J Supercomput
DOI 10.1007/s11227-014-1207-9

FuPerMod: a software tool for the optimization
of data-parallel applications on heterogeneous platforms

David Clarke - Ziming Zhong - Vladimir Rychkov -
Alexey Lastovetsky

© Springer Science+Business Media New York 2014

Abstract Optimization of data-parallel applications for modern HPC platforms
requires partitioning the computations between the heterogeneous computing devices
in proportion to their speed. Heterogeneous data partitioning algorithms are based on
computation performance models of the executing platforms. Their implementation
is not trivial as it requires: accurate and efficient benchmarking of computing devices,
which may share resources and/or execute different codes; appropriate interpolation
methods to predict performance; and advanced mathematical methods to solve the
data partitioning problem. In this paper, we present FuPerMod, a software tool that
addresses these implementation issues and automates the development of data parti-
tioning code in data-parallel applications for heterogeneous HPC platforms.

Keywords Heterogeneous computing - Data partitioning -
Computation performance models

1 Introduction

Many scientific applications implement data-parallel algorithms, originally designed
for homogeneous HPC platforms. The applications range from linear algebra routines
to computer simulations, such as computational fluid dynamics. Efficient execution of

This research is supported by Science Foundation Ireland (Grant 08/IN.1/12054).

D. Clarke - Z. Zhong - V. Rychkov (X)) - A. Lastovetsky
School of Computer Science and Informatics, University College Dublin, Dublin, Ireland
e-mail: vladimir.rychkov@ucd.ie

A. Lastovetsky
e-mail: alexey.lastovetsky @ucd.ie
URL: http://hcl.ucd.ie/project/fupermod

Published online: 20 May 2014 &\ Springer



D. Clarke et al.

such data-parallel applications on a modern heterogeneous HPC platform should bal-
ance the load of its computing devices, which means that the computational workload
has to be distributed in proportion to the speed of the devices. In this work, the target
platform is seen as a hierarchical heterogeneous distributed-memory system. There-
fore, we assume that the load balancing is achieved through data partitioning, a method
widely used for distributed-memory systems. State-of-the-art algorithms designed to
perform data partitioning are based on performance models of the executing plat-
form. This work addresses implementation issues of model-based data partitioning
algorithms in data-parallel applications for dedicated heterogeneous platforms.

Implementation of heterogeneous data partitioning algorithms based on computa-
tion performance models requires the construction of these models, which includes:
accurate and efficient performance measurement, implementation of interpolation
methods for realistic performance prediction, and formalization and solution of the
data partitioning problems. Depending on the application, the requirements on the
efficiency of the model-construction procedure may vary. If the application is repeat-
edly executed on the same stable platform, it can use the performance model con-
structed once in all runs. In this case, the use of exhaustive benchmarks to build a
very detailed and accurate computation performance model is justified. If the appli-
cation has to construct and use the model of the executing platform at runtime (adap-
tive application), only short measurements can be performed, whose inaccuracy has
to be compensated by advanced interpolation methods. In addition, modern mul-
ticore and hardware-accelerated platforms with tightly coupled computing devices
require special performance measurement techniques and computation performance
models to take into account the resource contention. To the best of our knowl-
edge, the software tool presented in this paper is the first attempt to address these
challenges.

Our software tool, called FuPerMod, helps develop model-construction code for any
data-parallel application. This code is guided by the accuracy and cost-effectiveness
requirements of the model. It supports two types of models: constant, representing
the performance of each computing device by a constant; and functional, using func-
tions for that representation. For data partitioning itself, FuPerMod provides careful
implementation of a wide range of data partitioning algorithms based on both con-
stant and functional computation performance models. The software tool supports a
wide range of heterogeneous platforms consisting of uniprocessors, multicores, and
hardware accelerators. It is extensible: new measurement techniques for new types
of hardware as well as new computation performance models and data partitioning
algorithms can be easily added.

The paper is organized as follows. In Sect. 2, we overview existing data partitioning
software. In Sect. 3, we discuss the main challenges in model-based optimization of
data-parallel applications for heterogeneous platforms. In Sect. 4, we present our
proposed software tool and demonstrate its use.

2 Existing data partitioning software

Most existing data partitioning software implements partitioning algorithms for
graphs, which are then applied to sparse matrices and meshes, the mathematical

@ Springer



Software tool for the optimization of data-parallel applications

objects widely used in scientific applications. Algorithms implemented in ParMetis [7],
SCOTCH [4], JOSTLE [12] reduce the number of edges between the target subdo-
mains, aiming to minimize the total communication cost of the parallel application.
They take into account the platform heterogeneity, which is specified by a weighted
graph providing information about the speed of processors and the bandwidth of links.
Algorithms implemented in Zoltan [3], PaGrid [1] minimize the execution time of the
application using a cost function, which also depends on the weighted graph of the
platform. To distribute computations between the processors, all these graph parti-
tioning libraries use simplistic computation performance models, where the speed of
aprocessor is given by a constant (weight). Despite the fact that accurate data partition-
ing is dependent on the weights, these libraries provide no method to find the values
that would balance the load for a given application on a given heterogeneous platform.
Application programmers are responsible for building the computation performance
models and distributing the load.

Traditionally, the constants characterizing the performance of the processors are
found as their relative speeds demonstrated during the execution of a serial benchmark
code solving locally the core computational task of some given size. This approach
is not always accurate and may result in non-optimal partitioning on modern highly
heterogeneous platforms, as demonstrated in [6]. Existing data partitioning software,
which is based on this approach, does not take into account memory hierarchy, hier-
archy of computing devices, software heterogeneity, optimizations, and out-of-core
techniques used in software. For modern heterogeneous platforms, more realistic
computation performance models have been proposed [8] along with more elabo-
rate general-purpose model-based data partitioning algorithms to find the optimal
load distribution ratios, which can be used as weights in graph partitioning. However,
integration of these algorithms into data-parallel applications is not trivial. In the fol-
lowing section, we discuss the main challenges of implementation of model-based
heterogeneous data-parallel applications and identify the features of a software tool
that would address these challenges.

3 Optimization of parallel applications for heterogeneous platforms

In this section, we analyze the main challenges the application programmers face while
optimizing data-parallel applications for modern heterogeneous HPC platforms. Given
a data-parallel scientific application, originally designed for distributed-memory sys-
tems and implemented with help of MPI, how to execute it efficiently on a hetero-
geneous platform? We assume that the total volume of communication is minimized
at the application level (for example, by multilevel graph partitioning in mesh appli-
cations [7], or by arrangement of matrix blocks in matrix applications [2]). We also
assume that in the computationally intensive part, the application calls a library of rou-
tines, for which the hardware-optimized implementations are available (for example,
multi-threaded and GPU solvers). Then, to execute this application efficiently on the
heterogeneous platform, we need to distribute the application data unevenly between
its heterogeneous computing devices, based on the a priori information about their
performance.

@ Springer



D. Clarke et al.

A general-purpose data partitioning algorithm based on computation performance
models proceeds as follows. As input, it requires a performance model, which can be
constructed either in advance or at run-time. The model must accurately approx-
imate the speed of the application on each of the computing devices. Therefore,
its construction requires reliable empirical information about the real performance,
which can be obtained from the carefully designed benchmarks that can assess the
performance of the whole application on the devices. Thus, the application pro-
grammer has to develop methods and code solving the following non-trivial tasks:
(i) accurate and efficient performance measurement, (ii) construction of computa-
tion performance models, and (iii) implementation of model-based data partitioning
algorithms.

Accurate and cost-effective methods of performance measurement are paramount
for data partitioning to work in real-life heterogeneous environments. The use of wrong
estimates can fully destroy the resulting performance of the application. Performance
can be found by benchmarking a computation kernel, a serial code performing much
less computations but still representative for the entire application [8]. For exam-
ple, computationally intensive applications often perform the same core computation
multiple times in a loop. The benchmark made of one such core computation can be
representative of the performance of the whole application and can be used as a kernel.
Timing the computation kernel on heterogeneous devices may be non-trivial, espe-
cially on platforms with tightly coupled devices. For example, on multicore platforms,
parallel processes interfere with each other through shared memory so that the speed
of individual cores cannot be measured independently. In this case, the performance
of cores should be measured in a group, when all cores are executing the benchmarks
in parallel [13]. Interactions between CPUs and GPUs include data transfers between
the host memory and the GPU memory over PCI Express, launching of GPU kernels,
and some other operations. Performance measurement techniques for heterogeneous
GPU-accelerated systems were studied in [10]. It was concluded that the synchronous
approach, when the host CPU core observes the beginning and the end of an operation,
is valid for the measurement of routines implemented in synchronous libraries, such as
CUBLAS. This technique covers all interactions between devices and does not require
any special measurement mechanisms. The performance of out-of-core routines can
also be measured from the host CPU. Incorporation of these and other state-of-the-art
performance measurement techniques into the data-parallel application currently
represents a significant development effort, but could be and should be supported by
an appropriate software tool.

The results of the performance measurements are used to construct computation
performance models, which will be then used in heterogeneous data partitioning algo-
rithms. The choice of the model and the algorithm depends on the application and the
platform. If the application data always fits into the memory of the devices, which
do not switch between different codes during the execution, then their speed does not
vary much with problem size. In this case, highly efficient data partitioning algorithms
based on the constant performance model (CPM) can be used. For the general case,
when the absolute speed depends on the problem size, we proposed the functional
performance model (FPM) [8]. In this model, the speed is represented by a contin-
uous function of problem size, which is built empirically and integrates performance

@ Springer



Software tool for the optimization of data-parallel applications

characteristics of both the architecture and the application. The speed is defined as
the number of computation units processed per second. The computation unit can
be defined differently for different applications. The important requirement is that it
does not vary during the execution of the application. This model can be estimated
in the same way for any data-parallel application. It approximates the execution time
and speed using piecewise linear or Akima spline interpolation [11]. Originally, the
functional performance model was designed for uniprocessor machines: it provided
optimal data partitioning [5] and efficient dynamic load balancing [6] on heteroge-
neous networks of uniprocessors. Later, this approach was extended to multicore and
hybrid CPU/GPU [13] platforms. To address the resource contention in these plat-
forms, we proposed to partition the set of devices into relatively independent groups,
such as multiple cores on the same socket or a GPU and its host core, construct the
performance model of each such a group independently, and use these models in data
partitioning algorithms. Implementation of this approach would be very challenging
without an appropriate supportive software tool.

Elaborate computation performance models provide more accurate prediction but
complicate data partitioning algorithms. In contrast to the traditional algorithms, which
only need to distribute computations in proportion to given constants, the algorithms
based on functional models have to solve much more complex partitioning problems
to yield the balance. Given the speeds are interpolated from empirical data, like in [8],
the solution can be found using different geometrical [8] or numerical [11] algorithms,
depending on the shape of the speed functions. Complexity of these modern data
partitioning algorithms makes their quality implementation a challenging task, and
a software tool solving this task would significantly facilitate the development of
heterogeneous data-parallel applications.

4 New software tool for model-based data partitioning

In this paper, we present the new software tool that addresses the above challenges.
We illustrate how to adapt data-parallel MPI applications to hybrid heterogeneous
platforms using this tool.

Our software tool, FuPerMod, provides the programming interface for: (i) accurate
and cost-effective performance measurement; (ii) construction of computation perfor-
mance models that implement different methods of interpolation of time and speed,;
(iii) invocation of model-based data partitioning algorithms for static and dynamic load
balancing. This functionality can be incorporated into a data-parallel applications as
follows. First, the application programmer has to provide the computation kernel of
their application and define its computation unit using the API provided. This kernel
will be used for computation performance measurements, which can be carried out
either within the application or separately, to obtain the a priori performance informa-
tion. Then, the programmer chooses the appropriate computation performance model
and data partitioning algorithm, and incorporates them into the application. Upon
execution of the data-parallel application on the heterogeneous platform, the models
of processors/devices/groups of devices will be constructed and the data partition-
ing algorithm will yield the optimal distribution of workload for a given problem

@ Springer



D. Clarke et al.

size. Finally, the programmer should distribute the application data according to this
optimal distribution.

Measuring computation performance with FuPerMod. Performance measure-
ment is automated by FuPerMod as follows. In addition to the computation kernel,
the application programmer has to provide the functions to allocate and deallocate the
data. In these functions, the application programmer defines the computation unit and
reproduces the memory requirements of the application. To enable conversion of speed
from units/sec to FLOPS, the programmer has the option to specify the complexity of
the computation unit. For illustration, we use parallel multiplication of dense matrices
[5].

Performance measurement of computation kernels on heterogeneous devices that
share resources and use different programming models is challenging. In [13], we pro-
pose the measurement technique for a multicore GPU-accelerated node, which is also
implemented in FuPerMod. It provides reproducible results within a given accuracy
and can be summarized as follows. As automatic rearrangement of the processes by the
operating system may result in performance variations, we bind the processes to cores
to ensure its stability. We also synchronize the processes that share resources (on a
node or a socket), to reproduce the worst-case scenario in terms of resource contention
during the execution of the application. To ensure the reliability of the measurement,
the experiments are repeated multiple times until the results are statistically repre-
sentative. In GPU-accelerated nodes, we measure the combined performance of each
GPU and its host core, including the overhead incurred by data transfer between them.
Due to limited GPU memory, the execution time of GPU kernels can be measured
only within some range of problem sizes, unless out-of-core implementations, which
address this limitation, are available.

Supported performance models and data partitioning algorithms. Currently,
FuPerMod implements the following performance models:

— CPM (requires only one experimental point);
— FPM based on the piecewise linear interpolation of the speed;
— FPM based on the Akima spline interpolation of the speed.

The piecewise linear FPM is constructed so that it will satisfy some rather restrictive
assumptions on the shape of the speed function [8], excluding outliers from the exper-
imental data as shown in Fig. 1a. The FPM based on the Akima spline interpolation
relaxes these restrictions [11], and therefore, represents the speed of the processor
with more accurate functions (Fig. 1b). FuPerMod can be extended by adding other
computation performance models.

The computation performance models are used as input for model-based data par-
titioning algorithms. FuPerMod provides the following algorithms:

— straightforward CPM-based algorithm;
— geometrical algorithm based on the piecewise linear FPMs;
— numerical algorithm based on the Akima-spline FPMs.

The CPM-based algorithm divides the data in proportion to the constant speeds. This
is the fastest but least accurate data partitioning algorithm. It is appropriate for the
cases when the speed does not vary significantly with the problems size. The geo-
metrical algorithm implements iterative bisection of the speed functions with lines

@ Springer



Software tool for the optimization of data-parallel applications

Netlib Blas Speed Function Netlib Blas Speed Function
' . ' true speéd fL‘mctipr{ ———————— ' A‘ true.speéd functipﬁ ————————
a 5L plecsmfs’\e a?prommatlon a 5L Aklma‘ spﬂl\lne‘lnterpolatlon
g #f G 4
[T Lo
©} 3 S 3t
8 2L B 2t
2 2
wn 1H n 1H
0 "‘ 1 1 1 1 N 0 1 1 1 1 N
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
size of problem size of problem

(a) (b)

Fig.1 Speed functions of the matrix multiplication kernel based on the Netlib BLAS GEMM: a piecewise
linear interpolation, b Akima spline interpolation

passing through the origin of the coordinate system [8]. Quick convergence of this
algorithm to the global optimum is ensured by putting restrictions on the shape
of the speed functions, which is implemented in the piecewise linear FPMs. The
numerical algorithm applies multidimensional solvers to numerical solution of the
system of non-linear equations that formalize the problem of optimal data partitioning
[11]. It can be applied to smooth speed functions of any shape. As input, the algo-
rithm takes the Akima-spline FPMs, since this approximation provides continuous
derivative.

The construction cost of a full computation performance model, i.e., a functional
model for the full range of problem sizes, may be very high, which limits the applica-
bility of the above partitioning algorithms to situations where the construction of the
models and their use in the application can be separated. For example, if we develop
an application that will be executed on the same platform multiple times, we can
build the full model once and then use this model multiple times during the repeated
execution of the application. In this case, the time of construction of the model can
become very small compared to the accumulated performance gains during the multi-
ple executions of the optimized application. Building the full functional performance
model is not suitable for applications, each execution of which is seen as unique. In
this case, computations should be optimally distributed between processors without a
priori information about their performance characteristics.

Dynamic data partitioning and load balancing with FuPerMod. FuPerMod
provides efficient data partitioning algorithms that do not require performance mod-
els as input. These algorithms do not construct complete performance models, but
partially estimate them with the accuracy sufficient for near-optimal distribution of
computations. Due to a much smaller number of experimental points, they have a
low execution cost that makes them suitable for the use in self-adaptable applica-
tions. FuPerMod provides two such algorithms: for dynamic data partitioning [9] and
dynamic load balancing [6].

The dynamic algorithms are searching for a near-optimal partitioning iteratively.
At each iteration, they invoke the FPM-based data partitioning algorithm, using as
input not the accurate full computation performance models but their partial estimates

@ Springer



D. Clarke et al.

O P, Optimum solution
1 A P, Optimum solution
® P, recorded performance
A P recorded performance

Absolute
speed

Absolute
speed

d! df,di=n2 d)
Size of the problem Size of the problem

(a) (b)

Fig.2 Construction of the partial FPMs based on piecewise linear interpolation, using the geometrical data
partitioning algorithm, for two processors P; and P, solving the problem of size n. The distribution found
at the second iteration is already quite close to the optimum

constructed from the experimental points obtained at the previous iterations. The new
partitioning found at this step is then used in the next experiment, and the execu-
tion time on each processor is measured. If these times are sufficiently close, then
the partitioning is returned as the final solution. If not, the new experimental points
are used to refine the partial estimates of the speed functions, and the search pro-
ceeds to the next iteration. Figure 2 shows a few steps of dynamic data partitioning,
with the piecewise linear FPMs and the geometrical data partitioning used at each
iteration.

In conclusion, we demonstrate how to use dynamic algorithms for optimization
of a parallel application implementing the Jacobi method. This application iteratively
solves a system of linear equations, Ax = b. A is a square matrix of size N x N,
which is distributed by rows between p processors and decomposed into the diagonal
and remainder, A = D + R. The partial piecewise linear FPMs are constructed at
runtime. At each iteration, the load-balancing function invokes the geometrical data
partitioning algorithm. The system of equations is redistributed accordingly to the
newly obtained data distribution. The pseudocode of the optimized Jacobi method is
shown in Algorithm 1. Figure 3 shows that after few iterations of the application, the
load of the processors gets balanced.

Algorithm 1 FPM-based dynamic load balancing of the Jacobi method

Initial partition of rows: d; <— N/p
Allocate the slice of matrix A; and vectors b, xk, X
FuPerMod: Allocate an empty piecewise linear model s;
while \xk“ - xk\ > e do
Redistribute the matrix rows A; according to d;
FuPerMod: Start timer #;
Jacobi iteration: x¥t1 « p~1! (b— ka)
FuPerMod: End timer; update the model 5; < 5; + (d;, ;)
FuPerMod: d; < geometrical data partitioning based on s5;
end while

k+1

@ Springer



Software tool for the optimization of data-parallel applications

Time (s)

Fig.

16 11
0.5

0.4

0.3

0.2

0.1

1 2 3 4 5 6 7 8 9
Iterations

3 Dynamic load balancing of the Jacobi method with geometrical data partitioning on four heteroge-

neous processors

References

10.

11.

12.

13.

. Aubanel E, Wu X (2007) Incorporating latency in heterogeneous graph partitioning. In: IPDPS 2007,

pp 1-8

. Beaumont O, Boudet V, Rastello F, Robert Y (2001) Matrix multiplication on heterogeneous platforms.

IEEE Trans Parallel Distrib Syst 12(10):1033-1051

. Catalyurek U, Boman E, Devine K et al (2007) Hypergraph-based dynamic load balancing for adaptive

scientific computations. In: IPDPS 2007, pp 1-11

. Chevalier C, Pellegrini F (2008) PT-Scotch: a tool for efficient parallel graph ordering. Parallel Comput

34(68):318-331

. Clarke D, Lastovetsky A, Rychkov V (2012) Column-based matrix partitioning for parallel matrix mul-

tiplication on heterogeneous processors based on functional performance models. In: HeteroPar’2011,
pp 450-459

. Clarke D et al (2011) Dynamic load balancing of parallel computational iterative routines on highly

heterogeneous HPC platforms. Parallel Process Lett 21:195-217

. Karypis G, Schloegel K (2013) ParMETIS: parallel graph partitioning and sparse matrix ordering

library. Version 4

. Lastovetsky A, Reddy R (2007) Data partitioning with a functional performance model of heteroge-

neous processors. Int J High Perform C 21:76-90

. Lastovetsky A, Reddy R (2010) Distributed data partitioning for heterogeneous processors based

on partial estimation of their functional performance models. In: Euro-Par 2009, LNCS, vol 6043.
Springer, pp 91-101

Malony AD, Biersdorff S, Shende S et al (2011) Parallel performance measurement of heterogeneous
parallel systems with GPUs. In: ICPP 11, pp 176185

Rychkov V, Clarke D, Lastovetsky A (2011) Using multidimensional solvers for optimal data par-
titioning on dedicated heterogeneous HPC platforms. In: PaCT-2011, LNCS, vol 6873. Springer,
pp 332-346

Walshaw C, Cross M (2001) Multilevel mesh partitioning for heterogeneous communication networks.
Future Gener Comput Syst 17(5):601-623

Zhong Z, Rychkov V, Lastovetsky A (2012) Data partitioning on heterogeneous multicore and multi-
GPU systems using functional performance models of data-parallel applications. In: Cluster, pp 191-
199

@ Springer



	FuPerMod: a software tool for the optimization of data-parallel applications on heterogeneous platforms
	Abstract
	1 Introduction
	2 Existing data partitioning software
	3 Optimization of parallel applications for heterogeneous platforms
	4 New software tool for model-based data partitioning
	References


