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a b s t r a c t

Achieving optimal performance of MPI applications on current multi-core architectures, composed of
multiple shared communication channels and deep memory hierarchies, is not trivial. Formal analysis
using parallel performancemodels allows one to depict the underlying behavior of the algorithms and their
communication complexities, with the aims of estimating their cost and improving their performance.

LogGPmodelwas initially conceived to predict the cost of algorithms inmono-processor clusters based
on point-to-point transmissions with network latency and bandwidth based parameters. It remains as
the representative model, with multiple extensions for handling high performance networks, covering
particular contention cases, channels hierarchies or protocol costs. These very specific branches lead
LogGP to partially lose its initial abstract modeling purpose.

More recent lognP represents a point-to-point transmission as a sequence of implicit transfers or data
movements. Nevertheless, similar to LogGP, itmodels an algorithm in a parallel architecture as a sequence
of message transmissions, an approach inefficient to model algorithms more advanced than simple tree-
based one, as we will show in this work.

In this paper, τ–Lop model is extended to multi-core clusters and compared to previous models. It
demonstrates the ability to predict the cost of advanced algorithms andmechanisms used bymainstream
MPI implementations, such as MPICH or Open MPI, with high accuracy. τ–Lop is based on the concept
of concurrent transfers, and applies it to meaningfully represent the behavior of parallel algorithms in
complex platforms with hierarchical shared communication channels, taking into account the effects of
contention and deployment of processes on the processors. In addition, an exhaustive and reproducible
methodology for measuring the parameters of the model is described.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Modern high performance computing systems are composed
of nodes with a significant number of cores per node and deep
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memory hierarchies, connected by high performance networks.
Scientific applications face the challenge of obtaining as much
performance as possible from such complex platforms. MPI [1] is
the de facto standard that defines the communications interface
used by this type of applications. The MPI execution model is
based on processes communicating by message passing, including
point-to-point and collective operations, which involve a group of
processes. Frequently used [2], collective operations are a key issue
in achieving performance and scalability in parallel applications.
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A collective operation can be implemented by algorithms
from a preset menu, with one of them chosen at runtime based
on the value of parameters such as message length or group
size. In general, an algorithm is executed as a sequence of
steps, and defines a point-to-point communication graph between
the processes of the group. Algorithms are designed with the
goals of minimizing the number of such steps, optimizing the
use of the underlying communication channels available in the
system, or fitting a particular network technology or topology.
Besides, achieving these goals in modern complex multi-core
clusters requires to consider the hierarchy of communication
channels (imposed by the difference in channels performance), the
implications of process distribution over the cores of the platform
(virtual topology), and the contention effects due to the use of
shared communication resources.

Parallel performance models provide a theoretical framework
for analytic representation of the communications and their
associated costs, based on system parameters. Important features
including advanced transmission mechanisms (such as RDMA and
OS bypass), middleware related costs, or network technology,
should be captured by an accurate and scalable cost estimation
model.

The type of parameters divides the known models in two
broad groups: hardware and software. Hardware models, such
as Hockney [3] or LogP [4], represent communication costs
with hardware related parameters, such as network latency or
bandwidth. They were initially created for homogeneous mono-
processor clusters, and the increasing complexity of modern
platforms limits their accuracy. In addition, they show weakness
in representing different mechanisms provided by the software
such as communication protocols, or in estimating the impact
of the communication middleware on the communication cost.
These issues are partially addressed by adding new parameters
for such protocols in LogGPS [5] or hierarchical communications
in LogGPH [6]. By contrast, software models, such as lognP [7,8],
abstract the hardware complexities by the adoption of parameters
related to the communication middleware, with the drawback of a
possible loss of network technology details.

τ -Lop [9] is a software parametrized parallel model aimed to
represent parallel algorithms and accurately and scalably predict
their cost. It provides a simple and powerful abstraction by
considering amessage transmission as a sequence of transfers. The
transfers reflect data movements between hardware or software
agents, and are modeled based on the underlying architecture
characteristics. The decomposition of a message transmission
into a sequence of transfers allows for an incremental analysis
of the algorithm, from a high level representation to low
platform-specific details. For instance, a point-to-point message
transmission could be used as the building block to model a
collective operation, but deeper insight can be obtained by further
considering the transmission as a sequence of data transfers.

The decomposition of a point-to-point message transmission
into transfers is not a new concept [10]. τ -Lop goes beyond in
natively representing the concurrency in the access to the channel
when it is shared by parallel transfers. This contention effect has
a significant impact on the algorithm performance, so that its
consideration in the model results in a substantial improvement
in the accuracy of the predicted cost.

The contribution of this paper is the extension of τ -Lop,
which was initially developed to model the behavior of collective
algorithms in shared-memory compute nodes, to modern multi-
core clusters.

Furthermore, the extended τ -Lop model addresses the influ-
ence on the cost of the deployment of processes over the system
processors. In a multi-core cluster with hierarchical organization
of communication channels, themapping of processes can improve
or aggravate the contention effect. τ -Lop takes into account the
way the virtual topology defined by the algorithm is mapped onto
the physical topology of the machine. This ability provides a more
realistic representation of the algorithm, leading to a better cost
prediction.

The rest of the paper is structured as follows. Section 2 revisits
the state-of-the-artmodels,with emphasis on LogGPHandmlognP ,
later used in cost evaluations. Section 3 describes the τ -Lop model
and its extensions to cover multi-core clusters. Section 4 discusses
its application to key algorithms of MPI collectives in multi-core
clusters and demonstrates its potential as an analytical inference
model for prediction of the communication cost. Section 5 ad-
dresses the communicationmodeling of awhole application, a par-
allel matrix multiplication kernel on amulti-core cluster. Section 6
gives details of the experimental approach used to estimate the
parameters of the model, and Section 7 concludes the paper. An
Appendix is included to describe the approach to report the error
measurements.

2. Related work

Most of the current parallel performance models derive from
Hockney [3] and Culler et al. LogP [4]. Both are linear models, in
the sense that they represent the point-to-point communication
cost by a linear function of the size of the message. Hockney
represents the cost as T = α + mβ , where m is the size of the
message, α is the network latency, and β is the inverse of the
network bandwidth. The execution time of a parallel algorithm in
the cluster is formulated in terms of these parameters. Together
with benchmarks measurements, this simple model has been used
for comparison of different MPI collective algorithms in a given
system, for ranges of message sizes and numbers of involved
processes [11,12].

The more advanced LogP cost model splits the network latency
in the network delay (L) and the network overhead (o). The over-
head is the time invested by the processor in sending and receiving
a message. This separation of processor and network contribution
allows one tomodel the computation and communication overlap.
LogP also includes the minimum time interval between message
transmissions as g .

Alexandrov et al. LogGP model [13] extends LogP with an
additional parameter, G, that captures the network bandwidth for
long messages. It represents the cost of a single point-to-point
message transmission as:

TLogGP = L + 2 o + (m − 1)G.

Several models drawn from LogGP contribute with a variety
of add-ons to represent different aspects of the communication
in complex HPC platforms. LogGPS [5] covers aspects of syn-
chronization, providing the rendezvous cost as a new parameter,
LogGPH [6] supports representation for hierarchical architectures
through a different set of parameter values for each communica-
tion channel, LoGPC [14] adds contention time in mesh networks,
and LogGPO [15] accurately captures the overlap of communica-
tion and computation in non-blocking transmissions.

Linearmodels have proven their ability tomodel point-to-point
message transmissions, as shown by Al-Tawil et al. in [16], and
upon them, the message passing algorithms underlying the col-
lective primitives of the MPI standard on mono-processor clusters
[17,18]. Analytical modeling of a broad range of these algorithms
using the Hockney model can be found in [12,19] and [11]. An
optimal broadcast algorithm is developed in [20], and in [21] for
heterogeneous networks, the gather collective is addressed in [22]
and [23], algorithms for reduction operations are developed in [24],
and for the Alltoall collective in [25].
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In the work by Pješivac-Grbović et al. [17], parallel algorithms
are also modeled using PLogP [26]. The Parametrized LogP model
slightly changes the meaning of some parameters of LogP and
makes them (except latency) dependent on message size. This
model is applied to a wide range of collective algorithms in [27].

Lastovetsky et al. LMO [28,29] is a parallel performance model
aimed to estimate the cost of algorithms in heterogeneous, in
addition to homogeneous, systems. Similar to LogGP, it carefully
separates the cost related to the processors and the network in
order to gain more accurate communication cost predictions, and
it is evaluated for a limited set of collectives: broadcast, scatter and
gather.

More specific costs models fitting different network technolo-
gies also exist. Hoefler et al. LogfP [30] models short messages in
Infinibandnetworks. The authors use themodel to study the effects
ofmulti-stage switches on that kind of networks in [31]. Paper [32]
analytically estimates the communication delays in Myrinet net-
works, and the work in [33] addresses hierarchical Ethernet net-
works.

Nevertheless, the increasing complexity of multi-core cluster
architectures and the implementation of different intra-node com-
munication techniques by current MPI libraries lead to the neces-
sity of new approaches. Themodel lognP [7,8] by Cameron et al. has
nothing to do with LogP, although they are similar in name. lognP
was also conceived, just as LogP, to model point-to-point commu-
nication, but with a new key feature, each individual data transfer
that occurs in a message transmission. mlognP [34] extends lognP
by distinguishing the variety of communication channels in a sys-
tem, such as intra-socket, inter-socket and network. mlognP rep-
resents the cost of a point-to-point transmission of a message of a
given size through the communication channel1 c as:

T c
mlognP

=

nc−1
j=0

ocj (1)

n = {n0, n1, . . . , nm−1
} is a vector with one component per com-

munication channel (nc) indicating the number of transfers a mes-
sage experiences to reach the destination buffer. m is the number
of communication channels in the system. The overhead, oc , is the
time the processor invests in each transfer composing themessage
transmission.

In multi-core clusters with m = 2, such as those of Section 6.1,
communicating two processes usually implies two transfers in the
shared memory communication channel, through an intermediate
buffer. However, when the processes run in different nodes, three
transfers will take place, namely one transfer from the source
buffer to the NIC, another transfer through the network to the
destination NIC, and finally a third transfer to the receive buffer.
Hence, the number of transfers through each of the m = 2
channels is represented by the vector n = {2, 3}, i.e., two
transfers through channel number 0 (shared memory) and three
transfers through channel number 1 (network). Definition (1) is
applied using tailored 2log{2,3}P model to represent the cost of a
transmission in shared memory as:

T 0
mlognP

=

n0−1
j=0

o0j = o00 + o01 = omw.

Note that in shared memory the two transfers have the same cost,
and their addition is represented as omw (middleware overhead). In
the network channel, first and last transfers have the same cost,

1 Term channel is used in this paper instead of the original level used in mlognP
model.
whose contribution is represented as o′
mw . The intermediate trans-

fer, between NICs, progresses through the network and its cost is
o′
net :

T 1
mlognP

=

n1−1
j=0

o1j = o10 + o11 + o12 = o′

mw + o′

net .

In the authors’ view, the transfer is the building block that con-
veniently suits the purpose of modeling the behavior of MPI algo-
rithms in shared memory, and also in networks. Notwithstanding,
lognP andmlognP have not demonstrated enough their capabilities
to model and predict the cost of collective MPI algorithms, beyond
some basic broadcast algorithms.

Regarding contention modeling, a sound work studying this
issue in high performance networks is carried out in [35] for
Infiniband and in [36,37] for Ethernet and Myrinet networks.
The authors generate specific models for each type of network
based on the study of network flow control mechanisms and
experimentally deduce penalty coefficients, derived from resource
sharing experiments, and categorize different types of conflicts.
Paper [38] shows that contention derived from bidirectional TCP
communication in a full-duplex Ethernet network diminishes the
maximum reachable network bandwidth. LoGPC [14] introduces
a large set of parameters to evaluate contention in mesh networks
withwormhole routing.Work [39] introduces the contention factor,
represented as a parameter exclusively affecting the network
performance, which is incremented linearly from the content-free
communication cost. The formerwork evaluates the total exchange
collective under this assumption.

In general, contention-aware studies provide hardware models
very close to the specific network technology. They usually deal
with a limited number of nodes and, even more important, with
a small number of cores per node. These works do not address
the shared memory effects in the overall communication cost and,
hence, omit the impact of the virtual topology of processes on the
cost of the collective algorithms. Besides, again only a limited set
of simple collectives have been evaluated against the generated
models. Work [9] addresses the contention representation, as
well as the cost prediction of a range of collective algorithms in
large shared memory systems, either built upon point-to-point
communication primitives or not, using the τ -Lop model. The
model is applied to two cases of study in [40], including the
analysis of the cost introduced by the network contention in the
Allgather collective operation. This paper extends the τ -Lopmodel
to represent and empirically study the contention in clusters.
They combine communication channels which are different in
bandwidth and behavior. We show that the representation of cost
is both simple and generic, and flexible enough to cover network
specific details as needed.

3. The τ-Lop model

τ -Lop is a software parametrized model with the goals of
representing the behavior of parallel algorithms, specially those
used in MPI collective operations, and accurately and scalably
predicting their cost. τ -Lop models the communications of an
algorithm as a sequence of transfers (data copies), progressing
concurrently through the communication channels of the system.

3.1. Modeling a transmission

The cost of a point-to-point transmission of a message of sizem
through the communication channel c , is represented as:

T c
p2p(m) = oc(m) +

s−1
j=0

Lcj (m, τj).
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Fig. 1. A shared memory transmission T 0
p2p(m) of a message divided up in k = 3

segments of size S. It needs a total of 6 transfers (L0) and 4 steps.

The transfer time of a message of size m, L(m, τ ), is the cost of τ

transfers contending for the communication channel. A transmis-
sion is composed of s steps, and its cost is calculated as the addi-
tion of their transfer times and the overhead. Overhead o includes
the cost of the protocol agreement for the communication and the
software stack.

In the shared memory channel (c = 0), a point-to-point trans-
mission between two processes goes through buffers in a common
memory zone, and hence, it needs two transfers (s = 2), from the
sender buffer to the intermediate buffer, and then to the receiver
buffer, with the cost:

T 0
p2p(m) = o0(m) + 2 L0(m, 1). (2)

The number of transfers s in a transmission, notwithstanding,
depends on the platform. In shared memory, the operating system
allows the direct movement of data between two processes in
just one transfer, for instance, using KNEM [41] or LiMIC [42]
kernel modules in MPI, and high performance networks reduce
the number of transfers through the use of RDMA (Remote Direct
Memory Access) mechanisms [43].

In τ -Lop, two transfers are concurrent when they share the
communication channel. Concurrent transfers generate a con-
tention in the channel that has an impact on the overall commu-
nication cost. For instance, the transmission of a large message in
shared memory is done in most libraries by splitting the message
in k segments of a constant size S, with k = m/S. Thus, the writing
of segments from the sender buffer to the intermediate shared area
progresses concurrently with the writing to the receiver buffer, as
shown in Fig. 1. The cost of the whole message transmission be-
tween S and R is modeled by τ -Lop as2:

T 0
p2p(m) = o0(m) + 2 L0(S, 1) + (k − 1) L0(S, 2). (3)

L0(S, 2) is the cost of the intermediate segment transfers, in which
the sender and receiver processes access simultaneously the com-
munication channel, and hence, share the channel bandwidth.
Note that, when m ≤ S, the cost becomes represented by expres-
sion (2).

The definition of the transfer time enforces the restriction that
the cost of A concurrent transfers will be some value between the
cost of a single transfer and that of A consecutive ones, Lc(m, 1) ≤

Lc(m, A) ≤ A × Lc(m, 1), an expression that is generalized for
convenience as follows:

Lc(m, τ ) ≤ Lc(m, A × τ) ≤ A × Lc(m, τ ). (4)

2 Note that the number of steps needed to transmit a segmented message is
s = k+n−1, with n the number of copies needed by a byte to reach the destination.
The total number of transfers is k × n.
Fig. 2. Shortmessages completion time of concurrent (τ ) transmissions in network
(TCP/Ethernet) communication channel, as a function of the message size (shown
at the right).

As well, as assumed by most models, the transfer time cost grows
linearly with the increase of the message size, named the linearity
principle, and hence:

Lc(A × m, τ ) = A × Lc(m, τ ). (5)

Regarding the network channel, τ -Lop follows the same scheme
by Cameron et al. in [8] for an Ethernet network, which considers
a message transmission between two processes as composed of
three transfers: first, from the sender buffer to the internal buffer of
the NIC in the sender node, second, to the NIC in the receiver node,
and last, to the receiver buffer. The first and last are sharedmemory
transfers (with cost L0), whereas the second transfer progresses
through the network (with cost L1). The cost of an inter-node
message transmission is hence represented as:

T 1
p2p(m) = o1(m) + 2 L0(m, 1) + L1(m, 1). (6)

Similar to the shared memory case, the number of transfers of
a network transmission depends on the specific platform, a fact
that allows some variations to (6). For instance, some networks
as Infiniband allows the direct transfer of data from the sender
buffer to the receiver buffer using a Remote Direct Memory
Access (RDMA) mechanism. The cost of this direct point-to-point
transmission is represented as:

T 1
p2p(m) = o1(m) + L1(m, 1). (7)

3.2. Modeling concurrent transmissions

Real MPI collective operations include message transmissions
that share the communication channel bandwidth. The contention
increases the cost of each individual transmission. Figs. 2 and
3 show the growth of the cost of a single transmission with
the increase of the number of concurrent transmissions τ in
the network channel. Section 6.1 shows that the impact of the
concurrency on the cost is significant when the size of message is
greater than 2KB in the test system. In shared memory, the effect
of concurrency is similar, as deeply studied in [9].

τ -Lop represents the concurrency of point-to-point transmis-
sions by using the ∥ operator. The cost of A parallel transfers of size
m is represented as A ∥ Lc(m, 1) = Lc(m, A), and more generally,
A ∥ Lc(m, τ ) = Lc(m, A×τ). Definition of∥ is extended to cover the
cost of concurrent message transmissions. Expression A ∥ T c(m)
represents the cost of A concurrent transmissions T of a message
of sizem contending for the communication channel c .

Fig. 4 shows two point-to-point transmissions concurrently
progressing through the shared memory channel. Each transmis-
sion, with the cost defined by (2), is composed of two transfers
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Fig. 3. Largemessages completion time of concurrent (τ ) transmissions in network
(TCP/Ethernet) communication channel, as a function of the message size (shown
at the right).

Fig. 4. Cost of the concurrency of two transmissions in shared memory through a
intermediate buffer expressed in terms of τ -Lop.

actually contending for the communication channel, leading to an
increase in the cost, modeled in τ -Lop as:

2 ∥ T 0
p2p(m) = 2 ∥


o0(m) + 2 L0(m, 1)


= o0(m) + 2 L0(m, 2).

Note that the overhead cost is attributable to the processor, a non-
shared resource, and hence not affected by ∥.

Fig. 5 shows an example of two concurrent point-to-point
transmissions through the network communication channel.
Analysis of the contention shows that transfers in the node (M#i)
between the source buffer and the NIC progress concurrently,
hence with cost L0(m, 2). Data sent through the network has the
same destination node (M#j), therefore, contention is generated
in the destination NIC, with cost L1(m, 2). Finally, the data is
transferred from the NIC to the destination buffers (L0(m, 2)). The
total cost is:

2 ∥ T 1
p2p(m) = 2 ∥


o1(m) + 2 L0(m, 1) + L1(m, 1)


= o1(m) + 2 L0(m, 2) + L1(m, 2).

For the sake of simplicity, the analysis in this paper makes
two assumptions regarding network transfers. First, it does not
consider the overlap of the transfer from a buffer to the local NIC
with the transfer from the local NIC to the remote NIC, assuming,
in common with most of the models, the error in the prediction.
Such concurrency has a random behavior difficult to measure and
highly dependent on the network technology. Second, the only
network transfers considered as concurrent are those reaching
the same destination node at the same time, hence contending
in the destination NIC. The impact of concurrency on the cost
of the transfers from NIC to NIC is hardware dependent, and so
is considered in τ -Lop. In any case, the flexibility of the model
allows itself to adapt to any other system characteristics found in
other high performance platforms. For an exhaustive taxonomy
of contention effects in high performance networks, see work by
Jerome et al. in [37].
Fig. 5. τ -Lop cost analysis of two concurrent transmissions fromnodeM#0 to node
M#1.

4. Collective algorithms

This section evaluates the τ -Lop capability to model three
well-known algorithms widely used in MPI collective operations:
Binomial Tree, Ring and Recursive Doubling. Each algorithm is
executed in a sequence of stages, where the number of involved
processes and the message size may change along the stages. The
accuracy, scalability and expressiveness of τ -Lop in the algorithm
modeling are compared to that of LogGPH andmlognP .

Each algorithm involves P processes, ranked in the range 0 . . .
P − 1, deployed over the multi-core cluster. The experiments
are conducted in Metropolis, a multi-core cluster using Gigabit
Ethernet (see Section 6.1). Two communication channels are
considered, shared memory and network. Considering that the
mapping of processes to the system processors determines the
used communication channels, the algorithm performance highly
depends on the chosen mapping.

This paper considers by default sequential mapping, that is, pro-
cess with rank i runs in the processor i %Q of the node i ÷ Q , with
Q the number of cores per node or, in simple words, ranks fill each
node before going to the next one. Nevertheless, extension to other
mappings is straightforward.M represents the number of nodes in
the cluster.

4.1. Binomial Tree

In the Binomial Tree algorithm a process named root broadcasts
a message to the rest of processes. In the first stage, the root sends
the message of sizem to the process with rank root + P/2. The al-
gorithm recursively continues with both processes acting as roots
of sub-trees with P/2 processes. The number of stages is the height
of the tree (⌈log2 P⌉). The number of sending processes doubles in
each stage, whereas the message size remains constant.

LogGPH and mlognP estimate the algorithm cost as the height
of the tree multiplied by the cost of a point-to-point transmission.
Fig. 6 shows the generated message transmissions in a theoretical
multi-core cluster composed of P = 16 processes arranged in
sequential mapping on M = 4 nodes. As can be distinguished, the
number of stages transmitting data through the network channel
is log2 M , while the number of stages with data transmissions
through shared memory is log2 Q , with Q = P/M being the
number of processes in each node. Adding both costs, the LogGPH
estimation is:

TBin,LogGPH = log2 M · T 1
LogGPH + log2 Q · T 0

LogGPH . (8)

Note that T 1
LogGPH ≠ T 0

LogGPH , because the values of the L, o and G
parameters are different in each communication channel (as pro-
posed in the LogGPH model), making the mapping of processes a
key factor in the performance of the algorithm in amulti-core clus-
ter.
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Fig. 6. A Binomial Tree with P = 16 processes (root = 0) deployed in M = 4
nodes with sequential mapping. Transmissions through different communication
channels are shown, sharedmemory (dotted line) and TCP (bold line).M#j indicates
the machine where the process runs.

mlognP nativelymodels different communication channels, and
estimates the cost as:

TBin,mlognP = log2 M ·

o′

mw + o′

net


+ log2 Q · omw. (9)

The contention highly depends on the deployment of the
processes in the system. Take as an example the last stage (s#3) of
Fig. 6, where two transmissions arrive concurrently to each node.
Unlike LogGPH and mlognP , τ -Lop models the impact of mapping
and the resulting contention on the cost of an algorithm. The cost
of the binomial tree will be represented as:

ΘBin(m) =

⌈log2(P)⌉−1
i=0


Cmap
i ∥ T c

p2p(m)

. (10)

T c
p2p(m) is the cost of a point-to-point transmission through the

communication channel c , and is defined in (3) for sharedmemory
and in (6) for the network. Cmap

i is the maximum number of
concurrent transmissions through the communication channel
used in the stage i, determined by the process mapping (map). In
the first stage, there is a point-to-point transmission through the
network, with cost 1 ∥ T 1

p2p(m). In the second stage (s#1) there
are two transmissions progressing through the network channel.
As the sequential mapping causes that their destination nodes are
different, no contention takes place, and cost is 1 ∥ T 1

p2p(m). The
third stage has four transmissions in shared memory, scattered
in different nodes, with cost 1 ∥ T 0

p2p(m). In the last stage, there
will be two concurrent sharedmemory transmissions in each node,
therefore, CSEQ

3 = 2 and the stage cost is 2 ∥ T 0
p2p(m). The total cost

will be:

ΘBin(m) = 2 T 1
p2p(m) + T 0

p2p(m) + 2 ∥ T 0
p2p(m). (11)

Fig. 7 shows the execution bandwidth of the binomial tree used
by the MPI_Bcast collective operation of MPICH, with increasing
message sizes and P = 32 processes distributed sequentially in
the M = 4 nodes of the Metropolis platform. MPICH measured
bandwidth is compared to the estimations derived from (8), (9)
and (11). The bandwidth is used, instead of the completion time,
for reasons of clarity in the graph, and calculated as m/t , with m
being the size of themessage and t being the cost time returned by
the models. Parameters of the models are measured as explained
in Section 6.

In our view, LogGPH is not suitable to model shared memory
communications. The reason is that parameters of the model are
bound to network hardware. Nonetheless, it is one of the most
extendedmodels, although it does not showa good accuracy in this
configuration. The difference between mlognP and τ -Lop is small,
because the sequential mapping causes a minimal contention
Fig. 7. Estimation of the cost of a Binomial Tree compared to its real cost in MPICH
in terms of bandwidth. Number of processes is P = 32, deployed sequentially on
M = 4 nodes inMetropolis.

Fig. 8. Proportional error in the cost estimation over a range of medium and large
message lengths. Process number is P = 32, deployed sequentially onM = 4 nodes
inMetropolis.

in this algorithm. In the range of large messages, however, τ -
Lop shows a slightly better fit, derived from the shared memory
contention.

Fig. 8 reinterprets the Fig. 7 to show the proportional error,
µ (see Appendix), in the estimation of the cost by models with
respect to the real MPICHmeasured value.mlognP and τ -Lop have
a similar error, near to the optimum value µ = 1.

Fig. 9 represents the mean proportional error in the range of
message sizes of Fig. 8 when the number of processes grows.
The cost estimation of the binomial is scalable, that is, there has
been no increase in error with the increase of the number of
processes, because of the minimal contention of the algorithm in
theMetropolis small test platform.

4.2. Ring

This section evaluates the Ring algorithm. It is often used in
theMPI_Allgather collective operation, as well as inMPI_Bcast and
MPI_Alltoall. It is composed of an initial local copy and P −1 stages.
Each process makes the initial copy ofm bytes from its input to its
output buffer, with offset p × m. In each stage, the process with
rank p sends to the process with rank (p + 1) mod P the m bytes
received in the previous stage. The number of processes and the
message size remain constant along the stages, all of them equal.

Fig. 10 represents the intra- and inter-node transmissions
generated by the algorithm under sequential mapping. LogGPH
andmlognP estimate the cost of a stage as the addition of the most
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Fig. 9. Mean proportional error in the cost estimation of a Binomial Tree with
increasing number of processes per node (Q = P/M) in the Metropolis platform.

Fig. 10. Representation of the transmissions of the Ring algorithm in a hypothetical
machine withM = 4 nodes and P = 16 processes arranged in sequential mapping.

expensive send and receive for a process. Excluding the negligible
cost of the initial shared memory copy, the algorithm cost will be:

TRing,LogGPH(m) = (P − 1) ×

L0 + 2 o0 + (m − 1)G0

+

L1 + 2 o1 + (m − 1)G1 (12)

TRing,mlognP(m) = (P − 1) ×

omw + o′

mw + o′

net


. (13)

As the sequential mapping divides evenly the network trans-
missions among the nodes (see Fig. 10), the algorithm com-
munication pattern avoids contention in the network channel.
Nevertheless, contention in sharedmemory affects the final cost of
the algorithm, and the impact grows with the increase of the num-
ber of processes per node (Q ). In each stage, a rank sends amessage
to the next rank and receives a message from the previous rank
by invoking the MPI_Sendrecv operation. The Send–receive oper-
ation cost is represented as Tsr(m), and executed by P processes
through a shared communication channel c. It has the cost of P
concurrent point-to-point transmissions T c

sr(m) = P ∥ T c
p2p(m).

Actually, in themulti-core platform, the destination and the source
rank of both transmissions can be in the same or different node,
therefore, they could progress through sharedmemory or network.
τ -Lop models the Ring algorithm as follows:

ΘRing(m) = (P − 1) ×

Cmap

∥ Tsr(m)

,

where Cmap is the maximum number of concurrent transmissions
in each stage. In the sequential mapping of Fig. 10, it will have the
same value along all stages, CSEQ

= Q . How will Tsr(m) be affected
by CSEQ ? Next, two scenarios are discussed that lead to different
cost representations depending on the message size.

For short messages, as represented in Fig. 11, two types of
transmissions mix in each stage of the Ring algorithm. We discuss
the scenario at transfer level. The first transfer of all processes,
Fig. 11. A short message transmission in a Ring algorithm. Processes are mapped
sequentially. Transfers in node M#0 are deployed.

Fig. 12. Estimation of the cost of Ring Allgather with three models, compared to
the real MPICHmeasurements. Number of processes is P = 32, deployed onM = 4
nodes in Metropolis.

either to the NIC or to the intermediate buffer, progresses through
shared memory, hence, the transfer cost will be L0(m,Q ). Next,
a network transfer of one process per node starts while the
rest of processes (Q − 1) complete the communication through
shared memory. These inter- and intra-node transfers progress
through different communication channels, and hence, they do
not contend, leading to a cost represented as max{L0(m,Q −

1), L1(m, 1)}. Note that L1(m, 1) ≫ L0(m,Q − 1) in the platform
evaluated, with Q ≤ 8 (see Section 6.1). This analysis should
change according to the network technology and the number of
processes per node, given sequential mapping. Finally, the last
transfer is done by only one receiver process per node from the
network (represented as rank P0 in Fig. 11). Thus, the total cost will
be:

ΘRing(m) = (P − 1) ×

L0(m,Q ) + L1(m, 1) + L0(m, 1)


. (14)

For long messages, MPI_Sendrecv is modeled as a sequence of
two point-to-point transmissions. First, the shared memory trans-
mission segments the message, hence requires the involvement of
both the sender and the receiver processes as discussed in Sec-
tion 3.1. The cost will be Q ∥ T 0

p2p(m). Second, the network trans-
mission is performed by a single process per node, hence without
contention, with the cost of T 1

p2p(m). The total cost will be as fol-
lows:

ΘRing(m) = (P − 1) ×

Q ∥ T 0

p2p(m) + T 1
p2p(m)


. (15)

Fig. 12 shows the bandwidth cost of the Ring algorithm imple-
mented in theMPI_Allgather collective operation of MPICH, for dif-
ferent message sizes and P = 32 processes deployed in M = 4
nodes. Themeasured value is compared to (12), (13) and (14), (15).
Although the impact of contention on the cost is small in the Ring
algorithm with sequential mapping, because it occurs in shared
memory, τ -Lop better fits the realmeasurements thanmlognP over
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Fig. 13. Proportional error of the Ring estimation cost for a range of medium and
large message lengths. P = 32 processes deployed inM = 4 nodes in Metropolis.

Fig. 14. Mean proportional error of the Ring for increasing number of processes
deployed onM = 4 nodes inMetropolis.

the entiremessage range. The difference in predictions by themod-
els slightly increases in comparison with that for the broadcast in
Fig. 7, due to increase in shared memory contention. Fig. 13 shows
the proportional error made by the models as compared with the
real MPICH measurements.

Fig. 14 shows the proportional error for the range of message
sizes in previous figure, for increasing number of processes.Model-
ing the cost of the Ring algorithm,with transmissions that progress
concurrently through two channels, is a complex task. All models
underestimate the sharedmemory contention influence due to the
fact that, compared to network transmissions, the shared memory
cost is low. Nevertheless, the cost should become significant when
Q increases. Although the τ -Lop proportional error is not too high,
further in-depth analysis at the transfer level for each particular
platform should decrease it.

4.3. Recursive doubling

The Recursive Doubling Allgather algorithm (RDA) is used in
collectives such as MPI_Allgather and MPI_Bcast. The involved
processes contribute with a message of size m bytes and receive
from the rest of processes P − 1 messages, ordered by rank in the
reception buffer, a total of P × m bytes. The algorithm executes
in log2 P stages when the number of processes is a power of two.
In stage i, the process with rank p exchanges 2i m bytes with
the process with rank p ⊕ 2i. An initial local copy of the m-
byte message takes place in each process, from the input to the
output buffer. The number of processes communicating in each
stage remains constant in this algorithm,whereas themessage size
doubles.
Fig. 15. Stages of the Recursive Doubling Algorithm with P = 16 processes
deployed sequentially in M = 4 nodes. A double-headed arrow represents a
message interchange of the specified size, which is modeled in τ -Lop as Texch . The
number of concurrent interchanges between nodes in the inter-node s#2 and s#3
stages is shown in parenthesis.

The LogGPH cost of RDA in a given channel is the addition of the
cost of each stage [17], as:

TRDA,LogGPH =

⌈log2(P)⌉−1
i=0

TLogGPH

2i m


= log2 P · (L + 2 o − G) + (P − 1) mG.

In a multi-core cluster with sequential mapping it holds that
the log2 Q initial stages communicate processes in the same
node while the rest of stages (log2 M) communicate processes in
different nodes, giving a total cost of TRDA,LogGPH = T 0

RDA,LogGPH +

T 1
RDA,LogGPH :

T 0
RDA,LogGPH = log2 Q ·


L0 + 2 o0 − G0

+ (Q − 1) mG0 (16)

T 1
RDA,LogGPH = log2 M ·


L1 + 2 o1 − G1

+ (M − 1) Q mG1. (17)

Like LogGPH, the mlognP model estimates the cost as the
addition of the costs of the intra-node and inter-node stages:

TmlognP =

logQ−1
j=0

omw +

log P−1
j=logQ


o′

mw + o′

net


= (Q − 1) omw + (M − 1)Q


o′

mw + o′

net


. (18)

Fig. 15 shows, per stage, the pattern of communication of RDA in
a hypothetical systemwith P = 16 processes sequentiallymapped
in M = 4 nodes. The figure illustrates that in the inter-node
stages this pattern saturates links between pairs of nodes due to
Q = 4 concurrent transmissions. As LogGPH and mlognP do not
model the contention derived cost, their cost estimation will be
very optimistic.

τ -Lop models the algorithm cost as follows:

ΘRDA(m) =

⌈log2(P)⌉−1
i=0


Cmap
i ∥ T c

exch(2
i m)


. (19)

Cmap
i represents the number of concurrent transmissions in the

stage i given the processmappingmap. In each stage, twoprocesses
interchange amessage using an Exchange operation T c

exch. Exchange
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Fig. 16. Estimation of the cost of Recursive Doubling Allgatherwith severalmodels,
compared to theMPICHmeasured cost in terms of bandwidth. Number of processes
is P = 32, deployed on M = 4 nodes in Metropolis.

is the name given to a Send–receive operation between P = 2
processes. In shared memory, the exchange operation has a cost
of two concurrent point-to-point transmissions (T c

exch = 2 ∥

T c
p2p), because both processes access the channel simultaneously,

stressing its bandwidth. The operation cost is modeled in τ -Lop as:

T 0
exch(m) = 2 ∥ T 0

p2p(m) = 2 ∥

o0(m) + 2 L0(m, 1)


= o0(m) + 2 L0(m, 2).

Through the network, as the processes are running in different
nodes, the two point-to-point transmissions composing the
interchange arrive to different nodes. Therefore, as assumed in
Section 3.2, T 1

exch(m) = T 1
p2p(m), although modeling could be

adapted to specifics of the channel behavior in each particular
platform.

Applied to the case of Fig. 15, expression (19) takes the follow-
ing form:

ΘRDA(m) = CSEQ
0 ∥ T 0

exch(m) + CSEQ
1 ∥ T 0

exch(2m)

+ CSEQ
2 ∥ T 1

exch(4m) + CSEQ
3 ∥ T 1

exch(8m).

The first two stages are executed independently in each node, with
two concurrent intra-node interchanges, which makes CSEQ

0 =

CSEQ
1 = 2. The inter-node stages include four concurrent transmis-

sions involving two nodes, so that CSEQ
2 = CSEQ

3 = Q = 4, because
four transmissions arrive to the node NIC concurrently. As a result,
the cost will be as follows:

ΘRDA(m) = 2 o0(m) + 2 o1(m) + 2 ∥ 2 L0(m, 2)
+ 2 ∥ 2 L0(2m, 2) + 4 ∥


2 L0(4m, 1) + L1(4m, 1)


+ 4 ∥


2 L0(8m, 1) + L1(8m, 1)


. (20)

Remember that the overhead is not affected by concurrency. Ac-
cording to the linearity principle in (5), the expression (20) is sim-
plified to:

ΘRDA(m) = 2 o0(m) + 2 o1(m) + 2 L0(m, 4) + 4 L0(m, 4)
+ 8 L0(m, 4) + 4 L1(m, 4) + 16 L0(m, 4) + 8 L1(m, 4),

finally resulting in the cost:

ΘRDA(m) = 2 o0(m) + 2 o1(m) + 30 L0(m, 4) + 12 L1(m, 4).

Fig. 16 shows the measured cost, in terms of bandwidth, of
the RDA algorithm implemented in the MPI_Allgather collective of
MPICH in Metropolis, for a range of increasing message sizes and
P = 32 processes deployed in M = 4 nodes, hence Q = 8.
This cost is compared to the estimations (16)–(19). One interesting
conclusion can be made for long messages, where we can ignore
Fig. 17. Proportional error of the Recursive Doubling estimation cost over a range
of medium and large message lengths. Process number is P = 32, deployed on
M = 4 nodes in Metropolis.

Fig. 18. Mean proportional error of the Recursive Doubling for increasing number
of processes deployed on M = 4 nodes in Metropolis.

the latency cost. In this case, the LogGPH cost will be transformed
into 7mG0

+24mG1,mlognP will give us 7 omw +24

o′
mw + o′

net


and the τ -Lop cost will be given by 62 L0(m, 8)+24 L1(m, 8). Note
that for higher network costs in these expressions, all models have
a 24 factor. The main difference between them is the contention,
only captured by τ -Lop, which will impact the performance with
the Q = 8 term and limit the algorithm scalability with respect
to the number of processes per node Q . The contention effect for
the RDA algorithmwith sequential mapping in amulti-core cluster
is high in both channels, which makes the LogGPH and mlognP
estimations substantially lower than the real-life measurements.

Fig. 17 shows the proportional error in the estimation for the
models as comparedwith the real values ofMPICH. The errormade
by τ -Lop is markedly lower in the whole range of message sizes,
and near the optimum valueµ = 1. Fig. 18 shows the proportional
error through the range of message sizes in the previous figure for
a growing number of involved processes P . The error of the τ -Lop
estimation remains constant with P , whereas the error of the other
models increases remarkably. In summary, the ability of τ -Lop to
capture the effect of the contention in the channels for concurrent
transfers provides themodelwith an accuracy that scaleswellwith
the number of the involved processes.

5. Estimation of the communication cost of applications

This section addresses the modeling and estimation of the
communication cost of data parallel applications, i.e., applications
which perform the parallel processing of the data distributed
among a set of processes. Applications of this type usually
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Fig. 19. An iteration of matrix multiplication with the SUMMA algorithm. The number of processes is P = 16 in a grid layout. The matrix size is N × N blocks, with N = 24
(elements are not shown). A rectangle of 6× 6 blocks is assigned to each process. The figure shows the kth iteration in the execution of the algorithm. Processes with blocks
in the kth column of matrix A (P1 , P5 , P9 and P13 in the example) and the kth row of matrix B (P4 , P5 , P6 and P7 in the example) broadcast their blocks to the processes in the
same row and column of the grid respectively. As kth column and row in matrices A and B traverse the matrices from k = 0 to N − 1, they are called pivot block column
(pbc) and pivot block row (pbr) respectively. The arrows show the particular case of the broadcasting of blocks from the process P5 to those in the same row of the grid in
matrix A, and the broadcasting of blocks from the process P6 to those in the same column of the grid in the matrix B.
run a set of kernels by repeating two stages: computation and
communication. A kernel is a representative piece of code inside
the application such as matrix multiplication or Fourier transform.
As a case of study, LogGPH, mlognP and τ -Lop are used to predict
the communication cost of a matrix multiplication kernel for
a given layout of the processes on the Tesla multi-core cluster
platform. The Scalable Universal Matrix Multiplication Algorithm
(SUMMA) [44] is a state-of-the-art computational kernel which
is present in many scientific applications. It can be found, for
example, in the numerical linear algebra ScaLAPACK library. In this
study, we use it as a prototype of other kernels widely used in HPC.

In our experimental environment, the distribution of the
kernel computationalworkload is homogeneous. Nevertheless, the
difference in performance of the communication channels in the
multi-core cluster, the collective communication algorithms and a
small but perceptible variation in performance of the processors
introduce some imbalances. These imbalances may prevent the
processes of the application from the simultaneous arrival at the
communication stage,which is typically assumedby anypredictive
communication model. To reduce the unevenness, we use the
FuPerMod [45,46] utility to balance theworkload of the application.
FuPerMod is a software tool that carries out the whole procedure
of the workload partitioning and distribution for a set of processes.
It is based on the Functional Performance Model (FPM), which
represents the speed of the process by a function of task size.
Specifically, we use FuPerMod for 2D partitioning of the matrices
involved in the SUMMA algorithm. First, FuPerMod builds the per-
process Functional Performance Model executing a benchmarking
code3 provided by the user. Then, using the functional performance
models FuPerMod partitions the matrices into sub-matrices and
maps the sub-matrices to the processes so that their workload is
balanced and the total volume of data communicated between the
processes was minimized [47].

In addition, we put a barrier before the communication stage of
the application.

5.1. The SUMMA algorithm: a matrix multiplication kernel

The SUMMA algorithm computes the dense matrix multiplica-
tion C = A×B. The elements of the matrices are grouped in blocks
of size b × b elements, making a block the unit of both computa-
tion and communication. The granularity of the block size is ad-
justed prior to multiplication. For simplicity, square matrices are
assumed, of the size of N ×N blocks. Fig. 19 shows an example for

3 The FPM reflects the speed of a process in executing a particular kernel, thus
the benchmarking code has to be as similar to the kernel code as possible.
P = 16 processes arranged in a grid and N = 24 blocks. Each pro-
cess is assigned a rectangle of the same size (6 × 6 blocks of each
matrix) because processors in the system are homogeneous. This
mapping balances the computational load, and also minimizes the
total volume of data communicated between the processes.

The SUMMA algorithm executes in N iterations. A column
of blocks and a row of blocks traverse the matrices A and B
respectively with each iteration, from k = 0 to N − 1 (see Fig. 19).
They are called the pivot block column (pbc) and pivot block row
(pbr). In the iteration k, each process computes partial results for
all of its assigned blocks of thematrix C . That is, the process owning
the block ci j computes ci j = ci j + ai k × bk j. As a consequence, the
process has to receive the block in the kth column of the matrix
A (ai k) and the block in the kth row of the matrix B (bk j). After N
iterations, each block will have the value ci j =

N−1
k=0 ai k × bk j.

Thus, each iteration k is composed of three stages:

1. The processes owning the kth pivot block column (pbc) of the
matrix A send the blocks to the processes in the same row
(see Fig. 19). In MPI terms, a broadcast operation on a per-
row communicator can be used for the communication. The
processes owning the blocks in the pbc are the roots of the
broadcasts in each row.

2. The processes owning the kth pivot block row (pbr) of the
matrix B send the blocks to the processes in the same column
(see Fig. 19). In MPI terms, a broadcast operation on a per-
column communicator can be used for the communication. The
processes owning the blocks in the pbr are the roots of the
broadcasts in each column.

3. Each process Pi updates the blocks in its assigned rectangle of
the matrix C .

5.2. Modeling in the Tesla cluster

The communication cost of the SUMMA algorithm is evaluated
in the Tesla multi-core cluster (see Section 6.1), for both Ethernet
and Infiniband networks separately, using the Open MPI library.
OpenMPI promotes a software architecture based on components.
A component is a standalone collection of code that can be
inserted into the Open MPI code base, either at run-time and/or
compile-time. Tuned component implements collectives similarly
to MPICH, as a sequence of point-to-point transmissions between
the involved processes. For instance, the RDA algorithm is
implemented identically to that in MPICH. Its cost model in the
case of Tuned/Ethernet will be given by expressions (16)–(19).
However, in the case of Tuned/Infiniband, Open MPI makes use of
the RDMA capability of the network, which has an impact in the
modeling. A network point-to-point transmission is not modeled
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Fig. 20. Mean proportional error of the Recursive Doubling for increasing number
of processes deployed on increasing number of nodes with Q = 8. Platform is Tesla
with Infiniband and Sequential mapping.

Fig. 21. Mean proportional error of the Recursive Doubling for increasing number
of processes deployed on increasing number of nodes with Q = 8. Platform is Tesla
with Infiniband and Round Robin mapping.

by including shared memory transfers to and from the HCA,4 but
rather as a single transfer made by the HCA from the sender buffer
to the receiver buffer. The cost of a point-to-point transmission
defined in (7) is then used to estimate the cost of the RDA algorithm
in definition (19), with T 1

exch = T 1
p2p = o1(m) + L1(m, 1).

The proportional errors of the RDA cost estimations under the
Sequential and Round Robin5 mappings on an Infiniband network
are shown in Figs. 20 and 21 respectively. Regarding Ethernet,
the mean proportional error in the cost estimation of the RDA
algorithm for the LogGPH,mlognP and τ -Lop and P = 64 processes
raises respectively to 24.08, 4.35 and 2.80 for sequential mapping
and 22.52, 18.41 and 2.60 for round robin mapping.

5.3. Modeling the SUMMA matrix multiplication in the Tesla cluster

In this section, we model the communication cost of the
SUMMA algorithm in the Tesla platform using LogGPH, mlognP
and τ -Lop. The Open MPI Tuned component provides the
implementation of the MPI_Bcast binomial tree algorithm. It is
used for the row and column broadcasts in each iteration of the
algorithm, as described in Section 5.1. The number of processes
is P = 64 arranged in a grid of M × Q , with M = Q = 8,

4 Host Channel Adapter is the name for a network interface card in Infiniband
networks.
5 Round Robin mapping places a rank p in the node p%M .
Fig. 22. Process grid for P = 64 and sequentialmapping. Number of nodes isM = 8
and number of processes per node is Q = 8.

using sequential mapping as Fig. 22 shows. As a consequence of
the sequential mapping, broadcasting between processes in the
same row of the grid progresses through shared memory, while
broadcasting between processes in the same column progresses
through the network.6

In amatrix of sizeN×N , the pbc and pbr have a size ofN blocks.
Given the process layout of Fig. 22, each process in a row of the grid
broadcastsN/M blocks of the pbc. As the size of a block is b2 double
precision elements, the size in bytes of the message to broadcast in
a row is

m =
N
M

× b2 × 8 = N b2 = 4096N. (21)

Likewise, each process in a column of the grid broadcasts N/Q
blocks of the pbr. The value of m does not change because M = Q
in Tesla.

In LogGPH, the cost of a shared memory row broadcasting, by
virtue of (8), is given by:

T pbc
bin (m) = log2 Q × T 0

p2p(m). (22)

The cost of broadcasting a column through the network is:

T pbr
bin (m) = log2 M × T 1

p2p(m). (23)

In Tesla log2 Q = log2 M = log2 8 = 3, so that the total cost of
the SUMMA algorithm under LogGPH is:

T LogGPH
SUMMA (m) = N ×


T pbc
bin (m) + T pbr

bin (m)


= N ×

3 T 0

p2p(m) + 3 T 1
p2p(m)


= 3N (L0 + 2 o0 + L1 + 2 o1)

+ 3N (m − 1) (G0
+ G1). (24)

The LogGPH representation of the cost in (24) is independent of the
network type, althoughparameters in the network communication
channel have different values for Ethernet and Infiniband (see
Section 6.2).

In mlognP the cost is modeled similarly to LogGPH, as defined
in (9). The row broadcasting cost is:

T pbc
bin (m) = log2 Q × omw. (25)

And the cost for the column broadcasting is:

T pbr
bin (m) = log2 M ×


o′

mw + o′

net


, (26)

6 Round robin mapping will use the opposite channel for row and column
broadcasts, with identical total cost for the algorithm.
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with different values for o′
mw and o′

net for Ethernet and Infiniband.
Thus, according to mlognP the total communication cost of the
algorithm is:

TmlognP
SUMMA (m) = 3N ×


omw + o′

mw + o′

net


. (27)

τ -Lop departs from definition (10) to model the pbc and pbr
communications. For the pbc in matrix A, a broadcast per row of
the grid of processes in Fig. 22 is executed. Broadcasts in different
rows are executed inside different nodes, and hence, they do not
contend.Q = 8 processes are involved in each row broadcast, with
CSEQ
i = 2i (see definition (10)), with a cost of:

Θ
pbc
bin (m) =

⌈log2(Q )⌉−1
i=0


2i

∥ T 0
p2p(m)


= T 0

p2p(m) + 2 ∥ T 0
p2p(m) + 4 ∥ T 0

p2p(m). (28)

For the pbr in matrix B, a broadcast per column of the grid
of processes is executed. Let us discuss the cost of an individual
broadcast in a column of the grid. All the ranks involved in the
broadcast are in different nodes. Each point-to-point transmission
composing the binomial tree arrives to a different node, and hence,
they do not contend, as set in Section 3.2. As a consequence, CSEQ

i =

1 in definition (10), and the cost is 3×T 1
p2p(m) forM = 8 processes

in a column. Bringing together the Q concurrent broadcasts, one
per column, the cost including contention is:

Θ
pbr
bin (m) = Q ∥

⌈log2(M)⌉−1
i=0


CSEQ
i ∥ T 1

p2p(m)


= 8 ∥

⌈log2(M)⌉−1
i=0

T 1
p2p(m)

= 8 ∥

3 × T 1

p2p(m)


= 3 ×

8 ∥ T 1

p2p(m)

. (29)

The total communication cost of the SUMMA algorithm under
τ -Lop is the addition of (28) and (29):

Θ
τ -Lop
SUMMA(m) = N ×


T 0
p2p(m) + 2 ∥ T 0

p2p(m) + 4 ∥ T 0
p2p(m)

+ 3 ×

8 ∥ T 1

p2p(m)


. (30)

Departing from (30), τ -Lop provides a different representation
of the cost for Ethernet and Infiniband networks, following the
point-to-point definitions in (6) and (7) respectively for T 1

p2p(m).
The total communication cost of the algorithm in an Ethernet
network is:

Θ
τ -Lop
SUMMA(m) = N ×


3 o0(m) + 2 L0(m, 1) + 2 L0(m, 2)

+ 2 L0(m, 4) + 3 o1(m) + 6 L0(m, 8)

+ 3 L1(m, 8)

, (31)

while in a Infiniband network the cost is modeled as:

Θ
τ -Lop
SUMMA(m) = N ×


3 o0(m) + 2L0(m, 1) + 2L0(m, 2)

+ 2L0(m, 4) + 3 o1(m) + 3 L1(m, 8)

. (32)

Fig. 23 shows the mean proportional error in the estimation of
the communication cost of the execution of the SUMMA algorithm
on the Tesla platform using its Ethernet network. In this case,
predictions are given by formulas (24), (27) and (31). Fig. 24 shows
the proportional error for the Infinibandnetworkwhenpredictions
are given by formulas (24), (27) and (32). The figures demonstrate
that τ -Lop error is smaller than the LogGPH and mlognP ones.
Furthermore andmore importantly, in the models that do not take
into account the contention, the proportional error increases with
the growth of problem size N , whereas the cost predicted by τ -Lop
approaches the real cost.
Fig. 23. Proportional error in the estimation of the communication cost of the
execution of the SUMMA algorithm on the Tesla platform using its 1-Gbit Ethernet
network. The size ofmatrices (N) is given in b×bblocks of double precision elements,
b = 64. Thenumber of processes is P = 64 arranged in a grid of 8×8with sequential
mapping.

Fig. 24. Proportional error in the estimation of the communication cost of the
execution of the SUMMA algorithm on the Tesla platform using its QDR Infiniband
network. The size ofmatrices (N) is given in b×bblocks of double precision elements,
b = 64. Thenumber of processes is P = 64 arranged in a grid of 8×8with sequential
mapping.

As a conclusion, the modeling of the communication cost of
such a simple but widely used application as matrix multiplication
requires to take into account the contention. τ -Lop sets a Q
contention factor for the network communication, while LogGPH
and mlognP costs are independent of the number of processes per
node. Also, different communication mechanisms of each type of
network, such as RDMA in Infiniband, have to be taken into account
to achieve a good accuracy in the cost estimation.

6. Measuring parameters

An analytical model represents the cost of collective algorithms
as a function of the parameters of the model. Therefore, a
correct measurement of the parameters is key to achieve accurate
predictions. Ensuring the contention of τ processes in the
estimation of the transfer time Lc(m, τ ) parameter is the most
complex issue in τ -Lop. The authors’ approach is divided in two
parts. First, the transfer time in shared memory L0 is estimated,
then it is used to figure out the network transfer time L1 from a
network point-to-point transmission according to (6). This paper
only considers contiguous messages. Therefore, the local costs
associated with packing/unpacking of non-contiguous messages
are not discussed.

Following, an exhaustive methodology for estimating values
of the parameters of τ -Lop is presented, together with the
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methodology proposed in [26] for LogGPH, and in [34] formlognP .
Before, the multi-core clusters used as testing platforms are
presented.

6.1. The test platforms

The experimental platforms used in this paper are Metropolis
and Tesla, which include different network technologies and MPI
libraries.
Metropolis It consists of four nodes connected by 10 Gigabit
Ethernet Intel 82574L adapters through a 10 GbE switch Dell
PowerConnect 8024F. Each node has two 2.4 GHz Intel Xeon E5620
processors, making a total of eight cores per node, hyperthreading
disabled. The cache figures are 12MBof shared L3, 256 KB of L2 and
32 KB of Harvard L1. The operating system is Linux 2.6.32. The MPI
library is MPICH, version 1.4.1p1. This platform is used to evaluate
the cost of MPI collective operations.
Tesla It is a multi-core cluster equipped with 8 nodes. Each
node has two quad-core Intel Xeon E5520 processors running
at 2.26 GHz, making a total of eight cores per node. Nodes are
connected by a QDR Infiniband (40 Gbps) and an Ethernet (1-GBit)
networks. Operating system is CentOS 6.5. The Intel MKL library
dgemm function is used to compute a rectangle of double precision
elements in the SUMMA algorithm. Open MPI version 1.8.1 [48]
is used for communicating the processes in the application. This
platform is mainly used for evaluating the cost of the matrix
multiplication kernel.

IMB (Intel MPI Benchmark) version 3.2 [49] is used to obtain
the completion time and bandwidth data. IMB runs on MPICH and
Open MPI, the libraries that provide the collective algorithms. The
flag of IMB turning cache reuse is deactivated in the command
line, forcing data to reachmainmemory in transfers to avoid cache
effects. Measurements of a collective are based on a high number
of executions. Each observation is the interval of time from the
beginning of the collective to the moment when the last process
ends its execution.

6.2. LogGPH and mlognp

For estimating the parameters of the LogGPH model we follow
the widely used procedure described by Kielmann et al. in [26].
First, the MPI LogP Benchmark is used for estimating the values
of the parameters of the Parametrized LogP (PLogP) model. PLogP
slightly changes the meaning of some parameters of LogGP, and
makes them (except latency) dependent on the message size. The
cost of a point-to-point transmission modeled under PLogP is
Tp2p = L + g(m), with L the end-to-end latency from process to
process, and g(m) the gap per message, i.e. the minimum time
interval between consecutive message transmissions. After that, a
simple conversion table (provided in [26]) from PLogP to LogGPH
parameter values is applied.

The MPI PLogP benchmark provides with two methods of
measuring the gap per message: direct and optimized, described
in [26]. The direct method is expensive because of the high number
of messages used. The optimized method is based on sending only
onemessage, but it has been demonstrated as highly inaccurate by
Lastovetsky and Dongarra [50]. In the direct method, Round Trip
Time (RTT) of sets of increasing number of messages is measured
until the change in g(m) is under 1%, when channel saturation is
assumed to be reached. The saturation of the channel makes the
network latency negligible with respect to the bandwidth. If the
set of nmessages sent for a sizem has a completion time of sn(m),
then the gap per message is calculated as g(m) = sn(m)/n.

Tables 1 and 2 show the LogGPH parameters yielded for shared
memory and network channels in Metropolis and Tesla platforms
respectively. Times are provided in µsecs.
Table 1
LogGPH parameter values (µsecs) inMetropolis cluster.

Parameter Shared memory Ethernet

L 1.683 32.986
o 0.1095 2.8775
g 1.649 4.841
G 0.0001923 0.0092

Table 2
LogGPH parameter values (µsecs) in Tesla cluster.

Parameter Shared memory Ethernet Infiniband

L 0.50 24.69 1.09
o 0.20 4.40 0.28
g 0.34 3.681 0.60
G 0.0003044 0.004289 0.0005589

RegardingmlognP , according to its authors’ instructions in [34],
the Parametrized Round Trip Time (PRTT) defined in [51] is used to
measure the o′

net time for a range ofmessage sizes. The PRTT (n,d,m)
time for a set of n messages sent, a delay of d between message
transmissions and the size of message m, is used to calculate the
network overhead as:

PRTT (n, 0,m) = 2 × o′

net .

Then, standard blocking MPI_Send and MPI_Recv are used to mea-
sure the Round Trip Time in shared memory (RTTshm) and network
(RTTnet ), and to infer omw and o′

mw as:

RTTshm(m) = 2 × omw =⇒ omw =
RTTshm(m)

2

RTTnet(m) = 2 ×

o′

mw + o′

net


=⇒ o′

mw =
RTTnet(m)

2
− o′

net .

6.3. τ -Lop overhead

oc(m) is the time elapsed from the invocation of the operation
until the effective data transmission starts through the channel c.
The overhead time is assumed not be affected by the contention in
the channels. It includes the software stack and protocol times.

Most MPI libraries implement two protocols for message pass-
ing, with an important impact in the overhead value. They are
called eager and rendezvous and perform regardless of the com-
munication channel. They are used for short and large messages
respectively. When the message size reaches a threshold size H ,
the send primitive switches from eager to rendezvous. The value
ofH is implementation dependent. For instance, in MPICH the Eth-
ernet/TCP network protocol default threshold is H = 128 KB.
The protocols work as follows. Eager requires no handshake be-
tween sender and receiver, hence data is sent as soon as possible.
In the rendezvous protocol, before the data transmission starts, the
sender process sends a RTS (Request to Send) message to the re-
ceiver,which respondswith a CTS (Clear to Send) acknowledgment
messagewhen ready to receive.Waiting for this notification avoids
the sender to flood the receiver.

Our goal is to estimate the overhead in the shared memory
and network channels taking into account that it depends on the
protocol used. In practice, libraries such asMPICH andOpenMPI do
not provide noticeable difference in the overhead value in shared
memory whatever be the message size. The reason is that they
have a common communication mechanism for the whole range
of message sizes.

The two operations shown in Fig. 25 are used to measure the
overhead parameter. Both operations are applicable to MPICH and
Open MPI libraries. In both operations, messages of sizem = 0 are
used, hence with a transfer cost of Lc(0, 1) = 0.
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Fig. 25. RTT c and Pingc operations tomeasure the overhead oc(m)parameter under
eager and rendezvous communication protocols respectively. Both operations can
be used in shared memory and network communication channels, although, in
practice, in shared memory the eager protocol is used exclusively.

The first operation is RTT c , shown at the left side of the Fig. 25.
It is used to estimate the shared memory overhead o0(m) for the
whole range of messages, and the network overhead o1(m) under
the eager protocol. τ -Lop models the cost of the RTT c operation
using a Round Trip message composed of two point-to-point
message transmissions. The cost of each message transmission is
the addition of the overhead and the sequence of s transfers to
reach the destination, as defined in (1). The cost of the operation
is:

RTT c(0) = 2 ×


oc(m) +

s−1
j=0

Lcj (0, 1)


⇒ oc(m)

=
RTT c(0)

2
. (33)

The Pingc operation, shown at the right side of Fig. 25, is
used to estimate the overhead in the network o1(m) under the
rendezvous protocol. The MPI Standard defines the synchronous
point-to-point MPI_Ssend primitive, which forces the use of the
rendezvous protocol in a network message transmission, leading
to a cost of:

Pingc(0) = oc(m) +

s−1
j=0

Lcj (0, 1) ⇒ oc(m) = Pingc(0). (34)

A high number of iterations in both operations are executed and
the average time is used.

RTT c operation is not used for the rendezvous protocol because
of the following reason. At the right side of Fig. 25, the RTT c

operation would add a second point-to-point response message
by the process Pj. However, it can start such response message
sending the RTS before the process Pi finishes the reception of
the CTS. The overlapping of both messages would lead to a wrong
overhead estimation.

6.4. τ -Lop shared memory transfer time (L0)

In both MPICH and Open MPI, communication between pro-
cesses in shared memory progresses through shared intermediate
buffers, so data needs two transfers to reach the destination buffer.

A Ring0
τ operation is defined as the exchange of a message of

sizembetween adjacent processes arranged in a ring of τ processes
[9]. MPI_Sendrecv is used to execute the Ring operation. Every call
to MPI_Sendrecv by process Pi entails a transmission to process
Pi+1, and a transmission from process Pi−1, with wraparound, and
then a wait operation until both complete. The wait provides a
synchronization point between processes in each transmission,
which ensures that the τ processes transfer data concurrently.
When m < S, no segmentation takes place and the operation
cost will be:

Ring0
τ (m) = o0(m) + 2 L0(m, τ ) ⇒

L0(m, τ ) =
Ring0

τ (m) − o0(m)

2
.

(35)

Whenm ≥ S, messages are segmented and sent as a sequence of k
segments of size S, with k = m/S. Every process sends k segments
and in turn receives k segments, so the cost will be:

Ring0
τ (m) = o0(m) + 2 k L0(S, τ ) ⇒

L0(S, τ ) =
Ring0

τ (m) − o0(m)

2 k
.

(36)

The default size for a segment is S = 32 KB both in MPICH and
Open MPI.

6.5. τ -Lop network transfer time (L1)

As discussed in Section 3, communication between processes
through the TCP/Ethernet network requires three intermediate
transfers for data to reach the destination buffer. The first and the
last of these transfers will progress through sharedmemory, hence
with a cost already estimated in (35) and (36).

A Ring1
τ operation is set up to measure the network transfer

time L1. 2 τ processes are mapped in a round robin fashion in two
nodes, so that even and odd processes will run in different nodes.
Ring1

τ operation has two stages. First, each even processes Pi sends
to process Pi+1 a message through the network, and then each
even process Pi receives from odd processes Pi−1, resulting in the
following cost:

Ring1
τ (m) = 2 ·


o1(m) + 2 L0(m, τ ) + L1(m, τ )


⇒

L1(m, τ ) =
Ring1

τ (m)

2
− o1(m) − 2 L0(m, τ ).

(37)

While the overlap of the copying to the NIC internal buffer
and transmission through the network is unavoidable, it is not
considered in the cost because of its random behavior. No
segmentation mechanism is used neither by MPICH nor by Open
MPI for transmissions though a TCP/Ethernet network, so (37) can
be applied for the whole range of message sizesm.

In the Infiniband network, which uses the RDMA mechanism
as defined in (7), the procedure to measure the transfer time L1 is
similar to that in Ethernet, resulting in:

Ring1
τ (m) = 2 ·


o1(m) + L1(m, τ )


⇒

L1(m, τ ) =
Ring1

τ (m)

2
− o1(m).

(38)

6.6. Improving the accuracy in the L(m, τ ) estimation

The discussed Ringc
τ operation, which is used to measure the

Lc parameter in each communication channel c , provides enough
accuracy in modeling the complex collectives studied in this
paper, as shown in previous sections. Nevertheless, even higher
accuracy in the estimation of Lc can be achieved by applying
a linear regression procedure. Besides Ring, it can involve the
measurements done for other collectives. The target Lc terms will
appear now in more than one equation and the best fitting value
can be obtained.

Expression (35) Ring0
τ (m) = o0(m) + 2 L0(m, τ ) can be put as

Ring0
τ (m) − o0(m) = 2 L0(m, τ ). Moving τ between 1 and 4, for

instance, we will make the method used to determine L0(m, τ ) re-
spond to the trivial linear system
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Ring0

τ=1(m) − o(m)

Ring0
τ=2(m) − o(m)

Ring0
τ=3(m) − o(m)

Ring0
τ=4(m) − o(m)

 =

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2



L0(m, 1)
L0(m, 2)
L0(m, 3)
L0(m, 4)


which we express in a vector form as dm − om = Rm lm. Vector
dm contains the data obtained after measuring the execution times
of the Ringc

τ (m) operations. The system has P equations and P un-
knowns, four in this case.

Beyond Ringc
τ (m) operation, we know that the broadcast opera-

tion has a cost ofΘ0
bcast(m) = 2 o0(m)+2 L0(m, 1)+2 L0(m, 2) (see

Section 4.1). It is possible to enrich the information provided by the
Ring measurements with that byΘ0

bcast(m). Nowwe can add a new
equation to the former system, whichwill take the following form:
Ring0

τ=1(m) − o(m)

Ring0
τ=2(m) − o(m)

Ring0
τ=3(m) − o(m)

Ring0
τ=4(m) − o(m)

Θ0
bcast(m) − 2 o(m)

 =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2
2 2 0 0



L0(m, 1)
L0(m, 2)
L0(m, 3)
L0(m, 4)

 .

The method of ordinary least squares can be used to find an
approximate solution to this overdetermined system of P + 1
equations and P unknowns. It is well known that such solution
is obtained from the problem of finding the lm which minimizes
∥ (dm − om) − Rm lm∥

2.
Note that this is just an example. More and different equations

can be added to the problem of estimating the parameters of
τ -Lop. This methodology is mainly aimed at getting a higher
level of accuracy in cost estimation of different applications, by
adding the execution time of collectives actually invoked by the
applications. This expected overall improvement in modeling the
communication costs of applications comes hence at the expense
of benchmarking their collectives.

7. Conclusions

Current HPC platforms demand better communication perfor-
mance models able of capturing their growing complexity, in par-
ticular the heterogeneity of the communication channels and the
increasing number of cores per node. This work addresses the cost
modeling of some of the algorithms underlying collective opera-
tions present in MPI implementations as MPICH or Open MPI on
multi-core platforms. The algorithms discussed, being fairly com-
mon, have been chosen because their complexity significantly ex-
ceeds that of the algorithms evaluated in previous related works.

We analyze algorithms under three performance models in
hierarchical platforms. LogGPH extension of the LogGP model is
representative of the broadly used linear models which use
network-related latency and bandwidth parameters, and estimate
the cost of an algorithm as the cost of the longest path of the in-
volved point-to-point transmission. mlognP , an extension of the
lognP model, changes previous view of the point-to-point trans-
missions modeled using network parameters and introduces a de-
composition on transfers through the communication channels
hierarchy. Finally, τ -Lop offers a more global view of an algorithm
behavior based on the concept of concurrent transfers and a simple
but still powerful notation for them. In this paper we have shown
that τ -Lop is able to capture the impact of bandwidth shrink in
shared channels when several transmissions progress in parallel,
with the overall result of improving the accuracy of the cost esti-
mation. In addition, we reveal that overlooking the representation
of the contention leads to unacceptable estimation errors.

MPI is the de facto standard used by almost all applications
running in high performance computing platforms. Modeling and
Fig. 26. Example of the Relative error ρ of two estimated values with respect to
their respective real measurements.

estimating the communication cost of these parallel applications
reduces to modeling the MPI operations invoked by them. As a
case of study, we address the cost estimation of a representative
matrix multiplication kernel in a multi-core cluster platform using
Ethernet and Infiniband network technologies. As before, the
conclusion is that τ -Lop shows a more scalable and accurate cost
estimation than LogGPH andmlognP in both type of networks.

Finally, an exhaustive methodology for estimating the τ -Lop
parameters is proposed.
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Appendix. Accuracy of the measurements with the propor-
tional error

The utility of a model is determined largely by the accuracy
achieved in the estimation of its parameters, which results in
the correct prediction of the cost of the operations. Several error
metrics exist to express the accuracy of an estimation with respect
to the real measurement. Usually, Relative error is used in the
literature, based on the distance between estimated and real
values. Lets call ρ the Relative error of an estimated value e with
respect to the real value r . It is defined [52] as

ρ =
|e − r|

r
. (39)

The concept of relative error as an expression of error suffers an
anomaly outlined hereafter. Fig. 26 illustrates this point with an
example. The first estimated value is e, with a Relative error with
respect to the measured value r of ρ = 1. For the estimated value
e′, the Relative error with respect to r ′ is ρ ′

= 0.5. Therefore, ρ ≫

ρ ′, even though the distance and proportion among estimated and
real values are equal.

This fact has an impact in the communication performance
modeling evaluation. A model that underestimates the cost of
an algorithm will give a lower Relative error than a model that
overestimates it in the same proportion. For this reason this
paper discards the Relative error and uses an error measurement
based on the proportion between real and estimated values, which



J.-A. Rico-Gallego et al. / Future Generation Computer Systems 61 (2016) 66–82 81
reflects the accuracy of the measures in a more meaningful way.
We define the Proportional error µ of a estimated value e with
respect to the real value r as:

µ =
max(r, e)
min(r, e)

. (40)

Under the hypothesis that both e and r are positive numbers, the
Proportional error is always greater than 1, equal when there is no
error. Regarding the example in Fig. 26, Proportional errors will be
identical (µ = µ′

= 2) because their predictions fail in the same
proportion.

The Proportional error is applied to sets of estimated values
obtained from different models in order to compare them, and
with the real values. Being times, real and estimated values are
positive numbers. The procedure is as follows. In starting from two
sets of discrete values R and EM , where R represents the measured
communication times, and EM represents the estimated values by
a modelM for an operation:

R = {r0, r1, r2, . . . , rn−1}

EM
= {eM0 , eM1 , eM2 , . . . , eMn−1}.

(41)

That is, ri is the measured value for the message size i, and eMi
is the estimated value for the message size i by the model M of
an operation. The proportion between the set of measured and
estimated values is defined as:

µM
= {µM

0 , µM
1 , µM

2 , . . . , µM
n−1},

with each componentµM
i as the Proportional error of the estimated

value with respect to the real measurement for the message size i,
defined in (40). However, neither the Proportional nor the Relative
errors give information about which range of values (R or EM ) is
higher, and it needs to be provided in each context.

The Average Proportional error of the model M for the whole
range of message sizes in the set µM is:

µ̄M
=

n−1
i=0

µM
i

n
. (42)

There is a simple relation between Relative and Proportional
error that allows the conversion from one to the other. Let us
consider the Relative error ρ defined in (39) of a single estimated
value e with respect to the real value r , and the Proportional error
µ defined in (40) for the same pair. We have two cases: e > r and
e < r . Note that when e = r no error applies, that is, the Relative
error is 0 and the Proportional error is 1.

1. If e > r , then µ = e/r , and then:

ρ =
e − r
r

=
(µ r) − r

r
= µ − 1. (43)

And then:

µ = ρ + 1 (44)

2. If e < r , then µ = r/e, and then:

ρ =
r − e
r

=
r − (r/µ)

r
= 1 −

1
µ

. (45)

So that:

µ =
1

1 − ρ
. (46)
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