Hierarchical Approach to Improve Performance of Legacy Scientific Applications on Large-Scale Platforms

Khalid Hasanov, Alexey Lastovetsky, Jean-Noël Quintin

Heterogeneous Computing Laboratory School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland http://hcl.ucd.ie

2013

イロト 不得 トイヨト イヨト

1/36

Problem Outline

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Problem Outline

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Experiments Experiments on Grid5000 Experiments on BlueGene

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Problem Outline

Introduction

SUMMA Hierarchical SUMMA (HSUMMA)

Experiments

Experiments on Grid5000 Experiments on BlueGene

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

- Majority of HPC algorithms were introduced between 1970s and 1990s
- They were designed for and tested on up to hundreds (few thousands at most) of processors.

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

- Majority of HPC algorithms were introduced between 1970s and 1990s
- They were designed for and tested on up to hundreds (few thousands at most) of processors.
- However, the number of processors in HPC platforms has increased by three orders of magnitude since 1990s. Thus we have some new issues:

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

- Majority of HPC algorithms were introduced between 1970s and 1990s
- They were designed for and tested on up to hundreds (few thousands at most) of processors.
- However, the number of processors in HPC platforms has increased by three orders of magnitude since 1990s. Thus we have some new issues:
 - Scalability

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

- Majority of HPC algorithms were introduced between 1970s and 1990s
- They were designed for and tested on up to hundreds (few thousands at most) of processors.
- However, the number of processors in HPC platforms has increased by three orders of magnitude since 1990s. Thus we have some new issues:
 - Scalability
 - Communication cost

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

- Majority of HPC algorithms were introduced between 1970s and 1990s
- They were designed for and tested on up to hundreds (few thousands at most) of processors.
- However, the number of processors in HPC platforms has increased by three orders of magnitude since 1990s. Thus we have some new issues:
 - Scalability
 - Communication cost
 - Energy efficiency

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

- Majority of HPC algorithms were introduced between 1970s and 1990s
- They were designed for and tested on up to hundreds (few thousands at most) of processors.
- However, the number of processors in HPC platforms has increased by three orders of magnitude since 1990s. Thus we have some new issues:
 - Scalability
 - Communication cost
 - Energy efficiency
 - etc.

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Introduction

We focus on the communication cost of scientific applications on large-scale distributed memory platforms.

- Example application: parallel matrix multiplication.
- Example algorithm:
 - SUMMA Scalable Universal Matrix Multiplication Algorithm.
 - Introduced by Robert A. van de Geijn and Jerrell Watts. University of Texas at Austin, 1995.
 - Implemented in ScaLAPACK.

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Our Contribution

- We introduce application level hierarchical optimization of SUMMA
- Hierarchical SUMMA (HSUMMA) is platform independent optimization of SUMMA
- We theoretically and experimentally show that HSUMMA reduces the communication cost of SUMMA

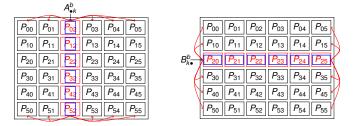
Introduction SUMMA Hierarchical SUMMA (HSUMMA)

ヘロト ヘ回ト ヘヨト ヘヨト

7/36

Outline

Problem Outline


Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Experiments

Experiments on Grid5000 Experiments on BlueGene Problem Outline

Experiments Summary Introduction SUMMA Hierarchical SUMMA (HSUMMA)

SUMMA

- ► The pivot column $A_{\bullet k}^{b}$ of $\frac{n}{\sqrt{P}} \times b$ blocks of matrix A is broadcast horizontally.
- ▶ The pivot row $B_{k_{\bullet}}^{b}$ of $b \times \frac{n}{\sqrt{P}}$ blocks of matrix B is broadcast vertically.
- ► Then, each $\frac{n}{\sqrt{\rho}} \times \frac{n}{\sqrt{\rho}}$ block c_{ij} of matrix C is updated, $c_{ij} = c_{ij} + a_{ik} \times b_{kj}$.
- Number of steps: ⁿ/_b
- Size of data broadcast vertically and horizontally in each step: $2\frac{n}{\sqrt{p}} \times b$

<ロ> <四> <ヨ> <ヨ> 三日

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

イロト 不得 トイヨト イヨト

э

9/36

Problem Outline

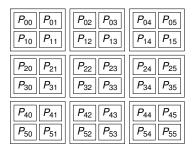
Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Experiments Experiments on Grid5000 Experiments on BlueGene

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

SUMMA vs HSUMMA. Arrangement of Processors

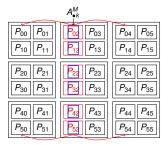
P ₀₀	P ₀₁	P ₀₂	P ₀₃	P ₀₄	P ₀₅
P ₁₀	<i>P</i> ₁₁	P ₁₂	P ₁₃	P ₁₄	<i>P</i> ₁₅
P ₂₀	P ₂₁	P ₂₂	P ₂₃	P ₂₄	P ₂₅
P ₃₀	P ₃₁	P ₃₂	P ₃₃	P ₃₄	P ₃₅
P ₄₀	P ₄₁	P ₄₂	P ₄₃	P ₄₄	P ₄₅
P ₅₀	P ₅₁	P ₅₂	P ₅₃	P ₅₄	P ₅₅


SUMMA

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

SUMMA vs HSUMMA. Arrangement of Processors

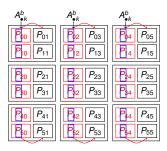
P ₀₀	P ₀₁	P ₀₂	P ₀₃	P ₀₄	P ₀₅
P ₁₀	P ₁₁	P ₁₂	P ₁₃	P ₁₄	P ₁₅
P ₂₀	P ₂₁	P ₂₂	P ₂₃	P ₂₄	P ₂₅
P ₃₀	P ₃₁	P ₃₂	P ₃₃	P ₃₄	P ₃₅
P ₄₀	P ₄₁	P ₄₂	P ₄₃	P ₄₄	P ₄₅
P ₅₀	P ₅₁	P ₅₂	P ₅₃	P ₅₄	P ₅₅


SUMMA

HSUMMA

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Horizontal Communications Between Groups in HSUMMA

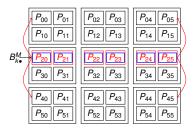


- P number of processors (P = 36)
- ▶ G number of groups (G = 9)
- $\sqrt{P} \times \sqrt{P}$ processors grid
- $\sqrt{G} \times \sqrt{G}$ grid of processor groups
- M block size between groups
- n/M number of steps
- ► Size of data broadcast horizontally in each step: <u>n×M</u>/<u>P</u>

The pivot column $A^{M}_{\bullet k}$ of $\frac{n}{\sqrt{P}} \times M$ blocks of matrix A is broadcast horizontally between groups

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Horizontal Communications Inside Groups in HSUMMA



- $\frac{\sqrt{P}}{\sqrt{G}} \times \frac{\sqrt{P}}{\sqrt{G}}$ grid of processors inside groups
- b- block size inside one group
- ► *M*/*b*− steps inside one group
- ► n/M− steps between groups
- Size of data broadcast horizontally in each step: n×b /B

Upon receipt of the pivot column data from the other groups, the local pivot column $A^b_{\bullet k}$, $(b \le M)$ of $\frac{n}{\sqrt{P}} \times b$ blocks of matrix A is broadcast horizontally inside each group

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Vertical Communications Between Groups in HSUMMA

- P number of processors (P = 36)
- G number of groups (G = 9)
- $\sqrt{P} \times \sqrt{P}$ processors grid
- $\sqrt{G} \times \sqrt{G}$ grid of processor groups
- M block size between groups
- n/M number of steps
- Size of data broadcast vertically in each step: ^{n×M}/_{√P}

The pivot row $B_{k\bullet}^M$ of $M \times \frac{n}{\sqrt{p}}$ blocks of matrix B is broadcast vertically between groups

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Vertical Communications Inside Groups in HSUMMA

- $\frac{\sqrt{P}}{\sqrt{G}} \times \frac{\sqrt{P}}{\sqrt{G}}$ grid of processors
- b- block size inside one group
- ► *M*/*b* steps inside one group
- ► n/M- steps between groups
- ► Size of data broadcast vertically in each step: <u>n×b</u> <u>√P</u>

Upon receipt of the pivot row data from the other groups, the local pivot row $B^b_{\bullet k}$ of $b \times \frac{n}{\sqrt{P}}$, $(b \le M)$ blocks of matrix B is broadcast vertically inside each group

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Communication Model for Theoretical Analysis

Time of sending of a message of size *m* between two processors: $\alpha + m\beta$

- α -latency
- β -reciprocal bandwith
- m -message size

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

General Broadcast Model to Analyse SUMMA and HSUMMA

We use a general broadcast model for all homogeneous broadcast algorithms such as

- flat
- binary
- binomial
- linear
- scatter-allgather broadcast

$$T_{bcast}(m,p) = L(p) \times \alpha + m \times W(p) \times \beta$$
(1)

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

General Broadcast Model

$$T_{bcast}(m, p) = L(p) imes lpha + m imes W(p) imes eta$$

Assumptions:

- ► L(1) = 0 and W(1) = 0
- L(p) and W(p) are monotonic and differentiable functions in the interval (1, p),
- their first derivatives are constants or monotonic in the interval (1, p)

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

SUMMA and HSUMMA with General Broadcast Model

SUMMA:

$$T_{\mathcal{S}}(n,p) = 2\left(\frac{n}{b} \times L(\sqrt{p})\alpha + \frac{n^2}{\sqrt{p}} \times W(\sqrt{p})\beta\right)$$
(2)

HSUMMA:

$$T_{HS}(n,p,G) = T_{HS_l}(n,p,G) + T_{HS_b}(n,p,G)$$
(3)

Here $G \in [1, p]$ and we take b = M for simplicity and

T_{HS_I} is the latency cost:

$$T_{HS_l}(n,p,G) = 2\frac{n}{b} \times \left(L(\sqrt{G}) + L(\frac{\sqrt{p}}{\sqrt{G}}) \right) \alpha \tag{4}$$

• T_{HS_b} is the bandwidth cost:

$$T_{HS_b}(n, p, G) = 2\frac{n^2}{\sqrt{p}} \times \left(W(\sqrt{G}) + W(\frac{\sqrt{p}}{\sqrt{G}})\right)\beta$$
(5)

SUMMA is a special case of HSUMMA when G = 1 or G = p.

18/36

Problem Outline Introduction Experiments SUMMA Summary Hierarchical SUMMA (HSUMMA)

Optimal Number of Groups in HSUMMA with General Broadcast Model

Derivative of the communication cost function of HSUMMA with general broadcast model:

$$\frac{\partial T_{HS}}{\partial G} = \frac{n}{b} \times L_1(\rho, G) \alpha + \frac{n^2}{\sqrt{\rho}} \times W_1(\rho, G) \beta$$
(6)

Here, $L_1(p, G)$ and $W_1(p, G)$ are defined as follows:

$$L_{1}(p,G) = \left(\frac{\partial L(\sqrt{G})}{\partial \sqrt{G}} \times \frac{1}{\sqrt{G}} - \frac{\partial L(\frac{\sqrt{p}}{\sqrt{G}})}{\partial \frac{\sqrt{p}}{\sqrt{G}}} \times \frac{\sqrt{p}}{G\sqrt{G}}\right)$$
(7)
$$W_{1}(p,G) = \left(\frac{\partial W(\sqrt{G})}{\partial \sqrt{G}} \times \frac{1}{\sqrt{G}} - \frac{\partial W(\frac{\sqrt{p}}{\sqrt{G}})}{\partial \frac{\sqrt{p}}{\sqrt{G}}} \times \frac{\sqrt{p}}{G\sqrt{G}}\right)$$
(8)
If $G = \sqrt{P}$ then $L_{1}(p,G) = 0$ and $W_{1}(p,G) = 0$. Thus, $\frac{\partial T_{HS}}{\partial G} = 0$

19/36

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Optimal Number of Groups in HSUMMA with General Broadcast Model

- HSUMMA has extremum in $G \in (1, P)$
- $G = \sqrt{P}$ is the extremum point.
- Depending on α and β :
 - This extremum can be minimum which means HSUMMA always outperforms SUMMA.
 - Or maximum which means HSUMMA has the same performance as SUMMA.

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Theoretical Prediction by Using Scatter-Allgather Broadcast

Algorithm	Comp. Cost	Latenc	Bandwidth Factor		
		inside groups	between groups	inside groups	between groups
SUMMA	<u>2n³</u>	$(\log_2(p)+2$	$4\left(1-rac{1}{\sqrt{ ho}} ight) imesrac{n^2}{\sqrt{ ho}}$		
HSUMMA	$\frac{2n^3}{p}$	$\left(\log_2\left(\frac{p}{G}\right)+2\left(\frac{\sqrt{p}}{\sqrt{G}}-1\right)\right) imes \frac{n}{b}$	$\left(\log_2\left(G\right)+2\left(\sqrt{G}-1\right)\right)\times \frac{n}{B}$	$4\left(1-rac{\sqrt{G}}{\sqrt{p}} ight) imesrac{\pi^2}{\sqrt{p}}$	$4\left(1-\frac{1}{\sqrt{G}} ight) imesrac{n^2}{\sqrt{p}}$

・ロト・日本・日本・日本・日本・日本

21/36

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Optimal Number of Groups with Scatter-Allgather Broadcast

$$\frac{\partial T_{HS_V}}{\partial G} = \frac{G - \sqrt{p}}{G\sqrt{G}} \times \left(\frac{n\alpha}{b} - 2\frac{n^2}{p} \times \beta\right)$$
(9)

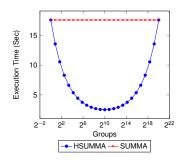
<ロ> <四> <四> <四> <四> <四</p>

22/36

If $G = \sqrt{p}$ then $\frac{\partial T_{HS_V}}{\partial G} = 0$.

- If $\frac{\alpha}{\beta} > 2\frac{nb}{p}$ then $G = \sqrt{p}$ is the minimum of T_{HS} .
- If α/β < 2 nb/p then G = √p is the maximum of T_{HS}. In this case the function gets its minimum at either G = 1 or G = p.

Introduction SUMMA Hierarchical SUMMA (HSUMMA)


Optimal Number of Groups with Scatter-Allgather Broadcast

Algorithm	Comp. Cost	Latency Factor		Bandwidth Factor	
		inside groups	between groups	inside groups	between groups
SUMMA	<u>2n³</u>	$(\log_2(p) + 2(\sqrt{p}-1)) \times \frac{n}{b}$		$4\left(1-\frac{1}{\sqrt{\rho}}\right) imes \frac{n^2}{\sqrt{\rho}}$	
HSUMMA	$\frac{2n^3}{p}$	$\left(\log_2\left(\frac{p}{G}\right) + 2\left(\frac{\sqrt{p}}{\sqrt{G}} - 1\right)\right) \times \frac{n}{b}$	$\left(\log_2\left(G\right)+2\left(\sqrt{G}-1\right)\right)\times \frac{n}{B}$	$4\left(1-rac{\sqrt{G}}{\sqrt{p}} ight) imesrac{\pi^2}{\sqrt{p}}$	$4\left(1-\frac{1}{\sqrt{G}} ight) imesrac{n^{2}}{\sqrt{p}}$
$HSUMMA(G=\sqrt{p},b=B)$	<u>2n³</u>	$(\log_2(p) + 4(\sqrt[4]{p} - 1)) \times \frac{n}{b}$		$8\left(1-\frac{1}{\sqrt[4]{p}}\right)\times\frac{n^{2}}{\sqrt{p}}$	

23/36

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Theoretical Prediction on Future Exascale Platforms by Using Scatter-Allgather Broadcast

- Total flop rate (γ): 1*E*18 flops
- Latency: 500 ns,
- Bandwidth: 100 GB/s
- Problem size: $n = 2^{22}$,
- Number of processors: p = 2²⁰
- Block size: *b* = *M* = 256

Prediction of SUMMA and HSUMMA on Exascale. (The parameters were taken from: Report on Exascale Architecture. IESP Meeting. April 12, 2012)

Experiments on Grid5000 Experiments on BlueGene

Outline

Problem Outline

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Experiments Experiments on Grid5000 Experiments on BlueGene

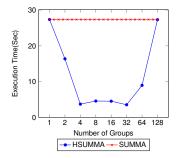
Experiments on Grid5000 Experiments on BlueGene

Experimental platforms

- The experiments were carried out on Graphene cluster of Nancy site of Grid5000 platform,
- On 8, 16, 32, 64 and 128 cores and
- On IBM BlueGene on 1024, 2048, 4096, 8192 and 16384 cores

Experiments on Grid5000 Experiments on BlueGene

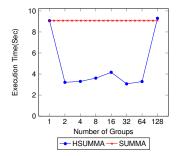
Outline


Problem Outline

Introduction SUMMA Hierarchical SUMMA (HSUMMA)

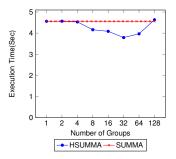
Experiments Experiments on Grid5000 Experiments on BlueGene

Experiments on Grid5000 Experiments on BlueGene


Summa vs HSUMMA on Grid5000 with MPICH

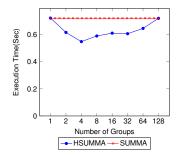
HSUMMA and SUMMA on Grid5000 with MPICH-2. b = M = 64, n = 8192 and p = 128

Experiments on Grid5000 Experiments on BlueGene


Summa vs HSUMMA on Grid5000 with MPICH

HSUMMA and SUMMA on Grid5000 with MPICH-2. b = M = 256, n = 8192 and p = 128

Experiments on Grid5000 Experiments on BlueGene


Summa vs HSUMMA on Grid5000 with OpenMPI on Ethernet

HSUMMA and SUMMA on Grid5000 with OpenMPI on Ethernet. b = M = 256, n = 8192 and p = 128

Experiments on Grid5000 Experiments on BlueGene

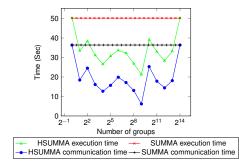
Summa vs HSUMMA on Grid5000 with OpenMPI on Infiniband

HSUMMA and SUMMA on Grid5000 with OpenMPI on Infiniband. b = M = 256, n = 8192 and p = 128

Experiments on Grid5000 Experiments on BlueGene

Outline

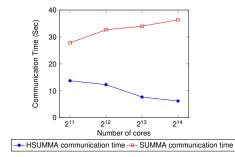
Problem Outline


Introduction SUMMA Hierarchical SUMMA (HSUMMA)

Experiments Experiments on Grid5000 Experiments on BlueGene

<ロ><型><型><注意><型><注意><注意)<注意</p>
32/36

Experiments on Grid5000 Experiments on BlueGene


Summa vs HSUMMA on BlueGene

SUMMA and HSUMMA on BG/P. Execution and communication time. b = M = 256, n = 65536 and p = 16384

Experiments on Grid5000 Experiments on BlueGene

SUMMA and HSUMMA Communication Time

SUMMA and HSUMMA on BG/P. Communication time. b = M = 256 and n = 65536

Improvement over SUMMA:

- Hierarchical SUMMA has theoretically better communication time and thus less execution time than SUMMA
- 2.08 times less communication time on 2048 cores
- 5.89 times less communication time on 16384 cores
- 1.2 times less overall execution time on 2048 cores
- 2.36 times less overall execution time on 16384 cores

Questions?