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HPC platforms are getting increasingly heterogeneous and hierarchical. The main
source of heterogeneity in many individual computing nodes is due to the utilization
of specialized accelerators such as GPUs alongside general purpose CPUs. Het-
erogeneous many-core processors will be another source of intra-node heterogene-
ity in the near future. As modern HPC clusters become more heterogeneous, due
to increasing number of different processing devices, hierarchical approach needs
to be taken with respect to memory and communication interconnects to reduce
complexity. During recent years, many scientific codes have been ported to mul-
ticore and GPU architectures. To achieve optimum performance of these applica-
tions on CPU/GPU hybrid platforms software heterogeneity needs to be accounted
for. Therefore, design and implementation of data parallel scientific applications for
such highly heterogeneous and hierarchical platforms represent a significant scien-
tific and engineering challenge. This chapter will present the state of the art in the
solution of this problem based on the functional performance models of computing
devices and nodes.
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1.1 Introduction

Highly heterogeneous and hierarchical HPC platforms, namely hardware-accelerated
multicore clusters, are widely used in high performance computing due to better
power efficiency and performance/price ratio. Introduction of multicores in HPC re-
sulted in significant refactoring of existing parallel applications. For general-purpose
computing on GPUs, new programming models, such as CUDA and OpenCL were
proposed. A large number of algorithms and specific applications have been suc-
cessfully ported to GPUs delivering substantial speedup over their optimized CPU
counterparts. Transition to hybrid CPU/GPU architectures is challenging in the as-
pects of efficient utilization of the heterogeneous hardware and reuse of the software
stack. In existing programming and execution environments for hybrid platforms,
such as OpenCL, StarPU [1] and CHPS [2], the problem of efficient cross-device
data partitioning and load balancing still remains.

We target data-parallel scientific applications, such as linear algebra routines, dig-
ital signal processing, computational fluid dynamics etc. They are characterized by
divisible computational workload, which is directly proportional to the size of data
and dependent on data locality. Computation kernels optimized for multicore and
GPU are available for these applications. To execute such applications efficiently
on hybrid multicore and multi-GPU platforms, workload has to be distributed un-
evenly between highly heterogeneous computing devices. Our target architecture is
a dedicated heterogeneous CPU/GPU cluster, characterized by a stable performance
in time and a complex hierarchy of heterogeneous computing devices. We consider
such platform as a distributed-memory system, and therefore apply data partitioning,
a load balancing method widely used on distributed-memory supercomputers.

Data partitioning algorithms, including those already proposed for hybrid plat-
forms rely on performance models of processors. In [3], a priori found constants,
representing the sustained performance of the application on CPU/GPU, were used
to partition data. In [4], a similar constant performance model (CPM) was proposed,
but it was built adaptively, using the history of performance measurements. The
fundamental assumption of the data partitioning algorithms based on constant per-
formance models is that the absolute speed of processors/devices does not depend
on the size of a computational task. However, it becomes less accurate when (i) the
partitioning of the problem results in some tasks fitting into different levels of mem-
ory hierarchy or (ii) processors/devices switch between different codes to solve the
same computational problem.

An analytical predictive model was proposed in [5]. In contrast to others, this
model is application-specific: the number of parameters and the predictive formulas
for the execution time of processors/devices are defined for each application. This
approach requires a detailed knowledge of the computational algorithm, in order
to provide an accurate prediction. In [5], it was also acknowledged that the linear
models might not fit the actual performance in the case of resource contention, and
therefore, data partitioning algorithms might fail to balance the load.

In the work presented in this chapter, we apply data partitioning based on func-
tional performance models, which was originally designed and proved to be accu-
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rate for heterogeneous clusters of uniprocessor machines [6]. The functional perfor-
mance model (FPM) represents the processor speed as a function of problem size.
It is built empirically and integrates many important features characterizing the per-
formance of both the architecture and the application. This model can be used with
any data-parallel application and applicable in the situations (i) and (ii). In this work,
we target CPU/GPU clusters, which consist of heterogeneous devices with separate
memory and different programming models. Here we extend the functional perfor-
mance model, originally designed for uniprocessors, to these platforms, and demon-
strate how to design and optimize parallel scientific applications using FPM-based
data partitioning.

Although hardware accelerators are significantly faster than traditional multi-
cores, the computing power of the mulitcores should not be ignored. To obtain
maximum performance from a parallel scientific application on an accelerated het-
erogeneous platform, the workload needs to be distributed over the hierarchy of
devices. Evaluation of device performance is complicated by resource contention
and device-specific limitations (for example, limited GPU memory). Furthermore,
multiple computation kernels optimized for different devices and based on different
programming models need to be used simultaneously.

In previous work [7], we proposed a method for building functional performance
models of multicore nodes, which takes into account resource contention. The FPMs
built this way were used for inter-node data partitioning. In this chapter we present
how to apply this approach to a hierarchical system that consists of several multicore
sockets coupled with GPUs. A GPU is controlled by a host process that handles data
transfer between the host and device, and instructs the GPU to execute kernels. In
this work, we measure the speed of the host process and build the performance model
for the GPU coupled with its dedicated core, which includes the contributions from
the kernel running on GPU and from the memory transfers. In general, this model
can be defined only for the range of problem sizes that fit the local memory of the
GPU. It can be extended to infinity for out-of-core applications, which can handle a
large amount of data stored in low-speed memory [8].

Functional performance models are hardware and application specific and are
built by empirically benchmarking the kernel. Building accurate models for the
full range of problem sizes is expensive. This approach is not suitable for appli-
cations that will be run a small number of times on a given platform, for example,
in grid environments, where different processors are assigned for different runs of
the application. Such applications should be able to optimally distribute computa-
tions between the processors of the executing platform assuming that this platform is
different and a priori unknown for each run of the application. In [9], we proposed
an algorithm which efficiently builds only the necessary parts of the speed functions
(partial FPMs) to the required level of accuracy in order to achieve load balancing. In
this work, we present an adaptation of this algorithm to hierarchical platforms [10].

In order to demonstrate how to design and optimize scientific applications for
highly heterogeneous and hierarchical HPC platforms using functional computation
performance models, we modify parallel matrix multiplication to be used with FPM-
based data partitioning. We show how to extract and benchmark the computation
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kernel of the application on different devices. The kernel will call the hardware-
specific optimized code for each device (BLAS GEMM). We design a hierarchical
data partitioning scheme, which allows for nested parallelism, and apply FPM-based
data partitioning algorithms. This method was developed in collaboration between
University College Dublin (Ireland) and Technical University of Lisbon (Portugal),
funded by the ComplexHPC COST action IC0805.

This chapter is structured as follows. In Sect. 1.2, we review related work and
conclude that data partitioning algorithms are more suited for balancing data-parallel
scientific applications on heterogeneous platforms, but they may fail on highly het-
erogeneous hierarchical platforms if simplistic performance models are used. How-
ever, data partitioning based on the functional performance model, described in Sect.
1.3, can be applied successfully on such platforms. The main contribution of this
chapter is the adaptation of the FPM-based data partitioning to hybrid CPU/GPU
nodes and clusters. We demonstrate how to design a scientific application to make
use of FPM-based data partitioning on a heterogeneous hierarchical platform. More
specifically, we use the well-known parallel matrix multiplication application, which
is presented in Sect. 1.4. Building performance models for such an application on
heterogeneous devices is challenging. In Sect. 1.5–1.7, we present a solution for
a hybrid multi-CPU/GPU node. Building full functional performance models can
be expensive and hierarchical platforms add extra complexity to this, so much so
as to prohibit the use of full models. Fortunately, we have developed an efficient
method that builds the models to sufficient level of accuracy in the relevant range of
problem sizes (partial FPM) as summarized in Sect. 1.8. Partial FPMs were origi-
nally designed for heterogeneous uniprocessors; another contribution of this chapter
is the application of partial FPMs to hierarchical platforms. In Sect. 1.9, we design
a hierarchical version of the matrix multiplication application for hybrid clusters. In
this application, we use hierarchical data partitioning scheme and partial FPMs of
devices and nodes.

1.2 Related Work

In this section, we review a number of algorithms for load balancing of parallel
scientific and engineering problems on heterogeneous platforms. The older algo-
rithms referenced were designed for either heterogeneous networks of workstations
or shared-memory supercomputers. The newer algorithms target hybrid CPU/GPU
platforms.

Static algorithms, for example, those based on data partitioning [3, 6, 11, 5],
use a priori information about the parallel application and platform. This informa-
tion can be gathered either at compile-time or run-time. Static algorithms are also
known as predicting-the-future because they rely on accurate performance models
as input to predict the future execution of the application. Static algorithms are par-
ticularly useful for applications where data locality is important because they do
not require data redistribution. However, these algorithms are unable to balance on
non-dedicated platforms, where load changes with time, and for applications with
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non-deterministic workload. Dynamic algorithms, such as task queue scheduling
and work stealing [12, 13, 14, 15, 16, 17] balance the load by moving fine-grained
tasks between processors during the calculation. Dynamic algorithms do not require
a priori information about execution but may incur significant communication over-
head on distributed-memory platforms due to data migration. Dynamic algorithms
often use static data partitioning for their initial step to minimize the amount of data
redistributions needed. For example, in the state-of-the-art load balancing techniques
for multi-node, multicore, and multi-GPU platforms, the performance gain is mainly
due to better initial data partitioning. It was shown that even the static distribution
based on simplistic performance models (single values specifying the maximum per-
formance of a dominant computational kernel on CPUs and GPUs) improves the
performance of traditional dynamic scheduling techniques by up to 250% [18].

In this work we focus on parallel scientific applications, where computational
workload is directly proportional to the size of data and dependent on data locality.
The general scheme of such applications can be summarized as follows: (i) all data
is partitioned over the processors, (ii) some independent calculations are carried out
in parallel, and (iii) some data synchronization takes place. Our target architecture
is a dedicated heterogeneous distributed-memory HPC platform, such as heteroge-
neous clusters, interconnected clusters, multicores with GPU and FPGA accelera-
tors. These HPC platforms have the following features: (i) the performance of the
application is stable in time and is not affected by varying system load; (ii) there is
a significant overhead associated with data migration between computing devices;
(iii) optimized architecture-specific libraries implementing the same kernels may be
available for different computing devices. On these platforms, for most scientific ap-
plications, static load balancing algorithms outperform dynamic ones because they
do not involve data migration. Therefore, for this type of applications, we find that
centralized static algorithms, such as data partitioning, are the most appropriate.

Most of the state of the art data partitioning algorithms [3, 4, 11, 19, 20, 21, 22]
make the assumption that the speed of a process does not change with problem size,
and hence are based on constant performance models (CPM). In [4] they make redis-
tribution decisions based on the average of recorded times of the previous iterations.
In [3] they acknowledge performance changes with problem size, however for their
partitioning calculations they use single-value sustained performance of computa-
tional kernel on devices. In [11] they use a linear model of time, which is equivalent
to constant speed.

The fundamental assumption of the conventional CPM-based algorithms is that
the absolute speed of the processors does not depend on the size of the computational
task. This assumption is typically satisfied when medium-sized scientific problems
are solved on a heterogeneous network of workstations. However, it becomes much
less accurate in the following situations: (i) The partitioning of the problem results
in some tasks either: not fitting into the available memory of the assigned device
and hence causing out-of-core computations; or fully fitting into faster levels of its
memory hierarchy. (ii) Some processing devices involved in computations are not
traditional general-purpose processors (say, accelerators such as GPUs or specialized
cores). In this case, the relative speed of a traditional processor and a non-traditional
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one may differ for two different sizes of the same computational task even if both
sizes fully fit into the available memory. (iii) Different devices use different codes to
solve the same problem locally.

The above situations become more and more common in modern and especially
perspective high-performance heterogeneous platforms. As a result, applicability of
the traditional CPM-based distribution algorithms becomes more restricted. Indeed,
if we consider two really heterogeneous processing devices Pi and Pj , then the more
different they are, the smaller will be the rangeRij of sizes of the computational task
where their relative speeds can be accurately approximated by constants. In the case
of several different heterogeneous processing devices, the range of sizes where CPM-
based algorithms can be applied will be given by the intersection of these pair-wise
ranges,

⋂p
i,j=1Rij . Therefore, if a high-performance computing platform includes

even a few significantly heterogeneous processing devices, the area of applicability
of CPM-based algorithms may become quite small or even empty. For such plat-
forms, new algorithms are needed that would be able to optimally distribute compu-
tations between processing devices for the full range of problem sizes.

The functional performance model (FPM) has proven to be more realistic than
the constant performance model, because it integrates many important features, such
as the hardware and software heterogeneity, the heterogeneity of memory structure,
the effects of paging and so on [6]. FPMs can be used for data partitioning between
devices within a CPU/GPU node [8], we present how this can be done in Sect. 1.7.
Moreover, we also proposed several FPM-based load balancing approaches for mul-
ticore CPU and multi-GPU environments, which are capable of exploiting the sys-
tems capabilities at multiple levels of parallel execution [23, 24]. For a cluster of
hybrid nodes, hierarchical partitioning can be advantageous because it works well in
scheduling divisible workload. For example, hierarchical scheduling was shown to
be efficient for load balancing on homogeneous [25] and heterogeneous [12] hybrid
clusters. In this work, we will demonstrate how FPMs can be used for hierarchical
data partitioning.

1.3 Data Partitioning Based on Functional Performance Model

The functional performance model [6] is application and hardware specific. It is as-
sociated with a process executing the application on the particular piece of hardware.
Under the functional performance model, the speed of each process is represented
by a continuous function of the problem size. The speed is defined as the number
of computation units performed by the process per second. The computation unit is
the smallest amount of work that can be given to a process. All units require the ex-
act same number of arithmetic calculations and have the same input and output data
storage requirements. The computation unit can be defined differently for different
applications. The compute time for a fixed amount of computation units on a given
process must remain constant.

Performance models consist of a series of speed measurements taken over a range
of problem sizes. The speed is found experimentally by measuring the execution
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time. This can be done by benchmarking the full application for each problem size.
However, since computationally intensive applications often perform the same core
computation multiple times in a loop, a benchmark made of one such core computa-
tion will be representative of the performance of the whole application. We call this
core computation, which performs much less computations but is still representative
of the application, a kernel. If the nature of the application allows, FPMs can be built
more efficiently by only benchmarking the kernel.

The problem of data partitioning using functional performance models was for-
mulated in [6] as follows. In this formulation, a total problem size n is given as
the number of computation units to be distributed between p (p < n) processes
P1, . . . , Pp. The speed of each process is represented by a positive continuous func-
tion of problem size s1(x), . . . , sp(x) : si(x) = x/ti(x), where ti(x) is the execu-
tion time of processing x units on the processor i. Speed functions are defined at
[0, n]. The output of the algorithm is a distribution of computation units, d1, . . . , dp,
so that d1 + d2 + . . . + dp = n. Load balancing is achieved when all processors
execute their work at the same time: t1(d1) ≈ t2(d2) ≈ . . . ≈ tp(dp). This can be
expressed as: 

d1
s1(d1)

≈ d2
s2(d2)

≈ . . . ≈ dp
sp(dp)

d1 + d2 + . . .+ dp = n

(1.1)

The solution of these equations, d1, . . . , dp, can be represented geometrically by
intersection of the speed functions with a line passing through the origin of the coor-
dinate system. This is illustrated in Fig. 1.1 for p = 4.

The geometrical algorithm solving this data partitioning problem was proposed
in [6] and can be summarized as follows. Any line passing through the origin and
intersecting the speed functions represents an optimum distribution for a particular
problem size. Therefore, the space of solutions of the data partitioning problem
consists of all such lines. The two outer bounds of the solution space are selected
as the starting point of algorithm. The upper line, U , represents the optimal data
distribution du1 , . . . , d

u
p for some problem size nu < n, nu = du1 + . . . + dup , while

the lower line, L, gives the solution dl1, . . . , d
l
p for nl > n, nl = dl1 + . . .+ dlp. The

region between two lines is iteratively bisected by new lines Bk. At the iteration k,

Figure 1.1 Optimal data distribution: the number of computation units is geometrically
proportional to the speeds of the processors.
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(a) (b)

Figure 1.2 Two steps of the iterative geometrical data partitioning algorithm. The dashed
line O represents the optimal solution. (a) Upper U and lower L represent the outer bounds of
the solution space. Line (B1) represents the first bisection. (b) Line B1 becomes L. Solution
space is bisected by line B2, which, at the next step, will become U . Through this method the
partitioner converges on the solution.

the problem size corresponding to the new line intersecting the speed functions at
the points dk1 , . . . , d

k
p is calculated as nk = dk1 + . . . + dkp . Depending on whether

nk is less than or greater than n, this line becomes a new upper or lower bound.
Making nk close to n, this algorithm finds the optimal partition of the given problem
d1, . . . , dp: d1+. . .+dp = n. Fig. 1.2 illustrates the work of the bisection algorithm.
Correctness proof and complexity analysis of this algorithm are presented in [6].

In the following section, we present a typical computationally intensive parallel
application, and define its computation unit and kernel.

1.4 Example Application: Heterogeneous Parallel Matrix Multiplication

In this section, we describe a column-based heterogeneous modification [26] of the
two-dimensional blocked matrix multiplication [27]. It will be used in subsequent
sections to demonstrate how to design parallel scientific applications for heteroge-
neous hierarchical platforms, using the proposed data partitioning algorithms.

Parallelism in this application is achieved by slicing the matrices, with a one-
to-one mapping between slices and processes. For efficiency and scalability, the
application uses two-dimensional slicing of the matrices. The general solution for
finding the optimum matrix partitioning for a set of heterogeneous processors has
been shown to be NP-complete [20]. By applying a column-based matrix partition-
ing restriction, an algorithm with polynomial complexity can be used to find opti-
mum partitioning [28]. In this algorithm each process is responsible for calculations
associated with a rectangular submatrix. These rectangles are arranged into columns
and the area of the rectangles is proportional to the speed of the device upon which
the process is running (Fig. 1.3(a)). A communication minimizing algorithm [20]
uses this column-based partitioning and finds the shape and ordering of these rectan-
gles such that the total volume of communication for parallel matrix multiplication
is minimized.

The application performs the matrix multiplication C = A × B. Without loss
of generality we will work with square N × N matrices and we assume that N
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(a) (b)

Figure 1.3 Heterogeneous parallel column-based matrix multiplication. (a) One step of the
algorithm. (b) Computational kernel.

is a multiple of the blocking factor b. Dense matrices A, B and C are partitioned
into p submatrices Ai, Bi, Ci, each of height bmi and width bni, where p is the
number of processes, mi and ni are the height and width of submatrices in blocks
(Fig. 1.3(b)). The application consists ofN/b iterations, with a column of blocks (the
pivot column) of matrix A being communicated horizontally, and a row of blocks
(the pivot row) of matrix B being communicated vertically. The pivot column and
row move horizontally and vertically respectively with each iteration. If process
i, with submatrix Ai, forms part of the pivot column, then it will send its part of
the pivot column horizontally. If process i with submatrix Bi forms part of the
pivot row, then it will send its part of the pivot row vertically. At each iteration all
processes will receive into a buffer A(b) of size bmi × b and B(b) of size b × bni.
Then the following GEMM operation is then performed by all processes in parallel:
Ci = Ci +A(b) ×B(b). This forms the computation kernel of the application.

For this kernel, we define the computation unit as an update of a b × b block of
Ci. The amount of computations to update the whole i-th rectangle is equal to its
area measured in these units di = mi × ni. The communication minimizing algo-
rithm [20] arranges the processes into columns and sets the rectangles’ dimensions
(mi, ni) using the optimal areas of the rectangles d1, . . . , dp provided as input. The
computational kernel is representative of the execution of one iteration of the ap-
plication on a given processor while being independent of the performance of the
processors neighbors.

While porting this application to hierarchical multicore multi-GPU platforms, we
face the following challenges:

On a hybrid node, parallel processes interfere with each other due to sharing
resources. The speed of individual devices cannot be measured independently.
However, the devices can be divided into groups so that there is no significant
interference between the groups. The functional performance model of a group
of devices can be defined. For example, on a multi-socket node, a model of a
socket can be built instead of the models of individual CPU cores.

Interactions between CPUs and GPUs include: data transfers between the host
and GPU over PCI Express; launching of GPU kernels; and other operations.
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The effect on performance by these interactions is included in the functional
performance model by designing an appropriate kernel for benchmarking.

In order to achieve load balancing between hybrid nodes, the partitioning algo-
rithm has to account for the hierarchy of processing devices, and hence, func-
tional performance models need to be defined for each level of hierarchy.

We address these challenges in the following sections and demonstrate how to use
FPM-based data partitioning on hierarchical multicore and multi-GPU platforms,
using the example application.

1.5 Performance Measurement on CPUs/GPUs System

Here we apply the approach proposed in previous work [7] to measure the perfor-
mance of multiple cores in a system by taking into account the resource contention
between parallel processes. Each GPU is assumed to be controlled by a dedicated
CPU core, which instructs the kernel execution on the GPU and handles the data
transfers between them; therefore, we measure the combined performance of the
GPU with its dedicated core, which includes the contributions from the kernel run-
ning on GPU and the memory transfers.

Our experimental system is a hybrid multicore and multi-GPU node of NUMA ar-
chitecture, consisting of 4 sockets of six-core AMD processors with 16 GB memory
each and accelerated by 2 different GPUs (Table 1.1). We used the GEMM kernel
from ACML and CUBLAS for CPU and GPU respectively.

Our approach to performance measurement on heterogeneous multicore and multi-
GPU system can be summarized as follows. (i) Since automatic rearranging of the
processes provided by operating system may result in performance degradation, pro-
cesses are bound to cores. (ii) Processes are synchronized to minimize the idle com-
putational cycles, aiming at the highest floating point rate for the application. Syn-
chronization also ensures that the resources will be shared between the maximum
number of processes, generating the highest memory traffic. (iii) To ensure the reli-
ability of the measurement, experiments are repeated multiple times until the results
are statistically reliable.

Table 1.1 Specifications of the hybrid system ig.icl.utk.edu

CPU (AMD) GPUs (NVIDIA)

Architecture Opteron 8439SE GF GTX680 Tesla C870

Core Clock 2.8 GHz 1006 MHz 600 MHz

Number of Cores 4 × 6 cores 1536 cores 128 cores

Memory Size 4 × 16 GB 2048 MB 1536 MB

Mem. Bandwidth 192.3 GB/s 76.8 GB/s
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First, we measured the execution time of the kernel on a single and multiple CPU
cores. We observed that the speed of a core depended on the number of cores ex-
ecuting the kernel on the same socket, because they compete for shared resources.
However, the performance of the core was not affected by the execution of the kernel
on other sockets, due to the NUMA architecture and a large capacity of memory.
Therefore, we can accurately measure the time and, hence, the speed of a socket
executing the same kernel simultaneously on its cores. This approach realistically
reflects the performance of parallel applications designed for multicores.

Next, we experimented with the kernel on a GPU, with one core being dedi-
cated to the GPU, and other cores on the same socket being idle. Since the kernel
does not provide data transfer between the host and device, we implemented send-
ing/receiving of matrices and measured the combined execution time on the ded-
icated core. Communication operations with GPU take a large proportion of the
whole execution time for most applications [29], therefore, the time measured this
way realistically reflects the performance of the kernel. This approach allows us to
measure the speed of a single GPU.

Finally, we simultaneously executed the GEMM kernels on both a GPU and the
cores located on the same socket. The cores, except for one dedicated to the GPU,
executed the ACML kernel. The dedicated core and the GPU executed the CUBLAS
kernel. The amounts of work given to the CPUs and the GPU were proportional
to their speeds obtained from the previous experiments for a single core and for a
single GPU. This may be not very accurate but realistic distribution of workload,
which reflects the hybrid parallel applications. We measured the execution time on
all cores and observed that the performance of the GPU dropped by 7–15% because
of resource contention, while the CPU cores were not so much affected by the GPU
process. In this experiment, we exploited the distributed-memory feature of the hy-
brid architecture. Namely, having received the data from the host memory, the GPU
performed the computations in its local memory, and the dedicated core did not com-
pete with other cores for resources. This observation allows us to measure the speed
of multiple cores and GPUs independently with some accuracy.

1.6 Functional Performance Models of Multiple Cores and GPUs

We build the functional performance models of the parallel matrix multiplication
application described in Sect. 1.4 for multiple cores and GPUs respectively, using the
representative computational kernel of the application. Since the speed of the kernel
for a given matrix area x does not vary with the nearly square shapes of submatrices
[26], we build the speed functions by timing the kernel with the submatrices of size√
x×
√
x.

Speed functions of multiple cores: sc(x). These functions approximate the
speed of a socket executing the ACML kernels simultaneously on c cores, with the
problem size (matrix area) x/c on each core.
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Speed functions of GPUs: g1(x), g2(x). Each function approximates the com-
bined performance of a GPU and its dedicated core, while the GPU executing the
CUBLAS kernel, with the problem size (matrix area) x.

Figure 1.4(a) shows the FPMs of a socket, s5(x) and s6(x), executing the ACML
kernel on 5 and 6 cores simultaneously. The maximum performance of the socket is
observed when all cores are involved in computations. It does not increase linearly
with the number of active cores, because of resource contention. Additionally the
performance depends on the blocking factor b, an application parameter. To exploit
optimizations implemented in the ACML kernel, which take into account memory
hierarchy of a multicore architecture, we experimented with b = 640.

In Fig. 1.4(b), the speed functions built for different modifications of the kernel
on GeForce GTX680 are presented. The speed was measured on a dedicated core,
while other cores stayed idle. In version 1, the pivot column A(b) and row B(b) and
the submatrix Ci are stored in the host memory. Before the execution of GEMM
on the device, the pivot column and row are transferred to the device. After the
execution, the updated submatrix is transferred back from the device. Therefore, the
speed of the first version includes all transfers between the host and device memory.

In the application, the kernel is executed multiple times with different pivot columns
and rows, updating the same submatrix Ci. Therefore, the submatrix can be stored
in the device memory, accumulating the intermediate results. The transfer of Ci can
be excluded from the kernel and from the speed measurements. In version 2, sub-
matrix Ci is stored and intermediate results are accumulated in the device until the
device memory is exceeded. As shown in Fig. 1.4(b), the performance doubles when
problem sizes fit in the GPU memory. After that, it splits the pivot column A(b) and
row B(b) and the submatrix Ci into rectangles that fit the device memory and per-
forms the CUBLAS GEMM multiple times to update these rectangles serially (see
Fig. 1.5(a)). This implementation requires multiple transfers of the rectangles of the
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Figure 1.4 (a) Speed functions of a socket, s5(x) and s6(x), with blocking factor b =
640. (b) Speed functions of GeForce GTX680 (b = 640) built for kernels accumulating
the intermediate results in the host memory (version 1); in device memory with out-of-core
extension (versions 2); with overlapping of communications and computations (version 3).
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Figure 1.5 (a) Out-of-core implementation of the kernel on GPU. (b) Concurrent data
transfers and kernel executions on GPUs.

submatrix Ci to and from the device memory, which explains the performance drop
in the range of large problem sizes.

In version 3, another out-of-core implementation of the kernel, we use the concur-
rency feature of NVIDIA GPUs on top of version 2. This feature enables to perform
multiple CUDA operations simultaneously and, hence, to overlap communications
with computations on host and device. In addition, modern generations of NVIDIA
GPUs, such as GeForce GTX680, support concurrent data transfers to and from the
device memory. As shown in Fig. 1.5(a), five buffers are allocated in the device
memory, using its maximum capacity: A0 and A1 for rectangles of the pivot column
A(b), B0 for the pivot row B(b), C0 and C1 for the submatrix Ci. Overlapping com-
munications and computations in the out-of-core version of the kernel is illustrated in
Fig. 1.5(b). In the beginning of each column, the first rectangles of the pivot column
and row and the submatrix are sent to the buffers A0, B0 and C0. While GEMM is
executed with these buffers, the next rectangles of the pivot column and the subma-
trix are sent to A1 and C1. Next, three operations are overlapped. (i) The rectangle of
the submatrix updated during the previous execution of GEMM is transferred from
C0 to the host memory. (ii) GEMM is executed with the new rectangles of the pivot
column and the submatrix, using the buffers A1, B0, C1. (iii) The next rectangles of
the pivot column and the submatrix are sent to A0 and C0. On the Tesla C870, which
supports only one DMA engine, the latter operation is performed after (i) is com-
plete (see Fig. 1.5(b)). We can see from Fig. 1.4(b) that the performance of GeForce
GTX680 improves by around 30% when using overlapping. Based on our experi-
ments, the speed function shapes of Tesla C870 are similar to GeForce GTX680’s.
However, there is less performance improvement from overlapping because Tesla
C870 does not support concurrent data transfers.

1.7 FPM-Based Data Partitioning on CPUs/GPUs System

Table 1.2 shows the execution time of the heterogeneous matrix multiplication ap-
plication [26] measured on different configurations of the hybrid system. The exper-
iments were performed for square matrices with blocking factor b = 640. The first
column shows the matrix size n×n in square blocks of 640× 640. Column 2 shows
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Table 1.2 Execution time of parallel matrix multiplication

Matrix (blks) CPUs (sec) GTX680 (sec) Hybrid-FPM (sec)

40× 40 99.5 74.2 26.6

50× 50 195.4 162.7 77.8

60× 60 300.1 316.8 114.4

70× 70 491.6 554.8 226.1

the application execution time for the homogeneous matrix distribution between 24
CPU cores. Column 3 shows the execution time on GeForce GTX680 and a dedi-
cated core. The last column shows the execution time for the heterogeneous matrix
distribution between 22 CPU cores and 2 GPUs, with the rest 2 CPU cores being ded-
icated to GPUs. The distribution was obtained from the FPM-based data partitioning
algorithm with the speed functions of 2 GPUs, g1(x), g2(x), 2 sockets with 5 active
cores, 2 × s5(x), and 2 sockets with 6 active cores, 2 × s6(x). GeForce GTX680
outperforms 24 CPU cores when the problem fits in the device memory. When the
problem exceeds the device memory, CPUs perform better. Functional performance
models capture these variations, and therefore, the FPM-based data partitioning algo-
rithm successfully distributes computations for all problem sizes, and the application
delivers high performance.

In this section, we presented how to model performance of devices and how to
use these models to find the optimal data partitioning within a node. On hardware-
accelerated multicore clusters, there is a two-level hierarchy consisting of nodes and
devices. To enable FPM-based data partitioning in this case, we need to introduce
the model of a node. This model has to represent the optimal performance of the
node, which is achieved by balancing the load between its internal devices. For each
point in the node model, it is necessary to build the models of devices and perform
data partitioning. Hence, the cost of building the node model may be prohibitively
high.

One method of building the functional performance models efficiently is to es-
timate them at run-time, only in some region, with a sufficient degree of accuracy
[9]. We refer to these estimates as the partial functional performance models. In the
following section, we give a brief description of this method, which was originally
designed for heterogeneous uniprocessor clusters of workstations. Then, in Sect.
1.9, we use the partial models to reduce the cost of building the two-level hierarchi-
cal models. We redesign the example application to use hierarchical data partitioning
based on partial models of devices and nodes.

1.8 Efficient Building of Functional Performance Models

Functional performance models are hardware and application specific and are built
empirically by benchmarking the kernel for a range of problem sizes. The accuracy
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of the model depends on the number of experimental points used to build it. Despite
the kernel being lightweight, building the full model can be very expensive. The
applicability of FPMs built for the full range of problem sizes is limited to parallel
applications executed many times on stable in time heterogeneous platforms. In this
case, the time of construction of the full FPMs can become very small compared to
the accumulated performance gains during the multiple executions of the optimized
application. However, this approach is not suitable for applications that will be run
a small number of times on a given platform, for example, in grid environments,
where different processors are assigned for different runs of the application, or in
hierarchical platforms, where the performance of a node depends not only on the
workload assigned to the node but also on the distribution of this workload between
the processing devices on the node. Such applications should be able to optimally
distribute computations between the processors of the executing platform assuming
that this platform is different and a priori unknown for each run of the application.

Partial estimates of the full speed functions can be built dynamically at application
run-time to a sufficient level of accuracy to achieve load balancing [9, 30]. We refer
to these approximations as partial functional performance models. The partial FPMs
are based on a few points connected by linear segments and estimate the real func-
tions in detail only in the relevant regions: s̄i(x) ≈ si(x), 1 ≤ i ≤ p, ∀x ∈ [a, b].
Both the partial models and the regions are determined at runtime.

The algorithm to build the partial FPMs is iterative and alternates between (i)
benchmarking the kernel on each process for a given distribution of workload and
(ii) repartitioning the data. At each iteration, the current distribution d1, . . . , dp is
updated, converging to the optimum, while the partial models s̄1(x), . . . , s̄p(x) be-
come more detailed. Initially the workload is distributed evenly between all pro-
cesses. Then the algorithm iterates as follows:

1. The time to execute the kernel for the current distribution is measured on each
process. If the difference between timings is less than some ε, the current dis-
tribution solves the load balancing problem and the algorithm stops.

2. The speeds are calculated from the execution times and the points (di, si) are
added to the corresponding partial models s̄i(x) (Fig. 1.6 (b, d, f)).

3. Using on the current partial estimates of the speed functions, the FPM-based
partitioning algorithm calculates a new distribution (Fig. 1.6 (a, c, e)).

This algorithm allows for efficient load balancing and suitable for use in self-
adaptable applications, which run without a priori information about the heteroge-
neous platform. In the next section, we use the partial functional performance models
for data partitioning on hierarchical platform.

1.9 FPM-Based Data Partitioning on Hierarchical Platforms

In this section our target platform is a two level hierarchical heterogeneous cluster
of CPU/GPU compute nodes. This distributed platform can be described as having q
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(a) (b)

(c) (d)

(e) (f)

Figure 1.6 Steps of the partial FPM-based data partitioning algorithm illustrated using four
heterogeneous processors.

nodes, Q1, . . . , Qq , where a node Qi has pi devices, Pi1, . . . , Pipi
. The problem to

be solved by this algorithm is to partition a matrix between these nodes and devices
with respect to the performance of each of these processing elements. The hierar-
chical partitioning algorithm is iterative and converges towards an optimum distribu-
tion which balances the workload. It consists of two iterative algorithms, inter-node
partitioning algorithm (INPA) and inter-device partitioning algorithm (IDPA). The
IDPA algorithm is nested inside the INPA algorithm [10].

As a demonstration how to optimize scientific applications on the target platform
we take the heterogeneous parallel matrix multiplication application described in
Sect. 1.4 and make the following modifications. Since the platform has two levels
of hierarchy, we create a two-level partitioning scheme. The matrix is partitioned
between the nodes (Fig. 1.7a) and then sub-partitioned between the devices within
each node (Fig. 1.7b). This gives the application nested parallelism.
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(a) (b)

Figure 1.7 Parallel matrix multiplication algorithm: (a) two-dimensional blocked matrix
multiplication between the nodes; (b) one-dimensional matrix multiplication within a node.

There is a total of W computation units to be distributed, where W = (N/b) ×
(N/b). The INPA partitions the total matrix into q submatrices to be processed on
each heterogeneous computing node. The submatrix owned by node Qi has an area
equal to wi × b × b, where w1 + . . . + wq = W. The FPM partitioning algorithm
(FPM-PA), from Sect. 1.3 uses, experimentally built speed functions to calculate a
load balanced distribution w1, . . . , wq . The shape and ordering of these submatrices
is calculated by the communication minimizing algorithm (CMA) [20]. The CMA
uses column-based 2D arrangement of nodes and outputs the heights bmi and widths
bni for each of the q nodes, such that mi × ni = wi, bm = b × m and bn =
b× n (Fig. 1.8a). This two-dimensional partitioning algorithm uses a column-based
arrangement of processors. The values of mi and ni are chosen so that the column
widths sum up to N and heights of submatrices in a column sum to N .

The IDPA iteratively measures, on each device, the time of execution of the ap-
plication specific core computational kernel with a given size while converging to a
load balanced inter-device partitioning. It returns the kernel execution time of the
last iteration to the INPA. IDPA calls the FPM-PA to partition the submatrix owned
by Qi into vertical slices of width dij , such that di1 + . . . + dip = bni (Fig. 1.8b)
to be processed on each device within the node. Device Pij will be responsible for
doing matrix operations on bmi × dij matrix elements.

(a) (b)

Figure 1.8 Two level matrix partitioning scheme: (a) two-dimensional partitioning between
the nodes; (b) one dimensional partitioning between devices in a node.
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We now present an outline of a parallel application using the proposed hierarchical
partitioning algorithm. The partitioning is executed immediately before execution of
the parallel algorithm. The outline is followed by a detailed description of the indi-
vidual algorithms.

INPA
(
IN: N, b, q, p1, . . . , pq OUT: {mi, ni, di1, . . . , dip}qi=1

)
{

WHILE inter-node imbalance

CMA
(

IN: w1, . . . , wq OUT: (m1, n1), . . . , (mq, nq)
)

;

On each node i (IDPA):

WHILE inter-device imbalance
On each device j: kernel

(
IN: bmi, bni, dij OUT: tij

)
;

FPM-PA
(

IN: pi, bni, piFPMs OUT: di1, . . . , diq)
)

;

END WHILE

FPM-PA
(

IN: q,W , qFPMs OUT: w1, . . . , wq

)
;

END WHILE
}
Parallel application

(
IN: {mi, ni, di1, . . . , dip}qi=1, . . .

)
Inter-Node Partitioning Algorithm (INPA)
Run in parallel on all nodes with distributed memory. Inputs: square matrix size N ,
number of nodes q, number of devices in each node p1, . . . , pq and block size b.

1. To add initial small point to the model, each node, in parallel, invokes the IDPA
with an input (pi, bmi = 1, bni = 1). This algorithm returns a time which is
sent to the head node.

2. The head node calculates speeds from these times as si(1) = 1/ti(1) and adds
the first point, (1, s(1)), to the model of each node.

3. The head node then computes the initial homogeneous distribution by dividing
the total number of blocks, W , between processors wi = W/q.

4. The CMA is passed w1, . . . , wq and returns the inter-node distributions
(m1, n1), . . . , (mq, nq) which are scattered to all nodes.

5. On each node, the IDPA is invoked with the input (pi, bmi, bni) and the returned
time ti is sent to the head node.

6. IF max
1≤i,j≤q

∣∣∣ ti(wi)−tj(wi)
ti(wi)

∣∣∣ ≤ ε1 THEN the current inter-node distribution solves

the problem. All inter-device and inter-node distributions are saved and the
algorithm stops;
ELSE the head node calculates the speeds of the nodes as si(wi) = wi/ti(wi)
and adds the point (wi, si(wi)) to each node-FPM.
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7. On the head node, the FPM-PA is given the node-FPMs as input and returns a
new distribution w1, . . . , wq . GOTO 4

Inter-Device Partitioning Algorithm (IDPA)
This algorithm is run on a node with p devices. The input parameters are p and the
submatrix sizes bm, bn. It computes the device distribution d1, · · · , dp and returns
the time of last benchmark.

1. To add an initial small point to each device model, the kernel with parameters
(bm, bn, 1) is run in parallel on each device and its execution time is measured.
The speed is computed as sj(1) = 1/tj(1) and the point (1, sj(1)) is added to
each device model.

2. The initial homogeneous distribution dj = bn/p, for all 1 ≤ j ≤ p is set.

3. In parallel on each device, the time tj(dj) to execute the kernel with parameters
(bm, bn, dj) is measured.

4. IF max
1≤i,j≤p

∣∣∣ ti(di)−tj(dj)
ti(di)

∣∣∣ ≤ ε2 THEN the current distribution of computations

over devices solves the problem. This distribution d1, · · · , dp is saved and
max
1≤j≤p

tj(dj) is returned;

ELSE the speeds sj(dj) = dj/tj(dj) are computed and the point (dj , sj(dj))
is added to each device-FPM.

5. The FPM-PA takes bn and device-FPMs as input and returns a new distribution
d1, . . . , dp. GOTO 3

Functional Performance Model Partitioning Algorithm (FPM-PA)
This FPM partitioning algorithm is presented in detail in Sect. 1.3.

Communication Minimizing Algorithm (CMA)
This algorithm is specific to communication pattern of application and the topology
of the communication network. It takes as input the number of computation units,
wi, to assign to each processing element and arranges them in such away, (mi, ni),
as to minimize the communication cost. For example, for matrix multiplication,
A × B = C, the total volume of data exchange is minimized by minimizing the
sum of the half perimeters H =

∑q
i=1(mi + ni). A column-based restriction of this

problem is solved in [20].

The Grid’5000 experimental testbed proved to be an ideal platform to test our
application. We used 90 dedicated nodes from 3 clusters from the Grenoble site.
12 nodes from the Adonis cluster included NVIDIA Tesla GPUs, the rest were ap-
proximately homogeneous. In order to increase the impact of our experiments we
chose to utilize only some of the CPU cores on some machines (Table 1.3). Such an
approach is not unrealistic since it is possible to book individual CPU cores on this
platform. For the local dgemm routine we used high performance vendor-provided
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Table 1.3 Experimental hardware setup using 90 nodes from three clusters from Grenoble,
Grid’5000. All nodes have 8 CPU cores, however, to increase heterogeneity only some of
the CPU cores are utilized as tabulated below. One GPU was used with each node from the
Adonis cluster, 10 have Tesla T10 and 2 have Tesla C2050 GPUs. A CPU core is devoted to
control GPU. For example, we can read that 6 Edel nodes used just 1 CPU core. All nodes are
connected with InfiniBand 20G & 40G

Cores: 0 1 2 3 4 5 6 7 8 Nodes CPUs GPUs Hardware

Adonis 2 1 1 1 1 1 2 3 0 12 48 12 2.4GHz, 24GB

Edel 0 6 4 4 4 8 8 8 8 50 250 0 2.3GHz, 24GB

Genepi 0 3 3 3 3 4 4 4 4 28 134 0 2.5GHz, 8GB

Total 90 432 12 Intel Xeon

BLAS libraries, namely Intel MKL for CPU and CUBLAS for GPU devices. Open
MPI was used for inter-node communication and OpenMP for inter-device paral-
lelism. The GPU execution time includes the time to transfer data to the GPU. For
these experiments, an out of core algorithm is not used when the GPU memory is
exhausted. All nodes are interconnected by a high speed InfiniBand network which
reduces the impact of communication on the total execution time, for N = 1.5×105

all communications (including wait time due to any load imbalance) took 6% of total
execution time. The full functional performance models of nodes, Fig. 1.9, illustrate
the range of heterogeneity of our platform.

An appropriate block size of b = 128 proves to be a good balance between achiev-
ing near peak performance of optimized BLAS libraries while providing sufficient
granularity for load balancing [10]. In order to demonstrate the effectiveness of
the proposed FPM-based partitioning algorithm we compare it against 3 other par-

 0

 20

 40

 60

 80

 100

 120

 140

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000

S
p

e
e

d
 (

G
F

L
O

P
S

)

Problem Size wi (b × b blocks updated)

adonis 7CPU + 1GPU
adonis 1CPU + 1GPU
adonis 0CPU + 1GPU

genepi 8CPU
genepi 4CPU
genepi 1CPU

edel 8CPU
edel 4CPU
edel 1CPU

Figure 1.9 Full functional performance models for a number of nodes from Grid’5000
Grenoble site. Problem size is in number of b × b blocks of matrix C updated by a node.
For each data point, it was necessary to build device models, find the optimum inter-device
distribution and then measure the execution time of the kernel with this distribution.
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titioning algorithms. All four algorithms invoke the communication minimization
algorithm and are applied to an identical parallel matrix multiplication application.
They differ on how load balancing decisions are made.

Multiple-CPM Partitioning uses the same algorithm as proposed above, with
step 7 of the INPA and step 5 of the IDPA replaced with wi = W × si∑

q
si

and

dj = bn× sj∑
p
sj

respectively, where si and sj are constants. This is equivalent

to the approach used in [21, 22, 31].

Single-CPM Partitioning does one iteration of the above multiple-CPM parti-
tioning algorithm. This is equivalent to the approach used in [32, 20].

Homogeneous Partitioning uses an even distribution between all nodes: w1 =
w2 = · · · = wq and between devices in a node: di1 = di2 = · · · = dipi

.

Fig. 1.10 shows the speed achieved by the parallel matrix multiplication applica-
tion when the four different algorithms are applied. It is worth emphasizing that the
performance results related to the execution on GPU devices take into account the
time to transfer the workload to/from the GPU. The speed of the application with the
homogeneous distribution is governed by the speed of the slowest processor (a node
from Edel cluster with 1CPU core). The Single-CPM and multiple-CPM partition-
ing algorithms are able to load balance for N up to 60000 and 75000 respectively,
however this is only because the speed functions in these regions are horizontal. In
general, for a full range of problem sizes, the simplistic algorithms are unable to
converge to a balanced solution. By chance, for N = 124032, the multiple-CPM
algorithm found a reasonably good partitioning after many iterations, but in general
this is not the case. Meanwhile the FPM-based partitioning algorithm reliably found
good partitioning for matrix multiplication involving in excess of 0.5TB of data.
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Figure 1.10 Absolute speed for a parallel matrix multiplication application based on four
partitioning algorithms, measured on 90 heterogeneous nodes consisting of 432 CPU cores
and 12 GPUs from 3 dedicated clusters.
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1.10 Conclusion

In this chapter, we proposed several techniques to efficiently exploit the capabili-
ties of modern heterogeneous systems equipped with multicore CPUs and several
GPU devices for scientific computations. We investigated the process of efficient
design and optimization of scientific applications not only at the level of a single
CPU/GPU computing node, but also in highly heterogeneous and hierarchical HPC
clusters. In contrast to other related works in this area, we based our approaches
on functional performance modeling which integrates many important features char-
acterizing the performance of the platform and the application, such as contention
on shared resources, high performance disparity of architecturally different devices,
limited memory of the accelerators or scenarios when different devices use different
codes to solve the same computational problem.

For a single hybrid CPU/GPU node, we presented the performance measurement
methods and analyzed the efficiency of different implementations of parallel matrix
multiplication, chosen as a case study. We defined and built functional performance
models of heterogeneous processing elements on a typical multicore and multi-GPU
node. We showed that FPMs can facilitate performance evaluation of scientific appli-
cations on these hybrid platforms, and data partitioning algorithms based on accurate
FPMs can deliver significant performance improvements when compared to the one
obtained at the level of a single device.

To adapt parallel applications to hybrid heterogeneous clusters, we proposed a
hierarchical data partitioning algorithm, which optimally distributed computation
workload at two levels of the platform’s hierarchy, namely, between nodes and be-
tween devices within each node. The presented approach is based on FPMs of pro-
cessing elements which are efficiently built at runtime and realistically capture the
high level of platform heterogeneity. The efficiency of the proposed algorithm was
assessed on a real platform consisting of 90 highly heterogeneous nodes in 3 com-
puting clusters and compared to the equivalent approaches based on traditional data
partitioning algorithms. The results demonstrate that the presented algorithm mini-
mized the overall communication volume and provided efficient load balancing de-
cisions for very large problem sizes, while similar approaches were not able to find
the adequate balancing solutions.
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