
Implementing a model-based collective
communication operation with the

MPIBlib/CPM framework

Kiril Dichev

May 23, 2011

Outline

Introduction

Overview of the CPM and MPIBlib frameworks

Example driven implementation of a model-based collective with
MPIBlib/CPM

Tools for running and testing the model-based collective
implementation

Outline

Introduction

Overview of the CPM and MPIBlib frameworks

Example driven implementation of a model-based collective with
MPIBlib/CPM

Tools for running and testing the model-based collective
implementation

Why should we use models for collective operations

I MPI implements various collectives

I The standard implementations ignore the characteristics of
the underlying communication network

I Communication performance models describe these
characteristics

I By using models, we can optimize a collective operation to
use this knowledge

Why should we use models for collective operations

Efficient collective communication is implemented with

I tree data structures

I tree-based algorithms

We can use communication performance models for collectives by:

I switching between existing algorithms

I mapping processes to the nodes of the communication tree

I dynamically generating a communication tree

What sort of operation do we implement?

In this tutorial when we say model-based collective communication
operation we mean that we

I dynamically generate communication trees

I for some collective operations

I with the help of model predictions

I and do the communication over these trees

What sort of operation do we implement?

In this tutorial when we say model-based collective communication
operation we mean that we

I dynamically generate communication trees

I for some collective operations

I with the help of model predictions

I and do the communication over these trees

What sort of operation do we implement?

In this tutorial when we say model-based collective communication
operation we mean that we

I dynamically generate communication trees

I for some collective operations

I with the help of model predictions

I and do the communication over these trees

What sort of operation do we implement?

In this tutorial when we say model-based collective communication
operation we mean that we

I dynamically generate communication trees

I for some collective operations

I with the help of model predictions

I and do the communication over these trees

What sort of operation do we implement?

In this tutorial when we say model-based collective communication
operation we mean that we

I dynamically generate communication trees

I for some collective operations

I with the help of model predictions

I and do the communication over these trees

Outline

Introduction

Overview of the CPM and MPIBlib frameworks

Example driven implementation of a model-based collective with
MPIBlib/CPM

Tools for running and testing the model-based collective
implementation

MPIBlib
Overview

MPIBlib provides a library with benchmarking functionality

I Suitable for inserting benchmarks into applications
I The library can be used by

I any MPI applications
I a set of provided tools and tests

I implements a number of existing collective algorithms
(Example: binomial tree algorithm)

I provides a command line tool (’colective’) for fast
development and testing

MPIBlib
Trees

I We want to avoid code rewriting
I For collectives, we introduce orthogonal concepts which can

be combined:
I Tree algorithms (not depending on the tree)
I Communication trees (not depending on the algorithm)

MPIBlib
Tree builders

I Tree builders - encapsulate into an object the logic of
constructing a tree

I A tree builder generates a communication tree

I The communication tree is used in the tree algorithm

CPM

I Implements heterogeneous communication performance
models

I Estimates the model parameters on a cluster

I Uses MPIBlib for benchmarking

I Provides a number of collective operation using model
predictions

CPM
Model-based collectives

I In order to implement a model-based collective, we

I do not reimplement communication algorithms
I implement tree builders

I A model-based tree builder encapsulates the logic of
constructing a model-based communication tree

I Implementing a model-based tree builder is the main part
when implementing a model-based collective operation

CPM
Model-based collectives

I In order to implement a model-based collective, we
I do not reimplement communication algorithms

I implement tree builders

I A model-based tree builder encapsulates the logic of
constructing a model-based communication tree

I Implementing a model-based tree builder is the main part
when implementing a model-based collective operation

CPM
Model-based collectives

I In order to implement a model-based collective, we
I do not reimplement communication algorithms
I implement tree builders

I A model-based tree builder encapsulates the logic of
constructing a model-based communication tree

I Implementing a model-based tree builder is the main part
when implementing a model-based collective operation

CPM
Model-based collectives

I In order to implement a model-based collective, we
I do not reimplement communication algorithms
I implement tree builders

I A model-based tree builder encapsulates the logic of
constructing a model-based communication tree

I Implementing a model-based tree builder is the main part
when implementing a model-based collective operation

CPM
Model-based collectives

I In order to implement a model-based collective, we
I do not reimplement communication algorithms
I implement tree builders

I A model-based tree builder encapsulates the logic of
constructing a model-based communication tree

I Implementing a model-based tree builder is the main part
when implementing a model-based collective operation

Outline

Introduction

Overview of the CPM and MPIBlib frameworks

Example driven implementation of a model-based collective with
MPIBlib/CPM

Tools for running and testing the model-based collective
implementation

Simple collectives

In MPIBlib, the available collectives follow the naming convention
MPIB_X_Y with

I X - a communication operation

I Y - a tree algorithm

MPIBlib collectives
Example based on Scatterv operation

How to implement model-based collectives in CPM

A model-based collective operation belongs in CPM

I follows the naming convention M_X_Y with

I M - a communication model

I X - a communication operation

I Y - a tree algorithm

How to implement model-based collectives in CPM

A model-based collective operation belongs in CPM

I follows the naming convention M_X_Y with

I M - a communication model

I X - a communication operation

I Y - a tree algorithm

The model

A model-based collective operation can be
I generic

I depends on the predicted execution time of a communication
I prediction can be provided by any model
I Example: predict p2p returns the predicted execution time for

a point-to-point communication

I model-specific - depends on certain communication
performance models using parameters specific for these
models only

In this tutorial, we only discuss generic model-based collectives

The model
Example based on Scatterv operation

The model
Initialization

I Master node can read a model from a file or

I all nodes can build the model by performing collective
benchmarks

I then, model parameters are broadcasted to all nodes

P r o c e s s o r 1 P r o c e s s o r n

File

H o c k n e y _ r e a d

Model

H o c k n e y _ m o d e l

Mode l bu i lde r

Hockney_bui ld

Model

H o c k n e y _ m o d e l

Hockney_init ial ize

. . .
Model

H o c k n e y _ m o d e l

Hockney_init ial ize

Collect ive

Hockney_Sca t t e rv_b inomia l
. . .

Col lect ive

Hockney_Sca t t e rv_b inomia l

The model
Initialization

Example:

i f (rank == 0) {
Hockney read (stream , &model) ;

}
H o c k n e y i n i t i a l i z e (comm, model) ;
i f (rank == 0) Hockney f r e e (model) ;

Analogy to the MPI communicator:

I the model instance has a global scope like the MPI
communicator for MPI programs

I it is independent from the collective operation

I similar init and finalize calls

How to implement model-based collectives in CPM

A model-based collective operation belongs in CPM

I follows the naming convention M_X_Y with

I M - a communication model

I X - a communication operation

I Y - a tree algorithm

The model-based tree builder
Example - MPIB Scatterv binomial

The model-based tree builder

I The builder must implement a build function which generates
a tree

I usage of Boost required

I all model logic is done by calling the model predict p2p
function

The model-based tree builder
Example - Process Mapping

c l a s s B i n om i a l b u i l d e r {
p r i v a t e :
CPM pred ictor∗ p r e d i c t o r ;
. . .
vo id b u i l d (i n t root , i n t count ,

Graph& g , Ve r t ex& r , Ve r t ex& u , Ver t ex& v)
{
. . .

//Get the rank o f a v e r t e x we a r e v i s i t i n g
Ver tex s = <get some v e r t e x wi th a l r e a d y a s s i g n e d rank>
i n t s ou r c e = get (v e r t e x i n d e x , g , s) ;

// Find the rank from una s s i gn ed rank s which has
// the f a s t e s t l i n k to the rank o f the c u r r e n t v e r t e x
f o r (deque<pa i r<i n t , double> >:: i t e r a t o r i = rank s . beg i n () ;
i != rank s . end () ; i++) {

i n t t a r g e t = i−>f i r s t ;
i−>second = p r e d i c t o r−>p r e d i c t p 2 p

(p r e d i c t o r , source , t a r g e t , count s [t a r g e t]) ;
}
deque<pa i r<i n t , double> >:: i t e r a t o r i =

min e l ement (r ank s . beg i n () , r ank s . end () , s e c o n d l e s s ()) :

// Crea te a v e r t e x and edge i n the t r e e to b u i l d the f a s t e s t
// p o s s i b l e c onne c t i on to the c u r r e n t rank
i n t t a r g e t = i−>f i r s t ;
r ank s . e r a s e (i) ;
Ve r t ex t = add v e r t e x (g) ;
put (v e r t e x i n d e x , g , t , t a r g e t) ;
add edge (s , t , g) ;

. . .

The model-based tree builder
Example - Process Mapping

c l a s s B i n om i a l b u i l d e r {
p r i v a t e :
CPM pred ictor∗ p r e d i c t o r ;
. . .
vo id b u i l d (i n t root , i n t count ,

Graph& g , Ve r t ex& r , Ve r t ex& u , Ver t ex& v)
{
. . .

//Get the rank o f a v e r t e x we a r e v i s i t i n g
Ver tex s = <get some v e r t e x wi th a l r e a d y a s s i g n e d rank>
i n t s ou r c e = get (v e r t e x i n d e x , g , s) ;

// Find the rank from una s s i gn ed rank s which has
// the f a s t e s t l i n k to the rank o f the c u r r e n t v e r t e x
f o r (deque<pa i r<i n t , double> >:: i t e r a t o r i = rank s . beg i n () ;
i != rank s . end () ; i++) {

i n t t a r g e t = i−>f i r s t ;
i−>second = p r e d i c t o r−>p r e d i c t p 2 p

(p r e d i c t o r , source , t a r g e t , count s [t a r g e t]) ;
}
deque<pa i r<i n t , double> >:: i t e r a t o r i =

min e l ement (r ank s . beg i n () , r ank s . end () , s e c o n d l e s s ()) :

// Crea te a v e r t e x and edge i n the t r e e to b u i l d the f a s t e s t
// p o s s i b l e c onne c t i on to the c u r r e n t rank
i n t t a r g e t = i−>f i r s t ;
r ank s . e r a s e (i) ;
Ve r t ex t = add v e r t e x (g) ;
put (v e r t e x i n d e x , g , t , t a r g e t) ;
add edge (s , t , g) ;

. . .

The model-based tree builder
Example - Process Mapping

c l a s s B i n om i a l b u i l d e r {
p r i v a t e :
CPM pred ictor∗ p r e d i c t o r ;
. . .
vo id b u i l d (i n t root , i n t count ,

Graph& g , Ve r t ex& r , Ve r t ex& u , Ver t ex& v)
{
. . .

//Get the rank o f a v e r t e x we a r e v i s i t i n g
Ver tex s = <get some v e r t e x wi th a l r e a d y a s s i g n e d rank>
i n t s ou r c e = get (v e r t e x i n d e x , g , s) ;

// Find the rank from una s s i gn ed rank s which has
// the f a s t e s t l i n k to the rank o f the c u r r e n t v e r t e x
f o r (deque<pa i r<i n t , double> >:: i t e r a t o r i = rank s . beg i n () ;
i != rank s . end () ; i++) {

i n t t a r g e t = i−>f i r s t ;
i−>second = p r e d i c t o r−>p r e d i c t p 2 p

(p r e d i c t o r , source , t a r g e t , count s [t a r g e t]) ;
}
deque<pa i r<i n t , double> >:: i t e r a t o r i =

min e l ement (r ank s . beg i n () , r ank s . end () , s e c o n d l e s s ()) :

// Crea te a v e r t e x and edge i n the t r e e to b u i l d the f a s t e s t
// p o s s i b l e c onne c t i on to the c u r r e n t rank
i n t t a r g e t = i−>f i r s t ;
r ank s . e r a s e (i) ;
Ve r t ex t = add v e r t e x (g) ;
put (v e r t e x i n d e x , g , t , t a r g e t) ;
add edge (s , t , g) ;

. . .

How to implement model-based collectives?

A model-based collective operation belongs in CPM

I follows the naming convention M_X_Y with

I M - a communication model

I X - a communication operation

I Y - a tree algorithm

Communication operation

I We don’t need to worry about the communication operation -
MPIBlib provides that

I We only need to integrate the components

Integrating CPM and MPIBlib components into a
model-based collective communication
Example based on Scatterv operation

Integrating CPM and MPIBlib components into a
model-based collective communication

The integration includes:

I passing an initialized predictor according to the model M
(example for Hockney model) :

Hockn e y S c a t t e v s o r t e d b i n om i a l (. . .) {
CPM Sca t t e r v s o r t e d b i nom i a l (&Hockney mode l i n s tance−>p r e d i c t o r , . . .

I calling the right tree algorithm (Y) with the right model-based
tree builder (X)

ex te rn ”C” i n t CPM Sca t t e r v s o r t e d b i nom i a l (CPM pred ictor∗ p r e d i c t o r , . . . {
r e t u rn MPIB Sca t t e r v t r e e a l g o r i t hm (B i n om i a l b u i l d e r (p r e d i c t o r , no) , . . .

Integrating CPM and MPIBlib components into a
model-based collective communication

The integration includes:
I passing an initialized predictor according to the model M

(example for Hockney model) :

Hockn e y S c a t t e v s o r t e d b i n om i a l (. . .) {
CPM Sca t t e r v s o r t e d b i nom i a l (&Hockney mode l i n s tance−>p r e d i c t o r , . . .

I calling the right tree algorithm (Y) with the right model-based
tree builder (X)

ex te rn ”C” i n t CPM Sca t t e r v s o r t e d b i nom i a l (CPM pred ictor∗ p r e d i c t o r , . . . {
r e t u rn MPIB Sca t t e r v t r e e a l g o r i t hm (B i n om i a l b u i l d e r (p r e d i c t o r , no) , . . .

Integrating CPM and MPIBlib components into a
model-based collective communication

The integration includes:
I passing an initialized predictor according to the model M

(example for Hockney model) :

Hockn e y S c a t t e v s o r t e d b i n om i a l (. . .) {
CPM Sca t t e r v s o r t e d b i nom i a l (&Hockney mode l i n s tance−>p r e d i c t o r , . . .

I calling the right tree algorithm (Y) with the right model-based
tree builder (X)

ex te rn ”C” i n t CPM Sca t t e r v s o r t e d b i nom i a l (CPM pred ictor∗ p r e d i c t o r , . . . {
r e t u r n MPIB Sca t t e r v t r e e a l g o r i t hm (B i n om i a l b u i l d e r (p r e d i c t o r , no) , . . .

Outline

Introduction

Overview of the CPM and MPIBlib frameworks

Example driven implementation of a model-based collective with
MPIBlib/CPM

Tools for running and testing the model-based collective
implementation

Tools for using the model-based collectives

I Generate a (Hockney) model file - essential !
mpirun --machinefile <> -np <> model -C Hockney -o <model-file>

Tools for using the model-based collectives

I Generate factors for Scatterv/Gatherv - only relevant for
benchmarks on irregular operations

I factors determine the message sizes for the processes
I argument -c or -r for CPU-based or random size distribution

mpirun -np 4 --machinefile <> generate_factors -c > factors.out

Tools for using the model-based collectives

I running a benchmark on the new collective operation
mpirun -np 4 --machinefile <> collective -l <CPM installation>/lib/libcpm_coll.so \

-O Hockney_Scatterv_dfs_binomial_min -f factors.out \

-o model=Hockney,file=<generated model file>,sgv=2 > \

Hockney_Scatterv_dfs_binomial_min.out

I MPIBlib ’collective’ documentation for generic arguments (all
except for -o)
mpirun -np 1 collective -h

I CPM documentation on ”subopt” (-o) arguments
I e.g. on sgv decides where the communication tree is generated
I ’verbose’ (i.e. -o verbose,...) is useful for debugging the

generated tree (tree is output)

	Introduction
	Overview of the CPM and MPIBlib frameworks
	Example driven implementation of a model-based collective with MPIBlib/CPM
	Tools for running and testing the model-based collective implementation

