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Abstract—This supplementary file contains the supporting materials of the TPDS manuscript “Model-Based Estimation of the
Communication Cost of Hybrid Data-Parallel Applications on Heterogeneous Clusters”. It clarifies some aspects which are briefly
described or simply introduced in the paper due to limited space. We include the pseudo-code for the Wave2D kernel implementation,
a deeper discussion on HLogGP and LMO models and a description of the τ–Lop tool, used in the main paper to automatize the
evaluation of the τ–Lop analytical cost expressions of SUMMA and Wave2D kernels.

F

1 WAVE2D SOLVER

In addition to the Matrix Multiplication SUMMA algorithm
used as a conduit example in the paper, we discuss here in
detail the algorithm implemented for solving the 2D Wave
equation

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
. (1)

The algorithm uses the technique of finite differences,
ubiquitous in HPC, in a partitioned 2D mess. We use τ–
Lop to model and estimate its communication cost. The
Fig. 1 shows the discrete solution u(x, y, t) of equation
(1) at time t = 102, for particular initial and boundary
conditions. In general, the function u(x, y, t) is approached
in the mesh x ∈ (0, N), y ∈ (0, N) and t ∈ (0, T ], with
N the size in elements (double precision real numbers) of
the mesh and T the number of considered iterations. In
our implementation, along time, u(x, y, t + 1) is given by
successive instances of matrix New. New is generated from
its previous instances, the matrices Cur and Old, u(x, y, t)
and u(x, y, t − 1) respectively, according to the recursive
finite differences algorithm driven by the following stencil,
also shown at the right of Fig. 2:

New(i, j) =2(1− 2C2)Cur(i, j)−Old(i, j)

+ C2Cur(i− 1, j) + C2Cur(i+ 1, j)

+ C2Cur(i, j − 1) + C2Cur(i, j + 1)

(2)

Fig. 2 illustrates a 2D partition of the mesh between
P = 8 processes running on two machines. The white rect-
angles are located at machine M0 and the dark rectangles
at machine M1. Note that relation (2) imposes the com-
munication of the perimeter (halo) elements between the
Cur rectangles. This 2D partition depicts a scenario where
a process has to communicate vertically and horizontally
with several other processes. An alternative 1D partition
of the data space in horizontal or vertical slices would
lead to a more simple communication scheme, where each
process has just two neighbor processes for interchanging
data. In the figure, transmissions from p1 to its neighbors
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Fig. 1. Visualization of discrete solution u(x, y, t) of equation (1) in a
NxN data mesh with N = 128, at time t = 102, for particular initial and
boundary conditions

are shown. For instance, if ηi denotes the neighborhood
of pi in the clockwise order, then η1 = {2, 4, 3, 6, 0, 5}.
Non-blocking point-to-point transmissions are used in the
implementation. Assuming that all of them start at once, the
τ-Lop cost per iteration allocated to pi will be

Θi = ‖
j∈ηi

T c(j)(m(j)), (3)

where m(j) is the size of the message sent to neighbor
pj , and c(j) is the channel used to send the message. As the
transmissions of all P processes progress concurrently, the
cost of each iteration is

Θ =

[
P−1
‖
i=0

Θi

]
(4)

The τ–Lop cost of the algorithm is hence Θw2D = T ×Θ.
Algorithm 1 shows the pseudo-code of the Wave2D kernel1.

We have pointed out that each process has to interchange
the halos of the Cur matrix assigned rectangle with its

1. Full C code available at http://gim.unex.es/taulop.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, JUNE 2017 2

0

80

224

64

176

256

112

p1

p5

p6

p7

Cur

Cur

Cur

Cur Cur

0

256

80 144

p2

Cur

p4

p3

Cur

Old

Cur

New

Fig. 2. A 2D partition for solving the wave equation. Each process
recomputes its rectangles New, Cur and Old along time. The com-
putation stencil imposes communications in Cur. Process p1 sends its
perimeter elements of Cur, which will form the halo of its neighbors.

neighbors. The function getCurHaloCnt(psrc, pdst, cnt) re-
turns the number of double precision elements two neighbor
processes share. Its goal is to make the code indepen-
dent of the data partition, either 1D or 2D. The function
getCurHaloAddr(psrc, pdst, ↑ halo addr) returns the address
of the halo in the Cur matrix rectangle for sending it to
a neighbor process. Fig. 2 shows that the partition scheme
makes rectangles in the same column and with the same
width. It is not necessary, hence, to pack and unpack the
data in the vertical communication. However, data is packed
in the send buffer buff snd for communicating to a process
in an adjacent column. As well, a process uses Card(η)
receive buffers for receiving data from its neighbors. Non-
blocking communication is used for the halo interchange, so
any reception (and send) is complete only after MPI Waitall
returns. It is now when the receiver, just in case, unpacks
the received data. The communication time in the code is
measured for each iteration, and it is finally calculated as∑T
t=1 (tendt − tstartt).

2 BRIEF DESCRIPTION OF HETEROGENEOUS
MODELS

Modern HPC platforms are composed of nodes of multi-
core CPUs and GPUs linked by channels with different per-
formance and features. Proposals for analytically modeling
heterogeneous platforms usually depart from established
models and extend their functionality to cover such more
complex scenarios. That is the case for HLogGP, based on
LogGP, and LMO, based on the Hockney model. Both are
point-to-point models which add parameters for dealing
with the heterogeneity of the communication network and
the processing elements. However, as LogGP and Hockney,
HLogGP and LMO assume no contention in the communi-
cation. In particular, this lead to a poor expressive power of
collective operations and often to significant inaccuracies of
their cost predictions.

2.1 HLogGP
HLogGP [1, 2] is a model based on LogGP [3] that takes
into account the heterogeneity of both the processor and

Algorithm 1 Measuring the cost of the Wave2D kernel
MPI Comm rank(WORLD, ↑me)
setInitialConditions(New, Cur, Old)
for p ∈ {η} do

getCurHaloCnt(me, p, ↑cnt)
buff snd[p] = malloc(cnt × sizeof(double))
buff rcv[p] = malloc(cnt × sizeof(double))

end for

for t = 1 to T do
// Computation
wave2d computation()

// Communication
MPI Barrier(WORLD)
n← 0
t start←MPI Wtime()
for p ∈ {η(me)} do

getCurHaloCnt(me, p, ↑cnt)
getCurHaloAddr(me, p, ↑halo addr)

if need pack(me, p) then
MPI Type vector(. . .)
MPI Pack(buff snd[p]← halo addr, cnt)

else
buff snd[p]← halo addr

end if

MPI Isend(buff snd[p], cnt, MPI DOUBLE, p,
TAG, WORLD, ↑req[n++])

MPI Irecv(buff rcv[p], cnt, MPI DOUBLE, p,
TAG, WORLD, ↑req[n++])

end for
MPI Waitall(n, req)
for p ∈ {η(me)} do

getCurHaloCnt(me, p, ↑cnt)
getCurHaloAddr(me, p, ↑halo addr)
if need unpack(me, p) then

MPI Unpack(halo addr←buff rcv[p], cnt)
else

halo addr← buff rcv[p]
end if

end for
t end←MPI Wtime()

end for

the networks of the platform. LogGP characterized the com-
munication cost according to the following parameters: the
network latency (L), the overhead or time a processor is
engaged in the transmission or reception of a message (o),
the time interval between consecutive message transmis-
sions (g), and the time interval between consecutive byte
transmissions (G), which captures the network bandwidth
for long messages. P was the number of processors in the
cluster.

The scalar parameters of LogGP are expanded in HLogGP
to represent the os, or (overhead in sender and receiver)
and g as vectors of P components. L and G now depend
on each pair of processors, so they become matrices of
P ×P components. In addition, the HLogGP model includes
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the processor dependent computational power as a new
parameter, denoted by Pi. It is defined as the amount of
work per time unit a processor is able to finish. The cost of a
point-to-point message transmission between processors pi
and pj can be represented as:

Ti→j(m) = Lij + oSi
+ oRj

+ (m− 1)Gij (5)

The heterogeneous platform used to validate the model
is a small cluster of eight Pentium III nodes of two types,
four nodes at 733 GHz and four nodes at 550 GHz. These
nodes are connected by two different Ethernet networks, of
10 and 100 MBit/s respectively. The model is used to predict
the execution time of a volumetric magnetic resonance im-
age compression application. Bosque et al. [2] provide with
a methodology to measure the HLogGP parameters based
on self-made benchmarks. Note that the parameters have
to be measured for each pair of processors in the system,
and hence, the number of tests is of order O(P 2), a figure
that keeps manageable for this small system. The sending
overhead oS is measured by evaluating the response time of
a blocking send MPI function, using short message sizes. No
measured technique is described for the receiving overhead
oR, and hence, one have to suppose that it is taken as the
sending counterpart. Latency L is measured as the time to
send a point-to-point message of size 1 byte. The gap per
message g is measured by sending consecutive messages
and evaluating the send function response time. The gap per
byte G is measured as the time of sending large messages,
subtracting the sender overhead and latency. Finally, the
computational power Pi is estimated in each node as the
inverse of the computational time of a benchmark.

Following, we model the Wave2D kernel taking as a base
the expression (5) for each point-to-point communication.
All the transmissions are assumed to start at once. FuPer-
Mod is used to balance the computational load illustrated
by Fig. 2. Anyway, as Code 1 shows, we use a barrier at
the beginning of the communication phase. The cost per
iteration allocated to a process pi will be:

Θi =
∑
j∈ηi

T
c(j)
i→j (m) (6)

where m is the size of the message sent to neighbor
pj , and c(j) is the channel used to send the message. The
transmissions of all P processes progress concurrently, how-
ever, HLogGP does not provide any mechanism to model
concurrent transmissions, and it models the cost of each
iteration as the maximum of the processes cost according
to:

Θ =
P−1
max
i=0

Θi (7)

The HLogGP Wave2D kernel communication cost is finally
calculated as Θw2D = T ×Θ.

2.2 LMO
Lastovetsky et al. [4] address hierarchical communications
on an Ethernet network connecting a set of heterogeneous
processors. The model proposed, LMO, targets the impact
of the heterogeneity of the processors on the communi-
cation cost of a set of operations, namely point-to-point,
one-to-many (scatter and gather) and broadcasting. LMO

carefully separates the cost related to the processors and
the network for the sake of more accurate communication
cost predictions. The model assumes no contention in the
communication channel. Being based on the Hockney model
[5], LMO is presumed to be less accurate than HLogGP. The
cost of a message transmission between the processors pi
and pj is

Ti→j(m) = Li j + Ci +mti + Cj +mtj +
m

βij
, (8)

where m represents the message size in bytes. Ci is
the fixed processing delay of process pi, and reflects the
heterogeneity of the processors. ti is the per-byte delay, and
reflects the heterogeneity of communication channels. The
fixed network delay parameter Li j improves the flexibility to
express the execution time of collectives, and is added to the
original model by Lastovetsky and Richkov in [6]. βij is the
transmission rate of the channel connecting the processors
pi and pj .

LMO and its parameter measurement procedure are
deeply discussed by Lastovetsky et al. in [7] and [8]. Authors
describe a comprehensive experimental methodology to
build their LMO model on a 16-node heterogeneous cluster.
Like HLogGP, in a generalized P -node cluster the number
of parameters is of order O(P 2), specifically 2P + P 2, that
is, P parameters Ci, P parameters ti, and P 2 transmission
rates βi j between each pair of processors i and j. As
point-to-point communication experiments do not provide
sufficient data for the estimation of so many parameters,
some particular collective experiments between triplets of
processors are performed. Then, a linear system of equations
Ax = b with the parameters as unknowns and the execution
times of the communication experiments as a right hand
side is built and solved.

3 AN INTRODUCTION TO THE τ–Lop TOOL

The τ–Lop Tool is a software library for automating the
evaluation of τ–Lop expressions. Such expressions are the
analytical representation of the communications cost of data
parallel algorithms, running in either homogeneous or het-
erogeneous platforms. The expression (4), which accounts
for the cost of our 2D wave kernel, is just an example.

Next follows a brief introduction to the τ–Lop Li-
brary, including some use cases2. The principle underlying
the τ–Lop library is that the τ–Lop cost can always be
represented as a set of sequences of transmissions progress-
ing concurrently, for instance

(
T 1(ma) + T 0(mb) + T 1(mb)

)
‖
(
T 0(mb) + T 1(ma)

)
‖
(
T 1(ma) + T 0(mb)

)
. The key ability

of the library is storing the expression as a data structure
illustrated by Fig. 3. Note how the operative data structure
reflects the formal structure of the expression, namely, three
sequences of point-to-point transmissions that take place
in parallel. Of course, the library provides a procedural
interface to build these (abstract) data structures. In fact,
the library provides three main interfaces.

The cost expressions involve transmissions T (m). To
be evaluated, a transmission must be expanded to an ex-
pression of just transfer times L and overheads o. For in-
stance 2‖T 0

p2p(m) may expand to 2‖
[
o0(m) + 2L0(m, 1)

]
=

2. The τ–Lop tool is available from http://gim.unex.es/taulop.
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Fig. 3. Internal representation in the τ–Lop library of the cost
expression

(
T 1(ma) + T 0(mb) + T 1(mb)

) ‖ (
T 0(mb) + T 1(ma)

) ‖(
T 1(ma) + T 0(mb)

)
as a set of three concurrent sequences of trans-

missions. The transmissions have different message sizes and progress
through different channels, plot with different background color. Time
goes from left to right.

o0(m) + 2L0(m, 2). One has to instantiate these expanded
expressions with the values that L(m, τ) and o(m) take in
the platform. The library hence provides a second interface
to set the parameters of the model in the working platform.
Finally a third interface triggers the evaluation of an expres-
sion.

3.1 Modeling Simple Transmissions
The fundamental software object of the τ–Lop Library is the
Transmission, which represents an individual τ–Lop trans-
mission cost of the form τ ‖T c(m), with m the size of the
message and τ the number of messages progressing concur-
rently through the channel c. Code 2 shows the creation of
a Transmission object.

Code 2 A simple transmission.
Transmission *T = new Transmission(c, m, τ );

Besides the Transmission, the library provides other
objects. One of them is the Process object, which has two
attributes, the node where it runs and its rank in the algo-
rithm. Code 3 shows that there is an alternative way of cre-
ating a Transmission, namely, by specifying the source and
destination processes instead of the channel. The channel is
internally determined by the processes location.

Code 3 A simple transmission between two processes.
Process *src = new Process ( src rank, src node);
Process *dst = new Process (dst rank, dst node);
Transmission *T = new Transmission(src, dst, m, τ );

As a τ–Lop cost expression is a set of sequences of trans-
missions progressing concurrently (Fig. 3), the τ–Lop library
adopts a composite model. It provides with two new ob-
jects: TauLopSequence and TauLopConcurrent. TauLopSequence
contains one or more transmissions carried out in sequence.
TauLopConcurrent contains a set of TauLopSequence objects
that progress in parallel. Code 4 creates a sequence of
two transmissions through the same channel c of the form
T c(m1) + T c(m2). Meanwhile, the Code 5 creates two con-
current transmissions on the same channel c, represented in
τ–Lop as T c(m1) ‖T c(m2).

Concurrent transmissions with different message sizes
appear in more heterogeneous scenarios. Also transmissions
progressing through different channels. Code 6 implements
the expression of Fig. 3.

Code 4 A sequence of two transmission.
TauLopConcurrent *conc = new TauLopConcurrent ();
TauLopSequence *seq = new TauLopSequence ();
seq→add(new Transmission(c, m1, 1));
seq→add(new Transmission(c, m2, 1));
conc→add(seq);

Code 5 Two concurrent transmission.
TauLopConcurrent *conc = new TauLopConcurrent ();
TauLopSequence *seq;
seq = new TauLopSequence ();
seq→add(new Transmission(c, m1, 1));
conc→add(seq);
seq = new TauLopSequence ();
seq→add(new Transmission(c, m2, 1));
conc→add(seq);

Code 6 Three concurrent sequences.
TauLopConcurrent *conc = new TauLopConcurrent ();
TauLopSequence *seq;

seq = new TauLopSequence ();
seq→add(new Transmission(1, ma, 1));
seq→add(new Transmission(0, mb, 1));
seq→add(new Transmission(1, mb, 1));
conc→add(seq);

seq = new TauLopSequence ();
seq→add(new Transmission(0, mb, 1));
seq→add(new Transmission(1, ma, 1));
conc→add(seq);

seq = new TauLopSequence ();
seq→add(new Transmission(1, ma, 1));
seq→add(new Transmission(0, mb, 1));
conc→add(seq);

The TauLopCost object contains the evaluation of a
TauLopConcurrent object. Code 7 shows an example.

Code 7 Calculating the communication time of a TauLopCon-
current *conc expression.

TauLopCost *tc = new TauLopCost();
conc→apply(tc);
double t = tc→getTime();

3.2 Modeling Advanced Transmissions
The τ–Lop Library provides with an extensible interface
for modeling and estimating the cost of MPI-like collec-
tive operations, implemented using different algorithms.
A collective executes in the context of a communicator, a
central concept to MPI and defined in the τ–Lop Library
as a group of processes with an associated mapping. Code 8
builds a broadcast operation implemented as a binomial tree,
and predicts its cost given a communicator of P processes
deployed in sequential mapping on a homogeneous multi-
core machine with P/Q nodes, being Q the number of cores
per node.
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Code 8 Calculating the communication time of a collective
operation.

Communicator *world = new Communicator (P);
Mapping *map = new Mapping(P, Q, MAPPING SEQ);
world→map(map);
Collective *bcast = new BcastBinomial();
double t = bcast→execute(world, &m, root);

Nodes in a machine are identified as integer numbers
in the range [0,M − 1]. In a communicator, processes are
identified by their ranks from 0 to P − 1. The Sequential
mapping, known in the library as MAPPING SEQ, assigns
a process rank to a node as Mrank = Prank/M . Other
commonly used mappings, and even irregular mappings
can be provided.

3.3 Modeling a Full Kernel

Following, the communication modeling and cost predic-
tion code for the Wave2D kernel is discussed. Code 9
implements the expressions (3) and (4).

Code 9 Communication cost of the Wave2D kernel.
double wave2d (Communicator *comm) {

double t = 0.0;
int P = comm→getSize();
TauLopConcurrent *conc = new TauLopConcurrent();
for (int src = 0; src < P; src++) {

for (int dst = 0; dst < P; dst++) {
int size = getBoundary(src, dst);
if (size > 0) {

TauLopSequence *seq = new TauLopSequence();
int c = (comm→getNode(src) ==

comm→getNode(dst)) ? 0 : 1;
int m = size * sizeof(double);
seq→add(new Transmission(c, m, 1));
conc→add(seq);
}
}
}
TauLopCost *tc = new TauLopCost();
conc→apply(tc);
t = tc→getTime();
delete tc;
delete conc;
return t;
}

The algorithm takes as a parameter the communicator
defining the mapping of the processes in the platform,
and hence the communication channel used by any pair of
processes. The function getBoundary(Psrc, Pdst) returns the
number of halo elements (double precision values) of each
two processes, if any. Each transmission of a process to its
neighbors is created and added to a TauLopSequence object.
Each TauLopSequence structure then compose a concurrent
TauLopConcurrent object, which will be finally evaluate for
predicting the cost of the kernel.
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