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Abstract—In this paper, we present two techniques for inter- 
and intra-node data partitioning aimed at load balancing MPI 
applications on heterogeneous multicore platforms. For load 
balancing between the multicore nodes of a heterogeneous 
multicore cluster, we propose how to define a functional 
performance model of an individual multicore node as a single 
computing unit, and use these models for data partitioning 
between the nodes. For load balancing within a heterogeneous 
multicore node, we propose a data partitioning technique 
between cores. Since parallel processes interfere with each 
other through shared memory, the speed of individual cores 
cannot be measured independently, and independent 
performance models cannot be defined for cores. Therefore, 
for a given problem size, we dynamically evaluate the 
performance of cores, while they are executing only the 
computational kernel of parallel application, and partition 
data proportionally to the observed speed. 

Keywords-heterogeneous multicore cluster; load balancing;  
data partitioning; functional performance models 

I. INTRODUCTION 

High performance of parallel applications on dedicated 
heterogeneous platforms can be achieved by partitioning the 
computational load and, hence, data unevenly across all 
processors. For this purpose, performance models of the 
heterogeneous processors are used. It has been proven that 
the application-specific functional performance models built 
from a history of time measurements better capture different 
aspects of heterogeneity of processors [1]. They are designed 
for uniprocessor machines and represent the processor speed 
by a function of problem size. The models and partitioning 
techniques are however designed for uniprocessor machines. 
In this paper, we apply this approach to a computing node 
that consists of multiple cores and executes multiple 
processes/threads of the application, considering the node a 
single processing unit. We propose a multicore functional 
performance model that integrates contributions of arithmetic 
calculations and memory traffic between cores, cache and 
DRAM. We use this model with the previously proposed 
data partitioning algorithm [1] to balance parallel 
computational routines on a heterogeneous cluster of 
multicore nodes. 

A number of models have been proposed to evaluate the 
performance of a multicore [2]-[5]. They however have 
never been used for optimal distribution of computations 
between nodes. Their typical use is for code optimization. 

Most of them are hardware-centric and represent the speed of 
the computing node by peak arithmetic and memory 
performance. Parameters of the models are obtained from 
experiments with elemental operations. They provide the 
insight into how to modify the code for more efficient 
utilization of the multicore node. In this paper, we address a 
different problem, which cannot be solved with help of the 
existing multicore performance models. Namely, we try to 
improve the existing parallel application by finding its 
optimal configuration for execution on a heterogeneous 
multicore node. 

Scientific parallel programs for homogeneous and 
heterogeneous clusters are mainly written using MPI or its 
extensions like HeteroMPI [6]. However MPI could be also 
used as a programming tool for scientific computing on a 
single multicore node. This would allow for reusing existing 
MPI code. MPI implementations often outperform their 
multithreaded and OpenMP counterparts for many scientific 
kernels [7]. The fact that MPI processes can be bound to 
particular cores allows us to find the optimal distribution of 
the workload between MPI processes and their optimal 
mapping to the executing cores. This optimization technique 
can be particularly beneficial for heterogeneous cores.  

Optimal distribution of computations between 
heterogeneous processors is typically based on their 
individual performance models, which can be either pre-built 
or being built during the execution of the application for each 
processor. In the case of a multicore node, the performance 
model of an individual core cannot be built independently of 
other cores because they compete for shared resources and 
hence affect the performance of each other. Therefore, we 
cannot straightforwardly apply the traditional approach to 
cores, because this approach assumes the independence of 
the processing units. In this paper, for load balancing of MPI 
parallel computational routines on a heterogeneous multicore 
node, we still propose to use evaluation of the individual 
performance of cores but in a group, when all cores are 
executing some allocated workloads in parallel. This 
evaluation is performed at runtime and obtained individual 
performance models are then used for optimal distribution of 
computations. 

In order to implement the proposed load balancing 
techniques, we propose a new method of benchmarking of 
scientific applications on multicores. Existing methods 
measure the performance of a platform, using different 
combinations of memory operations [8] or floating point 
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kernels [9]. We propose to measure a combined workload of 
a real parallel computational application, including both 
arithmetic and memory operations. We bind the processes to 
the cores and synchronize their execution in order to ensure 
consistent performance. To ensure the reliability of the 
measurement, we repeat experiments multiple times until the 
results are proved statistically reliable. 

This paper is structured as follows. In Section 2, we 
overview existing performance models that are either 
specifically designed for or can be adapted to multicores. In 
Section 3, we propose the multicore functional performance 
model, describe how to built the model, and present the 
experimental results of its use for data partitioning on 
heterogeneous multicore machines of Grid5000. In Section 
4, we present the intra-node load balancing technique based 
on dynamic performance evaluation of the kernel of an MPI 
application, and demonstrate that this technique can improve 
the performance of a heterogeneous multicore. 

II. RELATED WORK

In this section, we overview existing performance models 
and benchmarks designed for multicores. We also outline 
one existing approach to data partitioning with help of 
performance models that can be applied to multicores. 

The main idea of existing performance models of a 
multicore node is to estimate the performance of parallel 
applications in order to reengineer them and adapt to 
emerging multicore-based supercomputers. Many models are 
not very accurate, providing only performance bounds, as, 
for example, an extension of the Amdahl model for 
multicores [5], which does not take into account memory 
overhead. Other models, in contrast, mostly represent 
memory traffic, for example [2]-[3]. The traffic models are 
empirically derived from the traces of full-system 
simulations with different applications. Using statistical 
analysis, they realistically capture the variety of traffic 
patterns arising from a wide range of applications. 

A number of studies introduce a concept of balance, 
defined as a ratio of the number of memory operations to the 
number of floating-point operations [10]. This ratio is a more 
realistic performance model showing how fast the data is 
supplied and processed in the application. If the loop balance 
is higher than the machine one, the application needs data at 
a higher rate than the machine can provide and idle 
computational cycles exist. Otherwise, data cannot be 
processed as fast as it is supplied to the processor, and idle 
memory cycles will exist. In the first case, the application is 
memory bound and should be optimized if possible. In the 
second case, the application runs at the peak floating-point 
rate of the machine and does not require further optimization. 
Similarly, the Roofline model [4] ties together floating-point 
and memory performance in a two dimensional graph. All 
bounds provided by the Roofline model represent different 
optimization techniques for multicore applications. In 
contrast to the traditional approaches, we aim to improve the 
performance of existing parallel applications by finding their 
optimal configuration using data partitioning algorithms. 

Since most scientific applications are memory-intensive, 
sharing memory and insufficient memory bandwidth are the 

main factors affecting their performance. Due to the 
memory-boundness of such scientific applications, the 
synthetic benchmarks that measure the sustainable memory 
bandwidth became very popular for multicores [8]. Another 
group of the benchmarks is floating-point kernels, 
representative numerical methods important for 
computational science and engineering [9]. These 
benchmarks evaluate the peak performance of the platform, 
using different combinations of the following characteristics: 
parallelization, data locality, communication-to-computation 
ratio, off-chip traffic. The benchmark method proposed in 
this work belongs to the second group and measures a 
combined workload, including both arithmetic and memory 
operations. We bind the processes to the cores and 
synchronize their execution in order to ensure consistent 
performance. To ensure the reliability of the measurement, 
we repeat experiments multiple times until the results are 
proved statistically reliable. 

Conventional algorithms for distribution of computations 
between heterogeneous processors partition data between the 
processors in proportion to their speeds demonstrated during 
the execution of a serial benchmark code solving locally the 
core computational task of some given size. In the case of 
cluster of uniprocessors, if we do not limit the range of 
problem sizes, their absolute speeds of the processors will 
depend on the size of the computational task. For these 
platforms, a new class of algorithms [1] has been proposed 
recently, able to optimally distribute computations between 
processing units for the full range of problem sizes. 

The functional performance model (FPM) of 
heterogeneous processors proposed and analysed in [1] has 
proven to be more realistic because it integrates many 
important features of heterogeneous processors such as the 
architectural and platform heterogeneity, the heterogeneity of 
memory structure, the effects of paging and so on. The 
algorithms employing it therefore distribute the 
computations across the heterogeneous processing units 
more accurately than the algorithms employing the constant 
performance models. Under this model, the speed of each 
processor is represented by a continuous function of the size 
of the problem. In this paper, we adapt the functional 
performance model to a multicore node, considering the 
latter a single processing unit. We use this adapted model in 
combination with the proposed earlier FPM-based data 
partitioning algorithms in order to balance the load between 
the nodes of a heterogeneous multicore cluster. 

III. INTER-NODE DATA PARTITIONING

In this section, we present the load balancing technique 
based on data partitioning between the nodes of a 
heterogeneous multicore cluster. 

In the proposed multicore functional performance model 
(MFPM), a node consisting of cores is considered as a single 
processing unit. The node executes   processes of a data 
parallel computational routine. The speed is represented by a 
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sizes assigned to individual cores, ix , 0 i c≤ < , are supposed 

to be given); 
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= is the execution time of the 

parallel routine and ( )i it x is the execution time of the process 
on i-th core. This speed function includes contribution from 
both cores and memory. It takes into account the potential 
heterogeneity of cores and multi-level storage system within 
the multicore computer. 

According to the Roofline model [4], peak floating-point 
performance, bandwidth and operational intensity are the 
three main factors that influence the computing performance. 
Since we do not optimize the code to improve the floating-
point performance or the utilization of the bandwidth, the 
change of operational intensity with the increase of the 
problem size determines the computing performance. The 
performance decreases with the increase of problem size 
until it becomes so large that the memory traffic dominates 
computation. Then the performance becomes almost stable. 
Strictly speaking, the proposed speed function depends not 
only on the problem size, x , but also on its distribution 
between the cores, ix , 0 i c≤ < . Uneven data distribution 
will result in idle computational cycles on some cores where 
the processes complete their job earlier. However, on a 
heterogeneous multicore, the maximum speed can be 
achieved with some uneven data distribution. In Section 4 of 
this paper, we present the approach to optimal intra-node 
data partitioning for a heterogeneous multicore. 

To build multicore functional performance models of an 
MPI application on a heterogeneous multicore cluster, we 
design and implement the following benchmarking 
procedure that allows us to measure the execution time 
accurately on each multicore. We assume that all nodes have 
a homogeneous architecture but different features (different 
number of cores/sockets, different sizes of caches/memory, 
etc). This allows us to partition data evenly within each node. 
Since automatic rearranging of the processes provided by 
operating system may result in performance degradation, we 
bind the processes to cores. The procedure can be 
summarized as follows: 

1. The communicator of all processes is spilt into intra-
node MPI communicators so that there is one such 
communicator per a multicore node. The data of the 
size x is partitioned evenly between the cores within 
each node. 

In the loop: 
2. A barrier synchronizes the processes within each node. 

This way we minimize the idle computational cycles 
on the cores, aiming at the highest floating-point rate 
for the application on the node. We also ensure that 
the resources will be shared between the maximum 
number of processes, generating the highest memory 
traffic.  

3. The execution time of the routine is measured on each 
core.  

4. Statistical analysis of all time measurements observed 
so far for the given problem size is performed.  

5. If all intra-node processes get statistically reliable 
results, the total speed of the node is calculated, 
otherwise, more repetitions are required (goto 2). 

We use the multicore functional performance models 
built this way for FPM-based data partitioning on a 
heterogeneous multicore cluster. In the experiments, we use 
MFPMs and the heterogeneous two-dimensional matrix-
matrix multiplication routine that employs the two-
dimensional column-based matrix partitioning algorithm 
presented in [11]. Our modification uses the MFPMs instead 
of the constant performance models (CPMs) to calculate the 
relative speeds of the heterogeneous multicore nodes as the 
input parameters for the 2D column-based matrix 
partitioning algorithm. 

Fig. 1(a) shows one step of the algorithm of parallel 
matrix multiplication over a 2D heterogeneous processor 
grid of size 3×3. Each element of the matrix is a square block 
of size b×b. As shown in Fig. 1(b), taking processer P12 as an 
example, the computational kernel for 2D matrix 
multiplication performs a matrix update of a matrix Cb of 
size mb×nb using Ab of size mb×1 and Bb of size 1×nb. The 
size of the problem is represented by two parameters, mb and 
nb. We use a combined computation unit, which is made up 
of one addition and one multiplication, to express the volume 
of computation. Therefore, the total number of computation 
units (namely, multiplications of two b×b matrices) 
performed during the execution of the benchmark code will 
be approximately equal to mb×nb, and the absolute speed of 
the processor exposed by the application can be calculated as 
mb×nb divided by the execution time of the matrix update. 

The MFPM-based modification of the heterogeneous 2D 
column-based matrix partitioning can be summarized as 
follows. 

(a) 

(b) 
Figure 1. (a) One step of the algorithm of parallel matrix multiplication 
employing a 2D heterogeneous processor grid of size 3×3. Matrices A, B,
and C are partitioned so that the area of the rectangle is proportional to the 
speed of the processor owning it. First, each b×b block of the pivot column 
a.k of matrix A (shown with curly arrows) is broadcast horizontally, and 
each b×b block of the pivot row bk. of matrix B (shown with curly arrows) 
is broadcast vertically. Then, each b×b block cij of matrix C is updated, 
cij=cij+aik×bkj. (b) The computational kernel (shown here for processor P12

for example) performs a matrix update of a dense matrix Cb of size mb×nb
using Ab of size mb×1 and Bb of size 1×nb. The matrix elements represent 
b×b matrix blocks. 
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1. The computational kernel updating a square matrix of 
a given area (mb=nb in Fig. 1(b)) is used to pre-build 
MFPMs of the nodes, assuming each node to be a 
homogeneous multicore. 

2. The area of the partition (measured in the number of 
matrix blocks) to be allocated to each node is 
calculated by the FPM-based data partitioning 
algorithm [1], which uses the MFPMs. The resulting 
areas will be proportional to the speeds of the nodes. 

3. The algorithm [11] then uses these areas to calculate 
the optimal column-based matrix partitioning which 
minimizes the total volume of communication 
between the nodes (see Fig. 2(a)). 

4. The matrix blocks allocated to each node are evenly 
partitioned between cores in horizontal slices (see Fig. 
2(b)). 

We perform our experiments on a heterogeneous 
platform, Grid5000 (http://www.grid5000.fr). Four different 
types of multicore nodes are involved in the experiments, 
with different numbers of cores and different sizes of RAM. 
We use 4 nodes of each type to construct a 16-node 
heterogeneous cluster to run the experimental applications. 
We compare the execution time of the above matrix 
multiplication application with three different data 
partitioning schemes. The first scheme uses the pre-built 
MFPMs of the nodes to find the optimal 2D column-based 
data distribution of matrix. The second one uses CPMs 
instead of MFPMs to find the optimal 2D column-based data 
distribution and the third one partition the matrix evenly 
(homogeneous data partition) to all nodes without 
considering their heterogeneity. 

Fig. 3 shows the multicore functional performance 
models of the four types of nodes when they execute the 
computational kernel of the 2D matrix multiplication. The x-
axis represents the total number of matrix blocks, and the y-
axis represents the speed of the nodes. These four types of 
nodes represent a common heterogeneity of high 
performance computing platform in the real world. 
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(a)                                          (b) 
Figure 2. Example of the 2D column-based matrix partitioning over 8 
multicore nodes. The relative speed of nodes is given by {0.3, 0.2, 0.12, 0.1, 
0.1, 0.08, 0.05, 0.05} and the number of cores within these nodes are {4, 2, 
2, 2, 2, 2, 2, 2}. (a) The optimal partitioning is obtained for three columns. 
The first column of width 0.5 is composed of 2 elements (P1 and P2). The 
second column of width 0.32 is composed of three elements (P3, P4 and 
P5). Then the last column of width 0.18 is made up with the smallest 
elements (P6, P7 and P8). Thicker lines correspond to the sum of the half-
perimeters, which represents the communication overhead. (b) The matrix 
blocks allocated to each node are evenly partitioned between cores in 
horizontal slices. 

Fig. 4 shows the execution times of the parallel matrix 
multiplication application with those three different data 
partitioning schemes. We randomly select two sizes of 
matrix and run the computational kernel to generate the 
CPMs of these four nodes. The CPM-based data partition 1 
uses the CPMs when the size of matrix for benchmarking is 
3000 blocks for each node, and the size of 7000 blocks is 
used in CPM-based data partition 2. Since the MFPM-based 
data partitioning scheme is more accurate and better capture 
different aspects of heterogeneity of heterogeneous multicore 
nodes than the other two schemes, it achieves the best 
performance. Fig. 4 demonstrates that CPM-based and 
Homogeneous data partition schemes are 2 times to 3 times 
slower than the MFPM-based data partition scheme. 

IV. INTRA-NODE DATA PARTITIONING

In this section, we address balancing the load between 
the cores of a heterogeneous multicore node. Instead of 
redesigning parallel applications for this architecture, we are 
looking to find the optimal configuration to run the 
applications, using data partitioning algorithms. 

The speeds of the cores within a node cannot be 
considered separately if they execute the application in 
parallel. They perform computational operations 
independently only within some range of problem sizes. 
When the problem does not fit the private memory of the 
cores, parallel processes would compete for shared resources 
and consequently would affect the performance of each other. 
The functional performance model of an individual core can 
be deterministically defined only in the range of small 
problem sizes. For larger problem sizes, the speed of the core 
will depend not only on the problem size but also on the 
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workload of other cores. Therefore, traditional CPM-based 
and FPM-based data partitioning algorithms cannot be 
applied to load balancing on a heterogeneous multicore node. 
We propose the following load balancing technique: 

1. The data of a given size, x , is distributed evenly 
between the cores, /ix x c= , 0 i c≤ < , and the speed 
of the computational kernel of the routine, is , is 
measured on all cores. To obtain more realistic speed 
estimates, the processes are synchronized. 

2. The data is redistributed, 
1

*

0

c

i
i

x x
−

=

= , in proportion to 

the observed speeds so that: 
* *
0 1

0 1

... c

c

x x
s s

−

−

= = .

3. Finally, the parallel routine is executed with this data 
partition, *

ix .
Thus, we measure the speeds of the cores at runtime in a 

group by using the computational kernel (Fig. 1(b)), where 
each core receives some workload, and distribute data in 
proportion to the observed speeds. In the following 
subsection, we present the experimental heterogeneous 
platforms and the results of load balancing for the parallel 
matrix multiplication application. 

Our experimental platform is Dell PowerEdge 6850. 
Although the Dell PowerEdge 6850 has a homogeneous 
architecture, its memory system is typically hierarchy, with 
two separate FSBs and multi-level caches, which could cause 
imbalance. In our experiments, we use two experimental 
setups with uneven process-binding scheme on this platform 
to simulate a heterogeneous architecture, and we run the 
computational kernel (Fig. 1(b)) to measure the performance 
for all the experiments in this section. 

1. Two processes are bound to both cores of socket 0; 
three processes are bound to the first cores of sockets 
1-3. The first two processes share L3 cache and 
compete for the first FSB with the third process.  

2. Six processes are bound to both cores of sockets 0-2; 
one process is bound to the first core of socket 3. The 
first three pairs of processes share L3 cache, while the 
last one treats L3 cache as its own private cache. The 
numbers of processes sharing FSBs are four vs. three. 

Fig. 5 illustrates the speeds of the cores executing the 
matrix multiplication kernel with equal data distribution. To 
achieve the balance, we partitioned the problem size to the 
cores in proportion to their speeds. So these cores can finish 
the execution within the same time. 

Fig. 6 demonstrates the speedup of the computational 
kernel of the 2D matrix multiplication routine employing 
intra-node load balancing over even data distribution on the 
simulated heterogeneous multicore architectures. The 
speedup is calculated as a ratio of the execution times 
measured for the multicore node. With the help of the 
proposed technique, we achieve up 35% speedup. 
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