
Grid-Enabled Hydropad: a Scientific Application for Benchmarking

GridRPC-Based Programming Systems

Michele Guidolin, Alexey Lastovetsky

School of Computer Science and Informatics

University College Dublin

Belfield, Dublin 4, Ireland

{ michele.guidolin, alexey.lastovetsky }@ucd.ie

Abstract

GridRPC is a standard API that allows an applica-

tion to easily interface with a Grid environment. It im-

plements a remote procedure call with a single task map

and client-server communicationmodel. In addition to non-

performance-related benefits, scientific applications having

large computation and small communication tasks can also

obtain important performance gains by being implemented

in GridPRC. However, such convenient applications are not

representative of the majority of scientific applications and

therefore cannot serve as fair benchmarks for comparison

of the performance of different GridRPC-based systems. In

this paper, we present Hydropad, a real life astrophysical

simulation, which is composed of tasks that have a balanced

ratio between computation and communication. While Hy-

dropad is not the ideal application for performance bene-

fits from its implementation with GridRPC middleware, we

show how even its performance can be improved by us-

ing GridSolve and SmartGridSolve. We believe that the

Grid-enabled Hydropad is a good candidate application to

benchmark GridRPC-based programming systems in order

to justify their use for high performance scientific comput-

ing.

1. Introduction

A typical numerical simulation needs a lot of compu-

tational power and memory footprint to solve a physical

problem with a high accuracy. A single hardware platform

that has enough computational power and memory to han-

dle problems of high complexity is not easy to access. Grid

computing provides an easy way to gather computational re-

sources, whether local or geographically separated, that can

be pooled together to solve large problems. GridRPC [8]

is a standard API promoted by the Open Grid Forum that

allows the user to smoothly design an application to in-

terface with a Grid environment. Currently a number of

Grid middleware systems are GridRPC compliant including

GridSolve [10], Ninf-G [9] and DIET [4]. Performance im-

provements are not the only goals of these systems, however

they are designed to achieve high performance in execution

of scientific applications. A good GridRPC-based program-

ming system permits a typical scientific application to gain

non-performance-related benefits, like ease of development

and control of the application, while not compromising or

even improving its performance.

A GridRPC middleware works by individually mapping

the application’s tasks to appropriate servers in the Grid and

communicating the data between the servers and the client

computer. In a remote execution all the data used by a task

has to be available on the chosen server, consequently for

each task there is a high quantity of data communication. A

scientific application, that obviously benefits from the use

of GridRPC, consists of tasks that are highly computation-

ally intensive and low in data communication. These ap-

plications, which are the best suited to run on a Grid envi-

ronment, are not representative of many real-life scientific

applications. Unfortunately they are typically chosen, or

artificially created, to test and show the performance of a

GridRPC middleware system. We believe that to justify the

use of GridRPC for a wide range of applications, we should

not use an extremely suitable application as a benchmark

but a real life application that shows the eventual limits and

benefits of the GridRPC middleware systems tested.

In this work, we present Hydropad, a real-life astrophys-

ical application that simulates the evolution of clusters of

galaxies in the universe [6]. This application is composed

of tasks that have a balanced ratio between computation

and communication. Hydropad requires high processing re-

sources because it has to simulate an area comparable to the

dimension of the universe and simultaneously try to achieve

a high enough resolution to show how the stars developed.

In section 3, we introduce the motivations and benefits be-

hind the use of GridRPC in Hydropad and how it is im-

plemented. We also present experimental results obtained

for the GridSolve version of Hydropad demonstrating that

in many realistic situations this GridRPC implementation

will outperform the original sequential Hydropad. In sec-

tion 4, we introduce SmartGridSolve [2], a new middleware

that extends the execution model of GridRPC to overcome

its limitations. We demonstrate that SmartGridSolve can

significantly improve the performance of Hydropad even in

situations where GridSolve fails to do it.

2. Hydropad: a Simulator of Galaxies’

Evolution

Hydropad is a cosmological application, originally writ-

ten by Claudio Gheller, which simulates the evolution of

clusters of galaxies in the universe [6]. The cosmological

model that this application is based on, has the assumption

that the universe is composed of two different kinds of mat-

ter. The first is baryonic matter, which is directly observed

and forms all bright objects. The second is dark matter,

which is theorised to account for most of the gravitational

mass in the Universe. The evolution of this system can only

be described by treating both components at the same time,

looking at all of their internal processes, while their mutual

interaction is regulated by a gravitational component. Fig-

ure 1 shows an example of a typical output generated by

Hydropad.

Figure 1. Example of Hydropad Output

The dark matter computation can be simulated using N-

Body methods [7]. These methods utilise the interactions

between a large number, Np, of collision-less particles.

These particles, subjected to gravitational forces, can simu-

late the process of the formation of galaxies. The accuracy

of this simulation depends on the quantity of particles used.

Hydropad utilises a Particle-Mesh (PM) N-Body algorithm,

which has a linear computational cost and depends on the

number of particles O(Np). In the first part this method

transforms the particles, through an interpolation, into a grid

of density values. Afterwards the gravitational potential is

calculated from this density grid. In the last part the parti-

cles are moved depending on the gravitational forces of the

cell where they were located.

The baryonic matter computation utilises a Piecewise-

Parabolic-Method (PPM) Hydrodynamic algorithm [5].

This is a higher order method for solving partial differen-

tial equations. PPM reproduces the formation of pressure

forces and the heating and cooling processes generated by

the baryonic component during the formation of galaxies.

For each time step of the evolution, the fluid quantities of

the baryonic matter are estimated over the cells of the grid

by using the gravitational potential. The density of this mat-

ter is then retrieved and used to calculate the gravitational

forces for the next time step. The accuracy of this method

depends on the number of cells of the grid used, Ng, and

its computational cost is linear O(Ng). The application

computes the gravitational forces, needed in the two previ-

ous algorithms, by using the Fast-Fourier-Transform (FFT)

method to solve the Poisson equation. This method has a

computational cost of O(Ng log Ng). All the data, used by

the different components in Hydropad, are stored and ma-

nipulated in three-dimensional grid-like structures. In the

application, the uniformity of these base structures permits

easy interaction between the different methods.

Figure 2 shows the work-flow of the Hydropad applica-

tion. It is composed of two parts: the initialisation of the

data and the main computation. The main computation of

the application consists of a number of iterations that sim-

ulate the discrete time steps used to represent the evolution

of the universe from the Big Bang to present time. This part

consists of three tasks: the gravitational task (FFT method),

the dark matter task (PM method) and the baryonic matter

task (PPM method). For every time step in the evolution

of the universe, the gravitational task generates the gravita-

tional field using the density of the two matters calculated

in the previous time step. Hence the dark and baryonic tasks

use the newly produced gravitational forces to calculate the

movement of the matter that happens during this time step.

Then the new density is generated and the lapse of time in

the next time step is calculated from it. It is possible to see

in figure 2 that the dark matter task and baryonic matter task

are independent of each other.

The initialisation part is also divided in two independent

tasks. The main characteristic of dark matter initialisation

is that the output data is generated by the external applica-

tion grafic, a module of the package COSMICS [1]. Grafic,

given the initial parameters as an input, generates the posi-

tion and velocity of the particles that will be used in the N-

Body method. The output data is stored in two files which

information has to be read by the application during the ini-

tialisation part. Like the main application, grafic has a high

memory footprint.

An important characteristic of Hydropad is the differ-

ence in computational and memory load of its tasks. De-

spite both algorithms being linear, the computational load of

the baryonic matter component is far greater than the dark

matter one, Cbm ≫ Cdm, when the number of particles is

2

Figure 2. Internal structure of Hydropad

equal to the number of cells in the grid, Np = Ng. Further-

more the quantity of data used by the dark matter computa-

tion is greater than the baryonic matter one, Ddm ≫ Dbm.

As previously indicated Hydropad utilises three dimen-

sional grid structures to represent the data. In the applica-

tion code these grids are represented as vectors. In the case

of the dark matter component, the application stores the po-

sition and velocity in three vectors for each particle, one for

each dimension. The size of these vectors depends on the

number of particles, Np, chosen to run on the simulation.

For the gravitational and baryonic components the differ-

ent physical variables, such as force or pressure, are stored

in vectors, with the size depending on the given number of

grid cells Ng. In a typical simulation the number of parti-

cles is of the order of billions, while the number of cells in

a grid can be over 1024 for each grid side. Given that for

the values of Ng = 1283 and Np = 106 the total amount

of memory used in the application is roughly 500MB, the

memory demand to run a typical simulation is very high.

3. Enabling Hydropad for Grid Computing

GridRPC provides a simple remote procedure call (RPC)

to execute, synchronously or asynchronously, a task in a

Grid environment. GridRPC differs from the traditional

RPC method since the programmer does not need to spec-

ify the server to execute the task. When the Grid-enabled

application runs, each GridRPC call results in the middle-

ware mapping the call to a remote server and then the mid-

dleware is responsible for the execution of that task on the

mapped server. As a result, each task is mapped separately

and independently of other tasks of the application. Another

important aspect of GridRPC is its communication model.

For each task, the GridRPC middleware sends all the input

data from the client machine to the remote server. Then,

after the remote task has finished its execution, the middle-

ware retrieves the output data back to the client machine.

Therefore, remote execution of each task results in signifi-

cant amount of data communicated between the client ma-

chine and servers.

Hydropad is not the ideal application for execution in a

Grid environment because of the relatively low complexity

of its tasks (log-linear at maximum) and the large amount

of input and output data moved between tasks. In this work,

we study how such an application can benefit from imple-

mentation in GridRPC. The performance related benefits in-

clude the potential for faster solution of a problem of a given

size and solution of problems of larger sizes.

Faster solution of a given problem. Grid-enabled Hy-

dropad has the potential to perform the simulations of the

same given size faster than the original Hydropad on the

client machine. There are two main reasons for this:

• The Hydropad application includes two independent

tasks, the baryonic matter task and the dark mat-

ter task, that can be executed in parallel. The non-

blocking GridRPC task call API allows us to imple-

ment their parallel execution on remote servers of the

Grid environment. This parallelisation will decrease

the computation time of the application.

• If the Grid environment contains machines more pow-

erful than the client machine, then remote execution

of the tasks of this application on these more powerful

machines will also decrease the computation time of

the application.

However, this decrease of the computation time does not

come for free. The application will pay the communica-

tion cost due to remote execution of the tasks. If commu-

nication links connecting the client machine and the remote

servers are relatively slow, than the acceleration of compu-

tations will be compensated by the communication cost re-

sulting in the total execution time of the application higher

than in the case of its sequential execution on the client ma-

chine. For example, experiments with Hydropad in section

3.2 show that with a 100 Mbit/sec connection between the

client machine and the servers the Grid-enabled Hydropad

is slower than the original serial one. At the same time,

for a 1 Gbit/sec connection the Grid-enabled Hydropad was

faster than its sequential counterpart. Thus, in many realis-

tic Grid environments, the Grid-enabled Hydropad can out-

perform its original sequential version.

Solution of larger problems. Grid-enabled Hydropad

has the potential to perform larger simulations resulting in

their higher accuracy. Indeed, the baryonic and dark mat-

ter tasks allocate temporary memory during their execution.

Remote execution of these tasks will decrease the amount of

3

memory used on the client machine as the temporary mem-

ory is now allocated on remote machines. Therefore, within

the same memory limitations on the client machine (say,

the amount of memory that can be used by the application

without heavy paging), the Grid-enabled Hydropad will al-

low for larger simulations.

The use of GridRPC for scientific applications does not only

bring performance related advantages. Other benefits may

be more difficult to notice but are equally important.

More control over the application. Hydropad poten-

tially can be executed not only in a Grid environment but

also in a high performance computer (HPC) system. Unfor-

tunately in a HPC system, where applications are executed

in batch mode, the user will not have much control over the

execution. Grid-enabled Hydropad allows the user to have

a high control over its execution because, although the tasks

are being computed in remote servers, the main component

of the application is running on the client machine. This can

be important for many types of applications, some examples

are:

• Applications that need a direct interactionwith the data

produced. For example the user could visualise di-

rectly in the client machine the evolution of the uni-

verse, while Hydropad is running on the Grid. Further-

more while the user is checking the simulation evolu-

tion, he could decide on the fly to change some param-

eters of the simulation or restart the application. This

is possible since in Grid-enabled Hydropad the main

data and the main execution is on the client machine.

• Applications that have a task that is inherently remote.

For example in the case of Hydropad, if grafic cannot

be executed on the client machine because it needs a

specific hardware, the user has to generate the initial

data on the remote server and then manually retrieve

it. The use of GridRPC can simplify this situation by

allowing a special task to interface with grafic directly

on the remote server. This task can communicate im-

mediately the initial data generated by grafic to the ap-

plication.

An easy and powerful development paradigm. A nu-

merical method, to be executed remotely, has to avoid inter-

nal state changes, like a function with isolated computation

and no global variable. This method of development creates

tasks that have a specific interface for input/output values.

Therefore, the GridRPC tasks can be easily reused in other

Grid applications because their execution with the same in-

put always produces the same output. This situation can

reduce the programmer effort on developing a Grid applica-

tion. For example the programmer can use already existing

tasks that he would not have the time or skill to write. Ad-

ditionally if the application needs to use tasks that are in-

herently remote because they are made of proprietary code

or bound to a specific hardware, like grafic in the previous

example, the programmer can easily include them.

3.1. GridRPC Implementation of
Hydropad

Hydropad was originally a sequential Fortran code, we

upgraded this program to take advantage of the GridRPC

API and to work with the GridSolve middleware. Table 1

shows the original Hydropad code of the main loop, written

in the C language. Three functions, grav, dark, and bary,

are called in this loop to perform the three main tasks of the

application. In addition, at the first iteration of this loop, a

special task, initvel is called to initialise the velocities of the

particles. The dark and baryonic tasks compute the general

velocities of the respective matter. At each iteration, these

velocities are used by a local function, timestep, to calculate

the next time step of the simulation. The simulation will

continue until this time becomes equal to the present time

of the universe, tsim = tuniv .

Table 1. Hydropad evolve loopt_sim=0;

while(t_sim<t_univ) {

grav(phi,phiold,rhoddm,rhobm,...);

if(t_sim==0){ initvel(phi,...); }

dark(xdm,vdm,...,veldm);

bary(nes,phi,...,velbm);

timestep(veldm,velbm,...,t_step);

t_sim+=t_step;

}

The GridRPC implementation of Hydropad application

uses the APIs grpc call and grpc call async to execute re-

spectively a blocking and an asynchronous remote call of

the Fortran routines. The first argument of both APIs is the

handler of the task executed, the second is the session ID

of the remote call while the following arguments are the pa-

rameters of the task. Furthermore, the code uses the method

grpc wait to block the execution until the chosen, previ-

ously issued, asynchronous request has completed. When

the program runs, the GridSolve middleware maps each

grpc call and grpc call async functions singularly to a re-

mote server. Then, the middleware communicates the data

from the client computer to the chosen server and then exe-

cutes the task remotely. At the end of the task execution, the

data is communicated back to the client. In the blocking call

method, the client cannot continue the execution until the

task is finished and all the outputs have been returned. In-

stead, in the asynchronous method, the client does not wait

for the task to finish and proceeds immediately to execute

4

the next code. The output of the remote task is retrieved

when the respective wait call function is executed.

Table 2. Hydropad implementation in

GridRPC

t_sim=0;

while(t_sim<t_total) {

grpc call(grav_hndl,phiold,...);

if(t_sim==0){ grpc call(initvel_hndl,phi,...); }

grpc call async(dark_hndl,&sid_dark,x1,...);

grpc call async(bary_hndl,&sid_bary,nes,...);

grpc wait(sid_dark); /*wait for non blocking*/

grpc wait(sid_bary); /*calls to finish*/

timestep(t_step,...);

t_sim+=t_step;

}

Table 2 outlines the GridRPC implementation of the

main loop of Hydropad that simulates the evolution of uni-

verse. At each iteration of the loop, the first grpc call results

in the gravitational task being mapped and then executed.

When this task is completed, the client proceeds to the next

call, which is a non-blocking call of the dark matter task.

This call returns after the task is mapped and its execution

is initiated. Then, the baryonic matter call is executed in the

same way. Therefore, the baryonic and dark matter tasks are

executed in parallel. After this, the client waits for the out-

puts of both these parallel tasks using the grpc wait calls.

3.2. Experiments with the GridSolve-
Enabled Hydropad

In this section, we compare the execution times and

memory footprints of the GridSolve implementation of Hy-

dropad against its sequential execution on the client ma-

chine. The hardware configuration used in the experiments

consists of three machines: a client and two remote servers,

S1 and S2. The two servers are heterogeneous however

they have similar performance, respectively 498 and 531

MFlops, and they have an equal amount of main memory,

1GB each. The client machine is a computer with low hard-

ware specifications, 256MB of memory and 248MFlops of

performance, which is not suitable to perform large sim-

ulations. The bandwidth of the communication link be-

tween the two servers is 1Gb/s. The client-to-server con-

nection varies depending on the experimental setup. We

use two setups, C1 with a 1Gb/s connection and C2 with a

100Mb/s communication link. These hardware configura-

tions represent a situation when a user having a relatively

weak computer can access more powerful machines. For

each conducted experiment, table 3 shows the initial prob-

lem parameters and the corresponding data sizes (the total

memory used during the execution of Hydropad on a single

machine).

Table 3. Input values and problem sizes for

the Hydropad experiments

Problem ID Np Ng Data Size

P1 120
3

60
3

73MB

P2 140
3

80
3

142MB

P3 160
3

80
3

176MB

P4 140
3

100
3

242MB

P5 160
3

100
3

270MB

P6 180
3

100
3

313MB

P7 200
3

100
3

340MB

P8 220
3

120
3

552MB

P9 240
3

120
3

624MB

Table 4 shows the average computation time of one evo-

lution step achieved by the local computation (in subtable

(a)), and by the GridSolve version of Hydropad (in sub-

table (b) and (c)). This table also introduces the results

obtained by the SmartGridSolve version of Hydropad, they

will be discussed in section 4.

Table 4 also presents the scale of paging that occurs in

the client machine during the executions. It is possible to

see in table 4(a) that for the local computation the paging

is taking place when the problem size is equal or greater

than the machine memory, 256MB. For the GridSolve ver-

sion the paging is occurring later, when the problem size is

around 310MB, as shown in table 4(b)/(c). The GridRPC

implementation can save memory thanks to the temporary

data allocated remotely in the tasks and consequently in-

crease the problem size that will not cause the paging. In the

sequential local execution the paging is taking place during

a task computation, while for the GridSolve version the pag-

ing occurs during a remote task data communication. Hence

for the Grid-enabled Hydropad the paging on the client ma-

chine does not negatively affect the execution time of the

experiments.

The experiments in table 4(b) were executed using C1 as

client. This machine has a fast network link to the servers

S1 and S2. The results in this subtable show that the speed-

up (Sp) obtained by GridSolve is around 2 until the client

machine starts paging, then the local computation receives

a heavy penalty from the paging. Figure 3 shows the exe-

cution times of the evolution step for the local computation

and for the GridSolve version of Hydropad.

Table 4(c) shows the results obtained by the GridSolve

version when the client machine used, C2, has a slow client-

to-servers connection of 100Mb/s. The GridSolve version

is slower than the local computation when the client ma-

chine is not paging. This is happening because there is a

large amount of data communication between tasks. So for

this configuration, the time spent communicating the data

compensates the time gained by computing tasks remotely.

However as the problem size gets larger and the client ma-

5

Table 4. Experimental results

(a) Local (b) GridSolve C1 - 1GB/s (c) GridSolve C2 - 100MB/s

P.ID Time Step Paging Time Step Paging Sp v Local Time Step Paging Sp v Local

P1 14.09s No 7.20s No 1.96 18.01s No 0.78

P2 29.95s No 15.51s No 1.93 35.02s No 0.86

P3 35.29s No 16.48s No 2.14 43.09s No 0.82

P4 55.13s Light 29.11s No 2.14 55.66s No 0.97

P5 61.63s Light 29.07s No 2.12 58.17s No 1.06

P6 83.66s Yes 36.74s Light 2.28 72.50s Light 1.15

P7 128.55s Yes 48.06s Yes 2.67 80.05s Yes 1.61

P8 227.89s Heavy 77.91s Heavy 2.92 133.47s Heavy 1.71

P9 280.07s Heavy 91.75s Heavy 3.06 155.36s Heavy 1.81

(d) SmartGridSolve C1 - 1GB/s (e) SmartGridSolve C2 - 100MB/s

P.ID Time Step Paging Sp v Local Sp v GS (C1) Time Step Paging Sp v Local Sp v GS (C2)

P1 6.99s No 2.02 1.03 7.9s No 1.78 2.28

P2 14.69s No 2.04 1.06 15.68s No 1.91 2.75

P3 15.52s No 2.27 1.06 17.36s No 2.03 2.48

P4 27.22s No 2.03 1.07 28.56s No 1.93 1.98

P5 27.13s No 2.27 1.07 28.77s No 2.14 2.02

P6 27.22s No 3.07 1.35 30.09s No 2.78 2.41

P7 29.13s Light 4.41 1.65 31.63s Light 4.06 2.53

P8 49.21s Light 4.63 1.58 52.30s Light 4.36 2.55

P9 50.82s Light 5.52 1.81 55.47s Light 5.06 2.80

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700

e
v
o

lv
e

 t
im

e
 s

te
p

 (
s
)

data size (MB)

Local C1
GridSolve C1/S1/S2

Figure 3. Evolution time step of the local and
GridSolve computation with client C1

chine starts paging, the GridSolve version becomes faster

than the local computation, even in the case of slow com-

munication between the client and server machines.

4. SmartGridSolve and Hydropad

In this section we introduce SmartGridSolve [2], previ-

ously implemented as SmartNetSolve [3]. SmartGridSolve

is an extension of GridSolve that has been designed to by-

pass the limitations of the GridRPC model of execution.

The GridRPC implementation of Hydropad has some ad-

vantages over the sequential local computation, however it

is evident that the model of execution utilised by GridRPC

is not optimal. In a GridRPC system all tasks are mapped

individually. The mapper will always choose the fastest

available server at the instant that a task is called, regard-

less of the computational size of the task and regardless of

whether the task is to be executed sequentially or in parallel.

A drawback of this behaviour is highlighted by the Hy-

dropad application. The parallel tasks in Hydropad are not

computationally balanced. The baryonic task is computa-

tionally far larger than the dark matter one, Cbm ≫ Cdm.

When a GridRPC system goes to map these two tasks, it

does so without the knowledge that they are part of a group

to be executed in parallel. Its only goal is to minimise the

execution time of an individual tasks as it is called by the

application. If the smaller dark matter task is called first

it will be mapped to the fastest available server. With the

fastest server occupied, the larger baryonic task will then be

mapped to a slower server and the overall execution time of

the group of tasks will be sub-optimal.

Another constraint of the GridRPC model, which influ-

ences the performance of Hydropad or any other applica-

tion, is that all the data computed remotely and communi-

cated between remote tasks has to pass through the client

machine. Servers computing tasks with data dependencies

on each other cannot communicate with each other directly.

It is possible for the application programmer to avoid this

issue by implementing data caching in his tasks. However

it requires the programmer to make heavy modification to

the tasks and this is a clear drawback. It also means that

remote tasks passing data to each other must all run on the

same server, where the data they need is cached.

SmartGridSolve addresses all these issues. It expands

the single task map and client-server model of GridRPC by

implementing the mapping of groups of tasks, the automatic

6

data caching on servers and the server to server communi-

cation. Collective mapping of groups of tasks, using a fully

connected network, allows SmartGridSolve to find an opti-

mal mapping solution for an application that fully exploits

a Grid environment. Furthermore the direct server to server

communication and automatic data caching that SmartGrid-

Solve implements minimises the amount of memory used

on the client and the volume of communication necessary

between client and server. Data objects can reside only on

the servers where they are needed and they can be moved

directly between servers without having to pass through the

client. The main goal of SmartGridSolve is to provide these

functionalities to the user in a practical and simple way. To

achieve this it requires only minor changes and addition to

the APIs of GridRPC. An application programmer can gain

from the improved performance using SmartGridSolve by

making only minor modifications to any application that is

already GridRPC enabled.

4.1. SmartGridSolve Implementation of
Hydropad

The code in table 5 shows the modifications required

to use the new SmartGridSolve features in Hydropad, in

contrast to those shown in table 2 where we illustrate the

changes required for GridSolve/GridRPC. One can see that

the difference between the examples is the minor additions

of: the gs smart map block and gs smart local region con-

dition. These belong to the SmartGridSolve API.

The code enclosed in the gs smart map block will be it-

erated through twice. On the first iteration, each grpc call

and grpc call async is discovered but not executed. At the

beginning of the second iteration, when all the tasks within

the scope of the block have been discovered, a task graph for

them is generated. The discovered tasks are then executed

remotely using this task graph to aid their mapping [2]. The

gs smart local region function, in conjunction with a con-

ditional statement, is used by the application programmer to

indicate when a local computation is executed. At run time

on the first discovery iteration the code within this condi-

tional statement is not executed. This is to mimic the be-

haviour that the remote calls have on the discovering itera-

tion. On the second iteration, the code inside the statement

is executed normally.

The mapping in the code of table 5 is performed at every

iteration of the main loop, this can generate a good mapping

solution if the Grid environment is not a stable one. For

example, where there are other applications’ tasks running

on the Grid servers. If the Grid environment is dedicated,

where only one application executes at a time, a better map-

ping solution may be generated if the area to map contains

more tasks, i.e. two or more loop cycles. A simple solution

could be including an inner loop within the gs smart map

Table 5. Hydropad implementation in Smart-
GridSolve

t_sim=0;

while(t_sim<t_univ) {

gs_smart_map("ex_map"){

grpc call(grav_hndl,phiold,...);

if(t_sim==0){ grpc call(initvel_hndl,phi,...);}

grpc call async(dark_hndl,&sid_dark,x1,...);

grpc call async(bary_hndl,&sid_bary,nes,...);

/* wait for non blocking calls to finish */

grpc wait(sid_dark);

grpc wait(sid_bary);

if(gs_smart_local_region()){

timestep(t_step,...);

t_sim+=t_step;

}

}

}

code block. The application programmer could increase the

number of tasks mapped together by changing increasing

the number of iterations of the inner loop.

4.2. Experimental Results Using Smart-
GridSolve

In this section we show the results obtained by the Smart-

GridSolve version of Hydropad and we compare them with

those from the GridSolve and local versions shown in sec-

tion 3.2. The problem sizes utilised in the experiments

(table 3) and the hardware configurations are the same as

in previous experiments. As mentioned before, one of the

primary improvements of SmartGridSolve is its communi-

cation model, use of which minimises the amount of data

movement between the client and servers. This advantage

is most prominent when the client connection to the Grid

environment is slow. Table 4(e) shows the results obtained

by the SmartGridSolve version of Hydropad using C2 as

the client machine which has a slow network connection of

100Mb/s. One can see that the SmartGridSolve version is

much faster than the GridSolve, table 4(c), and the sequen-

tial versions, table 4(a). The increase of speed is over twice

that of GridSolve, which is primarily due to the improved

communication model of SmartGridSolve.

Another important feature of SmartGridSolve is the su-

perior mapping system. Table 4(d) shows results obtained

from experiments using C1 as the client machine. This ma-

chine has a higher speed network connection of 1Gb/s. The

results show the performance gain obtained due to the im-

proved mapping method. The advantage gained by using

the communication model of SmartGridSolve is minimised

by the faster communication links (experiments with a sin-

gle server were performed to confirm this). Despite Hy-

7

dropad having only two parallel tasks the SmartGridSolve

mapper can produce a faster execution than the GridSolve

one, table 4(b).

A secondary advantage of the direct server to server

communication implemented in SmartGridSolve is that the

quantity of memory used in the client machine is lower

than that of the GridSolve version. Therefore the Smart-

GridSolve version of Hydropad can execute larger problems

without the paging on the client machine. This can influ-

ence the execution time for larger problems as it is shown

in table 4(d). The speed-up of SmartGridSolve over Grid-

Solve, when the client machine pages, increases as the prob-

lem gets larger. This trend is also seen in figure 4.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700

e
v
o

lv
e

 t
im

e
 s

te
p

 (
s
)

data size (MB)

GridSolve C1/S1/S2
SmartGridSolve C1/S1/S2

Figure 4. Execution times of the GridSolve
and SmartGridSolve versions of Hydropad

5 Conclusions

Grid-enabled Hydropad was originally a sequential code

that we upgraded to utilise the GridRPC API to interface

with a Grid environment. The main loop of this application

is composed of three tasks of which two can be executed in

parallel. These tasks have at maximum a log-linear com-

plexity and there is a high amount of data communication

between them. Despite the fact that these types of tasks are

not the best suitable to be executed on a Grid because of

the high magnitude of communication involved, Hydropad

can obtain many benefits from being Grid-enabled. These

benefits can be related to performance gains or to the man-

agement and development aspects of the application.

The experimental results presented in this paper show

that Grid-enabled Hydropad, when is executed over Grid-

Solve middleware, can achieve better performance than

the original sequential code. However these performance

gains are correlated to the link speed of the connection be-

tween the client machine and sever machines. Additional

experiments show that SmartGridSolve middleware allows

Hydropad to obtain quite significant performance gains in

comparison to the GridSolve version and to the sequential

one. Furthermore the experiment shows that these gains are

not influenced negatively by a slow client-servers connec-

tion as much as with the GridSolve version.

Grid-enabled Hydropad is a freely available application

that could represent a good benchmark for GridRPC-based

programming systems because it exemplifies typical real-

life scientific applications, which are not perfectly suitable

for execution in a Grid environment, that push the limits

of a GridRPC middleware. This work was supported by

Science Foundation Ireland. A package containing the Hy-

dropad application can be found at the UCD Heterogeneous

Computing Laboratory web site: hcl.ucd.ie.

References

[1] E. Bertschinger. COSMICS: Cosmological Initial Condi-

tions and Microwave Anisotropy Codes. ArXiv Astrophysics

e-prints, June 1995.
[2] T. Brady, M. Guidolin, and A. Lastovetsky. Experiments

with SmartGridSolve: Achieving Higher Performance by

Improving the GridRPC Model. In Proceedings of the 9th

IEEE/ACM International Conference on Grid Computing

(Grid 2008), Tsukuba, Japan, 29 September - 01 October

2008. IEEE Computer Society.
[3] T. Brady, E. Konstantinov, and A. Lastovetsky. SmartNet-

Solve: High Level Programming System for High Perfor-

mance Grid Computing. In Proceedings of the 20th In-

ternational Parallel and Distributed Processing Symposium

(IPDPS 2006), Rhodes Island, Greece, 25-29 April 2006.
[4] E. Caron and F. Desprez. DIET: A Scalable Toolbox to Build

Network Enabled Servers on the Grid. International Journal

of High Performance Computing Applications, 20(3):335–

352, 2006. Sage Science Press.
[5] P. Colella and P. Woodward. The piecewise parabolic

method (PPM) for gas-dynamical simulations. Journal of

Computational Physics, 54:174–201, 1984.
[6] C. Gheller, O. Pantano, and L. Moscardini. A cosmolog-

ical hydrodynamic code based on the Piecewise Parabolic

Method. Royal Astronomical Society, Monthly Notices,

295(3):519–533, 1998. Blackwell Publishing.
[7] R. Hockney and J. Eastwood. Computer Simulation Using

Particles. McGraw Hill, New York, 1981.
[8] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee,

and H. Casanova. Overview of GridRPC: A Remote Proce-

dure Call API for Grid Computing. In GRID ’02: Proceed-

ings of the Third International Workshop on Grid Comput-

ing, pages 274–278, London, UK, 2002. Springer-Verlag.
[9] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and

S. Matsuoka. Ninf-G: A Reference Implementation of RPC-

based Programming Middleware for Grid Computing. Jour-

nal of Grid Computing, 1(1):41–51, 2003. Springer.
[10] A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and J. Dongarra.

Recent Developments in GridSolve. International Journal

of High Performance Computing Applications, 20(1):131–

142, 2006. Sage Science Press.

8

