

Heterogeneous PBLAS: A Set of Parallel Basic Linear Algebra Subprograms

for Heterogeneous Computational Clusters

Ravi Reddy

1
, Alexey Lastovetsky

1
, and Pedro Alonso

2

School of Computer Science and Informatics, University College Dublin

Technical Report UCD-CSI-2008-2

Abstract

We present a package, called Heterogeneous PBLAS (HeteroPBLAS), which is built on top of

PBLAS and provides optimized parallel basic linear algebra subprograms for Heterogeneous

Computational Clusters. We present the user interface and the software hierarchy of the first

research implementation of HeteroPBLAS. This is the first step towards the development of a

parallel linear algebra package for Heterogeneous Computational Clusters. We demonstrate the

efficiency of the HeteroPBLAS programs on a homogeneous computing cluster and a

heterogeneous computing cluster.

1

School of Computer Science and Informatics, University College Dublin

(manumachu.reddy, alexey.lastovetsky)@ucd.ie
2

Department of Information Systems and Computation, Polytechnic University of Valencia

(palonso@dsic.upv.es)

Contents

1 Introduction... 3

2 HeteroPBLAS User Interface .. 4

3 HeteroPBLAS Software Design ... 10

4 Experimental Results.. 14

5 Conclusions and Future Work... 18

References .. 18

1 Introduction

Parallel Basic Linear Algebra Subprograms (PBLAS) [1] is a parallel set of BLAS [2], which

perform message-passing and whose interface is as similar to BLAS as possible. The design goal

of PBLAS was to provide specifications of distributed kernels, which would simplify and

encourage the development of high performance and portable parallel numerical software, as

well as providing manufacturers with a small set of routines to be optimized. These subprograms

were used to develop parallel libraries such as ScaLAPACK [3], which is a well-known standard

package providing high-performance linear algebra routines for distributed-memory message

passing MIMD computers supporting PVM [4] and/or MPI [5].

To the best of the authors’ knowledge, there has only been a single proposal mooting

implementation of PBLAS on Heterogeneous Computational Clusters (HCCs). Beaumont et al.

[6] discuss data allocation strategies to implement matrix products and dense linear system

solvers on heterogeneous computing platforms as a basis for a successful extension of the

ScaLAPACK library to heterogeneous platforms. They show that extending the standard

ScaLAPACK block-cyclic distribution to heterogeneous 2D grids is difficult. In most cases, a

perfect balancing of the load between all processors cannot be achieved and deciding how to

arrange the processors along the 2D grid is a challenging NP-complete problem.

There are a few research contributions presenting multiprocessing approaches to solve linear

algebra kernel on HCCs. The multiprocessing approach can be summarized as follows:

• The whole computation is partitioned into a large number of equal chunks;

• Each chunk is performed by a separate process;

• The number of processes run by each processor is as proportional to its speed as possible.

Thus, while distributed evenly across parallel processes, data and computations are distributed

unevenly over processors of the heterogeneous network so that each processor performs the

volume of computations proportional to its speed.

Kalinov and Lastovetsky [7] analyze two strategies:

• HeHo - heterogeneous distribution of processes over processors and homogeneous block

distribution of data over the processes;

• HoHe - homogeneous distribution of processes over processors with each process running on

a separate processor and heterogeneous block cyclic distribution of data over the processes.

Both strategies were implemented in the mpC language [8, 9]. The first strategy is implemented

using calls to ScaLAPACK; the second strategy is implemented with calls to LAPACK [10] and

BLAS. They compare the strategies using Cholesky factorization on a network of workstations.

They show that for heterogeneous parallel environments both the strategies HeHo and HoHe are

more efficient than the traditional homogeneous strategy HoHo (homogeneous distribution of

processes over processors and homogeneous distribution of data over the processes as

implemented in ScaLAPACK). The main disadvantage of the HoHe strategy is non-Cartesian

nature of the data distribution. This leads to additional communications that can be expensive in

the case of large networks. The HeHo strategy is easy to accomplish. It allows the reuse of high-

quality software, such as ScaLAPACK, developed for homogeneous distributed memory systems

in heterogeneous environments and to obtain a good speedup with minimal expenses. Kishimoto

and Ichikawa [11] adopt a multiprocessing approach to estimate the best processing element (PE)

configuration and process allocation based on an execution time model of the application. The

execution time is modeled from the measurement results of various configurations. Then, a

derived model is used to estimate the optimal PE configuration and process allocation. Kalinov

and Klimov [12] investigate the HeHo strategy where the performance of the processor is given

as a function of the number of processes running on the processor and the amount of data

distributed to the processor. They present an algorithm that computes optimal number of

processes and their distribution over processors minimizing the execution time of the application.

Cuenca et al. [13] analyse automatic optimization techniques, in the design of parallel dynamic

programming algorithms on heterogeneous platforms, which automatically determine the optimal

values of a number of algorithmic parameters such as (number of processes, number of

processors, processes per processor).

To summarize their results, the multiprocessing strategy is easier to accomplish. It allows the

complete reuse of high-quality software such as ScaLAPACK, which is developed for

homogeneous distributed memory systems, in heterogeneous environments with minimal

development efforts and good speedup. Furthermore software providing optimized parallel linear

algebra programs on HCCs must automate the tedious and error-prone tasks of determining the

accurate platform parameters such as speeds of the processors, latencies and bandwidths of the

communication links connecting different pairs of processors and optimal algorithmic parameters

such as number of processes, number of processors, number of processes per processor involved

in the execution of the parallel algorithm and the mapping of the processes to the executing

nodes of the HCC.

In this report, we present Heterogeneous PBLAS (HeteroPBLAS), which provides optimized

parallel basic linear algebra subprograms for HCCs. The design of the package adopts the

multiprocessing approach and thus reuses the PBLAS software completely. The Heterogeneous

PBLAS library also performs the automations of the tedious and error-prone tasks described

before. This can be seen as the first step towards the development of a parallel linear algebra

package for HCCs, which will be called Heterogeneous ScaLAPACK and built on top of

ScaLAPACK.

We start with the presentation of the user interface to the HeteroPBLAS package. Then we

describe the different software components and building blocks of the first research

implementation of the interface. This is followed by experimental results of execution of PBLAS

programs on a homogeneous computing cluster and a heterogeneous computing cluster. We

conclude the report by outlining our future research goals.

2 HeteroPBLAS User Interface

The main routine is the context creation function, which provides a context for the execution of

the PBLAS routine. There is a context creation function for each and every PBLAS routine. This

function frees the application programmer from having to specify the process grid arrangement

to be used in the execution of the PBLAS routine. It tries to determine the optimal process grid

arrangement.

All the routines have names of the form hscal_pxyyzzz_ctxt . The second letter, x ,

indicates the data type as follows:

 x MEANING
 ----- ---------------------
 s Single precision real data

 d Double precision real data

 c Single precision complex data

 z Double precision complex data

Table 1. HeteroBLAS context creation routines

Level 1 PBLAS Level 2 PBLAS Level 3 PBLAS

hscal_pxswap_ctxt

hscal_pxscal_ctxt

hscal_pxcopy_ctxt

hscal_pxaxpy_ctxt

hscal_pxdot_ctxt

hscal_pxdotu_ctxt

hscal_pxdotc_ctxt

hscal_pxnrm2_ctxt

hscal_pxasum_ctxt

hscal_pxamax_ctxt

hscal_pxgemv_ctxt

hscal_pxhemv_ctxt

hscal_pxsymv_ctxt

hscal_pxtrmv_ctxt

hscal_pxtrsv_ctxt

hscal_pxger_ctxt

hscal_pxgeru_ctxt

hscal_pxgerc_ctxt

hscal_pxher_ctxt

hscal_pxher2_ctxt

hscal_pxsyr_ctxt

hscal_pxsyr2_ctxt

hscal_pxgemm_ctxt

hscal_pxsymm_ctxt

hscal_pxhemm_ctxt

hscal_pxsyrk_ctxt

hscal_pxherk_ctxt

hscal_pxsyr2k_ctxt

hscal_pxher2k_ctxt

hscal_pxtran_ctxt

hscal_pxtranu_ctxt

hscal_pxtranc_ctxt

hscal_pxtrmm_ctxt

hscal_pxtrsm_ctxt

hscal_pxgeadd_ctxt

hscal_pxtradd_ctxt

Thus hscal_pxtrsm_ctxt refers to any or all of the routines hscal_pctrsm_ctxt ,

hscal_pdtrsm_ctxt , hscal_pstrsm_ctxt and hscal_pztrsm_ctxt .

The next two letters, yy , indicate the type of matrix (or of the most significant matrix).

ge - general

sy - sy mmetric

he - hermitian

tr - tr iangular

The last three letters zzz indicate the computation performed. Thus

hscal_pcgeadd_ctxt indicates a context routine for the PBLAS routine pcgeadd , which

adds two general matrices containing elements of type single precision complex data. The names

of the context creation routines are shown in Table 1.

For example, the context creation function for the PDGEMM routine has an interface, which

is shown below:

int hscal_pdgemm_ctxt(char * transa, char * transb,
int * m, int * n, int * k, double * alpha, int * ia, int * ja,
int * desca, int * ib, int * jb, int * descb, double * beta,
int * ic, int * jc, int * descc, int * ictxt)

This function call returns a handle to a group of MPI processes in ictxt and a return value of

HSCAL_SUCCESS on successful execution. It differs from the PDGEMM call in the following

ways:

• It returns a context but does not actually execute the PDGEMM routine;

• The matrices A, B and C containing the data are not passed as arguments;

• It has an extra return argument, ictxt , which contains the handle to a group of MPI

processes that is subsequently used in the actual execution of the PDGEMM routine;

• A return value of HSCAL_SUCCESS indicating successful execution or otherwise an

appropriate error code;

• The context element in the descriptor arrays desca , descb and descc need not be filled.

hscal_pdgemm_ctxt is a collective operation and must be called by all the processes

running in the HeteroPBLAS application. The context contains a handle to a HeteroMPI [14]

group of MPI processes, which tries to execute the PBLAS routine faster than any other group of

processes. This context can be reused in multiple calls of the same routine or any routine that

uses similar parallel algorithm as PDGEMM. During the creation of the HeteroMPI group of

MPI processes, the HeteroPBLAS runtime system detects the optimal process arrangement as

well as solves the problem of selection of the optimal set of processes running on different

computers of the heterogeneous network. The solution to the problem is based on the following:

• The performance model of the PBLAS routine. This is in the form of a set of functions

generated by a compiler from the description of the performance model of the PBLAS

routine;

• The performance model of the executing network of computers, which reflects the state of

this network just before the execution of the PBLAS routine.

The performance model of the heterogeneous network of computers is summarized as follows:

• The performance of each processor is characterized by the execution time of the same serial

code

o The serial code is provided by the application programmer;

o It is supposed that the code is representative for the computations performed during the

execution of the application;

o The code is performed at runtime in the points of the application specified by the

application programmer. Thus, the performance model of the processors provides current

estimation of their speed demonstrated on the code representative for the particular

application.

• The communication model [9] is seen as a hierarchy of homogeneous communication layers.

Each is characterized by the latency and bandwidth. Unlike the performance model of

processors, the communication model is static. Its parameters are obtained once on the

initialisation of the environment and do not change since then.

The mapping algorithms used to solve the problem of selection of processes are detailed in

[9, 14].

The context, returned by the function described above, is passed to the BLACS [15] (Basic

Linear Algebra Communication Subprograms) routine blacs_gridinfo to obtain the row

and column index in the process grid of the calling process and the optimal process grid

arrangement. HeteroPBLAS also provides an operation, whose interface is shown below, to

obtain the estimated execution time (in seconds) of the PBLAS routine using the optimal process

grid arrangement.
double hscal_timeof(const int * ictxt)

This is only the estimated execution time since the PBLAS routine is not actually executed on

the underlying hardware. These two routines are serial and can be called by any process, which is

participating in the context. The function hscal_in_ctxt is used to determine the

membership of a process in a context.

In addition to the context management routines, auxiliary routines are provided for each

PBLAS routine, which determine the total number of computations (arithmetical operations)

performed by each process and the total number of communications in bytes between a pair of

Figure 1. Basic steps involved in calling the homogeneous PBLAS routine PDGEMM.

processes involved in the execution of the homogeneous PBLAS routine. An auxiliary routine is

also provided for the serial BLAS equivalent of each PBLAS routine, which determines the total

number of arithmetical operations involved in its execution. These routines are serial and can be

called by any process. They do not actually execute the corresponding PBLAS/BLAS routine but

just calculate the total number of computations and communications involved.

The reader is referred to the HeteroPBLAS programmer’s manual for more details of the

HeteroPBLAS user interface. To summarize the essential differences between calling a

homogeneous PBLAS routine and a heterogeneous PBLAS routine, consider the four basic steps

involved in calling a homogeneous PDGEMM PBLAS routine as shown in Figure 1.

1. Initialize the process grid using blacs_gridinit ;

2. Distribution of the matrix on the process grid. Each global matrix that is to be distributed

across the process grid is assigned an array descriptor using the ScaLAPACK TOOLS

routine descinit . A mapping of the global matrix onto the process grid is accomplished

using the user-defined routine pdmatgen ;

3. Call the PBLAS routine pdgemm;

4. Release the process grid via a call to blacs_gridexit . When all the computations have

been completed, the program is exited with a call to blacs_exit .

Figure 2 shows the essential steps involved in calling the heterogeneous PDGEMM PBLAS

routine, which are:

 int main(int argc, char **argv) {
 int nprow, npcol, pdgemmctxt, myrow, mycol, c__0 = 0, c__1 = -1;
/* Problem parameters */
 char *TRANSA, *TRANSB;
 int *M, *N, *K, *IA, *JA, *DESCA, *IB, *JB, *DESCB, * IC, *JC,
 *DESCC;
 double *ALPHA, *A, *B, *BETA, *C;
/* Initialize the process grid */
 blacs_get__(&c__1, &c__0, &pdgemmctxt);
 blacs_gridinit__(&pdgemmctxt, "r", nprow, npc ol);
 blacs_gridinfo__(&pdgemmctxt, &nprow, &npcol, &myrow, &mycol);
/* Initialize the array descriptors for the matrice s A, B and C */
 descinit_(DESCA, …, &pdgemmctxt); /* for Mat rix A */
 descinit_(DESCB, …, &pdgemmctxt); /* for Mat rix B */
 descinit_(DESCC, …, &pdgemmctxt); /* for Mat rix C */
/* Distribute matrices on the process grid using us er-defined pdmatgen */
 pdmatgen_(&pdgemmctxt, …); /* for Matrix A */
 pdmatgen_(&pdgemmctxt, …); /* for Matrix B */
 pdmatgen_(&pdgemmctxt, …); /* for Matrix C */
/* Call the PBLAS ‘pdgemm’ routine */
 pdgemm_(TRANSA, TRANSB, M, N, K, ALPHA, A, IA , JA, DESCA, B, IB,
 JB, DESCB, BETA, C, IC, JC, DESCC);
/* Release the process grid and Free the BLACS cont ext */
 blacs_gridexit__(&pdgemmctxt);
/* Exit the BLACS */
 blacs_exit__(&c__0);
 }

Figure 2. Basic steps involved in calling the heterogeneous PBLAS routine PDGEMM.

1. Initialize the heterogeneous PBLAS runtime using using the operation
int hscal_init(int * argc, int *** argv)
where argc and argv are the same as the arguments passed to main . This routine must be

called before any other HeteroPBLAS context management routine and must be called once.

It must be called by all the processes running in the HeteroPBLAS application;
2. Get the heterogeneous PDGEMM routine context using the routine

hscal_pdgemm_ctxt . The function call hscal_in_ctxt returns a value of 1 for the

processes chosen to execute the PDGEMM routine or otherwise 0;

3. Execute the steps (2) and (3) involved in calling a homogeneous PBLAS routine;

4. Release the context using the context destructor operation

int hscal_free_ctxt(int * ctxt) ;

 int main(int argc, char **argv) {
 int nprow, npcol, pdgemmctxt, myrow, mycol, c__0 = 0;
/* Problem parameters */
 char *TRANSA, *TRANSB;
 int *M, *N, *K, *IA, *JA, *DESCA, *IB, *JB, *DESCB, * IC, *JC,
 *DESCC;
 double *ALPHA, *A, *B, *BETA, *C;
/* Initialize the heterogeneous ScaLAPACK runtime * /
 hscal_init (&argc, &argv);
/* Initialize the array descriptors for the matrice s A, B and C
 No need to specify the context argument */
 descinit_(DESCA, …, NULL); /* for Matrix A */
 descinit_(DESCB, …, NULL); /* for Matrix B */
 descinit_(DESCC, …, NULL); /* for Matrix C */
/* Get the heterogeneous PDGEMM context */
 hscal_pdgemm_ctxt (TRANSA, TRANSB, M, N, K, ALPHA, IA, JA, DESCA,
 IB, JB, DESCB, BETA, IC, JC , DESCC, &pdgemmctxt);
 if (! hscal_in_ctxt (&pdgemmctxt)) {
 hscal_finalize (c__0);
 }
/* Retrieve the process grid information */
 blacs_gridinfo__(&pdgemmctxt, &nprow, &npcol, &myrow, &mycol);
/* Initialize the array descriptors for the matrice s A, B and C */
 descinit_(DESCA, …, &pdgemmctxt); /* for Mat rix A */
 descinit_(DESCB, …, &pdgemmctxt); /* for Mat rix B */
 descinit_(DESCC, …, &pdgemmctxt); /* for Mat rix C */
/* Distribute matrices on the process grid using us er-defined pdmatgen */
 pdmatgen_(&pdgemmctxt, …); /* for Matrix A */
 pdmatgen_(&pdgemmctxt, …); /* for Matrix B */
 pdmatgen_(&pdgemmctxt, …); /* for Matrix C */
/* Call the PBLAS ‘pdgemm’ routine */
 pdgemm_(TRANSA, TRANSB, M, N, K, ALPHA, A, IA , JA, DESCA, B, IB,
 JB, DESCB, BETA, C, IC, JC, DESCC);
/* Release the heterogeneous PDGEMM context */
 hscal_free_ctxt (&pdgemmctxt);
/* Finalize the Heterogeneous ScaLAPACK runtime */
 hscal_finalize (c__0);
 }

5. When all the computations have been completed, the program is exited with a call to

hscal_finalize , which finalizes the heterogeneous PBLAS runtime.

It is relatively straightforward for the application programmers to wrap the steps (2) to (4) in a

single function call, which would form the heterogeneous counterpart of the homogeneous

PDGEMM PBLAS routine. It can also be seen that the application programmers need not specify

the process grid arrangement for the execution of the PBLAS routine, as it is automatically

determined. Apart from this, the only other major rewriting effort required is the redistribution of

matrix data from the process grid arrangement used in the homogeneous PBLAS program to the

process grid arrangement automatically determined by the heterogeneous PBLAS program. The

matrix redistribution/copy routines [16, 17], provided by the ScaLAPACK package for each data

type, can be used to achieve this redistribution. These routines provide a truly general copy from

any block cyclicly distributed (sub)matrix to any other block cyclicly distributed (sub)matrix. In

our future work, we would address this issue of the cost of data redistribution.

Figure 3. Heterogeneous PBLAS software hierarchy.

mpC’s PMDL
compiler

Perfor mance model in the
form of a set of functions

HeteroPBLAS
BLAS auxiliary

routines

HeteroMPI
routines

HeteroMPI
runtime

mpC
runtime

MPI
runtime

HeteroPBLAS
PBLAS auxiliary

routines

IBLACS

User’s view

Hidden from the
user

Performance model
in PMDL

IBLAS

IPBLAS

HeteroP BLAS
Context creation

routines

3 HeteroPBLAS Software Design

The software hierarchy of HeteroPBLAS package is shown in Figure 3. The package can be

downloaded from the URL: http://hcl.ucd.ie/Software/HeteroScaLAPACK. The building blocks

are HeteroMPI, BLACS, PBLAS and BLAS and are not contributions of this paper. The

HeteroPBLAS context creation routines call interface functions of HeteroMPI, which invoke the

HeteroMPI runtime. The HeteroPBLAS auxiliary functions of PBLAS, BLACS and BLAS call

the instrumented PBLAS, BLACS and BLAS code shown in the software hierarchy diagram as

IPBLAS, IBLACS and BLAS respectively. The instrumented code reuses the existing code base

completely. The only modifications are (a) Replacement of the serial BLAS computation

routines and the BLACS communication routines by calls to functions determining the number

of arithmetical operations performed by each process and number of communications in bytes

performed by a pair of processes respectively and (b) Wrapping of the parallel regions of the

code in mpC par loops. An optimized set of BLACS for HCCs as well as a well-defined

interface of corresponding auxiliary functions will be provided in future releases of the software.

Figure 4. Description of the performance model of the PDGEMM routine in the mpC’s

performance model definition language.

/* 1 */ algorithm pdgemm(int n, int b, int t, int p, int q)
/* 2 */ {
/* 3 */ coord I=p, J=q;
/* 4 */ node {I>=0 && J>=0: bench *((n/(b*p))*(n/(b*q))*(n*b)/(t*t));};
/* 5 */ link (K=p, L=q)
/* 6 */ {
/* 7 */ I>=0 && J>=0 && I!=K :
/* 8 */ length *((n/(b*p))*(n/(b*q))*(b*b)* sizeof (double))
/* 9 */ [I, J]->[K, J];
/* 10 */ I>=0 && J>=0 && J!=L:
/* 11 */ length *((n/(b*p))*(n/(b*q))*(b*b)* sizeof (double))
/* 12 */ [I, J]->[I, L];
/* 13 */ };
/* 14 */ parent [0,0];
/* 15 */ scheme
/* 16 */ {
/* 17 */ int i, j, k;
/* 18 */ for (k = 0; k < n; k+=b)
/* 19 */ {
/* 20 */ par (i = 0; i < p; i++)
/* 21 */ par (j = 0; j < q; j++)
/* 22 */ if (j != ((k/b)%q))
/* 23 */ (100.0/(n/(b*q))) %% [i,((k/ b)%q)]->[i,j];
/* 24 */ par (i = 0; i < p; i++)
/* 25 */ par (j = 0; j < q; j++)
/* 26 */ if (i != ((k/b)%p))
/* 27 */ (100.0/(n/(b*p))) %% [((k/b) %p),j]->[i,j];
/* 28 */ par (i = 0; i < p; i++)
/* 29 */ par (j = 0; j < q; j++)
/* 30 */ ((100.0×b)/n) %% [i,j];
/* 31 */ }
/* 32 */ };
/* 33 */ };

The first step in the implementation of the context creation routine for a PBLAS routine is

the description of its performance model using a performance model definition language

(PMDL). The performance model allows an application programmer to specify his or her high-

level knowledge of the application that can assist in finding the most efficient implementation on

HCCs. This model allows specification of all the main features of the underlying parallel

algorithm that have an essential impact on application execution performance on HCCs. These

features are

• The total number of processes executing the algorithm;

• The total volume of computations to be performed by each of the processes in the group

during the execution of the algorithm.

o The volume is specified in the form of formula including the parameters of the model;

o The volume of computation is measured in computation units provided by the application

programmer (the very code which has been used to characterize the performance of

processors of the executing heterogeneous network).

• The total volume of data to be transferred between each pair of processes in the group during

the execution of the algorithm;

• The order of execution of the computations and communications by the parallel processes in

the group, that is, how exactly the processes interact during the execution of the algorithm

(which computations are performed in parallel, which are serialized, which computations and

communication overlap, etc.).

The PMDL uses most of the features in the specification of network types of the mpC language

[8, 9]. The mpC compiler compiles the description of this performance model to generate a set of

functions, which make up the algorithm-specific part of the mpC runtime system. These

functions are called by the mapping algorithms of mpC runtime to estimate of the execution time

of the parallel algorithm. This happens during the creation of the context (the steps follow

below).

The description of performance models of all the PBLAS routines (about 123 of them) has

been the most intricate effort in this project. The key design issues were (a) accuracy to facilitate

accurate prediction of the execution time of the PBLAS routine, (b) efficiency to execute the

performance model in reasonable execution time, (c) reusability as these performance models are

to be used as building blocks for the performance models of ScaLAPACK routines and (d)

preservability to preserve the key design features of underlying PBLAS package.

The performance model definition of PDGEMM PBLAS routine shown in Figure 4 is used to

demonstrate the complexity of the effort of writing a performance model. It describes the

simplest case of parallel matrix-matrix multiplication of two dense square matrices A and B of

size n×n. The reader is referred to [9, 14] for more details of the main constructs, namely

coord , parent , node , link , and scheme , used in a description of a performance model.

This definition is an extensively stripped down version of the actual definition, which can be

studied from the package. The data distribution blocking factor b is assumed to be equal to the

algorithmic blocking factor. The performance model definition also assumes that the matrices are

divided such that (n%(b×p)) and (n%(b×q)) (see explanation of variables below) are both equal

to zero.

Line 1 is a header of the performance model declaration. It introduces the name of the

performance model pdgemm parameterized with the scalar integer parameters n, b, t , p, and q.

Parameter n is the size of square matrices A, B, and C. Parameter b is the size of the data

distribution blocking factor. Parameter t is used for the benchmark code, which is assumed to

multiply two t×b and b×t matrices. Parameters p and q are output parameters representing the

number of processes along the row and the column in the process grid arrangement.

Line 3 is a coordinate declaration declaring the 2D coordinate system to which the processor

nodes of the network are related. Line 4 is a node declaration. It associates the abstract

processors with this coordinate system to form a p×q grid. It specifies the (absolute) volume of

computations to be performed by each of the processors. The statement bench just specifies that

as a unit of measurement, the volume of computation performed by some benchmark code be

used. It is presumed that the benchmark code, which is used for estimation of speed of physical

processors, multiplies two dense square t×b and b×t matrices. The line 4 of node declaration

specifies that the volume of computations to be performed by the abstract processor with

coordinates (I ,J) is ((n/(b*p))*(n/(b*q))*(n*t/t*t)) times bigger than the

volume of computations performed by the benchmark code.

Lines 5-13 are a link declaration. This specifies the links between the abstract processors, the

pattern of communication among the abstract processors, and the total volume of data to be

transferred between each pair of abstract processors during the execution of the algorithm. Lines

7-9 of the link declaration describe vertical communications related to matrix A. Obviously,

abstract processors from the same column of the processor grid do not send each other elements

of matrix A. Only abstract processors from the same row of the processor grid send each other

elements of matrix A. Abstract processor PIJ will send (n/(b×p))×(n/(b×q))×b×b number

of elements of matrix A to processor PKJ. The volume of data in one b×b block is given by

(b*b)*sizeof(double) and so the total volume of data transferred from processor PIJ to

processor PKJ will be given by (n/(b×p))×(n/(b×q))×b×b×sizeof(double) .

Lines 10-13 of the link declaration describe horizontal communications related to matrix B.

Obviously, only abstract processors from the same column of the processor grid send each other

elements of matrix B. In particular, processor PIJ will send all its b×b blocks of matrix B to all

other processors from column J of the processor grid. Abstract processor PIJ will send

(n/(b×p))×(n/(b×q))×b×b number of elements of matrix B to processor PIL. The volume

of data in one b×b block is given by (b*b)*sizeof(double) and so the total volume of

data transferred from processor PIJ to processor PIL will be given by

(n/(b×p))×(n/(b×q))×b×b×sizeof(double) .

Line 15 introduces the scheme declaration. The scheme block describes how exactly

abstract processors interact during the execution of the algorithm. The scheme block is composed

mainly of two types of units. They are computation and communication units. Each computation

unit is of the form]%%[ie specifying that e percent of the total volume of computations is

performed by the abstract processor with the coordinates (i). Each communication unit is of the

form][]%%[jie → specifying transfer of data from abstract processor with coordinates i to the

abstract processor with coordinates j. There are two types of algorithmic patterns in the scheme

declaration, which are sequential and parallel. The parallel algorithmic patterns are specified by

the keyword par and they describe parallel execution of some actions (mixtures of computations

and communications). The scheme declaration describes (n/b) successive steps of the

algorithm. At each step k ,

• Lines 20-23 describe vertical communications related to matrix A. (100.*(n/(b*q))

percent of data, that should be in total be sent from processor PIJ to processor PKJ , will be

sent at the step. The par algorithmic patterns imply that during the execution of this

communication, data transfer between different pairs of processors is carried out in parallel;

• Lines 24-27 describe horizontal communications related to matrix B. (100.*(n/(b*p))

percent of data, that should be in total be sent from processor PIJ to processor PIL , will be

sent at the step;

• Lines 28-30 describe computations. Each abstract processor updates each its b×b block of

matrix C with one block from the pivot column and one block from the pivot row. At each of

(n/b) steps of the algorithm, the processor will perform (100×b/n) percent of the

volume of computations it performs during the execution of the algorithm. The third nested

par statement in the main for loop of the scheme declaration just specifies this fact. The

par algorithmic patterns are used here to specify that all abstract processors perform their

computations in parallel.

The simplest case of PDGEMM PBLAS routine just described demonstrates the complexity

of the task of writing a performance model. There are altogether 123 such performance model

definitions covering all the PBLAS routines. They can be found in the HeteroPBLAS package in

the directory /PBLAS/SRC . The performance model files start with prefix pm_ followed by the

name of the PBLAS routine and have a file extension mpc.

The execution of a HeteroPBLAS context creation routine consists of the following steps:

1. Updating the estimation of the speeds of the processors using the HeteroMPI routine

HMPI_Recon. A benchmark code representing the core computations involved in the

execution of the PBLAS routine is provided to this function call to accurately estimate the

speeds of the processors. For example in the case of the PDGEMM routine, the benchmark

code provided is a local GEMM update of m×b and b×n matrices where b is the data

distribution blocking factor and m and n are local number of matrix rows and columns

respectively;

2. Finding the optimal values of the parameters of the parallel algorithm used in the PBLAS

routine, such as the algorithmic blocking factor and the data distribution blocking factor,

using the HeteroMPI routine HMPI_Timeof ;

3. Creation of a HeteroMPI group of MPI processes using the HeteroMPI’s group constructor

routine HMPI_Group_pauto_create . One of the inputs to this function call is the

handle, which encapsulates all the features of the performance model in the form of a set of

functions generated by the compiler from the description of the performance model of the

PBLAS routine. During this function call, the HeteroMPI runtime system detects the optimal

process arrangement as well as solves the problem of selection of the optimal set of processes

running on different computers of the heterogeneous network. The selection process is

described in detail in [9, 14]. It is based the performance model of the PBLAS routine and

the performance model of the executing network of computers, which reflects the state of this

network just before the execution of the PBLAS routine;

4. The handle to the HeteroMPI group is passed as input to the HeteroMPI routine

HMPI_Get_comm to obtain the MPI communicator. This MPI communicator is translated

to a BLACS handle using the BLACS routine Csys2blacs_handle ;

5. The BLACS handle is then passed to the BLACS routine Cblacs_gridinit , which

creates the BLACS context. This context is returned in the output parameter.

The HeteroPBLAS program uses the multiprocessing approach, which allows more than one

process involved in its execution to be run on each processor. The number of processes to run on

each processor during the program startup is determined automatically by the HeteroPBLAS

command-line interface tools. During the creation of a HeteroMPI group in the context creation

routine, the mapping of the parallel processes in the group is performed such that the number of

processes running on each processor is as proportional to its speed as possible. In other words,

while distributed evenly across parallel processes, data and computations are distributed

unevenly over processors of the heterogeneous network, and this way each processor performs

the volume of computations as proportional to its speed as possible. At the same time, the

mapping algorithm invoked tries to arrange the processors along a 2D grid so as to optimally

load balance the work of the processors.

The future versions of the HeteroPBLAS software would support three execution models.

The first execution model, which is currently supported, is the simplest. Only the estimation of

the execution time of the PBLAS routines is provided. The cost of distribution of data to/from

the slaves and the cost of redistribution of data between the slaves are not taken into

consideration. The second execution model supports the master-slave pattern. In this model, the

master distributes data amongst the slaves. The slaves execute one or more calls to a PBLAS

routine. The results are returned to the master. The cost of distribution of data by the master

amongst the slaves and the cost of accumulation of results at the master from the slaves will be

taken into consideration. The third model is the most complicated allowing a mixture of master-

slave and slave-to-slave models. In this model, the master distributes data amongst the slaves.

The slaves execute one or more calls to a PBLAS routine. The slaves then communicate the

results to a different group of slaves, which execute one or more calls of a different PBLAS

routine. Finally, the results are returned to the master. So in this model, the cost of redistribution

of data between the slaves in addition to the costs of distribution of data amongst the slaves by

the master and the cost of accumulation of results at the master from the slaves will be taken into

consideration.

4 Experimental Results

We present three sets of experiments. The first set of experiments is run on a homogeneous

computing cluster ‘Grig’ (https://www.cs.utk.edu/help/doku.php?id=clusters) consisting of 64

Linux nodes with 2 processors per node with Myrinet interconnect. The processor type is Intel

EM64T. The software used is MPICH-1.2.7, ScaLAPACK-1.8.0 and ATLAS [18], which is an

optimized BLAS library. Only 32 nodes (64 processors) are used in the experiments.

The speedup, which is shown in the figures, is calculated as the ratio of the execution time of

the homogeneous PBLAS program and the execution time of the HeteroPBLAS program. Dense

matrices of size N×N and vectors of size N were used in the experiments. The homogeneous

PBLAS programs uses the default parameters suggested by the recommendations from the

ScaLAPACK user’s guide [3], which are to (a) use the best BLAS and BLACS libraries

available, (b) use a data distribution block size of 64, (c) use a square processor grid and (d)

execute no more than one process per processor. We chose two level-3 routines, which are

PDGEMM and PDTRSM, for demonstration because they exhibit two different algorithmic

patterns. In the case of PDGEMM, the size of the problem solved at each step of its execution,

that is number of updates of the resulting matrix, is constant whereas in the execution of

PDTRSM, the size of the problem (number of updates of the trailing sub-matrix) decreases with

each step.

The first set of experiments is composed of two parts. Figures 5(a)-(d) show the experimental

results of the first part. Figures 5(a) and 5(b) show the experimental results from the execution of

the PBLAS level-1 routine PDAXPY and level-2 routine PDGEMV on the homogeneous cluster.

The homogeneous PBLAS programs use a 1×64 grid of processes (using one process per

PDAXPY

1

1.2

1.4

1.6

1.8

0 20000 40000 60000

Problem size (N)

S
p

e
e
d

u
p

PDGEMV

1.5

1.52

1.54

1.56

1.58

0 20000 40000 60000

Problem size (N)

S
p

e
e
d

u
p

(a) (b)

PDGEMM

0.9

1

1.1

1.2

1.3

0 10000 20000 30000

Problem size (N)

S
p

e
e
d

u
p

PDTRSM

0.9

1

1.1

1.2

0 5000 10000

Problem size (N)

S
p

e
e
d

u
p

(c) (d)

Figure 5. The network used is the homogeneous Grig cluster. N is the size of the vector/matrix.

(a) Results of PDAXPY. (b) Results of PDGEMV. (c) Speedup of PDGEMM. (d) Speedup of

PDTRSM.

processor configuration). Figures 5(c) and 5(d) shows the experimental results from the

execution of the PBLAS level-3 routines PDGEMM and PDTRSM respectively. The

homogeneous PBLAS program uses an 8×8 grid of processes (using one process per processor

configuration). In the second part, we used the optimal data distribution blocking factor and the

optimal process grid arrangement, determined by the HeteroPBLAS program, in the execution of

the corresponding homogeneous PBLAS program. From both the parts, it was observed that

there is no discernible overhead during the execution of HeteroPBLAS programs. The maximum

overhead of about 7% incurred in the case of level-3 routines occurs during the creation of the

context. The execution times of HeteroPBLAS programs for level-1 and level-2 routines are the

same if one process is executed per computer/node and not per processor. In the case of first part,

one can notice that the HeteroPBLAS programs perform better than the homogeneous PBLAS

programs. This is because the homogeneous PBLAS programs use the default parameters

(recommendations from the user’s guide) but not the optimized parameters whereas the

HeteroPBLAS programs use accurate platform parameters and the optimal algorithmic

parameters such as the optimal block factor and the optimal process arrangement. The

parameters for the homogeneous PBLAS programs must be tweaked for just comparision with

PDAXPY

1

1.2

1.4

1.6

1.8

2

0 20000 40000 60000

Problem size (N)

S
p

e
e
d

u
p

PDGEMV

1

2

3

4

5

0 10000 20000 30000

Problem size (N)

S
p

e
e
d

u
p

(a) (b)

PDGEMM

1

11

21

31

41

51

0 5000 10000 15000 20000

Problem size (N)

S
p

e
e
d

u
p

PDTRSM

1

2

3

4

5

0 5000 10000 15000 20000

Problem size (N)

S
p

e
e
d

u
p

(c) (d)

Figure 6. Experimental results on the heterogeneous cluster. N is the size of the vector/matrix.

(a) Speedup of PDAXPY. (b) Speedup of PDGEMV. (c) Speedup of PDGEMM. (d) Speedup of

PDTRSM.

PDGEMM Optimality

0

100

200

300

400

500

600

700

0 2000 4000 6000 8000 10000 12000

Problem size (N)

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
)

HeteroPBLAS (HeHo)

HeteroMPI (HoHe)

Figure 7. Execution times of the HeteroPBLAS and the HeteroMPI programs on the

heterogeneous cluster. N is the size of the matrix. HeteroMPI program employs heterogeneous

2D block-cyclic distribution of matrices.

the HeteroPBLAS programs but this process is tedious and is automated by HeteroPBLAS,

which is one of the results of this work.

The second set of experiments is run on a small heterogeneous local network of sixteen

different Linux workstations (hcl01-hcl16) whose specifications can be read at the URL

http://hcl.ucd.ie/Hardware/Cluster+Specifications. The network is based on 2 Gbit Ethernet with

a switch enabling parallel communications between the computers. The software used is

MPICH-1.2.5, ScaLAPACK-1.8.0 and ATLAS. The absolute speeds of the processors, in million

flop/s, performing a local GEMM update of two matrices 3072×64 and 64×3072 are {8866,

7988, 8958, 8909, 9157, 9557, 8907, 8934, 2179, 5940, 3232, 7054, 6824, 3268, 3144, 3769}.

Therefore, hcl06 is the fastest processor and hcl09 is the slowest processor. The heterogeneity of

the network due to the heterogeneity of the processors is calculated as the ratio of the absolute

speed of the fastest processor to the absolute speed of the slowest processor, which is 4.4.

Figures 6(a) and 6(b) show the experimental results from the execution of the PBLAS level-1

routine PDAXPY and level-2 routine PDGEMV. The homogeneous PBLAS programs use a

1×25 grid of processes (using one process per processor configuration). Figures 6(c) and 6(d)

show the experimental results from the execution of the PBLAS level-3 routines PDGEMM and

PDTRSM respectively. The homogeneous PBLAS program uses a 5×5 grid of processes (using

one process per processor configuration).

There are a few reasons behind the super-linear speedups achieved in the case of PDGEMM

and eventually for very large problem sizes in the case of PDTRSM not shown in the figure. The

first reason is the better load balance achieved through proper allocation of processes involved in

the execution of the algorithm to the processors. During the creation of a HeteroMPI group of

processes in the context creation routine, the mapping of the parallel processes in the group is

performed such that the number of processes running on each processor is as proportional to its

speed as possible. In other words, while distributed evenly across parallel processes, data and

computations are distributed unevenly over processors of the heterogeneous network, and this

way each processor performs the volume of computations as proportional to its speed as

possible. In the case of execution of PDGEMM on HCCs, it can be seen that for problem sizes

larger than 5120, more than 25 processes must be involved in the execution to achieve good load

balance. Since only 25 processes are involved in the execution of the homogeneous PBLAS

program, good load balance is not achieved. However just running more than 25 processes in the

execution of the program would not resolve the problem. This is because in such a case the

optimal process arrangement and the efficient mapping of the process arrangement to the

executing computers of the underlying network must also be determined. This is a complex task

automated by HeteroMPI. The second reason is the optimal 2D grid arrangement of processes.

During the creation of a HeteroMPI group of processes in the context creation routine, the

function HMPI_Group_pauto_create estimates the time of execution of the algorithm for

each process arrangement evaluated. For each such estimation, it invokes mapping algorithm,

which tries to arrange the processors along a 2D grid so as to optimally load balance the work of

the processors. It returns the process arrangement that results in the least estimated time of

execution of the algorithm.

The third set of experiments shown in Figure 7 demonstrates the efficiency of the

HeteroPBLAS program employing the level-3 PDGEMM routine. Its efficiency is compared to

that of the HeteroMPI program, which adopts the HoHe strategy using heterogeneous 2D block-

cyclic distribution of matrices [7]. We use the experimental approach to analysis of the

performance of heterogeneous algorithms presented in [20]. The HeteroMPI program is close to

optimal on the heterogeneous computing cluster. Since the execution time of the HeteroPBLAS

program is practically the same as the HeteroMPI program, we can conclude that the efficiency

of the HeteroPBLAS program is also close to optimal on this network.

We would present experimental results on multicore architectures in our future work.

5 Conclusions and Future Work

In this report, we have presented a package, called Heterogeneous PBLAS (HeteroPBLAS),

providing parallel basic linear algebra subprograms for Heterogeneous Computational Clusters

(HCCs). Our future work will involve the development of the Heterogeneous ScaLAPACK

package. The contents of this package will include: (a) The heterogeneous PBLAS package

presented in this paper (b) The context creation and auxiliary routines for the ScaLAPACK

routines (c) An optimized set of Basic Linear Algebra Communication Subprograms (BLACS)

for HCCs as well as a well-defined interface of auxiliary functions for the application

programmers and (d) A tool that would automatically transform ScaLAPACK programs to

heterogeneous ScaLAPACK programs designed to run efficiently on HCCs.

References

[1] Parallel Basic Linear Algebra Subprograms (PBLAS).

http://www.netlib.org/scalapack/pblas_qref.html.

[2] Basic Linear Algebra Subprograms (BLAS). http://www.netlib.org/blas/.

[3] Scalable LAPACK. http://www.netlib.org/scalapack/.

[4] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. S. Sunderam. PVM:

Parallel Virtual Machine, Users’ Guide and Tutorial for Networked Parallel Computing. MIT

Press: Cambridge, MA, 1994.

[5] J. Dongarra, S. H. Lederman, S. Otto, M. Snir, and D. Walker. MPI: The Complete

Reference. The MIT Press, 1996.

[6] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert, “A Proposal for a

Heterogeneous Cluster ScaLAPACK (Dense Linear Solvers),” In IEEE Transactions on

Computers, Volume 50, No. 10, pp.1052-1070, October 2001.

[7] A. Kalinov and A. Lastovetsky, “Heterogeneous Distribution of Computations Solving

Linear Algebra Problems on Networks of Heterogeneous Computers,” In Journal of Parallel and

Distributed Computing, Volume 61, No. 4, pp.520-535, April 2001.

[8] A. Lastovetsky, D. Arapov, A. Kalinov, and I. Ledovskih, “A Parallel Language and Its

Programming System for Heterogeneous Networks,” In Concurrency: Practice and Experience,

Volume 12, No. 13, pp.1317-1343, November 2000.

[9] A. Lastovetsky, “Adaptive Parallel Computing on Heterogeneous Networks with mpC,” In

Parallel Computing, Volume 28, No.10, pp.1369-1407, October 2002.

[10] Linear Algebra PACKage (LAPACK). http://www.netlib.org/lapack/.

[11] Y. Kishimoto and S. Ichikawa, “An Execution-Time Estimation Model for Heterogeneous

Clusters,” In 13th Heterogeneous Computing Workshop (HCW 2004), in Proceedings of 18th

International Parallel and Distributed Processing Symposium (IPDPS'04), IEEE Computer

Society (2004).

[12] A. Kalinov and S. Klimov, “Optimal mapping of a parallel application processes onto

heterogeneous platform,” In 14th Heterogeneous Computing Workshop (HCW 2005), in

Proceedings of 19th International Parallel and Distributed Processing Symposium (IPDPS'05),

IEEE Computer Society (2005).

[13] J. Cuenca, D. Giménez, and J-P. Martinez, “Heuristics for work distribution of a

homogeneous parallel dynamic programming scheme on heterogeneous systems,” in Parallel

Computing, Volume 31, No. 7, pp.711-735, Elsevier, 2006.

[14] A. Lastovetsky and R. Reddy, “HeteroMPI: Towards a Message-Passing Library for

Heterogeneous Networks of Computers,” in Journal of Parallel and Distributed Computing

(JPDC), Volume 66, No. 2, pp.197-220, Elsevier, 2006.

[15] Basic Linear Algebra Communication Subprograms (BLACS). http://www.netlib.org/blacs/.

[16] J. Dongarra, L. Prylli, C. Randriamaro and B. Tourancheau, “Array redistribution in

ScaLAPACK using PVM,” Euro Users' Group Meeting, pp.271-277, Lyon, France, Hermes

Publishing, Paris, September 1995.

[17] L. Prylli and B. Tourancheau, “Efficient block cyclic data redistribution,” in Proceedings of

the Second International Euro-Par Conference on Parallel Processing (EUROPAR'96), Lecture

Notes in Computer Science 1123, Springer-Verlag, pp. 155-164, 1996.

[18] Automatically Tuned Linear Algebra Software (ATLAS). http://math-atlas.sourceforge.net/.

[19] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S.

Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley. ScaLAPACK User’s

Guide. SIAM. 1997.

[20] A. Lastovetsky and R. Reddy, “On Performance Analysis of Heterogeneous Parallel

Algorithms,” In Parallel Computing, Volume 30, No. 11, pp.1195-1216, 2004.

