
Abstract
start_node_0

client_1

VA[0]

size=8MB

VA[1]

size=8MB

VB[0]

size=8MB

VB[1]

size=8MB

T1_2

flop=36.56MF

T1_3

flop=36.56MF

VC[0]

size=8MB

T2_4

flop=105.60MF

T3_6

flop=23.33MF

VC[1]

size=8MB

T3_7

flop=23.330MF

VC[0]

size=8MB

client_8

VC[1]

size=8MB

VD

size=8MB

client_5

ep_0

ep_1

end_node_9

Michele Guidolin, Alexey Lastovetsky

School of Computer Science and Informatics

University College Dublin

Belfield, Dublin 4, Ireland

{michele.guidolin, alexey.lastovetsky }@ucd.ie

gs smart map("ex_map", ADL,"example",size, 1){

grpc call async(T1_hnd,&id1,VA0,VB0,VC0);

grpc call async(T1_hnd,&id2,VA1,VB1,VC1);

grpc_wait_all();

grpc call(T2_hnd,&id3,VC0,VC1,VD);

if(F1(VD)<0){

grpc call async(T3_hnd,&id1,VC0,VD,VC0);

grpc call async(T3_hnd,&id2,VC1,VD,VC1);

grpc_wait_all();

}

}

 The Algorithm Definition Language (ADL), and the respective

compiler, allows the application programmer to easily describe all kinds of

algorithms for grid applications and generate the corresponding task graph.

In the situation where the output of a remote task call can change the flow

of execution, the application programmer can know the best way to

generate the task graph.

 The main goal of ADL is to give a powerful tool to

 the application programmer that can help him/her to

 implement a SmartGridSolve application with the best

 mapping and execution possible.

Client

Mapping

caching

server

comm

 SmartGridSolve, in order to map a group of tasks, needs to build a task

graph of the current task calls present in the grid application.

SmartGridSolve introduces a new API that automatically generates the task

graph. This API works by iterating twice through the application code

that contains the task calls to be mapped collectively. On the first iteration

of the code each task call is discovered but not executed, then when the last

call in the group of tasks is reached the task graph is generated. On the

second iteration of the code, after producing the mapping by using the new

task graph, the code is normally executed and the task calls are performed.

Task-Graph

SmartGridSolve

Algorithm Definition Language

 SmartGridSolve [1], previously known as SmartNetSolve [2], is an

extension of GridSolve [3] that supports collective mapping of a group of

tasks instead of the original single task map model. In addition the traditio-

nal client-server communication model of GridRPC [4] has been extended

so that the group of tasks can be collectively mapped on to a network topo-

logy which is fully connected. This is a network topology where all servers

can communicate directly or the server can cache their outputs locally.

 The collective mapping of tasks, with the possibility to use a fully

connected network, helps SmartGridSolve find an optimal mapping solution

that can exploit fully a Grid environment.

1st Iteration: Discover

2nd Iteration: Execute

...

gs smart map("ex_map",auto){

grpc call async(T1_hnd,&id1,VA0,VB0,VC0);

grpc call async(T1_hnd,&id2,VA1,VB1,VC1);

grpc_wait_all();

grpc call(T2_hnd,&id3,VC0,VC1,VD);

if(F1(VD)<0){

grpc call async(T3_hnd,&id1,VC0,VD,VC0);

grpc call async(T3_hnd,&id2,VC1,VD,VC1);

grpc_wait_all();

}

}

...

 The language syntax is similar to the C language. It uses different

modules to define an algorithm and each module, to simplify further the

reading, is divided in well defined zones. A zone specifies a characteristic

of the algorithm. In ADL we reference an object that is used by a remote

task and can be moved anywhere on the Grid as an Identify Flying Object

(IFO). The data objects declaration is made in the IFO zone and it is

composed of the type, the number of dimensions and the list of IFO names.

In the example application the IFOs defined are vectors of double precision

numbers and their sizes depend on the value of the parameter "size".

 The component zone includes the declaration of the tasks used in the

algorithm. The ADL compiler, for each task, requires the number and type

of input/output arguments and the eventual computational complexity of the

task. All this information can be provided "ad hoc'' by the application

programmer or retrieved from a gsIDL file [5].

 The algorithm zone in the example ADL module describes the flow of

execution of the application. A remote task call is composed of two parts,

divided by a semicolon. In the first part there is the name of the task called

followed by an eventual list of parameters needed. In the second part there

is the list of IFOs used as task inputs, followed by an arrow symbol and the

list of output IFOs (e.g. VC). This task call syntax is made in a way that

easily highlights the parameters passed and the IFOs used as inputs and

outputs of a task.

 ADL interfaces the main application through the use of gs_smart_map

API. The first argument of the API is the same as the previous example.

The second argument, instead of the keyword auto, is the keyword ADL.

The final arguments match the parameters of the given ADL module.

SmartGridSolve is an extension of GridSolve that expands the

single task map and client-server model of GridRPC by

implementing server to server communication and the mapping of

a group of tasks. In order to accomplish this functionality

SmartGridSolve needs a task graph that highlights tasks'

execution order, communication volume and computation volume

for a given group of tasks. This work presents the Algorithm

Definition Language (ADL), a language that helps the

application programmer to easily specify a task graph for any

given algorithm. The language is modular, it has a well defined

structure and it's syntax is similar to the C language. This poster

paper introduces a trivial example of a SmartGridSolve application

and the use of ADL to build the relative task graph with an

overview of the language syntax.

 The task graph, a direct acyclic graph (DAG)

structure [1], highlights the order of tasks and their

synchronisation (whether they are executed in sequence

or parallel), the dependencies between tasks, the load of

data communication and the task computational volume.

 The rectangles in the graph represent remote tasks,

the diamonds represent the client computation and the

circles represent the data objects. The incoming arrows

of these circles indicate their source, whether it is the

client or another remote task and the outgoing arrows

indicate their destination. The dotted arrows highlight

the order of task calls and if the tasks are executed in

sequence or parallel. The values inside the circles and

rectangles are respectively the size of an object and the

computational complexity of a task.

 One advantage of this method is that the application programmer only

has to make minimal modifications to the original GridRPC code.

Unfortunately this approach has the restriction that a task graph is not

always generated for every kind of algorithm. There are different situations

where the automatic task graph generation will not work. A typical example

is when, in the code to be mapped, a conditional construct exists that checks

a value that cannot be known without executing a remote task call.

 The application programmer can choose to create the task graph from a

smaller block of code to avoid this problem, but the resulting group of tasks

to be mapped will generate a less optimal execution.

ADL:AnAlgorithmDenitionLanguage for SmartGridSolve

 We have presented in this paper the specifications of the ADL

language and its compiler. One of the goals of ADL is to overcome

the restriction that the automatic task builder exhibits on applications

where the flow of execution depends on task call outputs.

 We demonstrate that the ADL language overcomes this

limitation and permits the application programmer to use

SmartGridSolve, with an optimal mapping solution, for any kind of

GridRPC application. This work was supported by the Science

Foundation Ireland.

Conclusion

[1] T. Brady, M. Guidolin, and A. Lastovetsky. Experiments with SmartGridSolve: Achieving Higher Performance by Improving the GridRPC Model.
 In Proceedings of the 9th IEEE/ACM Int. Conf. on Grid Computing (Grid 2008), Tsukuba, Japan, 29 Sept. 01 Oct. 2008. IEEE Computer Society.
[2] T. Brady, E. Konstantinov, and A. Lastovetsky. SmartNetSolve: High Level Programming System for High Performance Grid Computing. In Proceedings
 of the 20th International Parallel and Distributed Processing Symposium (IPDPS 2006), Rhodes Island, Greece, 25-29 April 2006. IEEE Computer Society.
[3] A. YarKhan, K. Seymour, K. Sagi, Z. Shi, and J. Dongarra. Recent Developments in GridSolve. International Journal of High Performance Computing
 Applications, 20(1):131–142, 2006. Sage Science Press.
[4] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee, and H. Casanova. Overview of GridRPC: A Remote Procedure Call API for Grid Computing.
 In GRID ’02: Proceedings of the Third International Workshop on Grid Computing, pages 274–278, London, UK, 2002. Springer-Verlag.
[5] J. Dongarra, K. Seymour, and A. YarKhan. Users’ Guide to GridSolve, Version 0.15. University of Tennessee, Knoxville, TN, USA, 2006.

