as described in Kielmann et al. (2000).

The accuracy in our LMO heterogeneous communication point-to-point model
is achieved by averaging the execution times in:

• a series of the k0 measurements for each of C2
n empty roundtrips,

• a series of the k1 measurements for each of C2
n One-to-One communications,

and

• a series of the k2 measurements for each of 3C3
n One-to-Two communica-

tions.

In our experiments, no more than ten measurements in a series were needed
to achieve the acceptable accuracy.

Table 5.1: Total Number of Measurements and Model Execution Times

Communication Model Number of Measurements Execution times

Hetero-Hockney kC2
n 0.17

Hetero-LogGP 3sC2
n + 2rC2

n -
Hetero-PLogP sC2

n + 2mrC2
n + msC2

n + 2mrC2
n 63.11

LMO k0C
2
n + k1C

2
n + k23C

3
n 0.33

The LMO model provides the more accuracy (as shown in Figure 5.2) and
can be efficiently estimated on heterogeneous clusters. The next section further
demonstrates how our LMO model outperforms the traditional extended models.

5.3.1 A Comparison of Model Predictions

Next we present the experimental results comparing the models predictions for
execution time of linear scatter and gather for the 16-node heterogeneous cluster,
with a single Ethernet switch and LAM 7.1.3 specified (as in Table, see Appendix
A). We developed the software tool that provides the estimation of parameters
of the LMO model and the heterogeneous extensions of the Hockney, PLogP and

79

5.3 Experimental Results

Table 5.2: The Prediction of the Execution Time of Linear Scatter and Gather.

Model Linear scatter prediction Linear gather prediction

Hetero-
Hockney

n−1∑
i=0,i

(αri + βriM)

LogGP L + 2o + (n− 1)(M − 1)G + (n− 2)g

PLogP L + (n− 1)g(M)g

LMO (n− 1)(Cr + Mtr)+ (n− 1)(Cr + Mtr)+

n−1
max

i=0,i6=r
(Lri + Ci + tiM + M(1

βri
+ ti))

n−1
max

i=0,i 6=r
(Lri + Ci + tiM + M(1

βri
+ ti)) M < M1

n−1∑
i=0,i 6=r

(Lri + Ci + tiM + M(1
βri

+ ti)) M > M2

LogGP models (Lastovetsky et al. (2008b), Lastovetsky et al. (2009)). Details
of the software tool are described in Chapter 6. Using the models parameters,
this tool predicts the execution time of different algorithms of collective com-
munication operations. In this section we present the experimental results of the
modeling of scatter and gather. The communication execution time was measured
with help of the MPIBlib benchmarking library (Lastovetsky et al. (2008a)) with
the confidence level 95% and the relative error 2.5%.

The expressions of the execution time of linear scatter and gather are sum-
marized in Table 5.2. Only the LMO model provides two different formulas for
scatter and gather, reflecting steeper slope in the execution time of gather ob-
served for large messages. Only the LMO model reflects the irregular behavior
of linear gather. On computational clusters with a TCP/IP layer (including the
cluster specified above), we observed a leap in the execution time of linear scatter
(see Figure 5.3, observation, 64KB). In the previous version of the LMO model,
we included the extra parameter that reflects this leap. However, for larger mes-
sages, these leaps regularly repeated, converging to the line with the same slope.
We could have included multiple empirical parameters for the LMO model and
have presented the execution time of scatter as a piecewise linear function, but
due to the not very significant values of the leaps and for simplicity, we considered
only the linear model, which satisfactorily approximates the observed execution
time of the native (linear) LAM scatter. The PLogP prediction provides the
same accuracy for medium size messages and also reflects the leap in the execu-
tion time, after which it diverges from the observations. The estimations of other

80

5.3 Experimental Results

traditional models are inaccurate.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 20 40 60 80 100

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

Message size (KB)

observation
LogGP
PLogP

LMO
Hetero-Hockney par
Hetero-Hockney seq

Figure 5.3: The prediction of the execution time of linear scatter on the 16-node
heterogeneous cluster

The LMO includes not only analytical but also empirical parameters. For
small (less than 4KB) and large (more than 65KB) messages, the execution time
of linear gather is represented as two lines with different slopes (Figure 5.4).
For medium size messages, the LMO model defines the message range for non-
linear responses, M1 < M < M2. Therefore only the LMO prediction reflects
the irregularity in the execution time of the native (linear) LAM gather. With
regard to the intervals for small and large messages, traditional models make
better predictions of the execution time of gather rather than of scatter.

Figure 5.3 demonstrates that the intuitive prediction provided by the LMO
model is more accurate than the predictions of the traditional models. The ac-
curate prediction of the execution time allows for a correct decision by the LMO
model to be made regarding the switching between the algorithms of a collec-
tive communication operation. In Figure 5.5, the predictions provided by the
heterogeneous Hockney and LMO models are presented for the linear and bi-
nomial algorithms of scatter for messages 100KB < M < 200KB. Similarly

81

5.4 Summary

Figure 5.4: The prediction of the execution time of linear gather on the 16-node
heterogeneous cluster.

to Pjesivac-Grbovic et al. (2005), the Hockney model miscalculates that the
binomial algorithm outperforms the linear one, switching in favor of the first,
whereas the decision based on the LMO approximation would be correct. The
accurate prediction can be a basis for the model-based optimization of collective
operations.

5.4 Summary

We can apply the traditional models to heterogeneous clusters in two ways.
Firstly, by averaging values obtained for every pair of processors, the hetero-
geneous cluster will be treated as homogeneous in terms of the performance of
communication operations. Second, there are the heterogeneous extensions of
traditional models, found from taking pairs of heterogeneous processors for mea-
surement. This approach gives rise to different parameters. The first approach
has a small number of parameters in comparison and the execution time is rep-

82

5.4 Summary

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 100 120 140 160 180 200

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

Message size (KB)

linear observation
linear Hockney

linear LMO

binomial observation
binomial Hockney

binomial LMO

Figure 5.5: The performance of the linear and binomial algorithms of scatter vs
the heterogeneous Hockney and LMO predictions.

resented by a simple compact formula. The homogeneous models are shown to
be less accurate than the heterogeneous approach however from our experiments
on a 16 node single switched network.

Our LMO model is shown to be more accurate than the heterogeneous ex-
tension models. It is an intuitive approach that allows for representation of both
serial and parallel parts of the communication operations on a switched network.
It is also more accurate because it is based on an empirical approach that is adap-
tive and specific for a particular heterogeneous network platform. The traditional
models are purely analytical and cannot chart the nonlinear areas of performance
degradation found empirically for a range of message sizes.

83

Chapter 6

A Software Tool for the
Estimation of Heterogeneous
Communications Models

We present the software tool, the CPM (Communication Performance Model),
that automates the estimation of the heterogeneous communication performance
models of clusters based on a switched network, (Lastovetsky et al. (2008b), Las-
tovetsky et al. (2009)). The software tool is implemented in C/C++ on top of
MPI. The package consists of a library and a model builder (Figure 6.1). The
library implements the main functionality of the software. The model builder es-
timates the parameters of the heterogeneous communication performance models
with given accuracy and stores the parameters in files. The results of measure-
ments can be visualized by the gnuplot utility (Williams & Kelley (2007)). There
is an API for the estimation of heterogeneous communication performance mod-
els with a universal interface that is designed to be extensible. The LMO model
and heterogeneous extensions of two traditional models, Hockney and PLogP are
currently supported.

The library consists of three main modules: Measurement, Models and Model-
based collectives, which are presented in Figure 6.2 and described in the following
subsections.

6.1 The Measurement module: benchmarking

specific communication experiments

The Measurement module is responsible for the measurement of the execution
time of the communication experiments required for estimation of the parame-
ters of heterogeneous models. It is used along with the MPIBlib benchmarking

84

6.1 The Measurement module: benchmarking specific communication
experiments

Library:
libcpm.a

Model builder:
model

Collective benchmarks:
collective

Model data

3d-party utilities:
gnuplot, dot

Measurement results,
Communication trees

Diagrams

Figure 6.1: Library Structure

library (Lastovetsky et al. (2008a)). The point-to-point and collective bench-
marks provided by MPIBlib are directly used for the estimation of parameters
of the heterogeneous Hockney (point-to-point benchmark) and the LMO models
(point-to-point, scatter, gather benchmarks). Using the MPIBlib interface, the
Measurement module implements the function for measuring the execution time

of the point-to-two communication experiments, i
0←−−→
0

jk and i
M←−−→
0

jk. To

provide reliable results, the communication experiments in each benchmark are
repeated for either a fixed or variable number of times.

The Measurement module implements a function for benchmarking of the
point-to-two communications on the top of the MPIBlib library, required for the
estimation of the LMO point-to-point parameters (as described in Chapter 4):

void CPM_measure_p2pp(MPI_Comm, int M, int parallel,

MPIB_precision precision, MPIB_result** results);

One point-to-two communication experiment consists of a combination of the
blocking send and receive operations. Similar to the point-to-point benchmark,
measurements can be performed either serially or in parallel, which is specified
by the parallel argument. In the parallel mode, as many as possible point-to-two

85

6.2 The Models Module: API for heterogeneous communication
performance models

Models

GNU Scientific
Library

(Statistics)

MPIBlib:
MPI Benchmark

library

The R Library
(Piecewise

linear regression)

logp_mpi:
The plogp library

(for a pair of procs)

The Boost
C++ Libraries

(Graph, Serialization)

Measurement

hetero-Hockney LMO hetero-PLogP

Model-based collectives

Figure 6.2: Model-based collective operations

communications on independent triplets of processors are performed simultane-
ously. During the estimation of the LMO point-to-point parameters, this function
is called twice, with an empty and non-empty messages, in the high-precision
mode. This decreases the execution time the benchmark takes and returns quite
accurate results for clusters with a single switch. For other platforms, these
benchmarks can be performed in sequential mode also supported by these bench-
marks. The Measurement module along with the MPIBlib library provides the
basis for estimation and modeling of the communication execution time.

6.2 The Models Module: API for heterogeneous

communication performance models

The Models module provides an API for estimation of the heterogeneous commu-
nication performance models and prediction of the execution time of collective
algorithms with these models. Apart from the LMO model, this module supports
the heterogeneous extensions of the traditional model PLogP. For each model, it
provides a function for estimation of the model and a set of functions for predic-
tion of the execution time of different MPI communication operations.

86

6.2 The Models Module: API for heterogeneous communication
performance models

The heterogeneous extension of the Hockney model can be estimated by one
of the following functions implementing both methods discussed in Chapter 5:

void Hockney_estimate(MPI_Comm comm, int M, MPIB_precision

precision, int parallel, Hockney_model** model);

void Hockney_estimate_regression(MPI_Comm comm, int min_size, int

max_size, int max_num, int parallel, Hockney_model**

model);

In the first function, the point-to-point parameters are found directly from
two series of roundtrips with 0 and M bytes, and the accuracy of the returned
estimate depends solely on the precision argument, which specifies the number of
repetitions for each roundtrip. In the second function, based on linear regression
analysis, the parameters are found from a series of single roundtrips, each with
a different message size. In this case, the accuracy of the returned estimate is
determined by the set of message sizes. The message sizes are found adaptively,
during the execution of the function. The corresponding adaptive procedure is
controlled by the following arguments:

• The minimum and maximum message sizes, min size and max size, and

• The maximum number of message sizes, max num.

This procedure can be summarized as follows:

• The execution time of the roundtrip with the message size Mk is compared
with the linear model based on the times for smaller messages Mk−1...M0.

• The number of message sizes is limited by the max num argument. Linear
regression analysis is implemented with help of the gsl library, Galassi et al.
(2009). In both estimation functions, the measurements can be preformed
in parallel.

The output of the estimation functions, model, is a data structure containing
the parameters of the estimated model which can be used, in particular, as the
input argument of the predicting functions. A function predicting the execution
time of a communication operation Y has the following interface:

double Hockney_predict_Y(Hockney_model* model, args);

For example, the point-to-point execution time will be predicted by the fol-
lowing function:

87

6.2 The Models Module: API for heterogeneous communication
performance models

double Hockney_predict_p2p(Hockney_model* model, int i, int j,

int M) {

int index = IJ2INDEX(model->n, i, j);

return model->a[index] + model->b[index] * M;

}

For the heterogeneous extension of the PLogP model we can use the
logp mpi library, Kielmann et al. (2000), that has functions estimating the PLogP
parameters for a pair of processors. These functions are used in the implementa-
tion of the following estimator of the heterogeneous PLogP model:

void PLogP_estimate(MPI_Comm comm,

int min_size, int max_size, int max_num,

MPIB_precision precision, int parallel, PLogP_model** model);

The above function calls the logp mpi estimation function for all pairs of pro-
cessors either sequentially or in parallel. In the parallel mode, the estimations
for as many as possible independent pairs of processors will be performed simul-
taneously. The precision argument of the PLogP estimate function defines the
precision of measurements. The message set for which the parameters (the piece-
wise linear functions) are estimated, is defined by the four integer arguments,
similar to the Hockney estimate regression function. The output of the estima-
tion function, model, is used in the set of the functions that predict the execution
time of different communication operations, using the heterogeneous extension of
the PLogP model.

The following function automates the estimation of the LMO model, which
has been described in Chapter 4:

void LMO_estimate(MPI_Comm comm,

int min_size, int max_size, int max_num,

MPIB_precision precision, int parallel, LMO_model** model);

The procedure implemented in this function consists of the following steps:

1. First, the linear scatter and gather benchmarks are performed once for each
adaptively selected message size.

2. Then, the obtained results of measurement are used to find the threshold
parameters, S, M1,M2 with help of the R strucchange library (Zeileis et al.
(2002)). The library automates the detection of the structural changes in
piecewise linear regression models. This is finding the areas of nonlinear
escalations in execution times for message sizes.

88

6.3 Use of the Software Tool

3. After that, the point-to-point and point-to-two benchmarks are performed
in the high-accuracy mode for an empty message and a message of the size
slightly less than the value of the threshold parameter S.

4. Finally, the point-to-point parameters are found by building and solving
the systems of linear equations based on the results of the benchmarks
performed at step 3.

The output of the estimation function, model, contains the LMO parameters
and may be used in functions predicting the execution time of different communi-
cation operations. Unlike the predicting functions for other models, the LMO uses
not only analytical but also empirical parameters. This allows it to reflect these
significant irregularities in the communication execution time for some message
sizes.

6.3 Use of the Software Tool

Next we show how the software tool can be used by application programmers using
the “cpm.h” library with their parallel applications. Using the CPM software tool
the programmer can include the communication performance of an application.
In the following code, the LMO model may be used as the contents of the ‘model ’
data structure:

1: #include "cpm.h"

2: int main(int argc, char** argv) {

3: MPI_Init(&argc, &argv);

4: LMO_model* model;

5: if (to_build) {

6: LMO_estimate(MPI_COMM_WORLD, msgset, precision, parallel,

7: &model);

8: }

9: else {

10: if (rank == 0)

11: LMO_read(istream, &model);

12: LMO_bcast(model, MPI_COMM_WORLD);

13: }

....

14: MPI_Finalize();

15: }

89

6.4 Summary

In line 4, a variable for the LMO model is defined. Then the model is estimated
at runtime (lines 5-8) or read from the file and broadcast to all processors (lines
9-13). The LMO model can be used to estimate the communication time, (line
6), some additional cost will be incurred if the model is estimated at runtime.

The software tool also provides a stand-alone utility that is run from the
command line that consists of the following:

• The model builder (tools/model.c) that performs measurements, estimates
parameters of the model and stores the model data to an output file.

Usage:

$ mpirun [mpi options] model -M LMO -o lmo.mod > lmo.out

where the options are the same as those for the MPIBlib software use in
Chapter 3, with the addition of the specification of the model type is the -M
option and the -o option for the name of the model data file that is created,
lmo.mod above. The results can then be displayed with gnuplot.

6.4 Summary

The software tool described in this chapter provides an estimation of parameters
of heterogeneous communication models. The user can control the precision of
the model parameters and the total building time. The software tool supports
both traditional and advanced communication performance models. The design
of the tool is very flexible. It can be extended in different directions, such as the
support of other communication performance models, conduction of additional
communication experiments required to estimate the model parameters. It can
also be used in the implementation of new collective communication algorithms
with optimization, as described in the next chapter.

90

Chapter 7

Model Based Optimization of
Collective Operations

In this chapter we show how the advantages of heterogeneous communication
models and how they can optimize collective operations. We demonstrate their
usefulness by showing how they can significantly improve the design of parallel
applications for better performance. We present three examples to show how
they may be applied. We start with a traditional model proposed by Hockney
(1994) that we have extended with our CPM software tool (Chapter 5 and 6)
for heterogeneous clusters. The example demonstrates the improvements found
with the heterogeneous version of the Hockney model when compared to the
homogeneous version.

The second example is one of optimization that is using the LMO model
with collective communications operations scatter and gather. The model allows
the application designer to select message sizes that will avoid the significant
escalations in execution time observed on certain platforms. The experiments
demonstrate the improvements by comparing the performance of optimized and
ordinary collective operations. As a final example there is an application with
a matrix multiplication. We show how the LMO model is used to optimize
collective operations by the selection of communication algorithm to avoid regions
of performance degradation due to escalations in execution time for some message
sizes.

7.1 Extended Hockney Models

To demonstrate the advantage of the heterogeneous version of the Hockney model
Hockney (1994), we compared the prediction of execution time for the scatter
operation to the homogeneous Hockney prediction. We show how the linear scat-

91

7.1 Extended Hockney Models

ter algorithm, and then binomial scatter with homogeneous and heterogeneous
Hockney model predictions compared to each other and to actual results. In
this example we consider how a traditional model can be used for estimation of
the execution time of MPI collective communication operation scatter. We have
extended the Hockney model for heterogeneous clusters and introduced differ-
ent parameters αij and βij for different pairs of processors, which also combine
the processor and network contributions, (see Chapter 5 for details of applying
Hockney to linear and binomial algorithms).

We conducted experiments on a 16-node heterogeneous cluster (see Appendix
A for specification of each of the seven node types of the cluster). First we found
the parameters of the homogeneous Hockney model of this cluster: α = 63.9µs,
β = 0.00967µs. The execution time of the scatter predicted by this model will
be the same regardless of which processor will be the root of the operation and
how the remaining processors will be mapped to the nodes of the communication
tree. Therefore given the root is fixed, according to the homogeneous Hockney
model, any mapping of the remaining processors will be equally optimal. Then
we found the parameters of the heterogeneous Hockney model of this cluster.
Table 7.1 presents these parameters for the links between different types of the
nodes (the first value is α measured in µs, the second one is β, µs/B). The
”X” sign indicates that there are no communication links between nodes of the
corresponding types (three nodes have a unique type).

Node 1 2 3 4 5 6 7
1 63.9 124 61.2 121 60.7 61.4 61.3

0.00967 0.00941 0.00932 0.0172 0.00948 0.00950 0.00939
2 122 58.3 122 60.8 57.9 60.4

0.00963 0.00932 0.017 0.00934 0.00941 0.00934
3 39.4 61.8 43.1 46.3 38.1

0.0151 0.00914 0.00918 0.00923 0.00908
4 X 61.2 60.9 61.2

X 0.0146 0.0143 0.0142
5 X 59 48.8

X 0.0488 0.00923
6 X 53.3

X 0.00923
7 36.1

0.00921

Table 7.1: Specification of the parameters of the heterogeneous Hockney model
of the 16-node heterogeneous cluster.

92

7.1 Extended Hockney Models

We compared the observed execution time of the linear and binomial scatter
with the homogeneous and heterogeneous Hockney predictions (Figure 7.1, 7.2).
With the fixed root processor (Dell Poweredge SC1425, 3.6 Xeon, 800MHz, 2MB),
we used the heterogeneous Hockney model to predict the execution time of the
linear and binomial scatter.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 20 40 60 80 100

E
xe

cu
tio

n
tim

e
(s

ec
)

Message size (KB)

Linear Scatter

observation
Hockney seq
Hockney par

Hetero-Hockney par
Hetero-Hockney seq

Figure 7.1: The prediction of the execution time of linear scatter on the 16-node
heterogeneous cluster

In Figure 7.2, both homogeneous and heterogeneous Hockney predictions are
compared with the observed execution time of the binomial scatter on the 16-
node heterogeneous cluster (Appendix A). One can see that the heterogeneous
Hockney model much better approximates the performance of the binomial scat-
ter. At the same time, the example of linear scatter/gather reminds us that both
heterogeneous and homogeneous Hockney models are quite restricted in their
ability to accurately predict the execution time of arbitrary algorithms of col-
lective communication operations. The main reason is that the Hockney model
does not separate contributions of different nature in the execution time of a
point-to-point operation, non-intuitively combining them in a small number of
point-to-point parameters.

93

7.2 Optimization of Collective Operations

 0

 0.005

 0.01

 0.015

 0.02

 0 20 40 60 80 100

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Message size (KB)

observation
Hockney

Hetero-Hockney

Figure 7.2: The prediction of the homogeneous and heterogeneous Hockney mod-
els vs the observation of the binomial scatter.

7.2 Optimization of Collective Operations

This section describes the implementation of two optimized versions of native
MPI Scatter and MPI Gather, LMO Scatter and LMO Gather respectively. The
implementation uses the LMO communication performance model presented in
Chapter 4 in order to avoid the MPI Gather time escalations and the MPI Scatter
leap in the execution time. More precisely, only the message size thresholds S,
M1 and M2 are used in the implementation. These parameters are computed by
the MPI programming system upon its installation on the parallel platform. In
the implementation, point-to-point and low-level communications are not used,
but only the native MPI counterparts.

The implementation of LMO Gather re-invokes the native MPI Gather for
small and large messages. The gathering of medium-sized messages, M1 ≤ M ≤
M2, is implemented by an equivalent sequence of m x MPI Gather operations
with messages of the size that fits into the range of small messages: M

m
< M1 and

M
m−1

≥ M1. Small-sized gatherings are synchronized by barriers, which removes

94

7.2 Optimization of Collective Operations

communication congestions on the receiving node. The following pseudo code
implements the gather:

if (M1<=M<=M2) {

find m such that M/m<M1 and M/(m-1)>=M1;

for (i=0; i<m; i++) {

MPI_Barrier(comm);

MPI_Gather(sendbuf + i*M/m, M/m);

}

} else MPI_Gather(sendbuf, M);

Note: If MPI Barrier is removed from the code, the resulting implementation
will behave exactly as the native MPI Gather. It means that this synchronization
is essential for preventing communication congestions on the receiving side.

The implementation of LMO Scatter uses parameter S of One-to-Many com-
munication model. For small messages, M < S, the native MPI Scatter is re-
invoked. The scattering of large messages is implemented by an equivalent se-
quence of MPI Scatter operations with messages of the size less then S: M

m
< S

and M
m−1

≥ S. The pseudo code of the optimized scatter is as follows:

if (M>=S) {

find m such that M/m<S and M/(m-1)>=S;

for (i=0; i<m; i++)

MPI_Scatter(recvbuf + i*M/m, M/m);

} else MPI_Scatter(recvbuf, M);

As the presented approach does not use the communication parameters reflect-
ing the heterogeneity of the processors, it can be applied to both homogeneous
and heterogeneous switch-based clusters.

To compare the performance of the optimized MPI collective operations with
their native MPI counterparts, we experimented with various MPI implementa-
tions and different clusters. Here we present the results for the following two
platforms:

• LAM-Ethernet: 11 x Xeon 2.8/3.4/3.6, 2 x P4 3.2/3.4, 1 x Celeron 2.9,
2 x AMD Opteron 1.8, Gigabit Ethernet, LAM 7.1.3,

• OpenMPI-Myrinet: 64 x Intel EM64T, Myrinet, Open MPI 1.2.2 over
TCP.

Figure 7.3 shows the results for the heterogeneous LAM-Ethernet cluster,
with all nodes in use. The message size thresholds for this platform are M1 =

95

7.3 Matrix Multiplication

5KB, M2 = 64KB, S = 64KB. Similar results are obtained on the 64-node
homogeneous OpenMPI-Myrinet cluster (Figure 7.4). For this platform, M1 =
5KB, M2 = 64KB, S = 64KB. The results show that the optimized LMO
versions outperform their native MPI counterparts, avoiding the escalations and
restoring the linear dependency of the communication execution time on message
size. On all platforms we observed S = M2.

The communication execution time was measured on the root node. The bar-
rier was used to ensure that all processes have finished the scatter-like operations.
The communication experiments for each message size in a series were carried out
only once. The repeated measurements gave similar results. To avoid the pipeline
effect in a series of the experiments for different message sizes, the barriers were
included between collective operations.

7.3 Matrix Multiplication

As a sample application we use parallel matrix multiplication, a simple but impor-
tant linear algebra kernel representative for many real-life scientific applications.
We use the LMO heterogeneous communication performance model for optimiza-
tion of the MPI broadcast, scatterv and gatherv collective operations used in this
application. We compare the performance of the parallel application using the
optimized versions of these collective operations against the one using their native
MPI implementations.

Our sample application is based on the master-slave paradigm. The master
process distributes the data between the slave processes, coordinates the compu-
tations and collects the result. This type of parallel applications is often used in
practice, for example, in processing of a large amount of image data collected from
the hyperspectral sensors on airborne/satellite platforms (Plaza et al. (2006),
Valencia et al. (2008)). Our application multiplies two dense square matrices,
C = A×B, and employs a simple heterogeneous parallel algorithm based on one-
dimensional matrix partitioning (see, for example, Lastovetsky & Reddy (2007)).
As it is shown in Figure 7.5, the matrices A and C are horizontally sliced such
that the number of elements in a slice is proportional to the speed of the proces-
sor owning the slice. All the processors contain all the elements of matrix B. We
assume one process per processor configuration. With this one-dimensional parti-
tioning, our application performs: (1) irregular scatter of matrix A, (2) broadcast
of matrix B, (3) parallel multiplications, and (4) irregular gather of matrix C.

We ran this application on the heterogeneous cluster (see Appendix A for
specifications) in two modes. The first one uses native MPI collective operations.
The second one uses our implementation of these operations optimized for the
cluster. The optimization is based on the LMO model of the cluster, whose

96

7.4 Summary

parameters were estimated using the presented techniques. The results of these
experiments are presented in Table 7.2. The performance of the application was
improved by up to 20% as a result of the optimization of communications.

Table 7.2: Results for native collectives compared to optimized collectives

Matrix size, NxN With native collectives, sec With optimized collectives, sec

1000 0.80 0.65
2000 5.5 5.02
3000 16.61 11.05
4000 74.29 64.79
5000 221.00 188.72
6000 494.24 394.65

The main idea is to use non-flat communication trees and to perform their
optimal mapping based on the analytical predictions of the LMO model. The
native scatterv and gatherv are traditionally implemented using a flat tree (in
all known MPI implementations). They are exposed to the escalations of the
execution time similar to their regular counterparts scatter and gather. The
LMO model is used to determine the message sizes that give the escalations
and performance degradation. Then the use of the non-flat trees allowed us
to eliminate these escalations. The optimal mapping of these trees allowed us to
significantly reduce the execution time of these operations (up to 40% compared to
their native counterparts). The native broadcast is implemented by the binomial
algorithm.

7.4 Summary

In this chapter we presented the experimental results demonstrating how hetero-
geneous communication models can assist applications designers more accurately
than traditional models. Our first example shows the heterogeneous version of
the traditional Hockney model providing a means of assessing execution times
of linear and binomial scatter. The Hockney model is limited in that it cannot
separate different contributions of communication like the LMO model. It is
seen to have better accuracy as a predictor of binomial scatter than linear as it
can estimate the parallelism aspects of communication more effectively than the
sequential communications.

97

7.4 Summary

The LMO model is unique in that it maps significant regions of non-linear
behavior that result in performance degradation for a range of message sizes. The
model adapts to each platform and allows the applications designer the opportu-
nity to avoid these problems that are specific to each platform. We demonstrated
a key advantage of our LMO model that is based on empirical parameters found
for the particular platform over a purely analytical traditional model. We show
the improvements achieved with this model by comparing the performance of
optimized and ordinary collective operations.

Finally we show that the use of the heterogeneous communication models
can significantly improve the performance of parallel matrix multiplication based
on the master-slave paradigm. We use the LMO heterogeneous communication
performance model for the MPI broadcast, scatterv and gatherv collective oper-
ations. The algorithms used non-flat trees to avoid escalations in communication
time predicted by the LMO model. Improvements in application performance of
20% are shown using the optimized versions of collective communications, com-
pared to their native MPI implementations.

98

7.4 Summary

(a) (b)

(c) (d)

Figure 7.3: Performance of (a) MPI Gather, (b) LMO Gather, (c) MPI Scatter,
(d) LMO Scatter on 16-nodes heterogeneous cluster LAM-Ethernet.

99

7.4 Summary

(a) (b)

(c) (d)

Figure 7.4: Performance of (a) MPI Gather, (b) LMO Gather, (c) MPI Scatter,
(d) LMO Scatter on 64-nodes OpenMPI-Myrinet cluster.

100

7.4 Summary

Figure 7.5: Matrix operation C=AB with matrices A, B, and C. Matrices A and C
are horizontally sliced such that the number of elements in the slice is proportional
to the speed of the processor. (b) Serial matrix multiplication A2 × B of dense
matrix A2 of size n − 1 × n and dense matrix B of size n × n to estimate the
absolute speed of processor 2.

101

Chapter 8

Conclusions

Traditionally parallel computing was on a specialist platform of homogeneous
processors dedicated to high-performance computing. The situation has evolved
however and with new systems software the parallel applications can now take
advantage of ordinary clusters of personal computers. These networks of today
are heterogeneous with a variety of computers with different power and commu-
nication speeds. The simple analytical models used to predict performance and
estimate parallel applications prediction are designed for homogeneous systems
with a uniformity that no longer exists with heterogeneous systems. In this thesis
we addressed the new issues raised for communication performance models for
parallel computing on heterogeneous platforms, by extending the current tradi-
tional models, and we proposed our own LMO performance model as a better
solution. The models were designed to further assist applications designers to
tune and optimize parallel communications with the new challenges of the het-
erogeneous environment on switched networks.

At each step we addressed the shortcomings of current methods with our own
solutions in innovative ways. We analyzed the design restrictions of traditional
communication performance models that limit their ability to accurately reflect
the nature of collective communications on the switched network. As a result
the prediction of the execution time of collective communication operations on
homogeneous and heterogeneous clusters was adversely affected. In particular,
we showed that the constant and variable contributions of processors and network
were not fully separated in these models. Full separation of the contributions that
have different nature and arise from different sources had lead to a more intuitive
and accurate models, but the additional parameters of such models could not
be estimated from only the point-to-point experiments, which were usually used
for traditional models. The LMO is a new model that overcame this problem
and that was an adaptive and intuitive reflection of collective communications
for MPI. We described a set of communication experiments that is sufficient for

102

8.1 MPIBLib: A New Benchmarking Library

accurate estimation of its parameters. We also presented an implementation of the
new model in the form of a software tool, CPM, that automated the estimation
of both this model and heterogeneous extensions of traditional communication
performance models. It was shown by our experimental results demonstrating
that the elaborated LMO model that it was more accurate in predicting the
execution time of collective operations than traditional models.

8.1 MPIBLib: A New Benchmarking Library

Our first task was to examine current benchmarking methods, taking note of their
limitations, we then designed a new MPI benchmarking suite called MPIBlib.
This performed the accurate estimation of the execution time of MPI communi-
cation operations with the choice of a variety of timing methods. Since most MPI
benchmarking suites were in the form of a standalone executable program and
produce a lot of output data for further analysis, this means they could not be
integrated into application-level software. We addressed this need with a bench-
marking library that can be integrated easily in parallel programming systems,
the MPIBlib, and that can be linked to other applications and used at runtime.
We described the software design of the MPIBlib suite, with its point-to-point
and collective modules and the usage of the library and the executables and ex-
periments to demonstrate the benchmarking with graphical results. The second
short-coming of current benchmarking suites was that they are limited to one tim-
ing method. We implemented a choice of timing methods that allows the user to
select the most suitable to balance the needs for speed and accuracy. The bench-
marking suite played the important role as the basis for building the new LMO
performance model. It was also useful for the tuning of collective communication
operations and allows for an evaluation of different available implementations.

8.2 The LMO and Heterogeneous Extended

Versions of Traditional Models

The core work of the thesis is a new performance model, the LMO model, and the
extending of existing performance models to become heterogeneous. The models
are used by applications developers to estimate parallel communications opera-
tions for the tuning and optimization processes. These are greatly facilitated by
a model when redesigning the application to allow for better computation and

103

8.2 The LMO and Heterogeneous Extended
Versions of Traditional Models

communication cost. The current models used to optimize the applications design
are designed for homogenous systems, and are therefore not fully representative
of the diversity of the heterogeneous switched network and are liable to be inac-
curate in their estimation. We examined this challenge in a two-fold way. We
explored and extended the current models for Hockney and LogP variants, and
developed our own model, the LMO model, as a better solution for heterogeneous
switched clusters. The essential problem with current models is the they cannot
map collective communications formations completely due to the limited nature
and few number of their parameters. This means that the efficiency of the appli-
cation becomes less determined. Our new model addressed this shortcoming, and
allowed a natural and intuitive mapping to the collective operation. We did this
with a greater number of parameters that separated the constant and variable
aspects of communication. The greater number of parameters of our model were
then calculated in an innovative and efficient way.

Any analytical communication performance model only makes sense if it can
be implemented, that is, supported by a method of accurate estimation of its
parameters. Thus a communication model was seen as consisting of two parts,
the design of the model and the method of its estimation. The estimation part
of the model is very important and can exert significant influence on the design
part. For example, the estimation methods for all the traditional communication
models are based on point-to-point communication experiments. The use of the
traditional estimation methods obviously restricted the design of the communi-
cation models. These models could not include point-to-point parameters that
could not be found from point-to-point communication experiments, even if the
additional parameters would make the expression of collective communication al-
gorithms much more intuitive and hence more accurate. In this thesis we showed
that it was the traditional estimation methods that were the main factor limit-
ing the expressive power of the traditional communication models. They did not
allow them to fully separate the contributions of different nature and originating
from different sources in the communication cost. Heterogeneous communication
performance models had not been as intensively studied as homogeneous ones to
date. We proposed an original heterogeneous model, the LMO model, the design
of which could not be supported by the traditional estimation methods. This
model separated the constant and variable contributions of the processors and
network allowing for more intuitive expressions of collective algorithms than the
traditional models or their straightforward extensions. A new estimation method
supporting the design of this model was also proposed. The CPM software tool
presented in this thesis implemented this new estimation method and therefore
could be used for automatic estimation of non-traditional heterogeneous commu-
nication models.

Our approach to the model design was that it was adaptive to each switched

104

8.2 The LMO and Heterogeneous Extended
Versions of Traditional Models

network platform, with an installation that found the characteristics particular to
that network with empirical data. The LMO model expressed the linear response
of execution times as a function increasing message sizes, with a definition of
regions of nonlinear escalation regions. It allowed for the easy assessment of col-
lective operations for MPI applications without an need for knowledge or changes
to the underlying platform.

The LMO model has the following innovative features over previous approaches:

• It is possible to map our parameters in a much more direct and flexible
manner for MPI collective communications in an easy and clear way. It
allows for the distinctive representation of both serial and parallel parts of
the communication operations on a switched network. This is an important
improvement on traditional models that do not allow direct mapping of
collective communications on a switched network.

• We designed the model for heterogeneous networks, and is more accurate
and efficient than other previous models that are all for homogeneous sys-
tems. The model design required that we have more parameters than could
be able to be found by point-to-point methods as traditionally used. In-
stead we included parameter estimation techniques based on the model for
three nodes, in this innovative way we could find the extra parameters we
need.

• Our empirical studies revealed a particular range of mid-size messages show
a marked non-linear response with significant performance degradation.
This is a critical finding from the point of view of applications design-
ers, and has been largely undocumented by other works. The new model
is defined for a full range of message sizes, and includes previously ignored
ranges of sizes where significant escalations are found. No other model to
date charts these critical areas of greatly elevated execution times, they
assume linearity throughout.

• The model is more accurate because it is based on an empirical approach
that is adaptive and specific for a particular heterogeneous network plat-
form. The characteristics of the particular network are established fully au-
tomatically at installation, the application designer does not need to know
or adjust any underlying platform specifications.

• The model is fully automated with parameter estimation at runtime with
the CPM software tool that links to the use MPIBLib library software.

The model was implemented with the software tool that also implemented
a choice of heterogeneously extended traditional models. The software linked

105

8.3 Models and Communication Optimization

to the new MPIBlib library, and allowed us to compare the effectiveness of the
heterogeneous models and the advantages of the new LMO model that was shown
to be more accurate and easier to use.

We explored ways to extend a heterogeneous version of traditional models.
Their assumption of homogeneity and their limited nature of their parameters
prevented them from accurate estimation of the execution time of collective com-
munication operations on computational clusters with a single switch. These com-
munication performance models for high performance computing were analytical,
with the basis of these models was a point-to-point communication model char-
acterized by a set of integral parameters, having the same value for each pair of
processors. Their parameters were based on point-to-point that are found statis-
tically from the measurements of the execution time of communications between
any two processors. The execution time of collective operations was expressed as
a combination of the point-to-point parameters and predicted for different mes-
sage sizes and numbers of processors. The weakness of this approach was that
processors could differ in a heterogeneous system. They were also purely analyti-
cal and therefore could not reflect any escalations or nonlinear behavior for some
message sizes that were found empirically.

The traditional models were applied to heterogeneous clusters in two ways.
The first method averaged values obtained for every pair of processors, the het-
erogeneous cluster would be treated as homogeneous. This approach had a small
number of parameters and the execution time was represented by a simple com-
pact formula. Instead we took a second approach by deriving heterogeneous
extensions of traditional models. By taking pairs of heterogeneous processors for
measurement we got different parameter values. The first approach was shown
to be less accurate than the heterogeneous approach however from our experi-
ments on a 16 node single switched network. Our LMO model was then shown
to be more accurate than the heterogeneous extension models. This is because
it allowed for an intuitive representation of both serial and parallel parts of the
communication operations on a switched network. It was also more accurate be-
cause it was based on an empirical approach that was adaptive and specific for a
particular heterogeneous network platform.

8.3 Models and Communication Optimization

Our final work is with the use of the models for optimization, and we presented the
software tool, the CPM. This allows for rapid implementation of traditional and
advanced heterogeneous communication performance models. Our CPM software
tool allows for the selection of the particular model. In the case of the LMO

106

8.4 Future Work

model, we demonstrated its use with a model-based modification of the linear
algorithm. Our research had found that significant non-deterministic escalations
of the execution time for medium-sized messages within some range were observed
for different platforms and MPI implementations. The LMO communication
performance model was the only model that could address this issue and had
two parameters which bounded this range. The algorithm used these parameters
to split the medium-sized messages into a series of linear gathers with smaller
messages. In this way the performance degradation from the non-deterministic
escalations of the execution time was avoided. The software allowed a choice
to switch between algorithms, or the selection of binomial tree algorithms. The
binomial algorithm could be used for nonlinear response regions of message sizes
found with the linear algorithm. In these ways we have demonstrated how the new
LMO model and the software framework could be used to optimize algorithms
for collective communications.

8.4 Future Work

The design of our LMO model and software is highly extensible and suitable
for further applications and designs. Parameters that allow the separation of
contributions from network and processors and the constant and variable parts
of the communication distinguishes our model. This is a flexible design that may
be adapted and extended in a variety of ways with its possibilities for intuitive
mapping of collective operations.

Some areas of further work are as follows:

• The LMO model may be continued to map other collective communication
operations such as All-to-All, etc.

• The model could be redesigned to fit multi-core and multiprocessor ar-
chitectures due to its flexible design. The separation of the constant and
variable costs of communication and the processor costs from network costs
the model facilitates its adaptability to these more complex systems. A
group of processors would act in a similar way to a single cluster.

• Adapting the model for different cluster topologies, (multiple switches etc).
Further extensions of design for mapping WANs, global and grid networks
would require an adaptive approach to the threshold parameters, to allow
for the different regions of nonlinear behavior.

• The software for the CPM library is easily extended to include new oper-
ations, models and algorithms due to its intrinsic design. The software for

107

8.4 Future Work

optimization may be adapted to allow for a selection of different models
within the same algorithm implementation. The work of Pješivac-Grbović
et al. (2005) showed how models may be used together, switching between
them for message sizes. Our software could facilitate this design process
with some additions to the algorithm optimization process.

• Other areas of further work are to explore the models applicability to other
languages such as PVM. The high level nature of the model design indicates
some promise in this area, as it is independent of platform specifications
and underlying operating systems software.

The issue of new network topologies also suggests the issue of scalability .
The model has yet to be tested on very large networks. The model design is
highly adaptable and lends itself to new reflections of further previously uncharted
regions of non-linear behavior with its additional empirical parameters. The
networks of the future will benefit from ever increasing sizes, the model may have
potential to be adapted to the new challenges of much larger scale computing.

All types of parallel systems to be estimated have similar performance re-
quirements for a model that is simple, adaptable and an accurate reflection of
communications performance. The LMO has a greater number of parameters for
heterogeneity and may offer potential for mapping for other systems than MPI,
as the parameter estimation techniques are based on parallelism at a high level.
It is hoped that the use of these models will facilitate the astounding new abilities
of heterogeneous parallel computing systems in the future.

108

Appendix A

The 16 node heterogeneous

cluster.

A.1 Switches

The network hardware consists of two Cisco 24 + 4 port Gigabit switches. Each
node has two Gigabit ethernet ports - each eth0 is connected to the first switch,
and each eth1 is connected to the second switch. The switches are also connected
to each other. The bandwidth of each port can be configured to meet any value
between 8Kb/s and 1Gb/s. This allows testing on a very large number of network
topologies. As the bandwidth on the link connecting the two switches can also
be configured, the cluster can actually act as two separate clusters connected via
one link.

109

A.2 Processors

A.2 Processors

The 16 node heterogeneous cluster.

Node Model Linux Processor Bus L2 #

Type (MHz) cache(MB)

1 Dell Poweredge SC1425 2.6 3.6 Xeon 800 2 2

2 Dell Poweredge 750 2.6 3.4 Xeon 800 1 6

3 IBM E-server 326 2.4 1.8 AMD Opteron 1000 1 2

4 IBM X-Series 306 2.4 3.2 P4 800 1 1

5 HP Proliant DL 320 G3 2.6 3.4 P4 800 1 1

6 HP Proliant DL 320 G3 2.6 2.9 Celeron 533 0.256 1

7 HP Proliant DL 140 G2 2.4 3.4 Xeon 800 1 3

110

References

(2007). Intel MPI Benchmarks. User Guide and Methodology Description.
Version 3.0 edition, Intel, http://software.intel.com/en-us/articles/intel-mpi-
benchmarks/. 12, 14, 16

Alexandrov, A., Ionescu, M.F., Schauser, K.E. & Scheiman, C. (1995).
LogGP: Incorporating long messages into the LogP model — one step closer
towards a realistic model for parallel computation. Tech. rep., Santa Barbara,
CA, USA. 23, 30

Bai, J. & Perron, P. (1998). Computation and analysis of multiple structural-
change models, http://ideas.repec.org/p/mtl/montde/9807.html. Cahiers de
recherche 9807, Universite de Montreal, Departement de sciences economiques.
66

Bernaschi, M. & Iannello, G. (1998). Collective communication operations:
experimental results vs. theory. In: Concurrency - Practice and Experience.
vol. 10, pp. 359–386. 14

Bhat, P.B., Raghavendra, C.S. & Prasanna, V.K. (2003). Efficient collec-
tive communication in distributed heterogeneous systems. Journal of Parallel
and Distributed Computing , Vol. 63, pp. 251–263. 30

Chan, E.W., Heimlich, M.F., Purkayastha, A. & van de Geijn, R.A.
(2004). On optimizing collective communication. In CLUSTER ’04: Proceed-
ings of the 2004 IEEE International Conference on Cluster Computing , pp.
145–155, IEEE Computer Society, Washington, DC, USA. 30, 74

Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E.,
Santos, E., Subramonian, R. & von Eicken, T. (1993). LogP: towards
a realistic model of parallel computation. ACM SIGPLAN Notices , Vol. 28,
pp. 1–12. 22, 30

111

REFERENCES

Culler, D., Liu, L.T., Martin, R.P. & Yoshikawa, C. (1996). LogP
Performance Assessment of Fast Network Interfaces. IEEE MICRO, February
1996 , Vol. 16, pp. 35–43. 23

Forum, M.P.I. (2008). MPI : A Message-Passing Interface Standard,
http://www.mcs.anl.gov/research/projects/mpi/. Tech. rep., MPI Forum. 2

Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J.,
Squyres, J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine,
A., Castain, R.H., Daniel, D.J., Graham, R.L. & Woodall, T.S.
(2004). Open MPI: Goals, concept, and design of a next generation MPI im-
plementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting ,
pp. 97–104, Budapest, Hungary. 2

Galassi, M., Davies, J., Theiler, J., Gough, G., B.and Jungman,
Alken, P., Booth, M. & Rossi, F. (2009). GNU Scientific Library (2009),
http://www.gnu.org/software/gsl/ . Bristol: Network Theory Limited. 39, 66,
87

Gropp, W. & Lusk, E.L. (1999). Reproducible measurements of MPI perfor-
mance characteristics. In Proceedings of the 6th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pp. 11–18, Springer-Verlag, London, UK. 14, 15

Gropp, W., Lusk, E., Doss, N. & Skjellum, A. (1996). A high-
performance, portable implementation of the MPI message passing interface
standard. Parallel Computing , Vol. 22, pp. 789–828. 2

Grove, D. & Coddington, P. (2001). Precise MPI performance measurement
using MPIBench. In In Proceedings of HPC Asia, 2001 : Gold Coast, Australia.
12, 13, 14, 19

Hatta, J.i. & Shibusawa, S. (2000). Scheduling algorithms for efficient gather
operations in distributed heterogeneous systems. In ICPP ’00: Proceedings
of the 2000 International Workshop on Parallel Processing , pp. 173, IEEE
Computer Society, Washington, DC, USA. 30

Hockney, R.W. (1994). The communication challenge for MPP: Intel paragon
and meiko CS-2. Parallel Computing , Vol. 20, pp. 389–398. 22, 30, 73, 91

Kielmann, T., Hofman, R.F., Bal, H.E., Plaat, A. & Bhoedjang,
R. (1999). Magpie: MPI’s Collective Communication Operations for Clustered
Wide Area Systems. In ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP ’99), pp. 131–140, Atlanta, Georgia. 33

112

REFERENCES

Kielmann, T., Bal, H. & Verstoep, K. (2000). Fast measurement of LogP
parameters for message passing platforms. IPDPS ’00: Proceedings of the 15th
IPDPS 2000 Workshops on Parallel and Distributed Processing. In Lecture
Notes in Computer Science, Springer-Verlag, London, UK , pp. 1176–1183. viii,
22, 24, 25, 26, 30, 76, 77, 79, 88

Lastovetsky, A. & OFlynn, M. (2007). A Performance Model of Many-to-
One Collective Communications for Parallel Computing. Proceedings of the 21st
International Parallel and Distributed Processing Symposium (IPDPS 2007)-
Workshop on Parallel and Distributed Scientific and Engineering Computing,
PDSEC, IEEE Computer Society, Long Beach, California, USA. 2, 8, 56, 76

Lastovetsky, A. & Reddy, R. (2006). HeteroMPI: Towards a message-
passing library for heterogeneous networks of computers. Journal of Parallel
and Distributed Computing , Vol. 66, pp. 197–220. 31

Lastovetsky, A. & Reddy, R. (2007). Data distribution for dense factoriza-
tion on computers with memory heterogeneity. Parallel Computing , Vol. 33,
December 2007, pp. 757–779. 96

Lastovetsky, A. & Rychkov, V. (2007). Building the communication perfor-
mance model of heterogeneous clusters based on a switched network, Proceed-
ings of the 2007 IEEE International Conference on Cluster Computing (Cluster
2007), September 17-20. pp. 568–575, IEEE Computer Society, Austin, Texas,
USA. 65, 68

Lastovetsky, A., Mkwawa, I. & OFlynn, M. (2006a). An Accurate Com-
munication Model of a Heterogeneous Cluster Based on a Switch-Enabled Eth-
ernet Network, Proceedings of the 12th International Conference on Parallel
and Distributed Systems (ICPADS 2006), 12-15 July 2006. vol. 2, pp. 15–20,
IEEE Computer Society Press, Minneapolis, Minnesota, USA. 2, 8, 56, 76

Lastovetsky, A., Mkwawa, I. & OFlynn, M. (2006b). Modeling Perfor-
mance of Many-to-One Collective Communication Operations in Heterogeneous
Clusters, HCL Laboratory, School of Computer Science and Informatics, UCD,
Dublin, Ireland. Tech. rep. 2

Lastovetsky, A., O’Flynn, M. & Rychkov, V. (2007). Optimization of
Collective Communications in HeteroMPI, 14th European PVM/MPI User’s
Group Meeting, Sept 30 - Oct 3 2007, Paris, France, Lecture Notes in Com-
puter Science, Ed.s Franck Capello, Thomas Herault, Jack Dongarra. vol. 4757,
pp. 135–143, Springer-Verlag Berlin Heidelberg. 2, 9, 54

113

REFERENCES

Lastovetsky, A., Rychkov, V. & OFlynn, M. (2008a). MPIBlib: Bench-
marking MPI communications for parallel computing on homogeneous and het-
erogeneous clusters. In A. Lastovetsky, T. Kechadi & J. Dongarra, eds., Recent
Advances in Parallel Virtual Machine and Message Passing Interface: 15th Eu-
ropean PVM/MPI User’s Group Meeting, September 7-10th, Dublin, Ireland,
Lecture Notes on Computer Science, vol. 5205, pp. 227–238, Springer-Verlag
Berlin Heidelberg. 2, 6, 8, 35, 64, 77, 80, 85

Lastovetsky, A., Rychkov, V. & O’Flynn, M. (2008b). A Software Tool
for Accurate Estimation of Parameters of Heterogeneous Communication Mod-
els. In T.D.J. Lastovetsky Alexey; Kechadi, ed., Proceedings of the 15th Eu-
ropean PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface, September 7-10th, Dublin, Ire-
land, Lecture Notes in Computer Science, vol. 5205, pp. 43–54, Springer-Verlag
Berlin Heidelberg. 2, 7, 8, 80, 84

Lastovetsky, A., Rychkov, V. & O’Flynn, M. (2009). Revisiting commu-
nication performance models for computational clusters. In IPDPS ’09: Pro-
ceedings of the 23rd IEEE International Parallel and Distributed Processing
Symposium (IPDPS’09), May 25-29, 2009, Rome, Italy . 2, 5, 7, 8, 9, 56, 72,
77, 80, 84

Nagle, D. (2005). MPI – The Complete Reference, Vol. 1, the MPI core, 2nd
ed., Scientific and Engineering Computation Series, by Marc Snir, Steve Otto,
Steven Huss-Lederman, David Walker and Jack Dongarra. Scientific Program-
ming, January 2005 , Vol. 13, pp. 57–63. 2

Pješivac-Grbović, J., Angskun, T., Bosilca, G., Fagg, G.E., Gabriel,
E. & Dongarra, J.J. (2005). Performance analysis of MPI collective opera-
tions. In IPDPS ’05: Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05) - Workshop 15 , 272.1, IEEE
Computer Society, Washington, DC, USA. 32, 76, 108

Pješivac-Grbović, J., Bosilca, G., Fagg, G.E., Angskun, T. & Don-
garra, J.J. (2007a). MPI Collective Algorithm Selection and Quadtree En-
coding. Parallel Computing , Vol. 33, pp. 613–623. 32

Pješivac-Grbović, J., Bosilca, G., Fagg, G.E., Angskun, T. & Don-
garra, J. (2007b). Decision Trees and MPI Collective Algorithm Selection
Problem. In Euro-Par 2007 Parallel Processing, Lecture Notes in Computer
Science, vol. Volume 4641/2007, pp. 107–117, Springer Berlin / Heidelberg,
Germany. 32

114

REFERENCES

Plaza, A., Valencia, D., Plaza, J. & Martinez, P. (2006). Commodity
cluster-based parallel processing of hyperspectral imagery. Journal of Parallel
and Distributed Computing , Vol. 66, 345–358. 96

Supinski, B.d. & Karonis, N. (1999). Accurately measuring MPI broadcasts
in a computational grid. In HPDC’99: Proceedings of the 8th IEEE Inter-
national Symposium on High Performance Distributed Computing , pp. 29–37,
IEEE Computer Society, Washington, DC, USA. 13

Thakur, R., Rabenseifner, R. & Gropp, W. (2005). Optimization of col-
lective communication operations in MPICH. International Journal of High
Performance Computing Applications , Vol. 19, pp. 49–66. 30, 31

Turner, D., Oline, C.X., A. & Benjegerdes, T. (2003). Integrating
new capabilities into NetPIPE. In EuroPVM/MPI 2003. LNCS, Dongarra, J.,
Laforenza, D., Orlando, S. (eds.), pp. 37–44, Springer, London, UK. 14, 15

Vadhiyar, S.S., Fagg, G.E. & Dongarra, J. (2000). Automatically tuned
collective communications. In Supercomputing ’00: Proceedings of the 2000
ACM/IEEE conference on Supercomputing (CDROM), 3, IEEE Computer So-
ciety, Washington, DC, USA. 31

Valencia, D., Lastovetsky, A., O’Flynn, M., Plaza, A. & Plaza,
J. (2008). Parallel Processing of Remotely Sensed Hyperspectral Images On
Heterogeneous Networks of Workstations Using HeteroMPI. vol. 22, pp. 386–
407. 96

Williams, T. & Kelley, C. (2007). Gnuplot: an interactive plotting program,
http://www.gnu-plot.info/docs/gnuplot.pdf. 36, 84

Worsch, T., Reussner, R. & Augustin, W. (2002). On benchmarking col-
lective MPI operations. In Proceedings of the 9th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, 271–279, Springer-Verlag, London, UK. 12, 13, 14, 19

Zeileis, A., Leisch, F., Hornik, K. & Kleiber, C. (2002). strucchange:
An R Package for Testing for Structural Change in Linear Regression Models.
Journal of Statistical Software, Vol. 7, pp. 1–38. 88

115

