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Abstract. The paper presents a new data partitioning algorithm for parallel 
computing on heterogeneous processors. Like traditional functional partitioning 
algorithms, the algorithm assumes that the speed of the processors is character-
ized by speed functions rather than speed constants. Unlike the traditional algo-
rithms, it does not assume the speed functions to be given. Instead, it uses a 
computational kernel to estimate the speed functions of the processors for dif-
ferent problem sizes during its execution. This makes the algorithm distributed 
as its execution involves all the heterogeneous processors. The algorithm does 
not construct the complete speed function for each processor but rather builds 
and uses their partial estimates sufficient for optimal data distribution with a 
given accuracy. The low execution cost of this algorithm makes it ideal for em-
ployment in self-adaptable applications. Experiments with a parallel matrix 
multiplication application employing this algorithm are performed on a local 
heterogeneous computational cluster. The results show that the algorithm con-
verges very fast and that its execution time is several orders of magnitude less 
than the total execution time of the application. 

Keywords: distributed algorithms, data partitioning algorithms, functional per-
formance models, heterogeneous platforms. 

1   Introduction 

Conventional data partitioning algorithms for parallel computing on heterogeneous 
processors [1-2] are based on a performance model, which represents the speed of a 
processor by a constant positive number, and computations are distributed amongst 
the processors such that their volume is proportional to this speed of the processor. 
The constant characterizing the performance of the processor is typically its relative 
speed demonstrated during the execution of a serial benchmark code solving locally 
the core computational task of some given size.  

The traditional constant performance models (CPMs) proved to be accurate enough 
for heterogeneous distributed memory systems if partitioning of the problem results in 
a set of computational tasks that fit into the main memory of the assigned processors. 
But these models become less accurate in the presence of paging. The functional 
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Fig. 1. Optimal data distribution showing the geometric proportionality of the number of 
chunks to the speed of the processor 

performance model (FPM) of heterogeneous processors proposed and analyzed in [3] 
has proven to be more realistic than the CPMs because it integrates many important 
features of heterogeneous processors such as the processor heterogeneity, the hetero-
geneity of memory structure, and the effects of paging. The algorithms employing it 
therefore distribute the computations across the heterogeneous processors more accu-
rately than the algorithms employing the CPMs. Under this model, the speed of each 
processor is represented by a continuous function of the size of the problem. This 
model is application centric because, generally speaking, different applications will 
characterize the speed of the processor by different functions. 

The problem of distributing independent chunks of computations over a 
unidimensional arrangement of heterogeneous processors using this FPM has been 
studied in [3]. It can be formulated as follows: Given n independent chunks of 
computations, each of equal size (i.e., each requiring the same amount of work), how 
can we assign these chunks to p (p<n) physical processors P1, P2, ..., Pp with their 
respective full FPMs represented by speed functions s1(x), s2(x), ..., sp(x) so that the 
workload is best balanced? An algorithm solving this problem with a complexity of 
O(p×log2n) is also proposed in [3]. This and other similar algorithms, which relax the 
restriction of bounded heterogeneity of the processors [4] and which are not sensitive 
to the shape of speed functions [5], are based on the observation that the optimal data 
distribution points (x1, s1(x1)), (x2, s2(x2)), …, (xp, sp(xp)) lie on a straight line passing 
through the origin of the coordinate system and are the intersecting points of this line 
with the graphs of the speed functions of the processors. This is shown in Figure 1. 
These algorithms are used as building blocks in algorithms solving more complicated 
linear algebra kernels such as the dense factorizations [6].  

The cost of experimentally building the full FPM of a processor, i.e., the FPM for 
the full range of problem sizes, is very high. This is due to several reasons. To start 
with, the accuracy of the FPM depends on the number of experimental points used to 
build it. The larger the number, the more accurate the FPM is. However, there is a cost 
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associated with obtaining an experimental data point, which requires execution of a 
computational kernel for a specified problem size. This cost is especially high for prob-
lem sizes in the region of paging. Also, the number of experimental points required to 
build the full FPM increases remarkably as the number of parameters used to represent 
the problem size increases, as shown in the experimental results in this paper.  

The problem of minimization of the cost of experimentally building the full FPM 
of the processor has been studied recently proposing a relatively efficient sub-optimal 
solution [7]. However, even if an ideal optimal procedure becomes available to build 
approximations of the FPM of heterogeneous processors, the fact remains that the cost 
of building the full FPM is too high to forbid the use of data partitioning algorithms, 
employing the full FPM, in self-adaptable applications.  

The paper presents a new algorithm of data partitioning for parallel computing on 
heterogeneous processors. Like traditional functional partitioning algorithms, the algo-
rithm assumes that the speed of the processors is characterized by speed functions 
rather than speed constants. Unlike the traditional algorithms, it does not assume the 
speed functions to be given. Instead, it uses a computational kernel to estimate the 
speed functions of the processors for different problem sizes during its execution. This 
makes the algorithm distributed as its execution involves all the heterogeneous proces-
sors. The algorithm does not construct the complete speed function for each processor 
but rather builds and uses their partial estimates sufficient for optimal data distribution. 
The proposed algorithm does not return a partitioning perfectly balancing the load of 
the processors but a partitioning balancing their load with a given accuracy. 

Using experimental results for parallel matrix multiplication on a local heterogene-
ous computational cluster, we demonstrate that the execution time of the proposed 
distributed partitioning algorithm is several orders of magnitude less than the total 
execution time of the parallel application, thereby making it very suitable for em-
ployment in self-adaptable applications. 

The rest of the paper is organized as follows. In Section 2, we present the contribu-
tion of this paper, which is the distributed iterative partitioning algorithm. This is 
followed by experimental results on a local heterogeneous computing cluster in Sec-
tion 3. For the experiments, we use a parallel matrix multiplication application em-
ploying the data partitioning algorithm. Finally, we present numerical results demon-
strating the efficiency of the distributed iterative partitioning algorithm. 

2   Distributed Functional Partitioning Algorithm (DFPA) 

The data partitioning problem that we are trying to solve can be formulated as 
follows: 

• Given 

─ A set of n independent units of computation each of equal size (i.e., each 
requiring the same amount of work); 

─ A set of p (p<n) processors P1, P2, ..., Pp, whose speeds of processing x units, 
si=si(x), can be obtained by measuring the execution time, ti(x), of a computa-
tional kernel, si(x)=x/ti(x), 

─ ε, a required relative accuracy of the solution; 
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• Partition the set of computation units into p subsets so that  

 There is one-to-one mapping between the partitions and the proces-
sors, and 

 
1 ,

( ) ( )
( )

( )max i i j j

i j p i i

t n t n

t n
ε

≤ ≤

−
≤

, where ni is the number of computation units 

allocated to processor Pi (1≤i≤p). 

Thus, the problem we study is to balance the load of heterogeneous processors with a 
given accuracy. The fundamental assumption, which makes efficient solution of this 
problem particularly difficult, is that the speeds of the processors are not known a 
priori. Therefore, if a partitioning algorithm needs the speed of processing of a given 
number of computation units by one or the other processor, it has to execute the 
corresponding number of units on this processor. Our solution to this problem is the 
following distributed data partitioning algorithm.    

Distributed Functional Partitioning Algorithm (DFPA): The inputs to the algorithm 
are  

• n, the number of computation units; 

• p (p<n) processors P1, P2, ..., Pp; 

• ε, the termination criterion.  

The output d is an integer array of size p, the i-th element of which is the number  
of computation units allocated to processor i. The algorithm can be summarized as 
follows: 

• Initialization: 

─ All the p processors execute n/p computation units in parallel; 

─ The execution times are gathered on processor P1, 
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 then the even distribution of computations solves 

the problem and the algorithm stops; 

─ Otherwise, processor P1 calculates the absolute speeds of the processors, 
si(n/p)=(n/p)/ti for pi ≤≤1 and builds the first approximation of their FPMs in 

the form of constant models, )/()( pnsxs ii = , as illustrated in Figure 2. 

• Iterating: At each step,  

─ Using the data partitioning algorithm [3], processor P1 calculates  a new distri-

bution of computation units, ),,( 1 pdd … , which will be optimal for the current 

approximations of the FPMs, and then sends a message to each processor Pi 
informing the latter of its new allocation of computation units, di ( pi ≤≤1 ); 
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Fig. 2. Steps of the distributed functional partitioning algorithm (DFPA) illustrated using four 
heterogeneous processors. The dotted curves are real-life speed functions. 
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─ Each processor Pi  then executes di computation units in parallel with the other 
processors, pi ≤≤1 ; 

─ The execution times are gathered on processor P1, 
))(,),((),,( 111 ppp dtdttt …… ← ; 

─ If ε≤⎟⎟
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max , then the current distribution of computation units, 

),,( 1 pdd … , solves the problem and the algorithm stops; 

─ Otherwise, processor P1 calculates the absolute speeds, which the processors 

demonstrated for this distribution of computation units, 
i

i
ii t

d
ds =)(  ( pi ≤≤1 ), 

and uses these newly obtained points of the FPMs of processors Pi, 

))(,( iii dsd , to build their more accurate piecewise linear approximations (as 

illustrated in Figure 2). Namely, let ( ) ( )
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be the experimentally obtained points of ( )is x  used to build its current piece-

wise linear approximation, then 
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─ Then, the algorithm proceeds to the next step.  

Proposition. Given the full FPMs of the processors P1, P2, ..., Pp satisfy the assump-
tions about their shape stated in [3], the DFPA algorithm always converges. 

Space limitations do not allow us to give the full formal proof of this proposition. In 
brief, its main points are as follows. First of all, by construction, the piecewise linear 
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approximations of the full FPMs used in the algorithm will satisfy the same assump-
tions about their shape as the full FPMs themselves. Therefore, at each iteration step, 
application of algorithm [3] to the set of approximate FPMs will be successful and 
return the optimal solution for these approximate FPMs. Second, each next iteration 
step of the algorithm results in more accurate approximation of the segments of the 
full FPMs that contain the points of the optimal solution. Therefore, after a number of 
iterations, the approximations of the full FPMs will become accurate enough in order 
algorithm [3] to return a solution sufficiently close to the optimal one. 

Figure 2 illustrates the operation of the DFPA algorithm using an example with 
four heterogeneous processors (P1,P2,P3,P4). 

3   Experimental Results 

We use a small heterogeneous local network of 16 different Linux processors (hcl01-
hcl16) for the experiments. The specifications of the network are available at the URL 
http://hcl.ucd.ie/Hardware/Cluster+Specifications. The network is based on 2 Gbit 
Ethernet with a switch enabling parallel communications between the computers. The 
software used is MPICH-1.2.5 and ATLAS [8], which provides an optimized BLAS 
library.  

Figure 3(a) shows the parallel matrix multiplication application. It implements 
matrix operation C=A×B, multiplying matrix A and matrix B, where A, B, and C are 
dense square matrices of size n×n matrix elements on a network of p heterogeneous 
processors. We use a 1D processor arrangement of size 3 for illustration purposes. 
Each element is a square matrix block of size b×b (the value of b used is 16). The 
matrices A and C must be horizontally sliced such that the height of the slice is 
 

 
(a) 

 
(b) 

Fig. 3. (a) Matrix operation C=A×B on a network of three heterogeneous processors. Matrices A 
and C are horizontally sliced such that the height of the slice (nb) is proportional to the speed of 
the processor. (b) The computational kernel (shown here for processor 2 for example) performs 
a matrix update of Ab of size nb×1 and Bb of size 1×n to give a dense matrix Cb of size nb×n. 
The matrix elements represent b×b matrix blocks. 
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proportional to the speed of the processor owning the slice. All the processors contain 
all the elements of matrix B. We assume that only one process is configured to 
execute on a processor. We purposely choose an application with no communications 
because the goal of the experiments is not to show how to multiply matrices in 
parallel but to demonstrate the practical speed of convergence of the distributed 
partitioning algorithm. The results will not differ significantly for more complicated 
algorithms involving communications. 

For this application, the core computational kernel performs a matrix update of a 
matrix Cb of size nb×n using Ab of size nb×1 and Bb of size 1×n as shown in Figure 
3(b). Each element is a square matrix block of size b×b. The size of the problem is 
represented by two parameters, nb and n. The total number of matrix elements stored 
on each processor will be (2×nb×n+n×n). We use a combined computation unit, which 
is made up of one addition and one multiplication, to express the volume of computa-
tion. If n is large enough, the total number of computation units needed to solve this 
problem will be approximately equal to nb×n (namely, multiplications of two b×b 
matrices). Therefore, the absolute speed of the processor exposed by the application 
when solving the problem of size (nb, n) can be calculated as nb×n divided by the 
execution time of the matrix update. This gives us a function, f: N2 → R+, mapping 
problem sizes to speeds of the processor. The FPM of the processor is obtained by 
continuous extension of function f: N2 → R+ to function g: R+

2 → R+ (f(n,m)=g(n,m) 
for any (n,m) from N2). Figure 4(a) depicts this function for one of the processors, 
hcl11, used in experiments. Figure 4(b) shows the relative speed of two processors, 
hcl09 and hcl02, calculated as the ratio of their absolute speeds. One can see that the 
relative speed varies significantly depending on the value of variables x and y (the 
variables represent nb and n).  

The heterogeneity of the network due to the heterogeneity of the processors is cal-
culated as the ratio of the absolute speed of the fastest processor to the absolute speed 
of the slowest processor. For example, consider the benchmark code of a local 
DGEMM update of two matrices 2560×16 and 16×2560, the absolute speeds of the 
processors hcl01-hcl16 in million flop/s performing this update are {7696, 5196, 
7852, 14418, 8000, 8173, 7288, 7396, 9037, 8987, 13661, 14194, 11182, 14410, 
12008, 15257}. As one can see, hcl16 is the fastest processor and hcl02 is the slowest 
processor. The heterogeneity is therefore 3.  

We compare the efficiency of the DFPA-based matrix multiplication application 
with the application based on the Full-Functional-Model Partitioning Algorithm 
(FFMPA). The difference between these applications is that the FFMPA-based one 
uses pre-built full FPMs of the processors for partitioning the matrices. More specifi-
cally, it uses the piecewise linear approximation of the full FPMs obtained with the 
GBBP procedure [7], which employs the same computational kernel as the DFPA-
based application. Unlike the FFMPA-based application, the DFPA-based application 
does not need the FPMs of the processors as input. In all our experiments, the FFMPA 
returned the same data distribution as the DFPA. 

Figure 5 shows the execution times of the sequential application and the parallel 
applications employing the FFPMA and DFPA and solving the same matrix multipli-
cation problem. The sequential application uses optimized BLAS library (ATLAS) 
and is executed on the fastest processor (hcl09). The execution of the parallel matrix 
multiplication application consists of two parts. Firstly, all the processors execute the 
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(a) 

 
(b) 

Fig. 4. (a) The absolute speed of a processor ‘hcl11’ as a function of the size of the computa-
tional task of updating a dense x×y matrix. (b) The relative speed of two processors (‘hcl09’, 
‘hcl02’) calculated as the ratio of their absolute speeds. 

 

Fig. 5. Execution times of sequential and parallel applications with FFPMA and DFPA solving 
the same matrix multiplication problem 
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DFPA/FFPMA data partitioning algorithm to partition the matrices and then they 
perform the parallel matrix multiplication itself. For problem sizes (n>5120), the 
sequential application fails due to the problem size exceeding the memory limit of the 
processor. One can conclude that the parallel applications outperform the sequential 
application. 

Table 1. Execution times of the parallel matrix multiplication application employing FFPMA 
and DFPA 

Size of the 
matrix 

(n) 

Number of 
iterations of 

DFPA 

DFPA 
execution 
time (sec) 

Execution 
time using 
DFPA (sec) 

Execution 
time using 

FFPMA (sec) 

1024 2 0.06 0.2 0.2 
2048 2 0.09 2.2 1.9 
3072 2 0.3 9.9 8.5 
4096 5 2 28 25.3 
5120 5 3 53.3 50.5 
6144 5 3 84.4 80.7 
7168 5 4 137.7 132.4 
8192 5 5 204.3 199.7 
9216 5 7 295.3 287.6 

10240 5 11 405.9 393.3 

 
Table 1 shows the execution times of the parallel matrix multiplication applications 

employing the FFPMA and the DFPA. The second column shows the number of itera-
tions of DFPA. The third column shows the execution time of the DFPA. The fourth 
column shows the total execution time of the DFPA-based application. This includes 
the execution time of the DFPA. The fifth column shows the total execution time of 
the parallel application employing the FFPMA algorithm, which obviously does not 
include the time of construction of the FPMs of the processors. 

One can see that the execution times of the parallel applications employing the 
FFPMA and DFPA differ only marginally. The difference is the execution time of the 
DFPA algorithm shown in the third column of Table 1. Most of it is spent in the par-
tial estimation of the FPMs of the processors. It should be noted that the execution 
time of the parallel application employing the FFPMA does not take into considera-
tion the time taken to build the full FPMs of the processors.  

The execution time taken to build the full FPMs of the processors, which are used 
in the FFPMA-based application, is 425 seconds. The range of problem sizes, (nb, n), 
used for building them satisfy the inequalities, nb≤10240, n≤10240, and nb≤n. One can 
see that the execution time is significant compared to the DFPA execution times 
shown in the third column. The maximum number of experimental points used to 
build the full FPMs for this range is 60. This is compared to a maximum of 6 using 
DFPA (number of iterations plus one shown in column 2 of Table 1).  

Thus, we can conclude that the DFPA converges very fast and its execution time is 
several orders of magnitude less than the execution time of the application. It is also 
efficient in terms of the number of experimental points. 



 Distributed Data Partitioning for Heterogeneous Processors 101 

This publication has emanated from research conducted with the financial support 
of Science Foundation Ireland under Grant Number 08/IN.1/I2054. 

References 

[1] Kalinov, A., Lastovetsky, A.: Heterogeneous Distribution of Computations Solving Linear 
Algebra Problems on Networks of Heterogeneous Computers. Journal of Parallel and Dis-
tributed Computing 61(4), 520–535 (2001) 

[2] Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix Multiplication on Heterogene-
ous Platforms. IEEE Transactions on Parallel and Distributed Systems 12(10), 1033–1051 
(2001) 

[3] Lastovetsky, A., Reddy, R.: Data Partitioning with a Functional Performance Model of 
Heterogeneous Processors. International Journal of High Performance Computing Applica-
tions 21(1), 76–90 (2007) 

[4] Lastovetsky, A., Reddy, R.: Data Partitioning for Multiprocessors with Memory Heteroge-
neity and Memory Constraints. Scientific Programming 13(2), 93–112 (2005) 

[5] Lastovetsky, A., Reddy, R.: Data Partitioning with a Realistic Performance Model of Net-
works of Heterogeneous Computers. In: 17th International Parallel and Distributed Proc-
essing Symposium. IEEE Computer Society, Los Alamitos (2004) 

[6] Lastovetsky, A., Reddy, R.: Data distribution for dense factorization on computers with 
memory heterogeneity. Parallel Computing 33(12), 757–779 (2007) 

[7] Lastovetsky, A., Reddy, R., Higgins, R.: Building the Functional Performance Model of a 
Processor. In: 21st Annual ACM Symposium on Applied Computing, pp. 746–753. ACM 
Press, New York (2006) 

[8] Automatically Tuned Linear Algebra Software (ATLAS), 
http://math-atlas.sourceforge.net/ 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


