
Optimization of Collective Communications
in HeteroMPI

Alexey Lastovetsky, Maureen O’Flynn, and Vladimir Rychkov

School of Computer Science and Informatics, University College Dublin,
Belfield, Dublin 4, Ireland

{Alexey.Lastovetsky,Maureen.OFlynn}@ucd.ie
http://hcl.ucd.ie

Abstract. HeteroMPI is an extension of MPI designed for high perfor-
mance computing on heterogeneous networks of computers. The recent
new feature of HeteroMPI is the optimized version of collective commu-
nications. The optimization is based on a novel performance communi-
cation model of switch-based computational clusters. In particular, the
model reflects significant non-deterministic and non-linear escalations of
the execution time of many-to-one collective operations for medium-sized
messages. The paper outlines this communication model and describes
how HeteroMPI uses this model to optimize one-to-many (scatter-like)
and many-to-one (gather-like) communications. We also demonstrate
that HeteroMPI collective communications outperform their native coun-
terparts for various MPI implementations and cluster platforms.

Keywords: MPI, HeteroMPI, heterogeneous cluster, switched network,
message passing, collective communications, scatter, gather.

1 Introduction

MPI [1] is the most widely used programming tool for parallel computing on
distributed-memory computer systems. It can be used on both homogeneous
and heterogeneous clusters, but it does not provide specific support for devel-
opment of high performance parallel applications for heterogeneous networks of
computers (HNOC).

HeteroMPI [2] is an extension of MPI designed for high performance com-
puting on HNOCs. It supports optimal distribution of computations among the
processors of a HNOC by taking into account heterogeneity of processors, net-
work topology and computational costs of algorithm. The main idea of Het-
eroMPI is to automate the creation of a group of processes that will execute the
heterogeneous algorithm faster than any other group. It is achieved by specify-
ing the performance model of the parallel algorithm and by optimal mapping of
the algorithm onto the HNOC, which is seen by the HeteroMPI programming
system as a multilevel hierarchy of interconnected sets of heterogeneous mul-
tiprocessors. HeteroMPI is implemented on top of MPI, therefore it can work
on top of any MPI implementation. HeteroMPI introduces a small number of

F. Cappello et al. (Eds.): EuroPVM/MPI 2007, LNCS 4757, pp. 135–143, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://hcl.ucd.ie


136 A. Lastovetsky M. O’Flynn, and V. Rychkov

additional functions for group management and data partitioning. All standard
MPI operations are inherited, so that the existing MPI programs can be easily
transformed into HeteroMPI.

HeteroMPI inherits all MPI communication operations and solely relies on
their native implementation. At the same time, our recent research on the per-
formance of MPI collective communications on heterogeneous clusters based on
switched networks [3] shows that MPI implementations of scattering and gath-
ering are often very far from optimal. In particular, we observed very signifi-
cant escalations of the execution time of many-to-one MPI communications for
medium-sized messages. The escalations are non-deterministic but form regular
levels. We also observed a leap in the execution time of one-to-many communi-
cations for large messages. Based on the observations, we suggested a commu-
nication performance model of one-to-many and many-to-one MPI operations
reflecting these phenomena [3], which is applicable to both heterogeneous and
homogeneous clusters. The paper presents a new feature of HeteroMPI, which
is the optimized version of collective communication operations. The design of
these optimized operations is based on the new communication model and can
be summarized as follows:

– Upon installation, HeteroMPI computes the parameters of the model.
– Each optimized collective operation is implemented by a sequence of calls

to native MPI operations. The code uses parameters of the communication
model.

This high-level model-based approach to optimization of MPI communications
is easily and uniformly applied to any combination of MPI implementation and
cluster platform. It does not need to retreat to the lower layers of the communi-
cation stack and tweak them in order to improve the performance of MPI-based
communication operations. This is particularly important for heterogeneous plat-
forms where the users typically have neither authority nor knowledge for making
changes in hardware or basic software settings.

The paper is structured as follows. Section 2 outlines the related work. Section
3 briefly introduces the communication model. Section 4 describes the implemen-
tation of the optimized collective operations in HeteroMPI. Section 5 presents
experimental results, demonstrating that HeteroMPI collective communications
outperform their native counterparts for different MPI implementations and clus-
ters platforms.

2 Related Work

Vadhiyar et al. [4] developed automatically tuned collective communication al-
gorithms. They measured the performance of different algorithms of collective
communications for different message sizes and numbers of processes and then
used the best algorithm. Thakur et al. [5] used a simple linear cost model of a
point-to-point single communication in selection of algorithms for a particular
collective communication operation. Pjesivac-Grbovic et al. [6] applied differ-
ent point-to-point models to the algorithms of collective operations, compared



Optimization of Collective Communications in HeteroMPI 137

the predictions with measurements and implemented the optimized versions of
collective operations based on the decision functions that switch between dif-
ferent algorithms, topologies, and message segment sizes. Kielmann et al. [7]
optimized MPI collective communication for clustered wide-area environments
by minimizing communication over slow wide-area links. There were some works
on improving particular MPI operations [8,9].

All works on the optimization of collective operations are based on determin-
istic linear communication models. Implementation of the optimized versions of
collective operations in HeteroMPI uses the performance model that takes into
account non-deterministic escalations of the execution time of many-to-one MPI
communications for medium-sized messages and the leap in the execution time
of one-to-many communications for large messages.

3 The Performance Model of MPI Communications

This section briefly introduces the new performance model of MPI communica-
tions [3], which reflects the phenomena observed for collective communications
on clusters based on switched networks. The basis of the model is a LogP-like
[11] model of point-to-point communications for heterogeneous clusters [10]. The
parameters of the point-to-point model represent the heterogeneity of processors
and are also used in construction of the models of collective communications.
Apart from the point-to-point parameters, the models of collective communi-
cations use parameters reflecting the observed non-deterministic and non-linear
behavior of MPI collective operations.

Like any other point-to-point communication model, except for PLogP
our model is linear, representing the communication time by a linear function
of the message size. The execution time of sending a message of M bytes from
processor i to processor j on heterogeneous cluster is estimated by Ci + Mti +
Cj +Mtj + M

βij
, where Ci, Cj are the fixed processing delays; ti, tj are the delays

of processing of a byte; βij is the transmission rate. Different parameters for
nodal delays reflect heterogeneity of the processors. For networks with a single
switch, it is realistic to assume βij = βji.

There are two components in the models of one-to-many and many-to-one
communications. The first one is built upon the model of point-to-point com-
munications by representing each collective communication, MPI Scatter or
MPI Gather, by a straightforward combination of point-to-point communica-
tions

if (rank==root) {
memcpy(recvbuf, sendbuf, recvcount);
for (i=1; i<n; i++) {
if (scatter)
MPI_Isend(sendbuf+sendcount*i, sendcount, i);

if (gather)
MPI_Irecv(recvbuf+recvcount*i, recvcount, i);

}



138 A. Lastovetsky M. O’Flynn, and V. Rychkov

MPI_Waitall(n-1);
}
else {
if (scatter)
MPI_Recv(recvbuf, recvcount, root);

if (gather)
MPI_Send(sendbuf, sendcount, root);

}

This approach obviously results in a linear predictive model, which is quite
accurate for relatively small message sizes but does not reflect the observed
phenomena of non-deterministic and non-linear escalations of the execution time
of many-to-one communications for medium-sized messages and the significant
leap in the execution time of one-to-many communications for large messages.
The second component in the collective communication models addresses the
issues.

(a) (b)

Fig. 1. The execution time of collective communications against the message size: (a)
one-to-many and (b) many-to-one

Fig. 1 shows the typical behavior of one-to-many and many-to-one communi-
cations on a switch-based cluster, given the operations are implemented via the
described straightforward combination of point-to-point communications. One
can see a distinctive leap in the execution time for the one-to-many operation
as well as non-deterministic and non-linear escalations of the execution time of
the many-to-one operation for medium-sized messages. These phenomena were
observed on the MPI implementations over TCP communication layer but not
over Myrinet-MX. So, they may be caused by some TCP features. At the same
time, we have not had a chance to experiment with a reasonably large Myrinet-
based cluster and, therefore, cannot guarantee that MPI over Myrinet-MX does
not have such irregularities.

The one-to-many model [10,3] reflects the leap in the execution time and
categorizes the small and large messages. Parameter S is a message size thresh-
old, separating small and large messages. It is different for different combina-
tions of clusters and MPI implementations. The estimated time of scattering



Optimization of Collective Communications in HeteroMPI 139

messages of size M from node 0 to nodes 1, 2, ..., n is given by C0 + t0 ×n×M +

max
1≤i≤n

{
Ci + tiM + M

β0i

}
, if M < S or C0 + t0 × n × M +

n∑
i=1

(Ci + tiM + M
β0i

), if

M ≥ S, where C0, t0, Ci, ti are the fixed and variable processing delays on the
source node and destinations. The one-to-many model displays parallel commu-
nication for small messages and a serialized communication for large messages.

The many-to-one model [3] differentiates small, medium and large mes-
sages by introducing parameters M1 and M2. For small messages, M < M1, the
execution time has a linear response to the increase of message size. Thus, the ex-
ecution time for the many-to-one communication involving n processors (n ≤ N ,
where N is the cluster size) is estimated by n(C0+toM)+ max

1<i≤n

{
Ci + tiM + M

β0i

}

+ κ1M , where κ1 is a fitting parameter for correction of the slope. For large
messages, M > M2, the execution time resumes a linear predictability for in-
creasing message size. Hence, this part of the model has the same design but a
different slope of linearity and greater value due to overheads: n(C0 + t0M) +
n∑

i=1
(Ci + tiM + M

β0i
) + κ2M . The additional parameter κ2 is a fitting constant

for correction of the slope. For medium messages, M1 ≤ M ≤ M2, we observed a
small number of discrete levels of escalation, remaining constant as the message
size increases. The model describes the probability of escalation to each of the
levels as a function of message size and the number of processors involved in the
operation. If no escalation occurs, the linear model used for small massages will
accurately predict the execution time.

The presented model accurately describes the performance of many-to-one and
one-to-many operations for all combinations of MPI implementations and cluster
platforms, which we used in our experiments, if the collective operations were im-
plemented via point-to-point MPI operations (as described by the pseudo-code
above). For LAM [12] and Open MPI [13], MPI Scatter and MPI Gather display
exactly the same performance pattern as their straightforwardly implemented
counterparts. Therefore, such MPI implementations need no further extension
of the communication model in order to describe native collective communication
operations. At the same time, for some MPI implementations (mainly, some ver-
sions of MPICH [14]), the native collective communications perform differently
(better or worse) than their straightforward counterparts. To deal with such
MPI implementations, HeteroMPI uses an extended communication model, ad-
ditionally including a separate model for each native collective operation. Due
to space limitations, we do not include in the paper considerations related to
this extended model.

In implementation of the optimized scatter and gather collective operations,
we use the message size thresholds S, M1 and M2 to fragment the messages
and to avoid the message sizes for which the irregularities are observed. These
parameters are found experimentally for a parallel platform. The building of the
analytical part of the communication model is out of the scope of this paper. We
do not describe the communication experiments and the measurement techniques
required to find the rest of parameters.



140 A. Lastovetsky M. O’Flynn, and V. Rychkov

4 Optimization of Collective Operations in HeteroMPI

This section describes the implementation of two newly introduced HeteroMPI
operations, HMPI Scatter and HMPI Gather, which are optimized versions of
native MPI Scatter and MPI Gather respectively. The implementation uses the
communication performance model presented in Section 3 in order to avoid the
MPI Gather time escalations and the MPI Scatter leap in the execution time.
More precisely, only the message size thresholds S, M1 and M2 are used in the
implementation. These parameters are computed by the HeteroMPI program-
ming system upon its installation on the parallel platform. In the implementa-
tion, neither point-to-point nor low-level communications are used, but only the
native MPI counterparts.

The implementation of HMPI Gather re-invokes the native MPI Gather for
small and large messages. The gathering of medium-sized messages, M1 ≤ M ≤
M2, is implemented by an equivalent sequence of m MPI Gather operations with
messages of the size that fits into the range of small messages: M

m < M1 and
M

m−1 ≥ M1. Small-sized gatherings are synchronized by barriers, which removes
communication congestions on the receiving node. The barriers are marked bold
in the pseudo code:

if (M1<=M<=M2) {
find m such that M/m<M1 and M/(m-1)>=M1;
for (i=0; i<m; i++) {
MPI_Barrier(comm);
MPI_Gather(sendbuf + i*M/m, M/m);

}
}
else MPI_Gather(sendbuf, M);

Note. If MPI Barrier is removed from the code, the resulting implementation
will behave exactly as the native MPI Gather. It means that this synchronization
is essential for preventing communication congestions on the receiving side.

The implementation of HMPI Scatter uses parameter S of one-to-many com-
munication model. For small messages, M < S, the native MPI Scatter is re-
invoked. The scattering of large messages is implemented by an equivalent se-
quence of MPI Scatter operations with messages of the size less then S: M

m < S

and M
m−1 ≥ S. The pseudo code of the optimized scatter is as follows:

if (M>=S) {
find m such that M/m<S and M/(m-1)>=S;
for (i=0; i<m; i++)
MPI_Scatter(recvbuf + i*M/m, M/m);

}
else MPI_Scatter(recvbuf, M);



Optimization of Collective Communications in HeteroMPI 141

As the presented approach does not use the communication parameters reflect-
ing the heterogeneity of the processors, it can be applied to both homogeneous
and heterogeneous switch-based clusters.

5 Experiments

To compare the performance of the optimized HeteroMPI collective operations
with their native MPI counterparts, we experimented with various MPI imple-
mentations and different clusters. Here we present the results for the following
two platforms:

– LAM-Ethernet: 11 x Xeon 2.8/3.4/3.6, 2 x P4 3.2/3.4, 1 x Celeron 2.9, 2
x AMD Opteron 1.8, Gigabit Ethernet, LAM 7.1.3,

– OpenMPI-Myrinet: 64 x Intel EM64T, Myrinet, Open MPI 1.2.2 over
TCP.

(a) (b)

(c) (d)

Fig. 2. Performance of (a) MPI Gather, (b) HMPI Gather, (c) MPI Scatter, (d)
HMPI Scatter on 16-nodes heterogeneous cluster LAM-Ethernet

Fig. 2 shows the results for the heterogeneous LAM-Ethernet cluster, with all
nodes in use. The message size thresholds for this platform are M1 = 5KB,
M2 = 64KB, S = 64KB. Similar results are obtained on the 64-node ho-
mogeneous OpenMPI-Myrinet cluster (Fig. 3). For this platform, M1 = 5KB,
M2 = 64KB, S = 64KB. The results show that the optimized HeteroMPI
versions outperform their native MPI counterparts, avoiding the escalations and



142 A. Lastovetsky M. O’Flynn, and V. Rychkov

(a) (b)

(c) (d)

Fig. 3. Performance of (a) MPI Gather, (b) HMPI Gather, (c) MPI Scatter, (d)
HMPI Scatter on 64-nodes OpenMPI-Myrinet cluster

restoring the linear dependency of the communication execution time on message
size. On all platforms we observed S = M2.

The communication execution time was measured on the root node. The bar-
rier was used to ensure that all processes have finished the scatter-like opera-
tions. The communication experiments for each message size in a series were
carried out only once. The repeated measurements gave similar results. To avoid
the pipeline effect in a series of the experiments for different message sizes, the
barriers were included between collective operations.

6 Conclusion

The paper introduced a new feature of HeteroMPI, which is the optimized
versions of MPI collective communications for switched-based computational
clusters. The optimized collective operations were implemented on top of the cor-
responding MPI functions and based on the communication performance model.
We also presented experimental results demonstrating that the optimized func-
tions outperformed the native ones.

The proposed approach to optimization of MPI communications is based on
the use of a high-level communication performance model. Therefore, it can be
easily and uniformly applied to any combination of MPI implementation and
cluster platform. It needs no retreat to the lower layers of the communication
stack for tweaking them in order to improve the performance of MPI-based



Optimization of Collective Communications in HeteroMPI 143

communication operations. This is particularly advantageous for heterogeneous
platforms where the users typically have neither the authority nor the knowledge
for changing hardware and basic software settings.

Acknowledgments. The work was supported by the Science Foundation Ire-
land (SFI). We are grateful to the Innovative Computing Laboratory, University
of Tennessee, for providing with computing clusters.

References

1. Dongarra, J., Huss-Lederman, S., Otto, S., Snir, M., Walker, D.: MPI: The Com-
plete Reference. The MIT Press, Cambridge (1996)

2. Lastovetsky, A., Reddy, R.: HeteroMPI: Towards a message-passing library for
heterogeneous networks of computers. J. of Parallel and Distr. Comp. 66, 197–220
(2006)

3. Lastovetsky, A., O’Flynn, M.: A Performance Model of Many-to-One Collective
Communications for Parallel Computing. In: Proc. of IPDPS 2007, Long Beach,
CA (2007)

4. Vadhiyar, S.S., Fagg, G.E., Dongarra, J.: Automatically tuned collective commu-
nications. In: Proc. of Supercomputing 99, Portland, OR (1999)

5. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of Collective Communica-
tion Operations in MPICH. Int. J. of High Perf. Comp. App. 19, 49–66 (2005)

6. Pjesivac-Grbovic, J., Angskun, T., Bosilca, G., Fagg, G.E., Gabriel, E., Dongarra,
J.J.: Performance Analysis of MPI Collective Operations. In: Proc. of IPDPS 2005,
Denver, CO (2005)

7. Kielmann, T., Hofman, R.F.H., Bal, H., Plaat, A., Bhoedjang, R.A.F.: MagPIe:
MPI’s collective communication operations for clustered wide area systems. In:
Proc. of PPoPP 1999, pp. 131–140. ACM Press, New York (1999)

8. Iannello, G.: Efficient algorithms for the reduce-scatter operation in LogGP. IEEE
Transactions on Parallel and Distr. Systems 8(9), 970–982 (1997)

9. Benson, G.D., Chu, C-W., Huang, Q., Caglar, S.G.: A comparison of MPICH
allgather algorithms on switched networks. In: Dongarra, J.J., Laforenza, D., Or-
lando, S. (eds.) Recent Advances in Parallel Virtual Machine and Message Passing
Interface. LNCS, vol. 2840, pp. 335–343. Springer, Heidelberg (2003)

10. Lastovetsky, A., Mkwawa, I., O’Flynn, M.: An Accurate Communication Model of
a Heterogeneous Cluster Based on a Switch-Enabled Ethernet Network. In: Proc.
of ICPADS 2006, Minneapolis, MN, pp. 15–20 (2006)

11. Culler, D., Karp, R., Patterson, R., Sahay, A., Schauser, K.E., Santos, R.S.E., von
Eicken, T.: LogP: Towards a realistic model of parallel computation. In: Proc. of
the 4th ACM SIGPLAN, ACM Press, New York (1993)

12. LAM/MPI User’s Guide, http://www.lam-mpi.org/
13. Open MPI Publications http://www.open-mpi.org/
14. MPICH/MPICH-2 User’s Guide, http://www-unix.mcs.anl.gov/mpi/

http://www.lam-mpi.org/
http://www.open-mpi.org/
http://www-unix.mcs.anl.gov/mpi/

	Optimization of Collective Communications in HeteroMPI
	Introduction
	Related Work
	The Performance Model of MPI Communications
	Optimization of Collective Operations in HeteroMPI
	Experiments
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




