
Data Partitioning on Heterogeneous Multicore Platforms

Ziming Zhong, Vladimir Rychkov, Alexey Lastovetsky
School of Computer Science and Informatics

University College Dublin
Dublin, Ireland

ziming.zhong@ucdconnect.ie, {vladimir.rychkov, alexey.lastovetsky}@ucd.ie

Abstract—In this paper, we present two techniques for inter-
and intra-node data partitioning aimed at load balancing MPI
applications on heterogeneous multicore platforms. For load
balancing between the multicore nodes of a heterogeneous
multicore cluster, we propose how to define a functional
performance model of an individual multicore node as a single
computing unit, and use these models for data partitioning
between the nodes. For load balancing within a heterogeneous
multicore node, we propose a data partitioning technique
between cores. Since parallel processes interfere with each
other through shared memory, the speed of individual cores
cannot be measured independently, and independent
performance models cannot be defined for cores. Therefore,
for a given problem size, we dynamically evaluate the
performance of cores, while they are executing only the
computational kernel of parallel application, and partition
data proportionally to the observed speed.

Keywords-heterogeneous multicore cluster; load balancing;
data partitioning; functional performance models

I. INTRODUCTION

High performance of parallel applications on dedicated
heterogeneous platforms can be achieved by partitioning the
computational load and, hence, data unevenly across all
processors. For this purpose, performance models of the
heterogeneous processors are used. It has been proven that
the application-specific functional performance models built
from a history of time measurements better capture different
aspects of heterogeneity of processors [1]. They are designed
for uniprocessor machines and represent the processor speed
by a function of problem size. The models and partitioning
techniques are however designed for uniprocessor machines.
In this paper, we apply this approach to a computing node
that consists of multiple cores and executes multiple
processes/threads of the application, considering the node a
single processing unit. We propose a multicore functional
performance model that integrates contributions of arithmetic
calculations and memory traffic between cores, cache and
DRAM. We use this model with the previously proposed
data partitioning algorithm [1] to balance parallel
computational routines on a heterogeneous cluster of
multicore nodes.

A number of models have been proposed to evaluate the
performance of a multicore [2]-[5]. They however have
never been used for optimal distribution of computations
between nodes. Their typical use is for code optimization.

Most of them are hardware-centric and represent the speed of
the computing node by peak arithmetic and memory
performance. Parameters of the models are obtained from
experiments with elemental operations. They provide the
insight into how to modify the code for more efficient
utilization of the multicore node. In this paper, we address a
different problem, which cannot be solved with help of the
existing multicore performance models. Namely, we try to
improve the existing parallel application by finding its
optimal configuration for execution on a heterogeneous
multicore node.

Scientific parallel programs for homogeneous and
heterogeneous clusters are mainly written using MPI or its
extensions like HeteroMPI [6]. However MPI could be also
used as a programming tool for scientific computing on a
single multicore node. This would allow for reusing existing
MPI code. MPI implementations often outperform their
multithreaded and OpenMP counterparts for many scientific
kernels [7]. The fact that MPI processes can be bound to
particular cores allows us to find the optimal distribution of
the workload between MPI processes and their optimal
mapping to the executing cores. This optimization technique
can be particularly beneficial for heterogeneous cores.

Optimal distribution of computations between
heterogeneous processors is typically based on their
individual performance models, which can be either pre-built
or being built during the execution of the application for each
processor. In the case of a multicore node, the performance
model of an individual core cannot be built independently of
other cores because they compete for shared resources and
hence affect the performance of each other. Therefore, we
cannot straightforwardly apply the traditional approach to
cores, because this approach assumes the independence of
the processing units. In this paper, for load balancing of MPI
parallel computational routines on a heterogeneous multicore
node, we still propose to use evaluation of the individual
performance of cores but in a group, when all cores are
executing some allocated workloads in parallel. This
evaluation is performed at runtime and obtained individual
performance models are then used for optimal distribution of
computations.

In order to implement the proposed load balancing
techniques, we propose a new method of benchmarking of
scientific applications on multicores. Existing methods
measure the performance of a platform, using different
combinations of memory operations [8] or floating point

2011 IEEE International Conference on Cluster Computing

978-0-7695-4516-5/11 $26.00 © 2011 IEEE

DOI 10.1109/CLUSTER.2011.64

575

2011 IEEE International Conference on Cluster Computing

978-0-7695-4516-5/11 $26.00 © 2011 IEEE

DOI 10.1109/CLUSTER.2011.64

580

kernels [9]. We propose to measure a combined workload of
a real parallel computational application, including both
arithmetic and memory operations. We bind the processes to
the cores and synchronize their execution in order to ensure
consistent performance. To ensure the reliability of the
measurement, we repeat experiments multiple times until the
results are proved statistically reliable.

This paper is structured as follows. In Section 2, we
overview existing performance models that are either
specifically designed for or can be adapted to multicores. In
Section 3, we propose the multicore functional performance
model, describe how to built the model, and present the
experimental results of its use for data partitioning on
heterogeneous multicore machines of Grid5000. In Section
4, we present the intra-node load balancing technique based
on dynamic performance evaluation of the kernel of an MPI
application, and demonstrate that this technique can improve
the performance of a heterogeneous multicore.

II. RELATED WORK

In this section, we overview existing performance models
and benchmarks designed for multicores. We also outline
one existing approach to data partitioning with help of
performance models that can be applied to multicores.

The main idea of existing performance models of a
multicore node is to estimate the performance of parallel
applications in order to reengineer them and adapt to
emerging multicore-based supercomputers. Many models are
not very accurate, providing only performance bounds, as,
for example, an extension of the Amdahl model for
multicores [5], which does not take into account memory
overhead. Other models, in contrast, mostly represent
memory traffic, for example [2]-[3]. The traffic models are
empirically derived from the traces of full-system
simulations with different applications. Using statistical
analysis, they realistically capture the variety of traffic
patterns arising from a wide range of applications.

A number of studies introduce a concept of balance,
defined as a ratio of the number of memory operations to the
number of floating-point operations [10]. This ratio is a more
realistic performance model showing how fast the data is
supplied and processed in the application. If the loop balance
is higher than the machine one, the application needs data at
a higher rate than the machine can provide and idle
computational cycles exist. Otherwise, data cannot be
processed as fast as it is supplied to the processor, and idle
memory cycles will exist. In the first case, the application is
memory bound and should be optimized if possible. In the
second case, the application runs at the peak floating-point
rate of the machine and does not require further optimization.
Similarly, the Roofline model [4] ties together floating-point
and memory performance in a two dimensional graph. All
bounds provided by the Roofline model represent different
optimization techniques for multicore applications. In
contrast to the traditional approaches, we aim to improve the
performance of existing parallel applications by finding their
optimal configuration using data partitioning algorithms.

Since most scientific applications are memory-intensive,
sharing memory and insufficient memory bandwidth are the

main factors affecting their performance. Due to the
memory-boundness of such scientific applications, the
synthetic benchmarks that measure the sustainable memory
bandwidth became very popular for multicores [8]. Another
group of the benchmarks is floating-point kernels,
representative numerical methods important for
computational science and engineering [9]. These
benchmarks evaluate the peak performance of the platform,
using different combinations of the following characteristics:
parallelization, data locality, communication-to-computation
ratio, off-chip traffic. The benchmark method proposed in
this work belongs to the second group and measures a
combined workload, including both arithmetic and memory
operations. We bind the processes to the cores and
synchronize their execution in order to ensure consistent
performance. To ensure the reliability of the measurement,
we repeat experiments multiple times until the results are
proved statistically reliable.

Conventional algorithms for distribution of computations
between heterogeneous processors partition data between the
processors in proportion to their speeds demonstrated during
the execution of a serial benchmark code solving locally the
core computational task of some given size. In the case of
cluster of uniprocessors, if we do not limit the range of
problem sizes, their absolute speeds of the processors will
depend on the size of the computational task. For these
platforms, a new class of algorithms [1] has been proposed
recently, able to optimally distribute computations between
processing units for the full range of problem sizes.

The functional performance model (FPM) of
heterogeneous processors proposed and analysed in [1] has
proven to be more realistic because it integrates many
important features of heterogeneous processors such as the
architectural and platform heterogeneity, the heterogeneity of
memory structure, the effects of paging and so on. The
algorithms employing it therefore distribute the
computations across the heterogeneous processing units
more accurately than the algorithms employing the constant
performance models. Under this model, the speed of each
processor is represented by a continuous function of the size
of the problem. In this paper, we adapt the functional
performance model to a multicore node, considering the
latter a single processing unit. We use this adapted model in
combination with the proposed earlier FPM-based data
partitioning algorithms in order to balance the load between
the nodes of a heterogeneous multicore cluster.

III. INTER-NODE DATA PARTITIONING

In this section, we present the load balancing technique
based on data partitioning between the nodes of a
heterogeneous multicore cluster.

In the proposed multicore functional performance model
(MFPM), a node consisting of cores is considered as a single
processing unit. The node executes processes of a data
parallel computational routine. The speed is represented by a

positive continuous function, ()
()
xs x

t x
= , where

1

0

c

i
i

x x
−

=

= is

the total problem size processed on the node (the problem

576581

sizes assigned to individual cores, ix , 0 i c≤ < , are supposed

to be given);
1

0
() max ()

c

i ii
t x t x

−

=
= is the execution time of the

parallel routine and ()i it x is the execution time of the process
on i-th core. This speed function includes contribution from
both cores and memory. It takes into account the potential
heterogeneity of cores and multi-level storage system within
the multicore computer.

According to the Roofline model [4], peak floating-point
performance, bandwidth and operational intensity are the
three main factors that influence the computing performance.
Since we do not optimize the code to improve the floating-
point performance or the utilization of the bandwidth, the
change of operational intensity with the increase of the
problem size determines the computing performance. The
performance decreases with the increase of problem size
until it becomes so large that the memory traffic dominates
computation. Then the performance becomes almost stable.
Strictly speaking, the proposed speed function depends not
only on the problem size, x , but also on its distribution
between the cores, ix , 0 i c≤ < . Uneven data distribution
will result in idle computational cycles on some cores where
the processes complete their job earlier. However, on a
heterogeneous multicore, the maximum speed can be
achieved with some uneven data distribution. In Section 4 of
this paper, we present the approach to optimal intra-node
data partitioning for a heterogeneous multicore.

To build multicore functional performance models of an
MPI application on a heterogeneous multicore cluster, we
design and implement the following benchmarking
procedure that allows us to measure the execution time
accurately on each multicore. We assume that all nodes have
a homogeneous architecture but different features (different
number of cores/sockets, different sizes of caches/memory,
etc). This allows us to partition data evenly within each node.
Since automatic rearranging of the processes provided by
operating system may result in performance degradation, we
bind the processes to cores. The procedure can be
summarized as follows:

1. The communicator of all processes is spilt into intra-
node MPI communicators so that there is one such
communicator per a multicore node. The data of the
size x is partitioned evenly between the cores within
each node.

In the loop:
2. A barrier synchronizes the processes within each node.

This way we minimize the idle computational cycles
on the cores, aiming at the highest floating-point rate
for the application on the node. We also ensure that
the resources will be shared between the maximum
number of processes, generating the highest memory
traffic.

3. The execution time of the routine is measured on each
core.

4. Statistical analysis of all time measurements observed
so far for the given problem size is performed.

5. If all intra-node processes get statistically reliable
results, the total speed of the node is calculated,
otherwise, more repetitions are required (goto 2).

We use the multicore functional performance models
built this way for FPM-based data partitioning on a
heterogeneous multicore cluster. In the experiments, we use
MFPMs and the heterogeneous two-dimensional matrix-
matrix multiplication routine that employs the two-
dimensional column-based matrix partitioning algorithm
presented in [11]. Our modification uses the MFPMs instead
of the constant performance models (CPMs) to calculate the
relative speeds of the heterogeneous multicore nodes as the
input parameters for the 2D column-based matrix
partitioning algorithm.

Fig. 1(a) shows one step of the algorithm of parallel
matrix multiplication over a 2D heterogeneous processor
grid of size 3×3. Each element of the matrix is a square block
of size b×b. As shown in Fig. 1(b), taking processer P12 as an
example, the computational kernel for 2D matrix
multiplication performs a matrix update of a matrix Cb of
size mb×nb using Ab of size mb×1 and Bb of size 1×nb. The
size of the problem is represented by two parameters, mb and
nb. We use a combined computation unit, which is made up
of one addition and one multiplication, to express the volume
of computation. Therefore, the total number of computation
units (namely, multiplications of two b×b matrices)
performed during the execution of the benchmark code will
be approximately equal to mb×nb, and the absolute speed of
the processor exposed by the application can be calculated as
mb×nb divided by the execution time of the matrix update.

The MFPM-based modification of the heterogeneous 2D
column-based matrix partitioning can be summarized as
follows.

(a)

(b)
Figure 1. (a) One step of the algorithm of parallel matrix multiplication
employing a 2D heterogeneous processor grid of size 3×3. Matrices A, B,
and C are partitioned so that the area of the rectangle is proportional to the
speed of the processor owning it. First, each b×b block of the pivot column
a.k of matrix A (shown with curly arrows) is broadcast horizontally, and
each b×b block of the pivot row bk. of matrix B (shown with curly arrows)
is broadcast vertically. Then, each b×b block cij of matrix C is updated,
cij=cij+aik×bkj. (b) The computational kernel (shown here for processor P12

for example) performs a matrix update of a dense matrix Cb of size mb×nb
using Ab of size mb×1 and Bb of size 1×nb. The matrix elements represent
b×b matrix blocks.

577582

1. The computational kernel updating a square matrix of
a given area (mb=nb in Fig. 1(b)) is used to pre-build
MFPMs of the nodes, assuming each node to be a
homogeneous multicore.

2. The area of the partition (measured in the number of
matrix blocks) to be allocated to each node is
calculated by the FPM-based data partitioning
algorithm [1], which uses the MFPMs. The resulting
areas will be proportional to the speeds of the nodes.

3. The algorithm [11] then uses these areas to calculate
the optimal column-based matrix partitioning which
minimizes the total volume of communication
between the nodes (see Fig. 2(a)).

4. The matrix blocks allocated to each node are evenly
partitioned between cores in horizontal slices (see Fig.
2(b)).

We perform our experiments on a heterogeneous
platform, Grid5000 (http://www.grid5000.fr). Four different
types of multicore nodes are involved in the experiments,
with different numbers of cores and different sizes of RAM.
We use 4 nodes of each type to construct a 16-node
heterogeneous cluster to run the experimental applications.
We compare the execution time of the above matrix
multiplication application with three different data
partitioning schemes. The first scheme uses the pre-built
MFPMs of the nodes to find the optimal 2D column-based
data distribution of matrix. The second one uses CPMs
instead of MFPMs to find the optimal 2D column-based data
distribution and the third one partition the matrix evenly
(homogeneous data partition) to all nodes without
considering their heterogeneity.

Fig. 3 shows the multicore functional performance
models of the four types of nodes when they execute the
computational kernel of the 2D matrix multiplication. The x-
axis represents the total number of matrix blocks, and the y-
axis represents the speed of the nodes. These four types of
nodes represent a common heterogeneity of high
performance computing platform in the real world.

0.5 0.32 0.18

0.3

0.2

0.12

0.1

0.1

0.08

0.05

0.05

1

P1

P

P

P

P

P

P

P

2

3

4

5

6

7

8

P11

P1

P1

P2

P2

3

P3

P3

P4

P4

P5

P5

P6

P6

P7

P7

P8

P8

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

P14

(a) (b)
Figure 2. Example of the 2D column-based matrix partitioning over 8
multicore nodes. The relative speed of nodes is given by {0.3, 0.2, 0.12, 0.1,
0.1, 0.08, 0.05, 0.05} and the number of cores within these nodes are {4, 2,
2, 2, 2, 2, 2, 2}. (a) The optimal partitioning is obtained for three columns.
The first column of width 0.5 is composed of 2 elements (P1 and P2). The
second column of width 0.32 is composed of three elements (P3, P4 and
P5). Then the last column of width 0.18 is made up with the smallest
elements (P6, P7 and P8). Thicker lines correspond to the sum of the half-
perimeters, which represents the communication overhead. (b) The matrix
blocks allocated to each node are evenly partitioned between cores in
horizontal slices.

Fig. 4 shows the execution times of the parallel matrix
multiplication application with those three different data
partitioning schemes. We randomly select two sizes of
matrix and run the computational kernel to generate the
CPMs of these four nodes. The CPM-based data partition 1
uses the CPMs when the size of matrix for benchmarking is
3000 blocks for each node, and the size of 7000 blocks is
used in CPM-based data partition 2. Since the MFPM-based
data partitioning scheme is more accurate and better capture
different aspects of heterogeneity of heterogeneous multicore
nodes than the other two schemes, it achieves the best
performance. Fig. 4 demonstrates that CPM-based and
Homogeneous data partition schemes are 2 times to 3 times
slower than the MFPM-based data partition scheme.

IV. INTRA-NODE DATA PARTITIONING

In this section, we address balancing the load between
the cores of a heterogeneous multicore node. Instead of
redesigning parallel applications for this architecture, we are
looking to find the optimal configuration to run the
applications, using data partitioning algorithms.

The speeds of the cores within a node cannot be
considered separately if they execute the application in
parallel. They perform computational operations
independently only within some range of problem sizes.
When the problem does not fit the private memory of the
cores, parallel processes would compete for shared resources
and consequently would affect the performance of each other.
The functional performance model of an individual core can
be deterministically defined only in the range of small
problem sizes. For larger problem sizes, the speed of the core
will depend not only on the problem size but also on the

 0

 5000

 10000

 15000

 20000

 25000

 0 50000 100000 150000 200000

S
pe

ed
 (

M
F

lo
ps

)

Matrix blocks (block size: 16x16)

paramount
paradent

parapide
parapluie

Figure 3. Multicore functional performance models of the Grid5000
nodes specified in Table 1, executing parallel matrix multiplication.

 100

 200

 300

 400

 500

 600

 700

 600000 700000 800000 900000 1e+06

E
xe

cu
tio

n
tim

e
(s

ec
)

Matrix blocks (block size:16x16)

MFPM-based data partition
CPM-based data partition 1
CPM-based data partition 2

Homogeneous data partition

Figure 4. Execution time of parallel matrix multiplication on 16 multicore
nodes with MFPM-based, CPM-based and homogeneous data partition
schemes.

578583

workload of other cores. Therefore, traditional CPM-based
and FPM-based data partitioning algorithms cannot be
applied to load balancing on a heterogeneous multicore node.
We propose the following load balancing technique:

1. The data of a given size, x , is distributed evenly
between the cores, /ix x c= , 0 i c≤ < , and the speed
of the computational kernel of the routine, is , is
measured on all cores. To obtain more realistic speed
estimates, the processes are synchronized.

2. The data is redistributed,
1

*

0

c

i
i

x x
−

=

= , in proportion to

the observed speeds so that:
* *
0 1

0 1

... c

c

x x
s s

−

−

= = .

3. Finally, the parallel routine is executed with this data
partition, *

ix .
Thus, we measure the speeds of the cores at runtime in a

group by using the computational kernel (Fig. 1(b)), where
each core receives some workload, and distribute data in
proportion to the observed speeds. In the following
subsection, we present the experimental heterogeneous
platforms and the results of load balancing for the parallel
matrix multiplication application.

Our experimental platform is Dell PowerEdge 6850.
Although the Dell PowerEdge 6850 has a homogeneous
architecture, its memory system is typically hierarchy, with
two separate FSBs and multi-level caches, which could cause
imbalance. In our experiments, we use two experimental
setups with uneven process-binding scheme on this platform
to simulate a heterogeneous architecture, and we run the
computational kernel (Fig. 1(b)) to measure the performance
for all the experiments in this section.

1. Two processes are bound to both cores of socket 0;
three processes are bound to the first cores of sockets
1-3. The first two processes share L3 cache and
compete for the first FSB with the third process.

2. Six processes are bound to both cores of sockets 0-2;
one process is bound to the first core of socket 3. The
first three pairs of processes share L3 cache, while the
last one treats L3 cache as its own private cache. The
numbers of processes sharing FSBs are four vs. three.

Fig. 5 illustrates the speeds of the cores executing the
matrix multiplication kernel with equal data distribution. To
achieve the balance, we partitioned the problem size to the
cores in proportion to their speeds. So these cores can finish
the execution within the same time.

Fig. 6 demonstrates the speedup of the computational
kernel of the 2D matrix multiplication routine employing
intra-node load balancing over even data distribution on the
simulated heterogeneous multicore architectures. The
speedup is calculated as a ratio of the execution times
measured for the multicore node. With the help of the
proposed technique, we achieve up 35% speedup.

Acknowledgement. This publication has emanated from
research conducted with the financial support of SFI
08/IN.1/I2054 and the UCD-CSC joint scholarship.

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000

S
pe

ed
 (

M
F

lo
ps

)

Matrix blocks (block size:16x16)

core speed in socket 0
core speed in socket 1

core speed in socket 2-3

Figure 5. Speed of five cores executing the matrix multiplication kernel
with equal data distribution.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 5000 10000 15000 20000

S
pe

ed
up

Matrix blocks (block size:16x16)

speedup of setup1 with load balancing
speedup of setup2 with load balancing

Figure 6. Speedup of the 2D matrix multiplication computational kernel
employing intra-node load balancing over even data distribution on the
simulated heterogeneous multicore architectures.

REFERENCES

[1] A. Lastovetsky, and R. Reddy, “Data Partitioning with a Functional
Performance Model of Heterogeneous Processors,” Int. J. High
Perform. Comput. Appl., vol. 21, pp. 76-90, Feb. 2007.

[2] V. Soteriou, H. Wang, and L. Peh, “A Statistical Traffic Model for
On-Chip Interconnection Networks,” in Symp. MASCOTS, 2006, p.
104.

[3] M. Tikir, L. Carrington, E. Strohmaier, and A. Snavely, “A genetic
algorithms approach to modeling the performance of memory-bound
computations,” in SC’07, 2007, p. 1.

[4] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful
Visual Performance Model for Floating-Point Programs and
Multicore Architectures,” Commun. ACM, vol. 52, pp. 65-76, Apr.
2009.

[5] M. Hill, and M. Marty, “Amdahl's Law in the Multicore Era,”
Computer, vol. 41, pp. 33-38, July 2008.

[6] A. Lastovetsky, R. Reddy, “HeteroMPI: Towards a message-passing
library for heterogeneous networks of computers,” J. Parallel Distr.
Com., 2006, vol. 66, pp. 197-220, Feb. 2006.

[7] D. Eadline. (2007) MPI on multicore, an OpenMP alternative? Linux
Magazine. [Online]. Available: http://www.linux-mag.com/id/4608/.

[8] J. McCalpin. (1995) STREAM: Sustainable Memory Bandwidth in
High-Performance Computers. [Online]. Available:
http://www.cs.virginia.edu/stream/.

[9] C. Bienia, S. Kumar, J. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” Princeton
Univ., Tech. Rep. TR-811-08, 2008.

[10] S. Carr, and K. Kennedy, “Improving the ratio of memory operations
to floating-point operations in loops,” ACM T. Progr. Lang. Sys. Vol.
16, pp. 1768-1810, Nov. 1994.

[11] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Matrix
Multiplication on Heterogeneous Platforms,” IEEE Trans. Parallel
Distrib. Syst., vol. 12, vol. 1033-1051, Oct 2001.

579584

