
The mpC Programming Language Specification Page -1

Russian Academy Of Sciences

Institute for System Programming

The mpC Programming Language Specification

1994-1997

(last updated November 1997)

Page -2 The mpC Programming Language Specification

The mpC Programming Language Specification Page -3

Table of Contents

 Table of Contents

 Table of Contents ..3

1. Introduction ...5

2. Basic concepts ..7

2.1 Computing space and network objects ..7
2.2 Subnetworks..10
2.3 Distribution of data ...12
2.4 Distribution of computations ..13
2.5 Distributed networks and nested parallelism ..15
2.6 Network functions...17
2.7 Pointer to function...21

3. Managing the computing space..23

3.1 Network type declaration ...23
3.1.1 Coordinate declaration ...24
3.1.2 Node declaration ..25
3.1.3 Link declaration ..27
3.1.4 Parent node declaration ...29

3.2 Network declarations. ..30
3.2.1 Network type specifier ..30
3.2.2 Network declarator..31

3.3 Declaration of subnetworks ...32

4. Declarations of data objects ..35

4.1 Explicit declaration of distributed data objects..35
4.2 Explicit declaration of undistributed data objects..35
4.3 Implicit declaration of data object distribution ..36
4.4 Declaration of replicated data objects..36

5. Expressions ...37

5.1 Primary expressions ...37
5.2 Asynchronous unary operators ..37
5.3 Asynchronous binary operators ...38
5.4 Asynchronous ternary operators ..38
5.5 Cutting operator ...38
5.6 Simple assignment ...39

5.6.1 Asynchronous assignment...39
5.6.2 Broadcast/scatter assignment ..39

Table of Contents

Page -4 The mpC Programming Language Specification

5.6.3 Parallel-send assignment ...40
5.6.4 Gather assignment ...40

5.7 The coordof operator..40
5.8 Postfix reduction operators...40
5.9 Function call...41

6. Statements... 43

6.1 Labeled statements ...43
6.2 Compound statement (block) ...44
6.3 Expression statement..44
6.4 Selection statements ...44
6.5 Iteration statements ..45

6.5.1 The while and do statements ...45
6.5.2 The for statement..45

6.6 Jump statements ...46
6.6.1 The goto statement ..46
6.6.2 The continue statement..46
6.6.3 The break statement ..47
6.6.4 The return statement..47

7. Library and embedded functions .. 49

7.1 Nodal library functions ..49
7.1.1 Function MPC_Printf ..49
7.1.2 Function MPC_Wtime ..49
7.1.3 Function MPC_Total_nodes..49
7.1.4 Function MPC_Processors_static_info ...50
7.1.5 Function MPC_Abort ..50

7.2 Basic library functions ...50
7.2.1 Function MPC_Exit...50
7.2.2 Function MPC_Global_barrier..51

7.3 Network library functions ..51
7.3.1 Function MPC_Barrier ..51

7.4 Embedded network functions...51
7.4.1 Function MPC_Assign ..51
7.4.2 Function MPC_Bcast ..52
7.4.3 Function MPC_Scatter ..52
7.4.4 Function MPC_Gather...53

8. Implementation restrictions .. 55

The mpC Programming Language Specification Page 1-5

Introduction

1. Introduction

 The mpC language was developed to support efficiently portable modular parallel program-
ming for a wide range of distributed memory machines, especially, for heterogeneous net-
works of computers. The language is an ANSI C superset based on the notion of network
comprising processor nodes of different types and performances, connected with links of dif-
ferent bandwidths. The user can describe a network topology, create and discard networks,
distribute data and computations over the networks. The mpC programming environment uses
the topological information in run time to ensure the efficient execution of the application on
any uderlying hardware.
 The mpC language is a superset of the C[] programming language. C[] is an ANSI C super-
set for vector and superscalar computers. It supports vector computations. While program-
mins in mpC, the user doesn’t need to know C[] in details. To write good mpC programs one
should first of all be familiar with operator [] allowing to specify send and receive buffers in
communication operations.
 It is very useful to learn sample mpC programs available at the mpC homepage. Not all of
these programs are good mpC programs (from the point of view of their efficiency/portability/
modularity), but all of them are correct.

Page 1-6 The mpC Programming Language Specification

The mpC Programming Language Specification Page 2-7

Basic concepts

2. Basic concepts

2.1 Computing space and network objects
 When programming in C, the user may imagine that there is the storage accessible to him, and he can
manage this storage allocating data objects in there. When programming in mpC, the user may also
imagine that there is some accessible set of virtual processors connected with links, and he can manage
this resource allocating network objects in there.
 In mpC, the notion of computing space is defined as a set of typed virtual processors connected with
links of different bandwidth accessible to the user for management. There are three processor types:
memory, scalar, and vector. A processor of the memory type can rather store data than operate
on it. A processor of the vector type can perform vector operations efficiently. Finally, most com-
mon processors are of the scalar type. Besides, a processor has an additional attribute characterizing
its relative performance. A directed link connecting two virtual processors is a one-way channel for
transferring data from the source processor to the processor of destination. There exists not more than
one directed link from source to destination. A link has an attribute named length which characterizes
its bandwidth. A pair of opposite directed links between two processors may be considered a single
undirected link.
 The basic notion of the mpC language is network object or simply network. Network comprises pro-
cessor nodes of different types and performances connected with links of different lengths. Network is
a region of the computing space which can be used to compute expressions and to execute statements.
 Allocating network objects in the computing space and discarding them is performed in similar fash-
ion as allocating data objects in the storage and discarding them. Conceptually, the creation of new
network is initiated by a processor of an existing network. This processor is called a parent of the cre-
ated network. The parent belongs to the created network.
 The only processor defined from the beginning of program execution till program termination is the
pre-defined host-processor of the scalar type and ordinary performance.
 Every network object declared in mpC program has a type. The type specifies the number, types and
performances of processors, links between the processors and their lengths, as well as separates the
parent. For example, the type declaration
/* Line 1 */ nettype Rectangle {
/* Line 2 */ coord I=4;
/* Line 3 */ node {
/* Line 4 */ I<2: fast scalar;
/* Line 5 */ I>=2: slow scalar;
/* Line 6 */ };
/* Line 7 */ link {
/* Line 8 */ I>0: [I]<->[I-1];
/* Line 9 */ I==0: [I]<->[3];
/* Line 10 */ };
/* Line 11 */ parent [0];
/* Line 12 */ };
introduces the network type named Rectangle that corresponds to networks consisting of 4 proces-
sors of the scalar type and different performances interconnected with undirected links of normal
length in rectangular structure.

Computing space and network objects

Page 2-8 The mpC Programming Language Specification

 In this example, line 1 is a header of the network type declaration. It introduces the name of the net-
work type.
 Line 2 is a coordinate declaration declaring the coordinate system to which processors are related. It
introduces the integer coordinate variable I ranging from 0 to 3.
 Lines 3-6 are a node declaration. It relates processors to the coordinate system and declares their
types and performances. Line 4 stands for the predicate for all I<4 if I<2 then fast processor of the
scalar type is related to the point with the coordinate [I]. Line 5 stands for the predicate for all
I<4 if I>=2 then slow processor of the scalar type is related to the point with the coordinate [I].
The performance specifiers fast and slow specify relative performances of processor nodes of the
same type. For any network of this type, this information allows the compiler to associate the weight
with each processor of the network, normalizing it in relation to the weight of the parent processor.
Note, that the host-processor is always of the scalar type and ordinary performance.
 Lines 7-10 are a link declaration. It specifies links between processors. Line 8 stands for the predi-
cate for all I<4 if I>0 then there exists undirected link of normal length connecting processors with
coordinates [I] and [I-1], and line 9 stands for the predicate for all I<4 if I==0 then there exists
undirected link of normal length connecting processors with coordinates [I] and [3]. Note, that if a
link between two processors is not specified explicitly, it is meant that there is a link whose length is
longest for this network.
 Line 11 is a parent declaration. It specifies that the parent processor has the coordinate [0].
 With the network type declaration, one can declare a network object identifier of this type. For exam-
ple, the declaration
 net Rectangle r1;
introduces the identifier r1 of network object of the type Rectangle.
 By definition, data object distributed over a region of the computing space comprises a set of compo-
nents of any one type so that every processor of the region holds one component. For example, the
declarations
 net Rectangle r2;
 int [*]de, [r2]da[10];
 repl [*]di;
declare the integer variable de distributed over the entire computing space, the array da of 10 ints
distributed over the network r2, and the integer variable di replicated over the entire computing
space. By definition, a distributed object is replicated if all its components is equal to each other (see
sections 2.3 and 4).
 Besides the network type, one can declare a parametrized family of network types called topology or
generic network type. For example, the declaration

The mpC Programming Language Specification Page 2-9

Basic concepts

/* Line 1 */ nettype Ring(n, p[n]) {
/* Line 2 */ coord I=n;
/* Line 3 */ node {
/* Line 4 */ I>=0: fast*p[I] scalar;
/* Line 5 */ };
/* Line 6 */ link {
/* Line 7 */ I>0: [I]<->[I-1];
/* Line 8 */ I==0: [I]<->[n-1];
/* Line 9 */ };
/* Line 10 */ parent [0];
/* Line 11 */ };
introduces the topology named Ring that corresponds to networks consisting of n processors of the
scalar type interconnected with undirected links of normal length in a ring structure. The header
(line 1) introduces parameters of the topology Ring, namely, the integer parameter n and the vector
parameter p consisting of n integers. Correspondingly, the coordinate variable I ranges from 0 to n-
1, line 4 stands for the predicate for all I<n if I>=0 then fast processor of thescalar type, whose
relative performance is specified by the value ofp[I], is related to the point with the coordinate[I],
and so on. Here, the performance specifier fast*p[I] includes the so-called power specifier
*p[I]. In general, the value of the expression in a power specifier shall be positive integer. Any oper-
and in the expression shall consist only of coordinate variables, constants and generic parameters (if
any). If the value of the expression is equal to 1, the power specifier may be omitted. It is meant that in
the framework of the same network-type declaration any performance specifier with the fast key-
word specifies more powerful processor than a performance specifier with the slow keyword. It is
meant also that the greater value of the expression in a power specifier the more performance is speci-
fied. Note, that in this case the following simplified form of line 4
 I>=0: p[I];
may be used (see 3.1.2 for details).

 With the topology declaration, one can declare a network object identifier of the proper type. For
example, the fragment
 repl [*]a[4]={10,20,30,40};
 net Ring(4,a) r;
introduces the integer array a replicated over the entire computing space, the network type
Ring(4,a) as an instance of the topology Ring as well as the identifier r of the network object of
this type.
 An instance of topology can be obtained not only statically but dynamically also. For example, the
fragment
 repl [*]m, [*]n[100];
 /* Computation of m,n[0],...,n[m-1]*/
 {
 net Ring(m,n) rr;
 ...
 }
introduces the identifier rr of the network object, the type of which is defined completely only in run
time.
 A network object has a computing space duration that determines its lifetime. There are two comput-
ing space durations: static, and automatic.

Subnetworks

Page 2-10 The mpC Programming Language Specification

 A network declared with static computing space duration is created only once, conceptually, either
on the first entry into the block in which it is defined (for local static networks), or on the first entry
into any of basic functions (see sections 2.4, 2.6) being in scope of its identifier (for global static net-
works). Once created the static network exists till termination of the entire program.
 A new instance of a network declared with automaticcomputing space duration is created on each
entry into the block in which it is declared. The network is discarded when execution of the block
ends.
 A declaration of a network object identifier specifies the scope and the linkage of the identifier and
the computing space duration of the network object almost under the same rules that are used for spec-
ification of storage duration of data objects and scopes and linkages of their identifiers. For example,
the following fragment of mpC file
 net Ring(3,p1) r3;
 static net Ring(4,p2) r4;
 extern net Ring(5,p3) r5;
 int [*]f(repl int k)
 {
 net Ring(k,pk) rk;
 static net Ring(k+1,pk1) rk1;
 ...
 }
specifies that the identifiers r3 and r5 of static network objects has file scope and external linkage, the
identifier r4 of the static network object has file scope and internal linkage, the identifier rk of the
automatic network object and the identifier rk1 of the static network object have block scope. (Note,
that the header of the definition of the function f includes the construct [*] which specifies the kind
of the function (see sections 2.4, 2.6)).
 Network object declaration that also causes computing space to be reserved for the network object
named by an identifier is a network object definition. In the above fragment, except the declaration of
r5, all the rest declarations are network object definitions. The parent of all these network object is the
host-processor. The following example shows how one can specify another parent:
 net Ring(6,p6) r6;
 net Ring (7,p7) [r6:I==3] r7;
Here, the network r6 has the host-processor as its parent, meantime the network r7 has the processor
of the network r10 with the coordinate [3] as its parent. Note, that a processor node of an automatic
network cannot be a parent of a static network. For example, if r6 is an automatic network, then the
declaration
 static net Ring (8,p8) [r6:I==0] r8;
is not correct, meantime the equivalent declaration
 static net Ring (8,p8) r8;
is correct.

2.2 Subnetworks
 A new network object can be allocated not only in unused computing space but also in a region of the
computing space that already holds another network object. It can be done by explicit or implicit defi-
nition of a subnetwork of the existing network object.
 Unlike an implicitly defined subnetwork, an explicitly defined subnetwork has the name introduced
by the subnetwork declaration. A subnetwork declaration that causes computing space to be reserved

The mpC Programming Language Specification Page 2-11

Basic concepts

for the subnetwork named by an identifier is just an explicit subnetwork definition. Computing space
duration of explicitly-defined subnetwork as well as scope and linkage of its identifier are specified in
the same way as those for network objects. Note, that a static subnetwork cannot be allocated in an
automatic region of the computing space The lifetime of an implicitly-defined subnetwork is defined
by compiler.
 For example, the mpC file fragment
/*Line 1 */ nettype Web(m,n) {
/*Line 2 */ coord R=m, Phi=n;
/*Line 3 */ node {
/*Line 4 */ R==0&&Phi>0: void;
/*Line 5 */ R==0&&Phi==0: fast scalar;
/*Line 6 */ default: scalar;
/*Line 7 */ };
/*Line 8 */ link {
/*Line 9 */ R==0: [0,0]<->[1,Phi];
/*Line 10*/ R>0: [R,Phi]<->[R-1,Phi];
/*Line 11*/ Phi>0&&R>0: length*1 [R,Phi]<->[R,Phi-1];
/*Line 12*/ Phi==0&&R>0: length*1 [R,0]<->[R,n-1];
/*Line 13*/ };
/*Line 14*/ parent [0,0];
/*Line 15*/ };
/*Line 16*/ net Web(10,20) web10x20;
/*Line 17*/ subnet [web10x20: Phi%2==0] seastar10x10;
/*Line 18*/ int [*]f(void)
/*Line 19*/ {
/*Line 20*/ subnet [web10x20: R<5] subweb5x20;
/*Line 21*/ static subnet [web10x20: R>=5] grid5x20;
/*Line 22*/ subnet [seastar10x10: R<5] seastar5x5;
/*Line 23*/ ...
/*Line 24*/ }
introduces the topology Web and defines the network object web10x20 of the Web(10,20) type as
well as its subnetworks seastar10x10, subweb5x20, grid5x20 and seastar5x5.
 Here, in line 4, the keyword void in the position of the processor type indicates that no processors
are related to the points with corresponding coordinates. The equivalent interpretation is that a proces-
sor of the void type has no memory and can execute no operations.
 The topology Web corresponds to web structure networks with n radial threads, each of them
stringed with m-1 normal speed scalar processors. In the center of the web a fast scalar processor is
placed. It means that computation load of this processor will be more intensive than those of the rest of
the processors. Radial links between processors are of normal length (the attribute length is equal to 0),
meantime circular links are longer (their attribute length is equal to 1). It means that data exchange
through radial links will be more intensive than through the circular ones. In general, the attribute
length for normal links is equal to 0 and may not be specified explicitly, meantime this attribute for
long links is greater than 0 and for short links is less than 0 and must be specified explicitly.
 Line 17 is an explicit definition of the static subnetwork of the network object web10x20 named by
the identifier seastar10x10 having file scope and external linkage. The construct [web10x20:
Phi%2==0] specifies the processors of web10x20 that constitute the subnetwork. Namely, a proces-

Distribution of data

Page 2-12 The mpC Programming Language Specification

sor of web10x20 with coordinates [R,Phi] belongs to the subnetwork seastar10x10 if and
only if Phi%2==0.
 Similarly, lines 20 and 21 are explicit definitions of the automatic subnetwork subweb5x20 and the
static subnetwork grid5x20 of the network web10x20 both named by identifiers with block scope.
 Line 22 is an explicit definition of the automatic subnetwork seastar5x5 whose identifier has
block scope. The subnetwork seastar5x5 is a subnetwork of the subnetwork seastar10x10
and, hence, of the network web10x20.
 A subnetwork always inherits the coordinate system of its supernetwork. So, in the subnetwork any
processor has the same coordinates as in its supernetwork. In addition, for any network or subnetwork
so-called natural numeration of processors from 0 to n-1, where n is the number of processors, can
be defined. The numeration is determined by lexicographic ordering on the set of coordinates of (non-
void) processors. Evidently, a processor may have different natural numbers in the network and its
subnetwork. The notion of natural number is used to set up the correspondence between processors of
different subnetworks in distributed operations.
 The partial order "to be a subnetwork of" is defined on a set of subnetworks of the same network. A
compiler needs the relation for correct translation of many expressions. The partial order should be
explicitly specified in mpC program. There are 2 ways to do it. First, the relation can be specified with
a subnetwork declaration, similar to the declaration in line 22 which specifies that seastar5x5 is a
subnetwork of seastar10x10. Second, one can specify the relation by the special relation declara-
tion. For example, although, in fact, seastar5x5 is a subnetwork of subweb5x20, the compiler
will treat them as incomparable ones, if there is not the declaration
 relation seastar5x5<subweb5x20;
in the corresponding block.
 Finally, there are hard and flexible subnetworks. Hard subnetworks can be used everywhere, where
networks can be used. On the other hand, there are some restrictions in the use of flexible subnetworks.
In particular, flexible subnetworks cannot be used to evaluate postfix reduction operators, network
functions cannot be called on such subnetworks. Any implicitly-defined subnetwork is flexible. An
explicitly-defined subnetwork is flexible only if its declaration includes the keyword flex. The only
advantage of flexible subnetworks is their less cost of creation than the creation of hard networks.

2.3 Distribution of data
 The notion of distributed data object is introduced. Namely, data object distributed over a region of
the computing space comprises a set of components of any one type so that every processor of the
holds one component. So, a distributed data object is characterized by the type and attributes of the
region over which it is distributed as well as the type and attributes of components.
 In particular, data object can be distributed over the entire computing space. It means that creation of
any network includes the creation of the corresponding component of the data object on every proces-
sor of the network.
 Except implicit specification, to declare an identifier designating a distributed object, it is necessary
to place a specifier of the corresponding region of the computing space in the corresponding declara-
tion just before the identifier. For example, the declarations
 net Ring(11,p11) Net1;
 int [*]Derror, [Net1]Da[10], *[Net1:I<7]Dpi[5];
declare Derror as an integer data object distributed over the entire computing space, declare Da as
an array of 10 ints distributed over the network object Net1, declare implicitly a subnetwork of the

The mpC Programming Language Specification Page 2-13

Basic concepts

network object Net1, and declare Dpi as an array of 5 pointers to int distributed over this subnet-
work.
 In general, in mpC one can declare both distributed and undistributed data objects specifying pre-
cisely their locations - a network object, a subnetwork, or a single processor (for undistributed ones).
For example, the declaration
 int [web10x20:R==2&&Phi==3] x;
declares the undistributed data object x located on the processor of the network object web10x20
with coordinates [2,3].
 A distributed object all the components of which are equal to each other during all the time of pro-
gram execution is a replicated data object. To specify replicated data objects, the qualifier repl is
used in the manner similar to the use of the type qualifiers const and volatile. For example, the
declaration
 int repl [*]n=10;
defines the variable n replicated over the entire computing space.
 The notion of distributed value is introduced similarly. A value distributed over a region of the com-
puting space comprises a set of components of any one type so that every processor of the region holds
one component. the notions of value distributed over the entire computing space and replicated value
are introduced similarly.

2.4 Distribution of computations
 An expression can be evaluated by the host-processor, by a single processor of a network, by a net-
work or a subnetwork, by a set of networks/subnetworks, or by the entire computing space. In the latter
three cases, the expression is called a distributed expression. The value of a distributed expression may
be also distributed. If so, the latter should be distributed over a subregion of the region of the comput-
ing space evaluating the expression.
 If an expression is evaluated by the entire computing space, it is called an overall expression. No
other computations can be performed in parallel with evaluation of the overall expression.
 A special type of a distributed expression called an asynchronous expression is introduced. Substan-
tially, an asynchronous expression doesn’t need communications between processors of the evaluating
region of the computing space during its evaluation. The property of asynchronity of an expression is
determined by the property of asynchronity of operators forming the expression. Most of operators of
the mpC language are asynchronous in the sense that either both operands and the result belong to the
same processor, or they both are distributed over the same region of the computing space, and the dis-
tributed operator is divided into a set of independent undistributed operators each of which operates on
corresponding components of the operands. If an expression is built only from such operators, and all
they are distributed over the same region of the computing space, then the entire expression will be
asynchronous.
 A statement of the mpC language can be executed on the host-processor, on a single processor of a
network, on a network or subnetwork, on a set of networks/subnetworks, or on the entire computing
space. In the latter three cases, the statement is called a distributed statement. A set of distributed state-
ments includes the sequential C statements extended with distributed data as well as the special paral-
lel statements fan, par and pipe. If a statement is executed on the entire computing space, it is
called an overall statement. No other computations can be performed in parallel with execution of the
overall statement.
 The notion of asynchronous statement is introduced. An asynchronous statement does not need com-
munications between processors of the executing region of the computing space during its execution.

Distribution of computations

Page 2-14 The mpC Programming Language Specification

In particular, if all expressions and substatements of a sequential statement are asynchronous and dis-
tributed over the same region of the computing space, then the entire statement is asynchronous. In this
case, the distributed statement is divided into a set of independent undistributed statements each of
which is executed on the corresponding processor using the corresponding data components.
 Execution of an mpC program begins from a call of the function main on the entire computing
space.
 The following simple mpC program computes the sum of two vectors.
/*Line 1 */ nettype Star(n) {
/*Line 2 */ coord I=n;
/*Line 3 */ node {
/*Line 4 */ default: scalar;
/*Line 5 */ }
/*Line 6 */ link {
/*Line 7 */ I>0: [0]<->[i];
/*Line 8 */ }
/*Line 9 */ parent [0];
/*Line 10*/ };
/*Line 11*/ #define M 4 /*The number of virtual processors*/
/*Line 12*/ #define N 300
/*Line 13*/ #define NM N*M
/*Line 14*/ void [*]main()
/*Line 15*/ {
/*Line 16*/ double [host]x[NM], [host]y[NM], [host]z[NM];
/*Line 17*/ int [host]i;
/*Line 18*/ void [*]parsum();
/*Line 19*/ int printf();
/*Line 20*/ .../* Input of the arrays x and y */
/*Line 21*/ parsum((void*)x, (void*)y, (void*)z);
/*Line 22*/ for(i=0; i<NM; i++)
/*Line 23*/ ([host]printf)("%f ", z[i]);
/*Line 24*/ }
/*Line 25*/ void [*]parsum(double *[host]x[N],
/*Line 26*/ double *[host]y[N],
/*Line 27*/ double *[host]z[N])
/*Line 28*/ {
/*Line 29*/ net Star(M) Sn;
/*Line 30*/ double [Sn]dx[N], [Sn]dy[N], [Sn]dz[N];
/*Line 31*/
/*Line 32*/ dx[]=x[];
/*Line 33*/ dy[]=y[];
/*Line 34*/ dz[]=dx[]+dy[];
/*Line 35*/ z[]=dz[];
/*Line 36*/ }
 The program includes 3 functions - main and parsum defined here and the library function
printf. Lines 14-21 contain the main definition. Line 16 contains the definition of the arrays x, y
and z all belonging to the host-processor. Line 17 contains the definition of integer variable i belong-
ing to the host-processor. Lines 18-19 contain the declaration of function identifiers parsum and

The mpC Programming Language Specification Page 2-15

Basic concepts

printf. In general, mpC allows 3 kinds of functions. Here, functions of two kinds are used: main
and parsum are basic functions, and printf is a nodal function.
 A call to basic function is an overall expression. Its arguments (if any) shall either belong to the host-
processor or be distributed over the entire computing space, and the returning value (if any) shall be
distributed over the entire computing space. In contrast to another kind of functions, it can define net-
work objects. In lines 14, 18 and 25, the construct [*], placed just before the function identifier, spec-
ifies that an identifier of basic function is declared.
 Nodal function can be executed completely by any one processor. Only local data objects of the exe-
cuting processor can be created in such a function. In addition, the corresponding component of an
externally-defined distributed data object can be used in the function. A declaration of nodal function
(e.g., in line 19) does not need any additional specifiers. All pure C functions are nodal from the point
of view of mpC.
 Line 23 contains an undistributed statement executed on the host-processor. It includes a call to the
nodal function printf on the host-processor. Line 21 contains a call to the basic function main and
is executed on the entire computing space.
 Lines 25-36 contain the definition of the function parsum. Line 29 contains the definition of the
automatic network Sn. Line 30 contains the definition of automatic arrays dx, dy and dz all distrib-
uted over Sn.
 Line 32 contains the unusual unary postfix operator []. The point is that mpC is a superset of the
vector extension of ANSI C named the C[] language, where the notion of vector defined as an ordered
sequence of values of any one type is introduced. In contrast to an array, a vector is not a data object
but just a new kind of value. In particular, the value of an array is a vector. The operator [] was intro-
duced to support access to arrays as a whole. It has operand of the type “array of type” and blocks (for-
bids) conversion of the operand to pointer. So, the expression dx[] designates the distributed array dx
as a whole. In addition, mpC allows to apply the operator [] not only to expressions having the type
“array of type”, but also to expressions having the type “pointer to type”. The result is treated as an
array of types of undefined size. So, the expression x[] designates the array of undefined size whose
members have the type double[300]. The expression dx[]=x[] scatters the elements of the array
x[] to components of dx. The number of scattered elements is equal to the number M (=4) of compo-
nents of dx.
 Similarly, the statement in line 33 scatters the elements of the array y[] to components of the dis-
tributed dy.
 The statement in line 34 performs asynchronously the sum of the vector values of distributed arrays
dx and dy and assigns the result to the distributed array dz.
 Finally, the statement in line 35 gathers components of the distributed vector value of the distributed
array dz to the host-processor putting then in sequential members of the array z[] of undefined size.

2.5 Distributed networks and nested parallelism
 To support nested parallelism, mpC allows to define not only a single network but also a set of single
networks by means of defining so-called distributed network object. A definition of a distributed net-
work object specifies the type of the network object and its parent network. Such a definition may be
considered as a distributed over the parent network definition of a single network of the specified type.
The parent network of a distributed network can also be distributed. But in any case, a distributed net-
work is a set of single networks of the same type. The number of single networks in this set is equal to
the number of processors in the parent network each of processors of the parent network being a parent
of a single network of the set.

Distributed networks and nested parallelism

Page 2-16 The mpC Programming Language Specification

 There are not facilities to specify a single network belonging to a distributed network in mpC. There-
fore, whenever one specifies a subnetwork of a distributed network, he means a set of subnetworks of
the single networks constituting the distributed network. Similarly, if one specifies a single processor
of a distributed network, he means a set of single processors of the single networks constituting the
distributed network. Any computation on a distributed network is divided into independent computa-
tions on single networks constituting the distributed network.
 Therefore, the notion of distributed network implies the notions of partially asynchronous expression
and partially asynchronous statement. So, if an expression is evaluated by a distributed network, there
are no communications between parent processors of the networks constituting the set specified by the
distributed network, but such communications are possible inside each of the single networks, then the
expression is called a partially asynchronous expression in relation to the parent network of the distrib-
uted network. The notion of partially asynchronous statement is defined similarly.
 For example, in the fragment
/* Line 1 */ nettype Ring(n) {
/* Line 2 */ coord I=n;
/* Line 3 */ node {
/* Line 4 */ I>=0: scalar;
/* Line 5 */ };
/* Line 6 */ link {
/* Line 7 */ I>0: [I]<->[I-1];
/* Line 8 */ I==0: [I]<->[n-1];
/* Line 9 */ };
/* Line 10 */ parent [0];
/* Line 11 */ };
/* Line 12 */ net Ring(5) r5;
/* Line 13 */ void [*]main()
/* Line 14 */ {
/* Line 15 */ net Ring(3) [r5] r3;
/* Line 16 */ int [host]x[5], [r5]dx, [r3]ddx, [r3]ddy;
/* Line 17 */ ([host]Input)(x);
/* Line 18 */ dx=x[];
/* Line 19 */ ddx=dx;
/* Line 20 */ ddy=ddx[+];
/* Line 21 */ dx=[r3:parent]ddy;
/* Line 22 */ x[]=dx;
/* Line 23 */ ...
/* Line 24 */ }
line 15 defines the network r3 distributed over the network r5. In fact, r3 is a set of 5 networks each
of which contains 3 processors connected in ring,. Five parent processors of these 5 networks are also
connected in a ring constituting the network r5. Line 16 defines the array x which belongs to the host-
processor, the variable dx distributed over r5, and the variables ddx and ddy both distributed over
r3.
 Line 17 contains a call to the nodal function Input on the host-processor. Since the function
Input is not declared explicitly, it is considered to be declared implicitly in the least enclosing block
as a nodal function returning int.
 The statement in line 18 scatters the elements of x to the corresponding components of dx.

The mpC Programming Language Specification Page 2-17

Basic concepts

 The statements in lines 19-20 are partially asynchronous in relation to the networkr5. The statement
in line 19 for each of 5 single networks constituting r3 broadcasts the relevant component of dx to the
corresponding components of ddx in parallel. The statement in line 20 assigns the sum of the relevant
components of ddx to the corresponding components of ddy in parallel for each single network from
r3.
 The statement in line 21 is asynchronous in relation to r5 and assigns the specified components of
ddy to the components of dx. It contains the special subnetwork specifier [r3:parent] which
specifies the parent of the network r3.
 Finally, the statement in line 22 gathers the components of the distributed variable dx to the array x.
So, if the input value of the array x is equal to {0, 1, 2, 3, 4} then just after line 22 its value will be
equal to {0, 3, 6, 9, 12}.
 In general, not only a network but a subnetwork may be the parent of a distributed network.
 Every time when speaking of an entity (data object, value, or function) distributed over a distributed
network, we mean a set of entities each of which is distributed over a single network belonging to the
distributed network. Similarly, when speaking about an entity distributed over a subnetwork of the dis-
tributed network, we mean a set of entities each of which is distributed over a subnetwork of a single
network belonging to the distributed network. Finally, when speaking about an undistributed entity
belonging to a single processor of the distributed network, we mean a set of undistributed entities each
of which belongs to a processor of a single network belonging to the distributed network.

2.6 Network functions
 Like ANSI C, in mpC the minimum translation unit is a source file. A file consists of network type
declarations, external network/subnetwork declarations, external relation declaration, external data
object declarations, function definitions, and possibly some other external declarations (here, an exter-
nal declaration is a declaration appearing out of functions).
 To support modular parallel programming as well as the writing of libraries of parallel programs, in
addition to basic and nodal functions so-called network functions are introduced in mpC.
 In general, a network function is called and executed on some network or hard subnetwork, and its

arguments and value (if any) is also distributed over this region of the computing space. The header of
a network function definition either specifies an identifier of static network or subnetwork having file
scope, or declares an identifier of network being a special formal parameter of the function. In the first
case, the function can be called only on the region of the computing space specified. In the second
case, it can be called on any network or subnetwork of an appropriate type. In any case, no network
other than the network specified in the function definition header can be created or used in the function
definition body. But it is allowed to create and use its subnetworks. Only data objects belonging to the
region of the computing space specified in the header can be defined in the body. In addition, the corre-
sponding components of an externally-defined distributed data object can be used. For example, in the
fragment

Network functions

Page 2-18 The mpC Programming Language Specification

/* Line 1 */ net Ring(5) r5;
/* Line 2 */ int [r5]da, [*]db, [host]a[5], [host]b[5], [host]x[5];
/* Line 3 */ void [*]main()
/* Line 4 */ {
/* Line 5 */ int [r5]dx;
/* Line 6 */ int [r5]f();
/* Line 7 */ ([host]Input)(a,x);
/* Line 8 */ [r5]db=da=a[];
/* Line 9 */ dx=x[];
/* Line 10 */ dx=f(dx);
/* Line 11 */ x[]=dx;
/* Line 12 */ ([host]Output)(x);
/* Line 13 */ }
/* Line 14 */ int [r5]f(int dx)
/* Line 15 */ {
/* Line 16 */ int result;
/* Line 17 */ result=da+db*dx;
/* Line 18 */ return result;
/* Line 19 */ }
line 10 contains the call to the network function f, and line 6 contains the function declaration being in
scope for f. The definition of this function is contained in lines 14-19. The function f is related with
the network r5. This is specified by means of the construct [r5] both in the declaration of its identi-
fier (line 6) and in its definition (line 14). Note, that it is meant that the formal parameter dx declared
in line 14 is distributed over the network r5. In addition, in line 17, expression db*dx is equivalent to
expression [r5]db*dx, where operator [r5] cuts from db the components belonging to r5.
 If a function has the network formal parameter, the declaration of this parameter in the function def-
inition header specifies its network type. This network type may be either completely defined or
parametrized. For example, in the fragment

The mpC Programming Language Specification Page 2-19

Basic concepts

/* Line 1 */ nettype Grid(n) {
/* Line 2 */ coord I=n, J=n;
/* Line 3 */ node {
/* Line 4 */ default: scalar;
/* Line 5 */ }
/* Line 6 */ link {
/* Line 7 */ default: [I,J]<->[I+1,J], [I,J]<->[I,J+1];
/* Line 8 */ }
/* Line 9 */ parent [0,0];
/* Line 10 */ }
/* Line 11 */ #define N 100
/* Line 12 */ void [*]main()
/* Line 13 */ {
/* Line 14 */ net Grid(N) gN;
/* Line 15 */ int [net Grid(2)] sum(), [host]x[N][N], [gN]dx;
/* Line 16 */ int repl [gN]i;
/* Line 17 */ ([host]Input)(x);
/* Line 18 */ dx=((int*)x)[];
/* Line 19 */ for(i=N-2; i>=0; i--) {
/* Line 20 */ subnet [gN:I>=i&&J>=i&&I<i+2&&J<i+2] g;
/* Line 21 */ [g]dx=[()g]sum([g]dx);
/* Line 22 */ }
/* Line 23 */ ([host]Output)([host]dx);
/* Line 24 */ }
/* Line 25 */ int [net Grid(2) g2] sum(int dx)
/* Line 26 */ {
/* Line 27 */ int [g2:I==0]d0, [g2:I==0&&J==O]d00;
/* Line 28 */ d0=[g2:I==1]dx;
/* Line 29 */ dx+=d0;
/* Line 30 */ d00=[g2:I==0&&J==1]dx;
/* Line 31 */ dx+=d00;
/* Line 32 */ return dx;
/* Line 33 */ }
line 21 contains the call to the network function sum, and line 15 contains the function declaration
being in scope for sum. The definition of this function is contained in lines 25-33. The header of this
definition (line 25) contains the declaration of the special formal parameter g2 corresponding to the
network on which this function is called.
 In general, if a network formal parameter has a completely defined type, the corresponding argument
should be either a network or a hard subnetwork conforming to the formal parameter. By definition,
the network (or subnetwork) A conforms to the network (or subnetwork) B if and only if they have the
same number of (non-void) processors.
 Line 14 defines the automatic network gN representing NxN grid of scalar processors. In line 16 the
distributed variable i is declared with the specifier repl meaning that if the value of this variable is
defined then all its components are equal to each other. The statement in line 18 sends the value of
x[i][j] to the component [gN:I==i&&J==j]dx for all i, j from 0 to N-1.
 The iteration statement in lines 19-22 is performed on the network gN. Line 20 contains the defini-
tion of the automatic subnetwork g of gN representing a rectangle on the main diagonal of the grid.

Network functions

Page 2-20 The mpC Programming Language Specification

Line 21 contains the call to sum on g. The value of the function call is distributed over g. The compo-
nent of the value with the coordinates I==i and J==i is equal to the sum of the components of the
argument [g]dx. The assignment in line 21 modifies the corresponding components of dx. So, the
execution of the iteration statement produces the value of component [gN:I==0&&J==0]dx (or
equally [host]dx) equal to the sum of the values of the dx components disposed on the three diago-
nals of the grid gN.
 Note, that mpC allows one of operands of an asynchronous operator to be distributed over a subre-
gion of the computing space region through which the other operand is distributed. In this case, the
operator is performed on this subregion. So, the expression dx+=d0 in line 29 is equivalent to the
expression [g2:I==0]dx+=d0, and the expression dx+=d00 in line 31 is equivalent to the expres-
sion [g2:I==0&&I==0]dx+=d00.
 If a network formal parameter has a parametrized type, the corresponding topological parameters are
also declared in the header of the function definition being also special formal parameters. In the func-
tion body, each scalar topological parameter is treated as an unmodifiable variable of the typeint rep-
licated over the network formal parameter, and the vector topological parameter - as an unmodifiable
indexed set of integer variables replicated over the network formal parameter. (The only operation is
applicable to an indexed set of integer variables, namely, an access to an element via its indices). The
number of indices of the latter and their ranges (may be defined dynamically) are detected by the com-
piler from the declaration of the corresponding topology.
 When calling to the function, the corresponding topological arguments specify a network type as an
instance of the corresponding topology, and the network argument specifies a region of the computing
space treated by the function as a network of this type. An argument corresponding to the scalar topo-
logical parameter should be of the type int and replicated over the network argument. An argument
corresponding to the vector topological parameter should be a distributed pointer (of any type) to the
initial member of an integer array replicated over the network argument. For example, in the fragment
/* Line 1 */ void [*]main()
/* Line 2 */ {
/* Line 3 */ net Ring(5) r5;
/* Line 4 */ net Rectangle r;
/* Line 5 */ int [r5]dx, [r]dy;
/* Line 6 */ void [net Ring(n)] shift();
/* Line 7 */ ...
/* Line 8 */ [(5)r5]shift(&dx);
/* Line 9 */ [(4)r]shift(&dy);
/* Line 10 */ ...
/* Line 11 */ }
/* Line 12 */ void [net Ring(n) rn] shift(int *da)
/* Line 13 */ {
/* Line 14 */ int [rn]me, [rn]he;
/* Line 15 */ me = I coordof da;
/* Line 16 */ he = (me==n-1)?0:(me+1);
/* Line 17 */ [rn:I==me](*da) = [rn:I==he](*da);
/* Line 18 */ }
lines 8-9 contains the calls to the network function shift, and line 6 contains the function declaration
being in scope for shift. The definition of this function is contained in lines 12-18. The header of
this definition (line 12) contains the declaration of the network formal parameterrn, corresponding to

The mpC Programming Language Specification Page 2-21

Basic concepts

the network on which this function is called, as well as the topological formal parameter n treated in
the function body as if it was declared with the declaration
 int const repl [rn]n;
As a result of a call to the function, all the components of n should have the same value specifying the
type of rn as an instance of the topology Ring.
 So, in line 8 the function shift is called on the network r5 that is just a network argument. This
network is of the type Ring(5), therefore the constant 5 is used as a topological argument.
 In line 9, the function is called on the network r that is a network argument in this case. This network
has the type Rectangle not being an instance of the topology Ring. The topological argument (the
constant 4) specifies that in this case the function called shall treat its network argument (that is, the
network r) as having the type Ring(4). The call is correct, because a network of the type Rectan-
gle conforms to a network of the type Ring(4).
 The result of the binary operator coordof in line 15 is an integer value distributed over rn each
component of which is equal to the value of the coordinate I of the processor to which the component
belongs. The right operand of the operator coordof is not evaluated and used only for specification
of the region of the computing space. The statements in lines 15-16 are asynchronous. The statement
in line 17 shifts clockwise the distributed data object *da. Note, that the coordinate variable I is
treated as an integer variable distributed over rn.

2.7 Pointer to function
 In C, a function call includes the pointer to the function called. In mpC, a function call on a region of
the computing space is treated as a set of undistributed function calls each of which is performed on its
single processor of the region. In other words, the distributed function call may be treated as a distrib-
uted call to undistributed functions called functional components of the distributed call. Therefore, the
distributed function call shall include the distributed pointer to the corresponding functional compo-
nents.
 So, the C language notion of function as an entity that may be pointed to is transformed to the mpC
language notion of undistributed function. A nodal function as well as a functional component of basic
or network function represent undistributed functions.
 When declaring an identifier of the pointer to undistributed function, one can describe the function
pointed to detailed enough. For example, whether it is a nodal function, or whether it is a functional
component of basic function, or whether it is a functional component of network function with special
formal parameters (in the latter case, the number of topological parameters as well as the type of the
network parameter should be specified). If such a declaration is in scope for the identifier used in a
function call, compiler shall check the correctness of the function call. Otherwise, the correctness of
the function call is the responsibility of the user.
 For example, the declaration
 int [*](*[net1]pf)();
declares the identifier pf as a distributed over the network net1 pointer to functional component of
basic function. The declaration
 int (*[net2]pf)();
declares the identifier pf as a distributed over the network net2 pointer to nodal function. The decla-
ration
 int [net Ring(3)](*[net3]pf)();
declares the identifier pf as a distributed over the network net3 pointer to functional component of
network function whose network formal parameter has the type Ring(3). The declaration

Pointer to function

Page 2-22 The mpC Programming Language Specification

 int [net Web(4,n)](*[net4]pf)();
declares the identifier pf as a distributed over the network net3 pointer to functional component of
network function having two special formal parameters the network formal parameter belonging to the
type family Web(4,n).
 Except when used as an operand where a function designator is permitted, a basic function identifier
is converted to a distributed over the entire computing space pointer to undistributed function; a nodal
function identifier is converted to pointer to nodal function distributed over the region of the comput-
ing space on which the calling function is called; an identifier of network function without special for-
mal parameters is converted to a distributed over the corresponding region pointer to functional
component of network function without special formal parameters; an identifier of network function
with special formal parameters is converted to pointer to functional component of network function
having the specified special formal parameters distributed over the region of the computing space on
which the calling function is called.

The mpC Programming Language Specification Page 3-23

Managing the computing space

3. Managing the computing space

3.1 Network type declaration
 Syntax.

 <network_type_declaration>:
 <network_type_class_specifier>(opt)
 nettype <identifier>
 <generic_parameter_declaration>(opt)
 { <network_declaration_list> } ;

 <generic_parameter_declaration>:
 (<generic_parameter_list>)

 <generic_parameter_list>:
 <generic_parameter_declarator>
 <generic_parameter_list> , <generic_parameter_declarator>

 <generic_parameter_declarator>:
 <identifier>
 <generic_parameter_declarator> [<expression>]

 <network_declaration_list>:
 <coordinate_declaration>
 <node_declaration>(opt)
 <link_declaration>(opt)
 <parent_node_declaration>(opt)

 <network_type_class_specifier>:
 static
 extern

 Constraints.
 A network type declaration shall not appear in a function.

 Semantics.
 A network-type declaration introduces a network-type identifier and specifies attributes of the net-
work type, such as the number, types and relative performances of processors, links and their lengths,
as well as the parent processor. A network type can be either simple or parametrized (generic). A dec-
laration of generic network type called also a topology shall contain a generic parameter declaration.
There are scalar and vector generic (or topological) parameters. A scalar generic parameter is treated
as an integer. A vector generic parameter is treated as an indexed set of integers. The number of indi-
ces and their ranges are specified by the generic parameter declarator. The expression in the generic

Network type declaration

Page 3-24 The mpC Programming Language Specification

parameter declarator can be built only from integer constants and scalar generic parameters. The scope
of generic parameters is the corresponding network-type declaration.
 A network-type declaration may include the specifier extern or static.
 A network-type declaration that also causes a compiler to generate target program components pro-
viding the access to topological information about networks of a relevant type is a network-type defini-
tion.
 A network-type declaration without the specifier extern is a network-type definition. The specifier
static specifies internal linkage for the network-type identifier declared. The network-type declara-
tion without any specifier specifies external linkage.
 A network-type declaration with the specifier extern is not a network-type definition and is used
by a compiler to access correctly to the corresponding topological information. In this case, some-
where in the set of source files that constitutes the entire program there exists a definition for the given
identifier.

3.1.1 Coordinate declaration
 Syntax.

 <coordinate_declaration>: coord <coordinate_list> ;

 <coordinate_list>:
 <coordinate_declarator>
 <coordinate_list> , <coordinate_declarator>

 <coordinate_declarator>: <identifier> = <expression>

 Constraints.
 The expression in the coordinate declarator shall be integer. The operands in the expression shall
consist only of constants and generic parameters of the generic network type (if any).

 Semantics.
 A coordinate declaration declares a coordinate system which processor nodes of the network
declared are related to. A coordinate declarator introduces an identifier of a coordinate variable and
specifies its attributes. Coordinate names belong to the same name space as ordinary identifiers. The
scope of an identifier of a coordinate variable extends from the completion of its declarator but is not
continuous; it includes the network declaration list that contains the corresponding coordinate declara-
tion, all relevant subnetwork specifiers as well as left operands of relevant coordof operators. If a
declaration of a lexically identical identifier exists in this scope, it is hidden.
 A coordinate variable has the type int and is characterized by the number in the list of coordinates
and the range of values. Correspondingly, if the coordinate variable occurs in an expression in a link
descriptor or in the parent node description, the number of expressions in an expression list shall agree
with the number of coordinate variables in the coordinate list. The range of values of the coordinate
variable is specified by the expression in the coordinate declarator and includes integers from 0 to N-1,
where N is the value of the expression.
 Example. The coordinate declaration
 coord x=100, y=10, z=N;

The mpC Programming Language Specification Page 3-25

Managing the computing space

declares the 3-D coordinate system which a network containing up to 100*10*N nodes may be related
to.

3.1.2 Node declaration
 Syntax.

 <node_declaration>: node {<node_declarator_list>};

 <node_declarator_list>:
 <node_declarator>
 <node_declarator_list> <node_declarator>

 <node_declarator>:
 <expression> ’:’ <performance_specif ier>(opt) <node_type>(opt) ;
 default ’:’ <performance_specif ier>(opt) <node_type>(opt) ;

 <node_type>:
 void
 memory
 scalar
 vector

 <performance_specif ier>:
 <expression>
 fast <power_specif ier>(opt)
 slow <power_specif ier>(opt)

 <power_specif ier>:
 * <expression>

 Constraints.
 The expression in the node declarator shall be integer. The operands in the expression shall consist
only of coordinate variables, constants and generic parameters (if any).
 Either the performance specifier or the node type shall appear in the node declarator.
 There may exist at most one default node declarator in a node declarator list.
 The expression in the performance specifier shall be integer. The operands in the expression shall
consist only of coordinate variables, constants and generic parameters (if any).
 The expression in the power specifier shall be integer. The operands in the expression shall consist
only of coordinate variables, constants and generic parameters (if any).

 Semantics.
 A node declaration associates processor nodes to the given coordinate system and declares their
types and performances.
 A processor node of the type void has no data and does not take part in computations. The equiva-
lent interpretation is that the type void indicates that no processor is related to the positions with the
corresponding coordinates. A processor of the type memory can rather store data than operate on it. A

Network type declaration

Page 3-26 The mpC Programming Language Specification

processor of the type vector can perform vector operations efficiently. Finally, most common pro-
cessors are of the type scalar. If the node type does not appear in the node declarator, it specifies a
processor of the scalar type.
 Performance specifiers specify relative performances of processor nodes of the same type. The value
of the expression in the power specifier shall be positive. If it is equal to 1, the power specifier may be
omitted. It is meant that any performance specifier with the fast keyword specifies more powerful
processor than a performance specifier with the slow keyword. It is meant also that the greater value
of the expression in a power specifier the more performance is specified. For every network of relevant
type, this information allows the compiler to associate a weight with each processor of the network
normalizing it in relation to the weight of the parent processor. Note, that the host-processor is always
of the scalar type and the regular performance.
 It is meant that a simplified performance specifier having the form of expression is fast and of the
scalar type.
 When processing a node declarator, the compiler evaluates the (logical) expression for every permis-
sible set of values of the coordinate variables. If the value is non-zero (that corresponds to the logical
value true), a processor of the specified type and performance is related to the coordinates. If the
same coordinates satisfy more than one logical expressions, it depends in implementation processor of
which type and performance will be associated with the coordinates.
 The default node declarator declares the type and performance of all the processor nodes whose
coordinates don't satisfy any (logical) expression in the rest of the node declarators of the node decla-
ration. If there does not exist a default node declarator, these processor nodes shall have the type
void.
 If a network declaration list does not contain a node declaration, all the processor nodes of the net-
work shall have the type scalar and the regular performance.
 Example. The declaration
 net Star(N) {
 coord i=N;
 node {
 default: scalar;
 }
 ...
 };
declares all the processor nodes to be of the type scalar. The declaration
 net Star2(M,N) {
 coord i=M;
 node {
 !i : memory;
 i % N : scalar;
 default : vector;
 }
 ...
 };
declares a generic network type with different types of nodes whose relation to coordinates depend on
the generic parameters.

The mpC Programming Language Specification Page 3-27

Managing the computing space

3.1.3 Link declaration
 Syntax.

 <link_declaration>:
 link { <link_declarator_list> } ;
 link <free_coordinate_list> { <link_declarator_list> } ;

 <link_declarator_list>:
 <link_declarator>
 <link_declarator_list> <link_declarator>

 <link_declarator>:
 <expression> ':' <single_link_declarator_list> ;
 default ':' <single_link_declarator_list> ;

 <single_link_declarator_list>:
 <single_link_declarator>
 <link_length_specifier>(opt) <single_link_declarator>
 <single_link_declarator_list>,<single_link_declarator>

 <single_link_declarator>:
 [<expression_list>] <direction_specifier> [<expression_list>]

 <free_coordinate_list>: (<coordinate_list>)

 <link_length_specifier>:
 length * <expression>

 <direction_specifier>:
 ->
 <->

 Constraints.
 An expression in the link declarator shall be integer. The operands in the expression shall consist
only of constants, generic parameters (if any), and coordinate variables including free coordinates
variables (if any).
 The expression in the link-length specifier shall be integer. The operands in the expression shall con-
sist only of constants, generic parameters (if any), and coordinate variables including free coordinates
variables (if any).

 Semantics.
 A link declaration declares links between processor nodes. A link is characterized by the length and
the direction.
 If a free coordinate list appears in the link declaration, it declares additional coordinate variables
(named free coordinate variables) and specifies their ranges of values. The declaration of free coordi-
nate variables does not change the coordinate system that has been declared. The scope of an identifier
of a free coordinate includes the link declarator list that follows the corresponding free coordinate list.

Network type declaration

Page 3-28 The mpC Programming Language Specification

Free coordinate variables are used if the network topology can not be specified with only regular coor-
dinate variables.
 Link declarators in the link declarator list are processed sequentially. When processing a link declar-
ator, the compiler evaluates the (logical) expression for every permissible set of values of the coordi-
nate variables (including free coordinate variables, if any). If a set of values satisfies the logical
expression (makes it non-zero), for every single link declarator in the single link declarator list all the
expressions in both expressions lists are evaluated, and the link between the processor node, whose
coordinates are determined by the left part of the single link declarator, and the processor node, whose
coordinates are determined by the right part of the single link declarator, is established. The direction
of the link is specified by the direction specifier.
 The length of a link is specified by a link-length specifier. The value of the expression in the link-
length specifier characterizes the length of the link. If it is equal to 0, the link-length specifier may be
omitted, and the link shall be of the regular length. It is meant that the greater value of the expression
in the link-length specifier the longer length is specified. So, negative values correspond to short links,
and positive value correspond to long links. For every network of relevant type, this information
allows the compiler to associate a weight with each link of the network.
 If there exists a default link declarator, it is processed as if it is the last link declarator in the link
declarator list, whose logical expression is non-zero for all permissible sets of values of the coordinate
variables.
 If a network declaration list does not contain a link declaration, there exists a link of the regular
length between any two processor nodes.
 If the link declaration does not specify a link between some pair of processor nodes, it means exist-
ence very long link connecting them rather than absence of any link.
 Example. The declaration
 net Star(N) {
 coord i=N;
 node {
 default:scalar;
 }
 link {
 i>0: [0] -> [i] , [i] -> [0]; }
 ...
 };
declares a generic type of networks of the star topology. The declaration
 net Star2(N) {
 coord i=N;
 node {
 default:scalar;
 }
 link {
 i>0 && i%2 : length*(-1) [0] -> [i+1], [i] -> [0] ;
 i>0 && !(i%2) : length*1 [0] -> [i-1], [i] -> [0] ;
 }
 ...
 };
declares a generic type of networks of the star topology with links of different length.
 Example. The following declaration illustrates the usage of free coordinate variables:

The mpC Programming Language Specification Page 3-29

Managing the computing space

 net All_To_All(N) {
 coord i=N;
 node {
 default:scalar;
 }
 link (j=N) {
 i!=j && i%2 && j%2 : length*(-1) [i] -> [j];
 default : [i] -> [j];
 }
 ...
 };

3.1.4 Parent node declaration
 Syntax.

 <parent_node_declaration>: parent [<expression_list>];

 Constraints.
 An expression in the expression list shall be integer. The operands in the expression shall consist
only of constants and generic parameters of the generic network type (if any). The number of expres-
sions in the expression list shall agree with the dimension of the coordinate system that has been
declared.

 Semantics.
 The parent node declaration specifies the coordinates of the parent processor node in the given coor-
dinate system.
 If a network declaration list does not contain a parent node declaration, the parent has zero number in
the natural numeration of processor nodes (recall, that it is supposed that all non-void processor nodes
are numerated in correspondence with the lexicographic order of their coordinates).
 Example. The following complete generic network type declaration
 net SeaStar(M,N) {
 coord r=M, fi=N;
 node {
 r==0 && fi>0 : void;
 default : scalar;
 }
 link {
 r==0 : [0,0] -> [1,fi], [1,fi] -> [0,0];
 r>1 : [r-1,fi]->[r,fi], [r,fi]->[r-1,fi];
 }
 parent [0,0];
 };
introduces the sea-star topology.

Network declarations.

Page 3-30 The mpC Programming Language Specification

3.2 Network declarations.
 Syntax.

 <network_declaration>:
 <computing_space_class_specifier> (opt)
 <network_type_specifier> <network_list> ;

 <network_list>:
 <network_declarator>
 <network_list> , <network_declarator>

 <computing_space_class_specifier>:
 <storage_class_specifier>

 Constraints.
 Only extern, static, auto or typedef may be used as computing-space-class specifiers in a
network declaration.

 Semantics.
 A network declaration introduces a set of identifiers, that are interpreted as names of networks, as
well as specifies attributes of the identifiers (such as network type, parent, class of computing space
duration). A network declaration that also causes computing space to be reserved for an network
named by an identifier is a network definition.
 The network declaration may contain specifiers extern, static, auto, or typedef.
 Like ANSI C, the typedef specifier is called a "storage-class specifier" for syntactic convenience
only. Within the scope of a declaration whose computing-space-class specifier is typedef, each iden-
tifier declared therein becomes a synonym for the network type specified by the network type specifier.
Such a name shares the same name space as other identifiers declared in ordinary declarators.
 A network declaration with the specifier extern indicates that somewhere in the set of source files
that constitutes the entire program there exists an external definition for the given network identifier.
Such a network declaration can not serve as a network definition.
 If the network declaration without specifier extern occurs outside a function, the network identifier
is declared with global static computing space duration, and serves as the definition. The specifier
static specifies internal linkage for the network identifier declared. The network declaration with-
out any storage-class specifier specifies external linkage.
 Within a function, a declaration of a network with specifier static, auto, or without any comput-
ing-space-class specifier also serves as a network definition. The network declaration with specifier
static declares the network identifier with local static computing space duration. The network dec-
laration with specifier auto or without any computing-space-class specifier declares the network
identifier with automatic computing space duration.

3.2.1 Network type specifier
 Syntax.

 <network_type_specifier>:
 net <identifier>

The mpC Programming Language Specification Page 3-31

Managing the computing space

 net <identifier> (<argument_expression_list>)

 Constraints.
 An expression in the argument expression list corresponding to a scalar generic parameter shall be of
the type int. If the network type specifier is a part of an external network declaration, the expression
shall be constant. Otherwise, it shall be replicated over the entire computing space.
 An expression in the argument expression list corresponding to a vector generic parameter shall be a
distributed pointer (of any type) to the initial member of an integer array replicated over the network
argument.

 Semantics.
 In mpC, one can declare a single network type as well as parametrized (generic) network type. Cor-
respondingly, when declaring a network, one can specify its type either with the identifier of single
network type, or by means of generic instantiation of a generic network type. The generic instantiation
concludes in replacement generic parameters with values of generic arguments. The number of the
generic arguments shall agree with the number of generic parameters. An array corresponding to a
vector topological argument should be of the enough size. It is meant that it holds an indexed set of
integers in such a way that the right index is faster then the left one.

3.2.2 Network declarator
 Syntax.

 <network_declarator> :
 <network_or_subnetwork_specifier>(opt) <identifier>

 <network_or_subnetwork_specifier>:
 [host]
 [<identifier>]
 <subnetwork_specifier>

 <subnetwork_specifier>:
 [<identifier> ':' <expression>]

 Constraints.
 A network declarator including a network-or-subnetwork specifier shall not appear in a declaration
with the typedef specifier.
 The identifier in the network-or-subnetwork specifier shall designate a network or an explicitly
declared subnetwork.
 The expression in the subnetwork specifier shall be asynchronous (in relation to the region R desig-
nated by the corresponding identifier) expression without side effects, each subexpression of which
that does not include coordinate variables is replicated over the region R or its superregion. If the iden-
tifier in the subnetwork specifier designates a network, then the keyword parent can be used instead
of the expression specifying the parent of the network.

 Semantics.
 Each network declarator declares one identifier of network object or network type.

Declaration of subnetworks

Page 3-32 The mpC Programming Language Specification

 If the network declarator appears in a network declaration without the typedef specifier and does
not include a network-or-subnetwork specifier, a single network, whose parent is the host-processor, is
declared. If there exists such a specifier, but it specifies a single processor node, then a single network,
whose parent is the processor node specified, is declared. Otherwise, a distributed network, whose par-
ent network is specified by the specifier, is declared.
 Neither an automatic network nor its subnetwork (including a one-processor ones) can be a parent of
a static network.

3.3 Declaration of subnetworks
 Syntax.

 <subnetwork_declaration>:
 <computing_space_class_specifier>(opt)
 subnet <subnetwork_declarator_list>;

 <subnetwork_declarator_list>:
 <subnetwork_declarator_list> , <subnetwork_declarator>
 <subnetwork_declarator>

 <subnetwork_declarator>: <subnetwork_specifier> <identifier>

 <relation_declaration>:
 relation <relation_declarator_list>;

 <relation_declarator_list>:
 <relation_declarator_list> , <relation_declarator>

 <relation_declarator>:
 <identifier> <relational_operator> <identifier>

 Constraints.
 Only extern, static, auto or flex may be used as the computing-space-class specifier in the
subnetwork declaration.

 Semantics.
 A subnetwork declaration specifies attributes of a set of subnetwork identifiers. The subnetwork
declarator consists of the subnetwork specifier and the subnetwork identifier being declared.
 The subnetwork specifier includes an identifier of the region (network or subnetwork), whose subnet-
work is specified, and a (logical) expression separating the processor nodes included in the specified
subnetwork. The expression shall be asynchronous (in relation to the supernetwork R designated by
the corresponding identifier) expression without side effects, each subexpression of which that does
not include coordinate variables being replicated over the region R. Each processor of the supernet-
work, whose component of the value of this expression is not equal 0, is included in the declared sub-
network.

The mpC Programming Language Specification Page 3-33

Managing the computing space

 A subnetwork inherits the coordinate system of its supernetwork. It means that any processor
included in the subnetwork has there the same coordinates as in the corresponding supernetwork. At
the same time, its natural number in the subnetwork may differ from its natural number in the super-
network.
 A subnetwork declaration that also causes computing space to be reserved for an subnetwork named
by an identifier is an explicit subnetwork definition. In any case, the lifetime of a subnetwork does not
continue over the lifetime of its supernetwork.
 A subnetwork declaration with specifier extern indicates that somewhere in the set of source files
that constitutes the entire program there exists an external definition for the given subnetwork identi-
fier. Such declaration can not serve as a definition.
 If a subnetwork identifier declaration without specifier extern occurs outside a function, then it
serves as the definition. Conceptually, such a subnetwork is created once, when the program begins
execution, but after creation of the corresponding supernetwork, and exists till the end of the execution
of the entire program. The specifier static specifies internal linkage for the subnetwork identifier.
The declaration without any computing-space-class specifier specifies external linkage.
 Within a function, a subnetwork identifier declaration with specifier static serves as the defini-
tion. Conceptually, such subnetwork is created only on first entry into the block, in which it is
declared, and exists till the end of its supernet lifetime.
 Within a function, a subnetwork identifier declaration without any computing-space-class specifier or
with the auto specifier serves as the definition. A new instance of the subnetwork is created on each
entry into the block in which it is declared. The subnetwork is discarded when execution of the block
ends in any way. Note, that a static subnetwork cannot be declared as a subnetwork of an automatic
network.
 A subnetwork declaration with specifier flex is an auto declaration with a suggestion that the cre-
ation of the subnetwork declared has the less cost. In addition, there are the same constraints in the use
of such subnetworks as for implicitly defined subnetworks, namely: they cannot be used in postfix
reduction operations, and on such subnetworks cannot be called network functions.
 Subnetwork and relation declarations specify completely the partial order "to be a subnetwork of" on
the set of defined subnetworks of the same network. This partial order is built as follows. Let s1 and
s2 be identifiers of subnetworks of the same network. Then:
 - if the declaration of s1 specifies s2 as a supernetwork, then s1 "is a subnetwork of" s2;
 - s1 "is a subnetwork of" s2, if there is a relation declaration including one of the following relation
declarators: s1<s2, s1<=s2, s1==s2, s2>s1, s2>=s1.
The partial order is defined as reflexive and transitive closure of the relation defined above.

Declaration of subnetworks

Page 3-34 The mpC Programming Language Specification

The mpC Programming Language Specification Page 4-35

Declarations of data objects

4. Declarations of data objects

4.1 Explicit declaration of distributed data objects
 Syntax.

 <distribution_specifier>:
 [*]
 [host]
 [<identifier>]
 <subnetwork_specifier>

 Constraints.
 The identifier in the distribution specifier should be an identifier of network or subnetwork.

 Semantics.
 In general, to declare an identifier designating a distributed data object, it is necessary to place in the
corresponding declaration just before the identifier the distribution specifier specifying the region of
the computing space, over which the declared data object is distributed.
 Distribution specifier [*] specifies the entire computing space, [host] specifies the host-proces-
sor, an identifier in brackets specifies a network or explicitly defined subnetwork. Finally, in the case of
the subnetwork specifier as a distribution specifier, in addition to explicit declaration of the data object
distributed over a subnetwork, the subnetwork is declared implicitly. Note, that the expression in the
subnetwork specifier should satisfy the same constraints as for explicit subnetwork declaration (see
3.3).

Example. The declaration
 int [*]Derror, [Net1]Da[10], *[Net1:I==J]Dpi[5];
declares Derror as an integer variable distributed through the entire computing space, declaresDa as
an array of 10 ints distributed through the network Net1, declares implicitly a subnetwork of Net1,
and declares Dpi as an array of 5 pointers to int distributed through this subnetwork.

4.2 Explicit declaration of undistributed data objects
 Except the cases considered below, to declare an identifier designating an undistributed data object, it
is necessary to place in the corresponding declarator just before the identifier one of the following lan-
guage constructs:
 - specifier [host];
 - a subnetwork specifier with keyword parent instead of an expression;
 - a subnetwork specifier of the form [s:c1==e1&&...&&cN==eN], where s is an identifier of net-
work or subnetwork having N coordinate variables c1,...,cN, and e1,...,eN are asynchronous
integer expressions replicated over s;
 - a specifier of the form [s], where s is an identifier designating a 1-processor network or subnet-
work (if it designates a subnetwork, it should be declared with one of above specifiers as a subnetwork
specifier, and if it designates a network, the type of the network should be defined completely in com-
pile time).

Implicit declaration of data object distribution

Page 4-36 The mpC Programming Language Specification

Example. The declaration
 double [host]x;
declares the undistributed variable x belonging to the host.

4.3 Implicit declaration of data object distribution
 A declaration of a formal parameter of network or nodal function shall not include a distribution
specifier. A formal parameter of nodal function belongs to the processor executing the function. A for-
mal parameter of a network function is distributed over the region executing the function.
 A formal parameter of basic function shall either belong to the host or be distributed over the entire
computing space. A declaration of a formal parameter of a basic function without a distribution speci-
fier indicates that the formal parameter is distributed over the entire computing space.
 If a data object declaration without a distribution specifier appears out of a function or in the body of
a basic function, it declares a data object distributed over the entire computing space.
 If a declaration of a data object appears in the body of a nodal function, it shall not include a distribu-
tion specifier. If such a declaration is a definition, it specifies an undistributed data object belonging to
the processor executing the function. Otherwise, it specifies the corresponding component of a distrib-
uted data object, whose external definition exists somewhere in the set of source files that constitutes
the entire program. So, in the body of a nodal function any identifier of a data object defined out of the
function designates the corresponding component of the data object.
 If a declaration of data object without a distribution specifier appears in a network function, it
declares a data object distributed over the region on which the function is executed. If this declaration
is not a definition, it specifies the corresponding components of a distributed data object, whose exter-
nal definition exists in the set of files constituting the whole program. So, inside a network function, a
identifier of the data object defined out of the function designates the corresponding cutting from this
data object.

4.4 Declaration of replicated data objects
 The qualifier repl, specifying that the values of all components of the corresponding data object are
equal each other throughout the lifetime of the data object, is introduced. Such a data object is called
replicated. The compiler shall warn about all changes of the value of a replicated data object that may
violate this property.
 The attribute "to be replicated" is associated not only with lvalue but with any expression also.

Example. In the fragment
/* Line 1 */ int repl n=10;
/* Line 2 */ void [*]main()
/* Line 3 */ {
/* Line 4 */ net Ring(n) rn;
/* Line 5 */ net Ring(n+1) [rn]rn1;
/* Line 6 */ ...
/* Line 7 */ }
the variable n is replicated over the entire computing space. The expressions n and n+1, that are used
as topological arguments in lines 4-5, are replicated over the entire computing space also.

The mpC Programming Language Specification Page 5-37

Expressions

5. Expressions

 Except postfix reduction operators, a simple assignment, and function calls (except calls to nodal
function), all the rest operators are asynchronous.
 If an expression is evaluated by a distributed network and is not asynchronous, it shall partially asyn-
chronous in relation to the parent of the distributed network.
 An expression, all components of the value of which are equal to each other, is called a replicated
expression.

5.1 Primary expressions
 If an identifier is declared as designating a distributed object, it is an asynchronous expression.
 It depends on the context, if a constant or a string literal are distributed expressions. If so, they are
asynchronous replicated expressions.

5.2 Asynchronous unary operators
 Unary ++, --, &, *, +, -, ~, !, sizeof, [], [*], [/], [%], [?<],
[?>], [+], [&], [^], [|] operators and scalar cast operators of the C[] language may have
operand whose value is distributed over a region of the computing space. In this case, an operator is
performed asynchronously on all components of the value of the operand, and its result is distributed
over the same region. In addition, if the operand is an asynchronous expression, the whole expression
will be also asynchronous.
 Note, that in mpC the sizeof operator is not a compile-time operator. At the same time, the com-
pile-time operator MPC_sizeof, that yields the size of its operand in the translation environment, is
introduced.
 The [] operator of the C[] language is extended allowing a pointer of any type as an operand. So, if
e is a primary expression having the type of pointer to type T with step N, then e[] designates a
blocked array of the undefined size whose members are of type T and allocated in the storage with step
N.
 If a type name in a cast operator specifies a type of pointer to function, it may include the corre-
sponding specifiers specifying attributes of function pointed to.

Example. The type name
 int [host](*)()
specifies the type of pointer to functional component of basic function returning int. The type name
 int *()
specifies the type of pointer to nodal function returning int. The type name
 int [net Web(n,4)](*)()
specifies the type of pointer to functional component of network function that has two special formal
parameters, the network formal parameter having the type belonging to the network type family
Web(n,4).

Asynchronous binary operators

Page 5-38 The mpC Programming Language Specification

5.3 Asynchronous binary operators
 Both operands of binary *, /, %, ?<, ?>, +, -, <<, >>, <, >, <=, >=, ==, !=,
&, ^, |, &&, ||, *=, /=, %=, ?<=, ?>=, +=, -=, <<=, >>=, &=, ^=, |=,
[] operators of the C[] language may be expressions whose values are distributed over any one region
of the computing space. In this case, an operator is performed asynchronously on components of val-
ues of operands, and its result is distributed through the same region. In addition, if both operands are
asynchronous expressions, then the entire expression is also asynchronous.
 By definition, two operands are distributed over the same region of the computing space if and only
if they satisfy one of the following hypothesizes:
 - two regions, over which the operands are distributed, are equivalent subnetworks (see sec. 2.2) of
the same network (by definition, a network is a subnetwork of itself);
 - the first (second) operand is distributed over a network or a explicitly defined subnetworks (in par-
ticular, 1-processor one), the distribution region of the second (first) operand is specified by a distribu-
tion specifier of the form [n:parent], and s is a parent of n.
 The language permits the value of one of operands to be distributed over a subregion of the region
over which the value of the another operand is distributed (for example, the value of one of the oper-
ands may belong to a processor belonging to the region over which the value of another operand is dis-
tributed). In this case, the operator is performed asynchronously on the subregion, and its result is also
distributed over the subregion.
 By definition, region r1 is a subregion of region r2 if and only if they satisfy one of the following
hypothesizes:
 - both r1 and r2 are subnetwork of the same network, and it is specified that r1 is a subnetwork of
r2 (see sec. 2.2);
 - there exists region r3 such that r1 is an explicitly defined network or subnetwork, r3 is specified
with a distribution specifier of the form [n:parent], r1 is a parent of n, and r3 is a subregion of
r2.
 The operators . and -> may have the left operand whose value is distributed through a region of
the computing space. In this case, an operator is performed asynchronously on all components of the
value of the operand, and its result is distributed through the same region. In addition, if the operand is
an asynchronous expression, then the entire expression is also asynchronous.

5.4 Asynchronous ternary operators
 All operands of the ternary ?: and [:] operators of the C[] language may be expressions whose
values are distributed through any one region of the computing space. In this case the operator is per-
formed asynchronously on components of values of operands, and its result is distributed through the
same region. In addition, if both the operands are asynchronous expressions, then the whole expression
is also asynchronous.

5.5 Cutting operator
 Syntax.

The mpC Programming Language Specification Page 5-39

Expressions

 <cutting>:
 <unary_expression>
 <distribution_specifier> <cutting>

 Constraints.
 The expressions (if any) in the distribution specifier shall be asynchronous (in relation to the corre-
sponding supernetwork) expressions without side effects. The distribution specifier should not be [*].

 Semantics.

 The cutting operator is specified by the distribution specifier specifying the region (say r1) of the
computing space, which should be a subregion of region r2 over which the value of the operand is dis-
tributed. The result is the corresponding segment of the distributed value of the operand. The operator
is executed asynchronously, and if the operand is an lvalue then the whole expression is an lvalue also.

5.6 Simple assignment
 Execution of a simple assignment shall not cause sending unions or bit arrays.
 In any case, the operator is performed on the smallest of networks or hard subnetworks enclosing
the regions over which the values of the operands are distributed.
 The following extensions of the simple assignment operator with distributed operands are admissi-
ble.

5.6.1 Asynchronous assignment
 The values of both operands are distributed over the same region of the computing space (see
sec.5.3). In this case, the operator is performed asynchronously on components of the values of the
operands, and its result is distributed over this region. In addition, if both operands are asynchronous
expressions, then the whole expression is also asynchronous.

5.6.2 Broadcast/scatter assignment
 The left operand is distributed over some region (say R) of the computing space, and the value of
the right operand belongs to a processor node of some network or hard subnetwork enclosing R.

5.6.2.1. If the value of the right operand may be assigned without a type conversion to a component
of the left operand, then the execution of the operator consists in sending the value of the right operand
to each processor of R, where the value is assigned to the corresponding component of the left oper-
and.

5.6.2.2. Otherwise, the value of the right operand shall be a vector, whose elements may be assigned
without a type conversion to components of the left operand, and the number of elements of the vector
is either equal to the number N of components of the left operand or not specified (the latter is permis-
sible, only if the right operand is a blocked array whose size is not specified). In this case, the execu-
tion of the operator consists in sending i-th element of the vector to i-th (in the natural numeration)
processor of R, where the element is assigned to i-th component of the left operand for all i from 0 to
N-1.

The coordof operator

Page 5-40 The mpC Programming Language Specification

5.6.3 Parallel-send assignment
The left operand and the value of the right operand are distributed over different subnetworks of the

same network (say S0 and S1 correspondingly). In this case, S0 and S1 shall consist of the same num-
ber N (N>0) of processors and be incomparable in relation to the partial order "to be subnetwork of".
Types of components of the operands shall be compatible in relation to assignment and not cause type
conversation. The execution of the operator consists in sending i-th (in the natural numeration) compo-
nent of the value of the right operand to the i-th processor of S0, where it is assigned to i-th component
of the left operand for all i from 0 to N-1.

5.6.4 Gather assignment
 The value of the right operand is distributed over some region R of the computing space, and the
left operand belong to some processor P of some network enclosing R. In this case, the left operand
shall be an lvector whose length is either equal to the number N of components of the value of the right
operand or not specified, and the type of members of the lvector shall be compatible in relation to
assignment with the type of components of the value of the right operand and not cause a type conver-
sation. The execution of the operator consists in sending i-th (in natural numeration) component of the
value of the right operand to P, where it is assigned to i-th member of the left operand for all i from 0 to
N-1.

5.7 The coordof operator
 Syntax.

 <coordinate_expression>:
 <identifier> coordof <unary_expression>

 Semantics.
 The left operand is a coordinate name associated with a region of the computing space over which
the value of the right operand is distributed. The result is an integer value distributed over this region
each component of which is equal to the value of the specified coordinate of the processor to which the
component belongs. The right operand is not evaluated, but only used to specify the region of the com-
puting space.

5.8 Postfix reduction operators
 Postfix unary [*], [+], [?<], [?>], [-], [&], [^], [|], [&&], [||] operators
are introduced. The result of an operator is distributed over the same region of the computing space as
the value of the operand. Note, that the region should be either a network or a hard subnetwork.
 If the region is a single one (that is, undistributed), all the components of the result are identical and
equal to the result of the corresponding prefix reduction operator performed on the vector comprising
the components of the value of the operand. If this region is distributed, then execution of the operator
is divided into a set of independent operations each of which is executed by its own single region
belonging to the set specified by the corresponding distributed region.
 In addition, two binary [<>] , [><] operators are introduced. Let E be an expression whose value
is distributed through some region R. Let F be an expression whose value is a pointer, distributed

The mpC Programming Language Specification Page 5-41

Expressions

through R, to a nodal function implementing a binary operator of the same type as a component of the
value of E. Then, under hypothesis that mpC includes the associative and commutative binary operator
op implemented by the function which F points to, the E[<F>] expression is equivalent to E[op].
Similarly, under hypothesis that mpC includes the associative but non-commutative binary operator op
implemented by the function which F points to, the expression E[>F<] is equivalent to E[op].

5.9 Function call
 Syntax.

 <function_call>:
 <special_argument_expression>(opt)
 <function_designation> (<ordinary_argument_list>(opt))
 <special_argument_expression>:
 ([(<topological_argument_list>(opt)) <idendifier>])

 Semantics.
 If the function designation has type "pointer to functional component of basic function", its value
shall be distributed over the entire computing space. In this case, the special argument expression shall
not appear, and the value of an ordinary argument (if any) shall either belong to the host or be repli-
cated over the entire computing space. In this case, the function call shall be an overall expression, and
the returning value (if any) shall be distributed over the entire computing space.
 If the function designation has type "pointer to function" (without additional attributes) or type
"pointer to nodal function", the special argument expression shall not appear. In this case, the value of
the function designation and the values of ordinary arguments (if any) shall either belong the same pro-
cessor (say P) or be distributed over the same region of the computing space (say R). In the first case,
the function call shall be performed on processor P, and the returning value (if any) shall belong to P
also. In the second case, the function call shall be performed on the region R, and the returning value
(if any) shall distributed over P also. In addition, if the ordinary arguments and the function designa-
tion are asynchronous expressions and the function designation has type "pointer to nodal function",
then the function call is an asynchronous expression also.
 If the function designation has type "pointer to functional component of network function", then its
value shall be distributed over a region of the computing space enclosing the region R that is specified
by the identifier in the special argument expression. The values of all arguments (if any) shall be dis-
tributed over R. The value of a scalar topological argument (if any) shall be replicated over R. In this
case, the function call shall be performed on R, and the returning value (if any) shall be distributed
over R.

Function call

Page 5-42 The mpC Programming Language Specification

The mpC Programming Language Specification Page 6-43

Statements

6. Statements

 A statement may be executed either on a single processor, or on a region of the computing space (a
network or a subnetwork), or on a set of regions, or on the entire computing space.
 If statement S0 follows statement S1 and the sets of processors executing the statements are disjoint,
then it depends on the compiler whether the statements are executed in parallel. Otherwise, they are
executed as if all computations specified in statement S0 end before any computation specified in
statement S1begins. But in the latter case, the compiler can also overlap executions of these state-
ments, if it does not break functional semantics of their successive execution.
 By definition, a set of processors executing a statement, execution of which causes the creation of a
network, includes all free (at the moment of execution of the statement) processors of the computing
space. Therefore, if execution both S0 and S1 causes creation of networks, then the intersection of the
sets of processors executing these statements can not be empty (although the intersection can not be
computed in compile time).

6.1 Labeled statements
 New kind of labeled statements is introduced in mpC.

 Syntax.

 <labeled_statement>:
 <distribution_specifier> ':' <statement>

 Constraints.
 Only jump statements may be labeled by the specifier [*].
 Only a sequential asynchronous statement may be labeled by the distribution specifier. The resulting
labeled statement should be asynchronous.

 Semantics.
 If a statement labeled by a distribution specifier is syntactically built from expressions and substate-
ments, it is equivalent to the statement obtained from the initial statement by both applying the corre-
sponding cutting operator to every identifier appearing in the expressions and labeling the
substatements by the distribution specifier. If the result of recursive application of the described proce-
dure is a statement, that can not be detected in compile time as an asynchronous statement, then the
initial labeled statement is not correct.
 If a jump statement is labeled by the distribution specifier, it is divided into a set of independent jump
statements each of which is executed by the corresponding processor of the region specified by the dis-
tribution specifier.

Compound statement (block)

Page 6-44 The mpC Programming Language Specification

6.2 Compound statement (block)
 Statements that are grouped into a block may be distributed. If no network or hard subnetwork is
defined in a block, and all the statements are asynchronous and distributed over the same region, then
the block is also asynchronous.

6.3 Expression statement
 The expression in an expression statement may be distributed. If it is asynchronous, the expression
statement is also asynchronous.

6.4 Selection statements
 Syntax.

 <selection_statement>:
 if (<expression>) <statement>
 if (<expression>) <statement> else <statement>
 switch (<expression>) <statement>

 Semantics.
 If the value of a controlling expression in a selection statement is undistributed, the selection state-
ment selects among a set of statements depending on this value. Execution of such a selection state-
ment includes evaluation of its controlling expression and sending the value of the controlling
expression to all processors of the least set of networks enclosing the set of regions taking part in the
execution of the statements among which selection is done.
 If the value of the controlling expression of the selection statement is distributed over a region of the
computing space (in particular, over the entire computing space), the statements, among which the
selection is done, shall be either asynchronous statements distributed over the same region, or partially
asynchronous in relation to this region statements. If the controlling expression and these statements
are asynchronous, the selection statement is also asynchronous, and it is divided into a set of indepen-
dent selection statements each of which is executed by the corresponding processor of the region. If
the controlling expression is asynchronous, and the statements, among which the selection is done, are
partially asynchronous, then the selection statement is partially asynchronous, and its execution is
divided into parallel execution of a set of selection statements, the value of controlling expression each
of which is undistributed. For example, the if statement in the fragment
 net Ring(5) r5;
 net Ring(3) [r5]r3;
 double [r5]dx, [r3]ddx;
 ...
 if(dx>0)
 ddx=dx;
 else
 ddx=-dx;
 ...
is partially asynchronous in relation to the network r5 and is divided into parallel execution of five if
statements, each of which is executed on own component of the distributed network r3.

The mpC Programming Language Specification Page 6-45

Statements

 Finally, if the value of the controlling expression and the statements, among which the selection is
done, are distributed over the same region and at least one of these statements is neither asynchronous
or partially asynchronous in relation to this region, then the controlling expression shall be replicated.
Otherwise, the behavior is undefined.

6.5 Iteration statements
 Syntax.

 <iteration_statement>:
 while (<expression>) <statement>
 do <statement> while (<expression>) ;
 for (<expression>(opt>;
 <expression>(opt) ;
 <expression>(opt)) <statement>

 Semantics.

6.5.1 The while and do statements
 If the value of a controlling expression in a while or do statement is undistributed, the iteration
statement causes the loop body to be executed repeatedly until the controlling expression evaluates to
zero. Execution of such an iteration statement includes broadcasting the value of the controlling
expression to all processors of the least set of networks enclosing the set of regions taking part in the
evaluation of the controlling expression and the execution of the body loop.
 If the value of the controlling expression is distributed over a region of the computing space (in par-
ticular, over the entire computing space), then the loop body shall be either an asynchronous statement,
distributed over the same region, or a partially asynchronous in relation to this region statement. If the
controlling expression and the loop body are asynchronous, then the iteration statement is also asyn-
chronous and divided into a set of independent iteration statements each of which is executed by own
processor node of the region. If the controlling expression is asynchronous, and the loop body is par-
tially asynchronous, then the iteration statement is partially asynchronous, and its execution is divided
into parallel execution of a set of iteration statements, the value of controlling expression each of
which is undistributed.
 Finally, if the value of the controlling expression and the loop body are distributed over the same
region, but the loop body is neither asynchronous or partially asynchronous in relation to this region,
then the controlling expression shall be replicated. Otherwise, the behavior is undefined.

6.5.2 The for statement
 Except for the behavior of the continue statement in the loop body, the statement
 for (expression-1; expression-2; expression-3) statement
and the statement

Jump statements

Page 6-46 The mpC Programming Language Specification

 {
 expression-1;
 while (expression-2){
 statement
 expression-3;
 }
 }
are equivalent.

6.6 Jump statements
 The mpC language constrains essentially the usage of jump statements.
 If a jump statement is labeled (explicitly or implicitly) by a distribution specifier, it is distributed
over the region specified by the specifier.
 If a jump statement not labeled by a distribution specifier appears in a network function, it is distrib-
uted over the region on which the function is called.
 If a jump statement not labeled by a distribution specifier appears in a basic function, it is overall
(that is, executed on the entire computing space).
 A jump statement, that appears in a nodal function, shall not be labeled by a distribution specifier and
executed by the processor executing the function.

6.6.1 The goto statement
 Constraints.
 An undistributed goto statement and the label used in it shall appear somewhere inside an undistrib-
uted statement executed by the same processor as the goto statement.
 A distributed goto statement is considered to be correct only in the following two cases:
 - both the goto statement and the statement labeled by the label used in the goto statement are
(high-level) elements of the statement list constituting a block, and both of them are distributed over
the region of the computing space executing the block;
 - both the goto statement and the label used in it appear somewhere inside an asynchronous state-
ment.

 Semantics.
 A goto statement causes an unconditional jump to the named label in the current function.

6.6.2 The continue statement
 Constraints.
 An undistributed continue statement shall appear only inside the loop body of an undistributed
iteration statement executed by the same processor as the continue statement.
 A distributed continue statement shall appear only inside the loop body of an asynchronous itera-
tion statement.

 Semantics.
 A continue statement causes a jump to the loop-continuation portion of the smallest enclosing
iteration statement; that is, to the end of the loop body.

The mpC Programming Language Specification Page 6-47

Statements

6.6.3 The break statement
 Constraints.
 An undistributed break statement shall appear either in the switch body of an undistributed switch
statement or in the loop body of an undistributed iteration statement executed by the same processor as
the break statement.
 A distributed break statement shall appear either in the switch body of an asynchronous switch
statement, or in the loop body of an asynchronous iteration statement, or in the body of a fan state-
ment, or in the body of a pipe statement.

 Semantics.
 A break statement terminates execution of the smallest enclosing switch or iteration statement, or
terminates execution of the body of the smallest enclosing fan statement, or terminates execution of
the smallest enclosing pipe statement. The latter means that the processor executing the break
statement terminates its execution of the pipe statement and sends the signal of preschedule termina-
tion to processors taking part in the execution of the pipe statement.

6.6.4 The return statement
 Constraints.
 A return statement shall not be labelled explicitly by a distribution specifier.
 A return statement shall not appear in any place of a function body where it may be executed in
parallel with another statement of the function body.
 A return statement with an expression shall not appear in a function returning type void.

 Semantics.
 A return statement terminates execution of the current function and returns control to its caller. A
function may have any number of return statements, with or without expressions. If a return state-
ment with an expression is executed, the value of the expression is returned to the caller. If the expres-
sion has a type different from that of the function in which it appears, it is converted as if it were
assigned to an object of that type. If a return statement without an expression is executed, and the
value of the function call is used by the caller, the behavior is undefined. Reaching the} that terminates
a function is equivalent to executing a return statement without an expression.

Jump statements

Page 6-48 The mpC Programming Language Specification

The mpC Programming Language Specification Page 7-49

Library and embedded functions

7. Library and embedded functions

 Library and embedded nodal, basic and network functions support the development of more effec-
tive mpC programs. They also make debugging easier. All corresponding declarations are contained in
header file <mpc.h>. The library is still under development, so changes in the set of functions are pos-
sible.

7.1 Nodal library functions

7.1.1 Function MPC_Printf
 Synopsis
 #include <mpc.h>
 int MPC_Printf(const char* format, ...);

 Description
MPC_Printf allows to output formatted strings to stdout on the host virtual processor from any

virtual processor of the computing space. Syntax strictly follows standard printf syntax.

 Returned value
 The function returns 0 if all is OK, and non-zero otherwise.

7.1.2 Function MPC_Wtime
 Synopsis
 #include <mpc.h>
 double MPC_Wtime(void);

 Description
MPC_Wtime returns floating-point number of seconds, representing elapsed wall-clock time since

some time in the past. The "time in the past" is guaranteed not to change from the program start to fin-
ish, but it may be different on different virtual processors of the computing space.

7.1.3 Function MPC_Total_nodes
 Synopsis
 #include <mpc.h>
 int MPC_Total_nodes(void);

 Description
MPC_Total_nodes returns the total number of virtual processors in the computing space.

Basic library functions

Page 7-50 The mpC Programming Language Specification

7.1.4 Function MPC_Processors_static_info
 Synopsis
 #include <mpc.h>
 int MPC_Processors_static_info (
 int *num_of_processors, double **relative_performance);

 Description
 After a call to MPC_Processors_static_info object *num_of_processors will con-
tain the total number N of physical processors of the underlying distributed memory machine. Object
*relative_performance will contain a pointer to the initial element of N-element double array,
containing relative performances of the processors.

 Returned value
 The function returns 0 if all is OK, and non-zero otherwise.

7.1.5 Function MPC_Abort
 Synopsis
 #include <mpc.h>
 int MPC_Abort(repl errcode);

 Description
MPC_Abort tries to abort all processes in the computing space. The value of errcode will be

returned to command shell.

 Return value
 Ignored.

7.2 Basic library functions

7.2.1 Function MPC_Exit
 Synopsis
 #include <mpc.h>
 int [*]MPC_Exit(repl exitcode);

 Description
MPC_Exit terminates execution of a mpC program. A call to MPC_Exit is a point of global syn-

chronization (i.e. all virtual processors from the computing space call it in synchronous manner). The
value of exitcode will be returned into command shell.

 Return value
 Ignored.

The mpC Programming Language Specification Page 7-51

Library and embedded functions

7.2.2 Function MPC_Global_barrier
 Synopsis
 #include <mpc.h>
 int [*]MPC_Global_barrier(void);

 Description
 A call to MPC_Global_barrier is a point of global synchronization.

 Return value
 The function returns 0 if all is OK, and non-zero otherwise.

7.3 Network library functions
 There is the following topology declaration
 nettype SimpleNet(n) { coord I=n; };
in <mpc.h>.

7.3.1 Function MPC_Barrier
 Synopsis
 #include <mpc.h>
 int [net SimpleNet(n) w] MPC_Barrier(void);

 Description
 A call to MPC_Barrier is a point of synchronization of all virtual processors of w.

 Return value
 The function returns 0 if all is OK, and non-zero otherwise.

7.4 Embedded network functions
 Embedded network functions look like library network functions, but the compiler knows their
semantics and treats them in a special way. They are similar to C++ templates.

7.4.1 Function MPC_Assign
 Synopsis
 #include <mpc.h>
 int [net SimpleNet(n) w] MPC_Assign(repl const *source,
 <s_type> *s_buffer,
 int const s_step,
 repl const count,
 repl const *destination,
 <d_type> *d_buffer,
 int const d_step);

Embedded network functions

Page 7-52 The mpC Programming Language Specification

 Description
MPC_Assign sends count elements of type <s_type> from a virtual processor of w, the coor-

dinate of which is equal to *source, to a virtual processor of w, the coordinate of which is equal to
*destination. Parameters s_buffer and s_step are significant only at the sender and specify
the initial address of the source buffer and the step between elements in the buffer, respectively. Simi-
larly, parameters d_buffer and d_step are significant only at the receiver and specify initial the
address of the receive buffer and the step between elements in the buffer, respectively. For every ele-
ment to send the matching element to receive must be specified. In other words, types <s_type> and
<d_type> must contain equivalent sequences of basic types. If this condition is not satisfied, the
compiler should detect such a situation as erroneous.
 The value of parameter n is ignored, so the corresponding actual parameter may be arbitrary integer
(for example 0).

 Return value
 The function returns 0 if all is OK, and non-zero otherwise.

7.4.2 Function MPC_Bcast
 Synopsys
 #include <mpc.h>
 int [net SimpleNet(n) w] MPC_Bcast(
 repl const *source,
 <s_type> *s_buffer,
 int const s_step,
 repl const count,
 <d_type> *d_buffer,
 int const d_step);

 Description
MPC_Bcast sends count elements of the type <s_type> from a virtual processor of w, the

coordinate of which is equal to *source, to all virtual processors (including the sender) in w. Param-
eters s_buffer and s_step are significant only at the sender and specify the initial address of the
source buffer and the step between elements in the buffer, respectively. Parameters d_buffer and
d_step specify the initial address of the receive buffer and the step between elements in the buffer,
respectively. For every element to send the corresponding element to receive must be specified. In
other words, types <s_type> and <d_type> must contain equivalent sequences of basic types. If
this condition is not satisfied, the compiler should detect this situation as erroneous.
 The value of parameter n is ignored, so the corresponding actual parameter may be arbitrary integer
(for example 0).

 Return value
 The function returns 0 if all is OK, and non-zero otherwise.

7.4.3 Function MPC_Scatter
 Synopsis

The mpC Programming Language Specification Page 7-53

Library and embedded functions

 #include <mpc.h>
 int [net SimpleNet(n) w] MPC_Scatter(
 repl const *source,
 <s_type> *s_buffer,
 int const *disps,
 int const *lengths,
 const count,
 <d_type> *d_buffer);

 Description
MPC_Scatter scatters the values of a number of elements of type <s_type> from a virtual pro-

cessor of w, the coordinate of which is equal to *source, over all virtual processors of w. Parameter
s_buffer is significant only at the sender and specifies the initial address of the source buffer.
Parameters disps and lengths are significant only at the sender, and disps points to an integer
array, the i-th element of which specifies the displacement (relative to s_buffer) from which
lengths[i] elements will be taken to send to the i-th virtual processor of w.
 Parameter d_buffer specifies the initial address of the receive buffer. Parameter count specifies
the number of elements in the receive buffer. For every element to send the matching element to
receive must be specified. In other words, types <s_type> and <d_type> must contain equivalent
sequences of basic types. If this condition is not satisfied, the compiler should detect such a situation as
erroneous.
 The value of parameter n is ignored, so the corresponding actual parameter may be arbitrary integer
(for example 0).

 Return value
 The function returns 0 if all is OK, and non-zero otherwise.

7.4.4 Function MPC_Gather.
 Synopsis
 #include <mpc.h>
 int [net SimpleNet(n) w] MPC_Gather(
 repl const *destination,
 <d_type> *d_buffer,
 int const *disps,
 int const *lengths,
 const count,
 <s_type> *s_buffer);

 Description
MPC_Gather gathers on a virtual processor w, the coordinate of which is equal to the value of

*destination, a number of <s_type> elements from all virtual processors (including the
receiver) of w. Parameter d_buffer is significant only at the receiver and specifies the initial address
of the receive buffer. Parameters displs and lengths are also significant only at the receiver, and
displs points to an integer array, i-th element of which specifies the displacement (relative to
d_buffer) to which lengths[i] elements to receive from the i-th virtual processor of w will be
placed.

Embedded network functions

Page 7-54 The mpC Programming Language Specification

 Parameter s_buffer specifies the initial address of the send buffer. Parameter count specifies
the number of elements in the send buffer. For every element to receive the matching element to send
must be specified. In other words, types <d_type> and <s_type> must contain equivalent
sequences of basic types. If this condition is not satisfied, the compiler should detect such a situation as
erroneous.
 The value of parameter n is ignored, so the corresponding actual parameter may be an arbitrary inte-
ger (for example 0).

 Return value
 The function returns 0 if all is OK, and non-zero otherwise.

The mpC Programming Language Specification Page 8-55

Implementation restrictions

8. Implementation restrictions

 The current implementation does not support full implementation of parallel statements fan, par
and pipe, so their descriptions were omitted.
 In addition, the following features are not supported by the current implementation:
• negative steps in arrays;
• user-defined postfix reduction operations;
• vectors as return values;
• void as a processor node type;
• any expression, other than an identifier, in the left expression list of a single link declarator, if the

expression contains a coordinate variable (including a free coordinate variable);
• 2-operand versions of ?:;
• [:], [#] and vector forming C[] operators;
• compile-time checking the correctness of special labels in the form of distribution specifier;
• compile-time checking the correctness of distributed goto.

Embedded network functions

Page 8-56 The mpC Programming Language Specification

