
H.X. Lin et al. (Eds): Euro-Par 2009 Workshops, LNCS 6043, pp. 91–101, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Distributed Data Partitioning for Heterogeneous
Processors Based on Partial Estimation of Their

Functional Performance Models

Alexey Lastovetsky and Ravi Reddy

School of Computer Science and Informatics, University College Dublin,
Belfield Dublin 4, Ireland

{Alexey.Lastovetsky,Manumachu.Reddy}@ucd.ie

Abstract. The paper presents a new data partitioning algorithm for parallel
computing on heterogeneous processors. Like traditional functional partitioning
algorithms, the algorithm assumes that the speed of the processors is character-
ized by speed functions rather than speed constants. Unlike the traditional algo-
rithms, it does not assume the speed functions to be given. Instead, it uses a
computational kernel to estimate the speed functions of the processors for dif-
ferent problem sizes during its execution. This makes the algorithm distributed
as its execution involves all the heterogeneous processors. The algorithm does
not construct the complete speed function for each processor but rather builds
and uses their partial estimates sufficient for optimal data distribution with a
given accuracy. The low execution cost of this algorithm makes it ideal for em-
ployment in self-adaptable applications. Experiments with a parallel matrix
multiplication application employing this algorithm are performed on a local
heterogeneous computational cluster. The results show that the algorithm con-
verges very fast and that its execution time is several orders of magnitude less
than the total execution time of the application.

Keywords: distributed algorithms, data partitioning algorithms, functional per-
formance models, heterogeneous platforms.

1 Introduction

Conventional data partitioning algorithms for parallel computing on heterogeneous
processors [1-2] are based on a performance model, which represents the speed of a
processor by a constant positive number, and computations are distributed amongst
the processors such that their volume is proportional to this speed of the processor.
The constant characterizing the performance of the processor is typically its relative
speed demonstrated during the execution of a serial benchmark code solving locally
the core computational task of some given size.

The traditional constant performance models (CPMs) proved to be accurate enough
for heterogeneous distributed memory systems if partitioning of the problem results in
a set of computational tasks that fit into the main memory of the assigned processors.
But these models become less accurate in the presence of paging. The functional

92 A. Lastovetsky and R. Reddy

Size of the problem

A
b

so
lu

te
 s

p
ee

d

)(xs

x

)(1 xs

)(2 xs

)(3 xs

)(4 xs

1x 2x 3x 4x

)()()()(42

4

31

3

24

2

13

1

xs

x

xs

x

xs

x

xs

x
===

))(,(131 xsx
))(,(242 xsx

))(,(313 xsx
))(,(424 xsx

Fig. 1. Optimal data distribution showing the geometric proportionality of the number of
chunks to the speed of the processor

performance model (FPM) of heterogeneous processors proposed and analyzed in [3]
has proven to be more realistic than the CPMs because it integrates many important
features of heterogeneous processors such as the processor heterogeneity, the hetero-
geneity of memory structure, and the effects of paging. The algorithms employing it
therefore distribute the computations across the heterogeneous processors more accu-
rately than the algorithms employing the CPMs. Under this model, the speed of each
processor is represented by a continuous function of the size of the problem. This
model is application centric because, generally speaking, different applications will
characterize the speed of the processor by different functions.

The problem of distributing independent chunks of computations over a
unidimensional arrangement of heterogeneous processors using this FPM has been
studied in [3]. It can be formulated as follows: Given n independent chunks of
computations, each of equal size (i.e., each requiring the same amount of work), how
can we assign these chunks to p (p<n) physical processors P1, P2, ..., Pp with their
respective full FPMs represented by speed functions s1(x), s2(x), ..., sp(x) so that the
workload is best balanced? An algorithm solving this problem with a complexity of
O(p×log2n) is also proposed in [3]. This and other similar algorithms, which relax the
restriction of bounded heterogeneity of the processors [4] and which are not sensitive
to the shape of speed functions [5], are based on the observation that the optimal data
distribution points (x1, s1(x1)), (x2, s2(x2)), …, (xp, sp(xp)) lie on a straight line passing
through the origin of the coordinate system and are the intersecting points of this line
with the graphs of the speed functions of the processors. This is shown in Figure 1.
These algorithms are used as building blocks in algorithms solving more complicated
linear algebra kernels such as the dense factorizations [6].

The cost of experimentally building the full FPM of a processor, i.e., the FPM for
the full range of problem sizes, is very high. This is due to several reasons. To start
with, the accuracy of the FPM depends on the number of experimental points used to
build it. The larger the number, the more accurate the FPM is. However, there is a cost

 Distributed Data Partitioning for Heterogeneous Processors 93

associated with obtaining an experimental data point, which requires execution of a
computational kernel for a specified problem size. This cost is especially high for prob-
lem sizes in the region of paging. Also, the number of experimental points required to
build the full FPM increases remarkably as the number of parameters used to represent
the problem size increases, as shown in the experimental results in this paper.

The problem of minimization of the cost of experimentally building the full FPM
of the processor has been studied recently proposing a relatively efficient sub-optimal
solution [7]. However, even if an ideal optimal procedure becomes available to build
approximations of the FPM of heterogeneous processors, the fact remains that the cost
of building the full FPM is too high to forbid the use of data partitioning algorithms,
employing the full FPM, in self-adaptable applications.

The paper presents a new algorithm of data partitioning for parallel computing on
heterogeneous processors. Like traditional functional partitioning algorithms, the algo-
rithm assumes that the speed of the processors is characterized by speed functions
rather than speed constants. Unlike the traditional algorithms, it does not assume the
speed functions to be given. Instead, it uses a computational kernel to estimate the
speed functions of the processors for different problem sizes during its execution. This
makes the algorithm distributed as its execution involves all the heterogeneous proces-
sors. The algorithm does not construct the complete speed function for each processor
but rather builds and uses their partial estimates sufficient for optimal data distribution.
The proposed algorithm does not return a partitioning perfectly balancing the load of
the processors but a partitioning balancing their load with a given accuracy.

Using experimental results for parallel matrix multiplication on a local heterogene-
ous computational cluster, we demonstrate that the execution time of the proposed
distributed partitioning algorithm is several orders of magnitude less than the total
execution time of the parallel application, thereby making it very suitable for em-
ployment in self-adaptable applications.

The rest of the paper is organized as follows. In Section 2, we present the contribu-
tion of this paper, which is the distributed iterative partitioning algorithm. This is
followed by experimental results on a local heterogeneous computing cluster in Sec-
tion 3. For the experiments, we use a parallel matrix multiplication application em-
ploying the data partitioning algorithm. Finally, we present numerical results demon-
strating the efficiency of the distributed iterative partitioning algorithm.

2 Distributed Functional Partitioning Algorithm (DFPA)

The data partitioning problem that we are trying to solve can be formulated as
follows:

• Given

─ A set of n independent units of computation each of equal size (i.e., each
requiring the same amount of work);

─ A set of p (p<n) processors P1, P2, ..., Pp, whose speeds of processing x units,
si=si(x), can be obtained by measuring the execution time, ti(x), of a computa-
tional kernel, si(x)=x/ti(x),

─ ε, a required relative accuracy of the solution;

94 A. Lastovetsky and R. Reddy

• Partition the set of computation units into p subsets so that

 There is one-to-one mapping between the partitions and the proces-
sors, and

1 ,

() ()
()

()max i i j j

i j p i i

t n t n

t n
ε

≤ ≤

−
≤

, where ni is the number of computation units

allocated to processor Pi (1≤i≤p).

Thus, the problem we study is to balance the load of heterogeneous processors with a
given accuracy. The fundamental assumption, which makes efficient solution of this
problem particularly difficult, is that the speeds of the processors are not known a
priori. Therefore, if a partitioning algorithm needs the speed of processing of a given
number of computation units by one or the other processor, it has to execute the
corresponding number of units on this processor. Our solution to this problem is the
following distributed data partitioning algorithm.

Distributed Functional Partitioning Algorithm (DFPA): The inputs to the algorithm
are

• n, the number of computation units;

• p (p<n) processors P1, P2, ..., Pp;

• ε, the termination criterion.

The output d is an integer array of size p, the i-th element of which is the number
of computation units allocated to processor i. The algorithm can be summarized as
follows:

• Initialization:

─ All the p processors execute n/p computation units in parallel;

─ The execution times are gathered on processor P1,
))/(,),/((),,(11 pntpnttt pp …… ← ;

─ If
1 ,

(/) (/
max

(/)
i j

i j p
i

t n p t n p

t n p
ε

≤ ≤

⎛ ⎞−
≤⎜ ⎟⎜ ⎟

⎝ ⎠

 then the even distribution of computations solves

the problem and the algorithm stops;

─ Otherwise, processor P1 calculates the absolute speeds of the processors,
si(n/p)=(n/p)/ti for pi ≤≤1 and builds the first approximation of their FPMs in

the form of constant models,)/()(pnsxs ii = , as illustrated in Figure 2.

• Iterating: At each step,

─ Using the data partitioning algorithm [3], processor P1 calculates a new distri-

bution of computation units,),,(1 pdd … , which will be optimal for the current

approximations of the FPMs, and then sends a message to each processor Pi
informing the latter of its new allocation of computation units, di (pi ≤≤1);

 Distributed Data Partitioning for Heterogeneous Processors 95

(a)

(b)

(c)

(d)

Fig. 2. Steps of the distributed functional partitioning algorithm (DFPA) illustrated using four
heterogeneous processors. The dotted curves are real-life speed functions.

96 A. Lastovetsky and R. Reddy

─ Each processor Pi then executes di computation units in parallel with the other
processors, pi ≤≤1 ;

─ The execution times are gathered on processor P1,
))(,),((),,(111 ppp dtdttt …… ← ;

─ If ε≤⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
≤≤

i

ji

pji t

tt
,1

max , then the current distribution of computation units,

),,(1 pdd … , solves the problem and the algorithm stops;

─ Otherwise, processor P1 calculates the absolute speeds, which the processors

demonstrated for this distribution of computation units,
i

i
ii t

d
ds =)((pi ≤≤1),

and uses these newly obtained points of the FPMs of processors Pi,

))(,(iii dsd , to build their more accurate piecewise linear approximations (as

illustrated in Figure 2). Namely, let () ()
1{(, ())}j j m

i i i jd s d = ((1) ()m
i id d< <…)

be the experimentally obtained points of ()is x used to build its current piece-

wise linear approximation, then

o If (1)
i id d< , then the line segment

(1) (1) (1)(0, ()) (, ())i i i i is d d s d→ of this approximation will be re-

placed by two connected line segments

()(0, ()) (, ())i i i i is d d s d→ and (1) (1)(, ()) (, ())i i i i i id s d d s d→ ;

o If ()m
i id d> , then the line () () ()(, ()) (, ())m m m

i i i i id s d s d→ ∞ of

this approximation will be replaced by the line segment
() ()(, ()) (, ())m m
i i i i i id s d d s d→ and the line

(, ()) (, ())i i i i id s d s d→ ∞ ;

o If () (1)k k
i i id d d +< < , the line segment

() () (1) (1)(, ()) (, ())k k k k
i i i i i id s d d s d+ +→ will be replaced by two

connected line segments () ()(, ()) (, ())k k
i i i i i id s d d s d→ and

(1) (1)(, ()) (, ())k k
i i i i i id s d d s d+ +→ .

─ Then, the algorithm proceeds to the next step.

Proposition. Given the full FPMs of the processors P1, P2, ..., Pp satisfy the assump-
tions about their shape stated in [3], the DFPA algorithm always converges.

Space limitations do not allow us to give the full formal proof of this proposition. In
brief, its main points are as follows. First of all, by construction, the piecewise linear

 Distributed Data Partitioning for Heterogeneous Processors 97

approximations of the full FPMs used in the algorithm will satisfy the same assump-
tions about their shape as the full FPMs themselves. Therefore, at each iteration step,
application of algorithm [3] to the set of approximate FPMs will be successful and
return the optimal solution for these approximate FPMs. Second, each next iteration
step of the algorithm results in more accurate approximation of the segments of the
full FPMs that contain the points of the optimal solution. Therefore, after a number of
iterations, the approximations of the full FPMs will become accurate enough in order
algorithm [3] to return a solution sufficiently close to the optimal one.

Figure 2 illustrates the operation of the DFPA algorithm using an example with
four heterogeneous processors (P1,P2,P3,P4).

3 Experimental Results

We use a small heterogeneous local network of 16 different Linux processors (hcl01-
hcl16) for the experiments. The specifications of the network are available at the URL
http://hcl.ucd.ie/Hardware/Cluster+Specifications. The network is based on 2 Gbit
Ethernet with a switch enabling parallel communications between the computers. The
software used is MPICH-1.2.5 and ATLAS [8], which provides an optimized BLAS
library.

Figure 3(a) shows the parallel matrix multiplication application. It implements
matrix operation C=A×B, multiplying matrix A and matrix B, where A, B, and C are
dense square matrices of size n×n matrix elements on a network of p heterogeneous
processors. We use a 1D processor arrangement of size 3 for illustration purposes.
Each element is a square matrix block of size b×b (the value of b used is 16). The
matrices A and C must be horizontally sliced such that the height of the slice is

(a)

(b)

Fig. 3. (a) Matrix operation C=A×B on a network of three heterogeneous processors. Matrices A
and C are horizontally sliced such that the height of the slice (nb) is proportional to the speed of
the processor. (b) The computational kernel (shown here for processor 2 for example) performs
a matrix update of Ab of size nb×1 and Bb of size 1×n to give a dense matrix Cb of size nb×n.
The matrix elements represent b×b matrix blocks.

98 A. Lastovetsky and R. Reddy

proportional to the speed of the processor owning the slice. All the processors contain
all the elements of matrix B. We assume that only one process is configured to
execute on a processor. We purposely choose an application with no communications
because the goal of the experiments is not to show how to multiply matrices in
parallel but to demonstrate the practical speed of convergence of the distributed
partitioning algorithm. The results will not differ significantly for more complicated
algorithms involving communications.

For this application, the core computational kernel performs a matrix update of a
matrix Cb of size nb×n using Ab of size nb×1 and Bb of size 1×n as shown in Figure
3(b). Each element is a square matrix block of size b×b. The size of the problem is
represented by two parameters, nb and n. The total number of matrix elements stored
on each processor will be (2×nb×n+n×n). We use a combined computation unit, which
is made up of one addition and one multiplication, to express the volume of computa-
tion. If n is large enough, the total number of computation units needed to solve this
problem will be approximately equal to nb×n (namely, multiplications of two b×b
matrices). Therefore, the absolute speed of the processor exposed by the application
when solving the problem of size (nb, n) can be calculated as nb×n divided by the
execution time of the matrix update. This gives us a function, f: N2 → R+, mapping
problem sizes to speeds of the processor. The FPM of the processor is obtained by
continuous extension of function f: N2 → R+ to function g: R+

2 → R+ (f(n,m)=g(n,m)
for any (n,m) from N2). Figure 4(a) depicts this function for one of the processors,
hcl11, used in experiments. Figure 4(b) shows the relative speed of two processors,
hcl09 and hcl02, calculated as the ratio of their absolute speeds. One can see that the
relative speed varies significantly depending on the value of variables x and y (the
variables represent nb and n).

The heterogeneity of the network due to the heterogeneity of the processors is cal-
culated as the ratio of the absolute speed of the fastest processor to the absolute speed
of the slowest processor. For example, consider the benchmark code of a local
DGEMM update of two matrices 2560×16 and 16×2560, the absolute speeds of the
processors hcl01-hcl16 in million flop/s performing this update are {7696, 5196,
7852, 14418, 8000, 8173, 7288, 7396, 9037, 8987, 13661, 14194, 11182, 14410,
12008, 15257}. As one can see, hcl16 is the fastest processor and hcl02 is the slowest
processor. The heterogeneity is therefore 3.

We compare the efficiency of the DFPA-based matrix multiplication application
with the application based on the Full-Functional-Model Partitioning Algorithm
(FFMPA). The difference between these applications is that the FFMPA-based one
uses pre-built full FPMs of the processors for partitioning the matrices. More specifi-
cally, it uses the piecewise linear approximation of the full FPMs obtained with the
GBBP procedure [7], which employs the same computational kernel as the DFPA-
based application. Unlike the FFMPA-based application, the DFPA-based application
does not need the FPMs of the processors as input. In all our experiments, the FFMPA
returned the same data distribution as the DFPA.

Figure 5 shows the execution times of the sequential application and the parallel
applications employing the FFPMA and DFPA and solving the same matrix multipli-
cation problem. The sequential application uses optimized BLAS library (ATLAS)
and is executed on the fastest processor (hcl09). The execution of the parallel matrix
multiplication application consists of two parts. Firstly, all the processors execute the

 Distributed Data Partitioning for Heterogeneous Processors 99

(a)

(b)

Fig. 4. (a) The absolute speed of a processor ‘hcl11’ as a function of the size of the computa-
tional task of updating a dense x×y matrix. (b) The relative speed of two processors (‘hcl09’,
‘hcl02’) calculated as the ratio of their absolute speeds.

Fig. 5. Execution times of sequential and parallel applications with FFPMA and DFPA solving
the same matrix multiplication problem

100 A. Lastovetsky and R. Reddy

DFPA/FFPMA data partitioning algorithm to partition the matrices and then they
perform the parallel matrix multiplication itself. For problem sizes (n>5120), the
sequential application fails due to the problem size exceeding the memory limit of the
processor. One can conclude that the parallel applications outperform the sequential
application.

Table 1. Execution times of the parallel matrix multiplication application employing FFPMA
and DFPA

Size of the
matrix

(n)

Number of
iterations of

DFPA

DFPA
execution
time (sec)

Execution
time using
DFPA (sec)

Execution
time using

FFPMA (sec)

1024 2 0.06 0.2 0.2
2048 2 0.09 2.2 1.9
3072 2 0.3 9.9 8.5
4096 5 2 28 25.3
5120 5 3 53.3 50.5
6144 5 3 84.4 80.7
7168 5 4 137.7 132.4
8192 5 5 204.3 199.7
9216 5 7 295.3 287.6

10240 5 11 405.9 393.3

Table 1 shows the execution times of the parallel matrix multiplication applications

employing the FFPMA and the DFPA. The second column shows the number of itera-
tions of DFPA. The third column shows the execution time of the DFPA. The fourth
column shows the total execution time of the DFPA-based application. This includes
the execution time of the DFPA. The fifth column shows the total execution time of
the parallel application employing the FFPMA algorithm, which obviously does not
include the time of construction of the FPMs of the processors.

One can see that the execution times of the parallel applications employing the
FFPMA and DFPA differ only marginally. The difference is the execution time of the
DFPA algorithm shown in the third column of Table 1. Most of it is spent in the par-
tial estimation of the FPMs of the processors. It should be noted that the execution
time of the parallel application employing the FFPMA does not take into considera-
tion the time taken to build the full FPMs of the processors.

The execution time taken to build the full FPMs of the processors, which are used
in the FFPMA-based application, is 425 seconds. The range of problem sizes, (nb, n),
used for building them satisfy the inequalities, nb≤10240, n≤10240, and nb≤n. One can
see that the execution time is significant compared to the DFPA execution times
shown in the third column. The maximum number of experimental points used to
build the full FPMs for this range is 60. This is compared to a maximum of 6 using
DFPA (number of iterations plus one shown in column 2 of Table 1).

Thus, we can conclude that the DFPA converges very fast and its execution time is
several orders of magnitude less than the execution time of the application. It is also
efficient in terms of the number of experimental points.

 Distributed Data Partitioning for Heterogeneous Processors 101

This publication has emanated from research conducted with the financial support
of Science Foundation Ireland under Grant Number 08/IN.1/I2054.

References

[1] Kalinov, A., Lastovetsky, A.: Heterogeneous Distribution of Computations Solving Linear
Algebra Problems on Networks of Heterogeneous Computers. Journal of Parallel and Dis-
tributed Computing 61(4), 520–535 (2001)

[2] Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix Multiplication on Heterogene-
ous Platforms. IEEE Transactions on Parallel and Distributed Systems 12(10), 1033–1051
(2001)

[3] Lastovetsky, A., Reddy, R.: Data Partitioning with a Functional Performance Model of
Heterogeneous Processors. International Journal of High Performance Computing Applica-
tions 21(1), 76–90 (2007)

[4] Lastovetsky, A., Reddy, R.: Data Partitioning for Multiprocessors with Memory Heteroge-
neity and Memory Constraints. Scientific Programming 13(2), 93–112 (2005)

[5] Lastovetsky, A., Reddy, R.: Data Partitioning with a Realistic Performance Model of Net-
works of Heterogeneous Computers. In: 17th International Parallel and Distributed Proc-
essing Symposium. IEEE Computer Society, Los Alamitos (2004)

[6] Lastovetsky, A., Reddy, R.: Data distribution for dense factorization on computers with
memory heterogeneity. Parallel Computing 33(12), 757–779 (2007)

[7] Lastovetsky, A., Reddy, R., Higgins, R.: Building the Functional Performance Model of a
Processor. In: 21st Annual ACM Symposium on Applied Computing, pp. 746–753. ACM
Press, New York (2006)

[8] Automatically Tuned Linear Algebra Software (ATLAS),
http://math-atlas.sourceforge.net/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

