
Theoretical Computer Science 135 (I 994) 267-288

Elsevier

267

An algebraic approach to semantics
of programming languages

Communicated by M. Nivat

Received May 1993

Revised January 1994

Lastovetsky, A.L. and S.S. Gaissaryan, An algebraic approach to semantics of programming

languages, Theoretical Computer Science 135 (1994) 267-288.

An abstract language for a computer of van Neumann type is presented. This language is considered

not only as a programming language, but as an algebraic one, whose semantics is defined by

methods of model theory. Calculus of equivalencies of the abstract programs and techniques for

solving equations within limits of this calculus are presented. An algebraic technique is described

which allows to define the propositional semantics of programs. To construct such techniques it was
necessary to use the data type representation by continuous lattices and the continuity of type and

intertype operations and elementary relations. It is demonstrated how the proposed algebraic

technique may be used.

1. Introduction

An abstract language for a computer of von Neumann type was constructed in

[7, 81. This language can be treated not only as a programming language, but as an

algebraic one whose semantics was determined by methods from model theory.

The type system of this language is represented by a multisorted algebraic system

S in which different sorts of objects correspond to different data types. The operations

and elementary relations of system S are functional abstractions of effective procedures

Correspondence to: S.S. Gaissaryan. Institute for System Programming. Russian Academy of Sciences,

25 Bolshaya Kommunisticheskaya Street, Moscow, 109004, Russian Federation. Email addresses of the

authors: lastov@ivann.delta.msk.su and ssg@vann.delta.msk.su.

0304.3975/94/$07.00 (c)r 1994-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(94)00022-B

for transforming data. The set :CIs of objects in this system contains three nonproper

objects (I)~. 0.12,~. These objects are separated from proper ones by providing kJs with

a complete lattice structure <,s such that tr~,~ cs 0 C,~M cs R,s for all proper MEMO,

The object (Ok is treated as the value of an abnormal terminating computation, Q, is

treated as the value of a nonterminating computation. while 0 is treated as the value

of a noninitialized variable. Such interpretation requires the monotony of operations

and elementary relations with respect to ds and forbids 0 to be a result of any

operations.

The memory state space is simulated by the artesian product n:= ,M?., of lattices

of typed objects comprising memory cells (ri is the type of the object in ith memory

cell). The lattice thus obtained (with partial ordering denoted by <n) is complete.

since it is the Cartesian product of a finite number of complete lattices 181. However.

this lattice contains elements that cannot be distinguished from the informal point of

view: an element of the form (. . . . R,s.)cI Ii_, (MT,\ (~0~;) represents a terminal

memory state of a nonterminating program, while (, . , (‘I~, .)~nr= 1 MT, repres-

ents a terminal memory state for any abnormally terminated program. We therefore

construct an equivalence relation = in r]>_, ,l/I,, by identifying indistinguishable

elements:

(111 ,. rll,) = (Jil,. ni,,)

if and only if

V((Vi<N: 111, #s(~~s&~ili #s(rIs)&(3i,j<N:t??i =stiij =,yQs))

We denote by M the set of factor sets of II;= I MT, obtained from the relation =, and

by [nl] we denote the factor set containing the element IVIES;‘=, M,r,.

We set [~JI] < C/n’] if and only if)?I< nn~’ or IJI G 111’. The lattice (M. <) is a complete

lattice (by the completeness of n,“=, M,,) that contains no indistinguishable or

meaningless elements. We therefore use it for the universe of memory states. We

denote by CO and R the zero and identity of the lattice n/l. respectively.

The syntax of the language 17. X] contains three sorts of expressions: logical.

assignment. and program expressions.

The set RP of logical expressions is defined [7] to contain atomic formulas of

S whose notation does not USC Gs or symbols for operations that associate .Qs with

proper operands. and if A, BE RP. then A&B. il v B,l AERP. This definition ensures

decidability for logical expressions treated as branch conditions in a computation.

The set of assignment expressions of type Tincludes terms of type Tin the language

of S. Intuitively. an assignment expression is treated as right part of the assignment

statement.

The set PP of program expressions is defined so that 4. A. ~,EPP, where i has

interpretation of the null program (the “doing-nothing” program), and (b is a program

that terminates abnormally for any initial proper memory state. while YJ is 21 program

that does not terminate for any initial proper memory state.

If a variable xi in the language of system S and an assignment expression

ti (i=l, ..., k) are of the same type, then [x1 : I~, . . , xk : tk] E PP and is taken to mean

that the cells named x , , . . . , xk are simultaneously assigned the values of the expres-

sions tr, tk, respectively.

If p, ~EPP, A ERP, then A -+p, p I q, p + q, p* EPP and have the following interpretation:

~ A-+p indicates execution of program p if A is true, and abnormal termination

otherwise;
_ p 2 q denotes successive execution of programs p and q;
_ p + q denotes execution of p if q abnormally terminates, execution of q if p abnor-

mally terminates, or nontermination in the case of nontermination of p or q. In the

case of the normal termination of p and q we admit different interpretations: the

execution of one of the programs p or q (for example, of that one which takes more

time of processor), or a parallel execution of programs p and q;

_ p* denotes iterated execution of p in which p is repeatedly executed until an attempt

does not fail. The result of a loop is the result of the last successfully terminated

execution of p. If the first attempt at execution leads to failure, then p* indicates

execution of the null program 2.

The operation * has the highest priority. It is followed by the operation --f. The

operation + has the lowest priority. So, A+p* +q r is equal to (A+(p*))+(q - r)

The mathematical semantics of logical expressions are given by relations on the

memory state space with universe MRP. MRP consists of all monotonic mappings

M+B (here B is the two-element Boolean lattice (if, tj, +)), which map Qs onto

t and ws onto f. The set M,, with partial ordering * induced by the partial ordering

of the Boolean lattice B forms a Boolean lattice, whose zero and identity we denote by

F and T, respectively. The algebraic operations of union v . intersection &, comple-

mentation ‘, and equality _, which make MRP a Boolean algebra, are defined as usual.

The interpretational mapping 5: RP -‘MRP is defined so that

([A&B] - tCAl&4CBl, irCAvB1 - C[A] v <[Lg.

If AE RP is an atomic formula in the language of S, then in this system there exists

a corresponding mapping of the form ny= 1 MT; + B, whose monotonic continuation

to M gives the interpretation j’[A]cMRp for the logical expression A.

If (ml, mN)E M \ {co, Cl), then

<[lA](rn,, WIN) -

if 3j<N~: (mj =sO&(V(ti~,..., hj-1, 0, ~~~,~)EM\~co,RJ:

4[lA](~,, ..., ~j-1, 0, ..., ~,y) - f))

then f

else <[A’](ml, m.y).

As result of these semantics, the operation 1 assures that branch conditions will

evaluate to false if their evaluation requires the use of a variable that has been assigned

the undefined value 0.

An equivalence calculus for - was constructed in [S] so that for any A. B, CE RP,

as well as D(s) E RP with isolated appearance of X. whose construction does not use

symbols v and Qs, the following formulas are axioms:

A&A - AvA - A,

A&B - B&A.

AvB - BvA,

(A&B)&C - A&(B&C),

(AvB)vC - Av(BvC’),

A&(BvC) - (A&B)v(A&C),

A&(AvB) - Av(A&B) - A.

F&A - F.

T&A - A,

TVA - T

FvA - A.

A&lA - F,

l(lA) - A,

D(0) - F.

The mathematical semantics $[p] of p is given by a pair of mappings

(tiI[p]: M-+A4, $2[p]: M+M~), which we call a procedure. Here, t,!~~[p] provides

the functional semantics of p, which associate a terminal memory state with every

initial state, while $Z[p] provides the operational semantics of p, which associate with

each initial memory state a series of computations (elements of M,“;) that lead to the

terminal state. The universe Mpp of procedures is organized so that the set of first

components of the procedures is comprised of all monotonic maps M+.lil that leave

elements (‘js and R, stationary. On M,, WC define the operations + and so that

Mpp x M,,,+M pp, the operation * so that MPP~MPP, and the operation + so that

M,, x MPP-+MPP. These operations provide mathematical abstractions of the control

structures listed above. Besides, the relation of strong (=) and weak (z) equivalence

for procedures are defined. Informally. two procedures are said to be weakly equiva-

lent if for any given initial memory state both procedures either normally terminate

with the same memory state. or they both abnormally terminate or fail to terminate.

Two weakly equivalent procedures are said to be strongly equivalent if for any given

initial memory state they both (in the case of the normal termination) execute the same

computations.

Semantics ~$programming languages 271

2. Calculus of strong and weak equivalencies

The calculus of strong and weak equivalencies and techniques for solving equations

within the limits of this calculus are constructed in [8]. In particular, the following

well-formed formulas

641)
642)
(SA3)

(SA4)

(SA5)

(SA6)

(SA7)

(SA8)

(SA9)
(SAlO)

(SAll)

(SA12)

(SA13)

(SA14)

(SA15)

(SA16)

(SA17)

(SA18)

(SA19)

(SA20)

(SA21)

po(qc r)=(p 0 q)or,

iop=po?.=p,

+oP=4>
Coop=a,

p”c#l=c#lvp=c/c,

p+q=q+p,

P+(q+r)=(P+q)+r,

4+P=P>

m+p=m,

i+p=pvp=4,
rcA+p+rt>lA+q=roA-+p

vr~A+p+r~lA-+q=r~lA-q,

rc(p+q)=rop+roq,

(P+q)“4=P”4+4”4%

(p+q)“co=pom+qoQ

l+p”p*=p*,

F+P=~,

T+P=P,

(AvB)+p=A+p+B+P,

(A&B)+p= A+(B+p),

A+(p+q)= A-+p+A+q,
A-+(p”q)=A+poq

are axioms for any p, q, rEPP and A, BERP. Here a formula F v G is valid iff for every

rn~M either F or G is valid.

Besides, if all occurrences of x in formula F(x) and in program expression t(x) are

marked then the following rules of inference

(11)
A+p=p

p*=30 v i=p

(12)
i+r=r, rocj=c#J

(p+q)~~r=p~r+qor

(13)
Vn30: F(%+p+... +p”), F(a)

F(P*)

(14)

(15)

V’n30: F(lu+p+... +p”), p*“4=4

F(P*)
Vn>O: z(A+pf...+p”)=r, t(co)=CO, p*=c0

r=co

272 S.S. Gaissaryan, A.L. Lustovetskp

(16)
A-+(l+p)=A+p

(A+p)*clA+i=(A+p)* v A+p=A-t~

(17)
p=qFA=c#J v i=cc v cp=m

pfq

(18)
G v p=q, p#q

G

(19)
GvH, GEJ, HEJ

J

are valid for every p, q, rEPP, AERP and for every well-formed formulas G, H, J. Here

F t G means that G can be deduced from F for fixed initial memory state. Formally,

such inference forbids to use the steps p = q I- p* = q* and p = q E r i p = r 0 q iff Ftp = q.

The semantics of relation # is as follows: p # q iff p = q is invalid for all proper mu M.

Formulas of the calculus allow to express many important operational properties of

programs. For example, the formula 2+p=p means that the program p cannot

abnormally terminate. The formula A -+(A + p) = A +p means that the program p cannot

abnormally terminate if initial memory state satisfies the condition A. The formula

p d, = c,h means that the program p always terminates. The formula A +p ^ 4 = 4 means

that the program p terminates if initial memory state satisfies the condition A. The

formula A +p = 4 means that the program p abnormally terminates if initial memory

state satisfies the condition A. Correspondingly, the formula A+p= m means that the

program p does not terminate if initial memory state satisfies the condition A.

Any iterative program can be expressed easy in limits of the calculus.

Example 1. Consider the Fortran program

IO FORMAT (110)

11 FORMAT (1X, 110)

INTEGER X, Y

READ 10, X

1 IF (X.GT. Y) GO TO 4

2 IF(X.LT.Y)GOTO6

PRINT 11, Y

3 STOP

4 X=X-Y

5GOTOl

6 Y=Y-X

7GOTOI

END

Semantics of the program are given by the following,system of equations:

a=[Y:@] ctl,

213

rxl =x> Ym4+1(X> Y)+z2,

x2=X< Ym6+1(X< Y)--m3,

c73 = i.,

ct4=[X:X- Y]or5,

cr5=rl.

ct6=[Y: Y-X]oct7,

ct7=al

Here CY denotes a procedure corresponding to the entire program as a whole, and

~1, ~2, ~3, cr4, ~5, (x6, or7 denote procedures corresponding to program entries with the

labels 1, 2, 3, 4, 5, 6, and 7. This Fortran program, which implements the Euclidean

algorithm of finding the greatest common divisor of two numbers, has a semantic

error (the variable Y has not been initialized) which in machine testing may not be

detected. We shall now demonstrate how this error is revealed by means of the

proposed formal tools. We have cr=[Y:@]“~~l =[Y:@]o(X> Y+cr4+1(X> Y)

+Z(~)=[Y:@]~X>Y+~~+[Y:@]~~(X>Y+L~~=X>O-+~~~+~(X>@)

+ct2=F+~4+F+x2=4+$=&

Note that since the operation + is an abstract generalization of selection state-

ments, some program expressions of the calculus may not have direct images in

corresponding programming language (for example, the expression

[X : X - Y] + [Y: Y-X] for Fortran 77). On the other hand, since the operation + is

a total operation having nice algebraic properties, one can make many difficult

equivalent transformations of programs easy enough. It is not important if some

intermediate expressions have no direct images in given programming languages,

because we need some image only for the final expression of transformations.

Lemma 1. The formula (A+p+lA+q) Or=A+p;r+lA+qor is valid for any

p,q,rEPP, AERP.

Proof. According to (SAll) we have A+p+iA+q=A+p V A+p+lA+q

=lA+q. If A+p+lA+q=A+p, then iA+(A+p+iA+q)=lA+(A+p),

whence lA+q=d. Consequently, (lA+q)or=cj and (A+p+lA+q)Or=

(A-+p)“r=A-+p o r+lA+q” r. Similarly, assuming A-+p+i A+q=l A+q we de_

rive (A-+p+lA-+q)~r=(~A~q) or=A+pc’r+l A-+qor. Thus, according to rule
(19) we conclude that (A~p+lA-tq)ar=A~p~r+~A~q~r. 0

Lemma 2. Theformula (l.+A+q)~lA+r=lA +r+A+qclA+r is validfor any

q, rEPP, AERP.

Proof. According to (SAlO) we have A+A+q=A+q v A-q=+ If

A+A-+q=A-+q, then lA-+L+lA+A+q=lA+A+q, that is -IA+,?=~.

Consequently, (I.+A+y’ iA+r=A+y lA+r=A+q lA+r+cj r=A+

q lA-tr+(lA~i)[~r=lA-tr+A~q’ lA+r. If A+q=(b, then (i+ii+y)

lA+r=lA+r=lA+r+~~~lA+r=lA+r+A+q lA+r. Thus, according

to rule (19) we conclude that (i,+ A-q) 1 A+r=i A+r+,4+q 1 A+r. -8

Semantics of an iterative program are given by a system of equations of the calculus.

A solution of the system gives a structured form of the initial program more suitable

for an analysis.

To solve equations of the form a=[(~), where x denotes an unknown program

expression, on the set PP let us introduce the partial ordering < (4 <p iff y + p=p)

which makes PP an upper semilattice with zero cf, and unity E:. This semilattice is not

complete semilattice but the following theorem is valid.

Theorem 1. Let the program expression ,o(~. h) is nmwfonic uitlz rcspcct to h.

q = rFp(q, h)=p(r, h) and p(x3. h)= 33. Let us denote ria)=p(a, a). Then if' squrwr

(r(i.+p+... + p”)) (n =O, 1, . .) is un increasing chain then it htrs (I letrst upprr hound

(lub), dejined as ,~ollo~s:

lub (r(i.+p+...+p”)) =t(p*)

Note: The program expression t(u, h) is said to be monotonic with respect to LI if

from p < q it follows that t(p, r) < t(q, r) for any p, y, rE PP.

Proof. Let us fix an arbitrary nz 20. Then for any n 2 0 we have

7(/l+... +pm)<t(j.+... +pm j(i.+... +p”))

since [7(i+... +p”)J (n=O, 1, . ..) forms a chain. Let us show that

T(Af... +p”)<t(i+“’ +pm -3).

According to (SA5), (pm’> ‘cc) C/I= Ct, v pm x = ‘r~j whence p” ~3 = (i, v 11”’ x = ~1.

Ifp’“~~m=cc then p(;~+...+p”“;o,/~)=p(~,p)=x. Thus,

p(i,+... +pm, /j)<p(i.+... +pm ~3. /j) if pm ‘cc = x

If p”) o = g5 then p” = (p, so that

p(;“+...+p”.a)=/,(;+...+pm~‘,/I)=~,(;.+... +pmml+pm Z./i,

Thus, also in this case p(i.+... +p”,/i)<p(/I+... +p”’ zo.[j). By virtue of mono-

tony of the expression P(L), h) with respect to h, we have

p(i+ ... +p”” %,j+... +p”)<p(i+... +p”, rJ.i,+... +pm xl

Whence, finally,

215

7(;1+ ... +p”)=p(i+... +p”, %+... +p”)

<p(j.+... +pm. 03, k+... +p”)

<p(A+... +pmOa, i,+... +p”” mo)

=5(i+.,. +p”o co).

Applying the rule (13), we get

Since i+...+pmcp*=p* for any finite m>O, then z(/l+...+p”)<~(p*), meaning

that 7(p*) is an upper bound of the sequence { s(i + ... +p”)}. Let us now assume that

q also is an upper bound of this sequence. This means that z(2+ ... +p”)+q=q for

any n 20. From axiom (SA5) follows that p* li C/J = C#J v p* = TX). If p* = O, then using
T(W)= CO, by rule (15) we get q= ‘;o, whence r(co)+q =q. Thus, if p* = x), then

7(p*)+q =q according to (13). If p* 0 4 = 4, then according to (14) we have

s(p*)+q= q. Applying rule (19), we derive I dq. This means that

s(p*)=lub(++p+... +p”)) (n=O, l,...). 0

Corollary 1. [f sequence {7(jL +p + ... +p”)) (n =O, 1, .) of’ program expressions is an

increasing chain and p* 1 4 = 4 then

z(p*)=lub{z(i+p+... +p”) 1

Theorem 2. If t(“) (4) < t(“)(p) (t’“‘(p) < 6”) (co)) 1s r>alidfor all PE PP andfor all n >0 then

any solution qf the equation

CL= t(z)

is an upper bound of {t(‘)(4)‘, (lower bound of {t(‘)(x,))) (i=O, 1, . ..)

Note: Here t(‘+‘)(r)= t(t(“(r)) where t(‘)(r)=r.

(1)

Proof. Let pa PP be a solution of equation (1). Obviously, 4<p (p< CD). From the

condition follows that t(‘)(4) < t(‘)(p) (t(‘)(p) < t@)(a)) for any i 20. Since p is a solution

of equation (l), then t”‘(p)=p so that t(“(~)dp(p<t(‘)(co)) for all i30. 0

Corollary 2. If program expression t(a) is monotonic with respect to CC, then any solution

qj” equation (1) is an upper bound of {t(‘)(b))) and a lower bound of (t”‘(a))

(i=O, 1, . ..)

Proof. Obviously, 4 <p < co for any ~EPP. Using the monotony of t(cc), we conclude

by induction that t(‘)(4) <t(‘)(p) < t(‘)(a) for all i 2 0. The assertion is thus proved. 0

Theorem 3. [I’ t"'(c#))<t(x,), tci'(c$)=r(i+q+ ... +q’-‘) ,ftiu any i>O, ~(a)=p(r,cc),

/+o, p,= ~v.3, und r=pFp(r,p)=p(p, p). tl I~II r(q*) is u solution ofequation (1)

Proof. Obviously, t(~(A+q+... +q”))=t(i+q~‘(2+q+.~. +q”)) for all n30. Accord-

ing to axiom (SA5), q*’ #=4 v q* = co. If q* 0 4=4. then, applying rule (14) we

conclude that t(r(q*))=T(A+q q*)=r(q*). Let q*= ‘co. Then, according to (SAlO),

i+q=q v q=b. If q=4, then y*=i+q-q*=i+& q*=jL. Hence we infer that

i. = x, (since the assumption q* = w is in force) and by the rule (18) we conclude that

i+q=q. Hence, r(i+y j =o)=p(i+q fco,i+q -~c,)=p(i+(i.+q)~ w,i.+q' zo)=

p(i.+;c,+q~~~,3.+q, m)=p(w,i+q, ~n)=x. Since t’“‘(4)dt(w), then t(w)=

t(m)+t ““)(~)))=t(‘33)+T(i+q+... +4”) for all n30. Hence, in accordance with rule

(15) we conclude that t(m)= x assuming that q* = w. Thus, if q* = ;o, then

t(~(~)))=t(p(~3, zo))=t(x,)=~=-c(a)=r(i+q i33) and by rule (13) t(r(q*))=

T(>.+q 4*)=t(4*). Applying rule (19), we finally have t(r(q*))=s(q*). This proves the

theorem. 0

Corollary 3. Jf’under the hypothesis cf Theorem 3, t(“)(4) < t’“‘(p).ftir any II 30, ~EPP.
und p(cc, /I!) is monotonic with respect to /II then T(q*) is the least solution c$‘equation (1)

Corollary 4. !ft(‘)(4)=T(i+q+... +q’-‘),for al/ i>O, und 4* 4=4. tken s(q*) is

II solution ofequation (1). !f; in addition, (z(i+q+ ... + q”)), (n = 0, I, .) is an increasing

ckuin, then r(q*) is the least solution oj’equation (1)

Theorem 4. Let us denote CF_i(l A+q)’ A+p. ri hy C(n), assuming tkut C(O)=c$.

Tkerl uny solution of‘ equation

x=A+p + 1A-+y x”r (2)

is un upper hound of’ the sequence (C(n)+(l A+q)” (pi und u lower hound q/’ the

sequence (C(n)+(1A+q)“-mj (n=O,1,2....).

Proof. Let t(r)=A+p + 1 A-tq “c(r. It is easy to prove by induction that

t’“‘(~)=C(n)+(lA-+q)“c~& t’“‘(co)=C(n)+(lA+q)“- x, so that for any dEPP we

have t’“‘($) <t’“‘(d) < t”“(co) (n = 0, 1,2, .). Consequently, the assertion of Theorem
4 follows directly from Theorem 2. 0

Remark. In the general case it is impossible to find a solution of equation (2) in the

form of a program expression of finite length composed of the expressions p, 4, r and

predicate A with the aid of basic operations + , , +, *, &, v ,l. This is due to the fact

that in the calculus are fixed properties that are common for all programming

languages including those in which all data types have finite sets of objects. At the

same time (as follows from a connotative interpretation of Theorem 4), the existen,

a general solution of equation (2) presupposes the presence of a data type “countt

loop turns” of infinite power that possesses completely defined properties. Despite this

Semantics ofprogramming languages 271

it is possible for the expressions p, q, r and predicate A of a special kind to construct

a general solution of equation (2) without imposing constraints on data types.

Theorem 5. If (1A-+q)“~A+p~r”=(lA+q)“~A+p~r* for any n>O, then

(1 A +q)* 0 A +p 0 r* is the least solution of equation (2).

Proof. Let t(cc) = A +p + 1 A +q 0 ~10 r. It is easy to show that under the conditions

of the theorem

n-l n-1
t’“‘(4) = c (1 A+q)’ ~A+p~r*+(I+iA+q~ 1 (iA+q)‘) 04

i=O i=O)

for all n >O. This is followed by the application of Corollary 3 of Theorem 3. 0

Theorem 6. Ifr~~=~,p~A~i=A~p,r~A-t~=A~r,r~lA-t~=~A~r,p”~

A-ti=lA-rp,lA~qor=1A~r~q,lA~q~p=~A-tp~q,(~A-*q~r)*~~=~,

then p o (1 A -+q o r)* o A -+I- is u sohtion of equation (2). Zf, in addition, q 0 4 = 4, then

p c (1 A -+q 0 r)* 0 A -ti is the least solution of equation (2) .

Proof. Let t(cl)=A+p+lA+qoccor. Then, t(“)(+)=C~~~(iA+q)‘~A+p~r’+

(1 A+q)” c 4 for any n>O. We will show by induction that (1 A-q)” 0 #=

(Cy=O(lA+qor)i)o$ f or all n>O. Let n=l. ThenlA+qo+=1c~+iA-+

q”(r~~)=(~+lA-+q~r)~~. Let us assume that (lA-+q)“~~=(/Z+lA+q~r+
. . . +(lA+qor)“)o#. It is easy to show that (lA+q)“o4=(lA+qor)“j4 for any

n>O.Thus, (lA~q)n’l~~=(lA~qor)n’l~~=~A~q~r~(~A~qor)”o~=

1A~q~r~(~~+...+(lA~q~r)“)~~=3.~~+(lA~q~r)~~+...+(lA~q)“+1~~~

=(Cyz& A-+q 0 r)i) 0 4. Let us now show that c;_J(i A +q)i 0 A+p 0 ri =

p”(C1=o’(lA~qor)i)oA~3, for all n>O. We have (lA~q)“~A~p~r”=p~(lA~

qor)“oA+i for any n30. In fact, if n=O then A+p=poA+i=po20A+,k Let

(lA+q)“mloA+por n~l=p.(lA~qor)n-l.A~~. Then, (lA+q)“oA+por”=

lA~qo((lA~q)“-loA-,porn~l).r = lA~q~pa(lA-rq~r)“-‘~A~i~r =

lA+p” q’>(lA+qor)n-l or 0 A-+1. It can be easily shown by induction that
(1 A+qor)n-‘s> r=ro(lA+qor)“P1 for all n>O. Thus, iA+poqo(iA+
qor)n-b r ~A~~=p~6lA~i,~q~r~(lA_tq~r)“~‘~A~~=p~(lA~q~r)”~A~/I.

Then,

A-+p+lA+q~A-+p~r+... +(lA+q)n-loA+por”-l

=p~~~~A~~+p~lA~q~r~A~i.+...+p~(lA~q~r)”-’oA~~

=p~(i~A~1+lA~q~r~A~3,+...+(lA~qor)”-1~A~~)

=po(I+lA-+qor+... +(lA+qor)“-‘) nA--+/l

for all n>O. Thus,

for all II > 0. Since (1 A+q . r)* 7 4 = q5, then according to Corollary 4 of Theorem

3 the program expression

p(lA-+q r)* A+i,+(;l+lA+q r (lA+q, r)*) ‘4

=p (1A-y r)* A-+i

is a solution of equation (2). Moreover, if (1 4 = 4, then (~~=o(l A+q r)i). 4 = 4.
Consequently, t’“‘(4) = p (C;;,’ (1 A + q T)~) A + 1.. Since the sequence
(p ‘(CyzO(l A+q rf)’ A+;,) (n=O, 1, . ..) is an increasing chain, then according to

Corollary 4 of Theorem 3 the program expression p (1 A+q r)* A+2 is the least

solution of equation (2). n

Example 2. Let us find the least solution of the system from Example I. The initial

system can be transformed easy to the following equivalent system

r=[Y:@]c rl

rrl=X>Y+[X:X-Y] xl+X<Y+[Y:Y-x]‘xl+(x=Y)+i,.

SinceX<Y-i(X>Y)&X<Y,X<Y-i(X=Y)&X<Y,X>Y-i(X=Y)

& X > Y, then

x> Y+[X:X- Y]‘,‘%l +x< Y-+[Y: Y-X]’ al +(x= Y)-+n

=x> Y+[X:X- Y] al+1(X> Y)+X<Y+[Y: Y-X]‘,Xl

f(X = Y)+i.

=(X> Y+[X:X- Y]+l(x> Y)+X< Y+[Y: Y-X]) ‘nl+(X= Y)-+3.

=(X> Y+[X:X- Y]+x< Y+[Y: Y-X]) cxl+(X= Y)+X

=(1(X= Y)+X> Y-+[X:X- Y]+1(X= Y)-+X< Y+[Y: Y-X])

al +(x= Y)+i

=l(X=Y)+(X>YA[X:X-Y]+X<Y+[Y:Y-X])ctl+(X=Y)+A.

Thus,

xl =(X= Y)+i+1(X= Y)+(X> YA[X:X- Y]

+x< Y+[Y: Y-X]) %I.

Since)>” = i for any n > 0, and A* = i, then according to Theorem 5 the expression

(1(X= Y)+(X> Y+[X:X- Y]+x< Y-+[Y: Y-x]))*c’(X= Y)Ai.

is the least solution of the equation

xl =x> Y+[X:X- Y] al +x< Y4[Y: Y-X] al +(X= Y)+k Y.

Thus, the least solution of the initial system with respect to x is the expression

[Y:O] (X> Y+[X:X- Y]+x< Y+[Y: Y-x])* ‘(x= Y)+i.

Semunrics of programming languages 279

Remark. The formula p<q may informally mean that the program p is faster than the

program q. This makes a formal optimization of programs possible. For example, if p z q

and p < q, then the program p is an optimized version of the program q. Few examples of

using this technique for an optimization of real programs can be found in [13].

3. Algebraic statement

The present article extends the language of [7, S] so that it is possible to provide an

algebraic statement of the propositional semantics of program expressions.

Definition. The set RPG of generalized logical expressions is defined thus:

(1) RPcRPG;
(2) if A, BERPG then A & B, A v B,l A, A’, wlp(p, A)ERPG for all PEPP.

Definition. The interpretational mapping [: RPG+M,, is defined thus:

(1) if AERP then f[A] - CIA];

(2) if PEPP, AERPG and mEM then

~lwlp(p, A)](m) - ~IAl(II/rCpl(m)).

Remark. Informally, wlp(p, A) denotes a relation that extracts all of the initial

memory states for which p either terminates normally in a state satisfying A or does

not terminate. In other words, wlp(p, A) is the weakest loose pre-condition for

post-condition A in the terminology of [4].

Proposition 7. The &jinition of’wlp is correct in the sense that if< [A] EM,,, t,b[p]~ M,

then 5 [wlp(p, A)] E MRP.

Proof. The map [[wlp(p, A)] : M+B is monotonic because it is the composite of

monotonic maps. Moreover,

&wfp(p, A)I(w) - &Wh Cal) - 5^IAl(4) - f,

&w~P(P, 41 (Qs) - &Al(tiJ~l(Q,)) - ~CAl(%)) - t. 0

Operation’ is characterized by the following properties:

(A’)’ - A,

(A&B)’ - A’vB’,

(A v B)’ - A’& B’,

AvA’ - T,

A&A’ - F,

where A. BERPG.

Computing the propositional semantics of program expressions comes to perfom-

ing reductions of the form RPG-rRP. Let us state the properties of the operation wlp

that are necessary for performing these reductions.

Let p,q~Pp, and A,BERPG, and let all occurrences of the variable _x in the

expression C(x) ERP be marked, and let t be an assignment expression of the same

type as s and its notation not using the symbols + and +. Then the following

formulas are valid:

(AL) wlp([s: t], C(x)) - C(t)

(AZ) wlp(;l, A) - A

(A3) wlp(~, A) - T

(A4) WIP(P1’% A) - wlp(p, wlp(q, A))

(A5) wlp(B+p+1 B-q, A) - B & wlp(p, A) v 1 B & wlp(y, A)

(A6) wlp(R+p, A) - B& wlp(p, A)

(A7) wlp(;L+p, A) - wlp(p, A) v A & (wlp(p, T)) ’

648) WlP(P, A v B) - WlP(P. A) v WlP(P, B)

(A9) WlP(P, A&B) - W~P(P> A) & wlp(p, B)

In addition, we have the rule

(RI)
PZ4

WlP(P, A) - WlP(% A)

In particular, it follows from (A6) and (SA16) that wlp(4, A) - F.

The properties given above make it possible to compute the propositional seman-

tics of program expressions that do not contain the operation *. The following

analysis of the extended language is directed toward construction of a rule for

computing the propositional semantics of the program expressions using *.

Theorem 7. Let A, B,DERPG, and ~EPP. !f’ wlp(B+p. T) - D, then wlp((B-+p)*, A)

is u solution of the equation

X - D’& A v wlp(B+p, X). (3)

Proof. Let X - wlp((B-+p)*, A) Then

x - wfp(x+(B+p) (B+p)*. A)

- wlp(B+~, (B-p)*, A) v A & (wlp(B+p (B+~)*. T)) ’

- wlp(B+~, wlp((B-p))*. A)) v A &(wlp(B+p, wlp((B+p)*, T)))’

Here we have used the axiom (SA 15). It follows from (A7) that wlp(i + q, T) - T for all

~EPP. Thus, wlp(B+p)*, T)) - T. As a result.

X - wlp(B+p, x)v A &(wlp(B+p, T))‘. q

Semantics of programming languages 281

Remark. Search for solutions of equation (3) requires completeness of the Boolean

lattice M,,. Since in this case there exists at least one solution of equation (3)

a stationary point of the monotonic map B’& A v wlp(B+p, X) of the lattice M,, into

itself [3], and it is meaningful to speak of the least upper and the greatest lower

bounds (lub and glb, respectively) of infinite chains in M,,.

Theorem 8. Assume that the lattice M RP is complete. Then, under the hypothesis of

Theorem 7, if wlp(B+p, F) - F and X is a solution of equation (3), we have

lub \j wlp((B+p)‘, D’& A) =sX
i=O

=>glb \i wlp((B+p)‘, D’& A) v wlp((B+p)“, D) (n=O, 1, . ..) (4)
i=O

Proof. We write G(X) - D’ & A v wlp(B*p, X) , setting G(‘)(X) - X. By (As) and (A9),

the map G : MRP + MRP is monotonic. It is clear that G(‘)(F) - F-X* T -G(‘)(T). Let

G(“)(F)*X*G(“)(T). Then GCm+i)(F) - G(G(“)(F))-G(X)=G(Gtm)(T)) - G@+‘)(T) be-

cause G is monotonic. Since X is a solution of equation (3), we have G(X) - X. Thus,

GCm+i)(F)+X=z-G Cm+11 T) By induction G(“)(F)=X*G(“)(T) for all n 30. This means (.

that X is an upper bound for {G(“)(F))‘, which is increasing, and a lower bound for

{G’“‘(T)}(n=O, 1, . ..) , which is decreasing. Thus lub{G(“)(F))=X+glb{G@‘)(T)J. Since

n-l

G’“‘(F) - /J”, wlp((B+p)‘> D’ & A) >

n-l

G(“)(T) - V wlp((B-*p)‘, D’& A)v ~lp((B-+p)“~‘, D) for all n>O,
i=O

formula (4) is valid. q

The following two theorems explain the semantics of lub and glb of infinite chains

in MRP, which is necessary for interpretation of formula (4).

Definition. Let {r,) (n=O, 1, . . .) be a chain of M,,. The relations V.“=or, and &,“= or,

are defined on the memory state space as follows:

(1) a state mEM satisfies VFzO r, iff there exists k >O such that m satisfies VfEor,,;

(2) a state mEM satisfies &.“=,r, iff there exists k such that state for any n >, km

satisfies r,.

Theorem 9. ff the lattice MRP is complete, then

lub{r”} - t r, ,
n=o

jbr any chuin {I-“} (n = 0, 1, . .) of Iv,,.

Proof. It is known that in the class of Boolean lattices the properties of completeness

and continuity are equivalent 131. By definition [lo], a complete lattice L, is

continuous iff for any UGL and arbitrary chain Cc L we have CI & lub C= lub{a &c:

CCC). Thus, (V~Eorn)&lub{r,J - lub((V,“=,r,)&r,) for any chain (r,) (n=O. I. . ..)

of MRP. Clearly (VZzorn)&r~ - r,,(V,“=,,r,,)&lub{r,) - V,fzor, (n=O, 1, . ..).

Thus, finally, lub {rni - V~EOr,. Similarly, glbfr,J - &rEOr,,. 1-1

Theorem 10. Under the hypothesis CI/’ The(wem 8

glb
1

\j wlp((B+p)‘, D’ & A) v w~~((B+~)~, D)
i=O

- \li wlP((B+P)“, D’ & A) v
n=O I(

~+owlp((B+p)“, D)J .

Proof. We write h, - wlp((B+p)“, D), r, - V~=owlp((B-p)‘, D’& A). It is clear that

{r,i is an increasing chain, while [h,,} and (r, v h,), are decreasing chains (n =O, 1, .),
It follows from the continuity of MRP that lub (r,) vglb{r, v h,)

- glb(lubjr,) v r, v h,J. By Theorem 8, we have lub{r,) v glb (rn v hni - glb [r, v II,).

Obviously, lub{r”) v r, - lub(r,j(n=O, 1, . ..). Thus, glb(r,vh,j - glb{lub(r,) vhnj

(n =O, 1, . . .). Once again appealing to the continuity of ~~~~ we obtain. finally,
glbflub{r,) v h,) - 1ubir.j vglb{h,i. Thus, glb(r,vh,) - lub(r,) vglb(h,). 1-1

Theorem 11. Let B-p # B+A. Then, under the hypothesis of’ Throrun 8,

wlP((B+P)*, ‘4) -
(

q WlP((B-+P)“, D’& A) v
n=O H

n~owlPw+Pr Dj).

Proof. It is sufficient to prove that in the notation of Theorem 10,

(V~=or”)v(&~==,h,)~wlp((B~p)*. A). Let mEM satisfy (~~~or,)v(&~~oh,) If

m satisfies (V?Eor,J , then (B-p)* terminates normally in a state satisfying A, so

m satisfies wlp((B+p)*, A) . If, however, m satisfies (&,“=. h,) , then (B+p)* does not

terminate (which follows from B+p# B+/1). so in this case m also satisfies

wlP((B+P)*, A). 0

Thus, under the assumption that the lattice M,, is complete we have

(B2)
wlp(B-+p, -U-D, B-+p#B-+& wlp(B+p, F)- F _

wlp((B+p)*, A) - q wlp((B-+p)“, D’& A)
n=O

~~owlp((B-p)“. D,)

Srmctntics ~fprogramming languages 283

Remark. If the expression wlp(q”, A) is represented by the formula Q(n, m) in weak

second-order logic, where rnE M, then

c wlp(q”, A) *j
It=0

- “1/, Qh ml - 31: Qh 4,

n m

& wlp(q”,A) - &Q(n,m) - Vn:Q(n,m) .
n=O n=O

Theorem 12. If the lattice (Ms. <s) is continuous, and, moreover, the operations and

elementury relations of S are continuous, then (MRP, ==-) is complete.

Proof. The lattice nr’ 1 M =, is continuous, since it is the Cartesian product of a finite

number of continuous lattices. It follows that (M, <) is also continuous. The

Boolean lattice B is continuous because it is a lattice of finite length. It is known [151

that if L and L’ are continuous lattices, then the family [L+L’] of continuous

mappings from L into L’ is also a continuous lattice. Thus, the lattice [M-tB] is

continuous. By construction, the lattice MRP consists of precisely all continious

mappings M + B except two ones: rF and rT, where rF(m) - f, rr(m) - t, for ah rnE M.

The mappings rF and rT are the zero and identity of the lattice [M + B], respectively.

Continuity of [M+B] ensures continuity of M,,. Indeed, let rEM,, and Cc MRP.

Then rE[M+B], Cc[M+B], r&lubC olub(r&c : CCC}, where the operations

& and lub are performed in the lattice [M-B], while o denotes extension of

equality - of the lattice MRP to the lattice [M + B]. We have F=x=T, F*r & c*T

for all CEC. Thus, Falub C*T, F*r & lub C-T, F*lub{r & c: ~ECJ - T, so that

lub{r&c:c~Ci~~MRP, r&lubCEMRP. As a result, r&lubC - lub(r&c:cECJ,

where & and lub are evaluated in M,,, which means that M,, is continuous. Since

continuity and completeness are equivalent in the class of Boolean lattices, this proves

the theorem. 0

Corollary 5. !f d@erent proper objects in the lattice (M s, ds) are not comparable, then

the lattice (MRP,*) is complete.

Proof. Incomparability of different proper objects assures that the length of

(M s, <s) is finite, from which it follows that it is continuous. Since monotonic

mappings between lattices of finite length are continuous, so are the type and inter-

type operations, as well as the elementary relations of S. The rest follows from

Theorem 12. 0

Remark. If we remove the object 0 from MS, all of the results we have obtained

remain valid for this interpretation of our formal language. Moreover, in this case the

operations 1 and ‘coincide. This makes it possible to transform generalized logical

expressions according to the rules of Boolean algebra, and ensures elimination of the

symbol during the process of performing reductions of the form RPG-+RP.

Example 3. In optimizing compilers automatic program transformations are per-

formed under the assumption that semantics of the transformed program will be not

changed. Let us show just how this assumption may be verified. For example, consider

the Fortran loop

DO11=I,N

IF(X.LT.I)X=l./Y

1 x=x/2

Its semantics is established by the system of equations

cc=[1: 11, xl,

ctl=I,<N+ct2+I>N+/1,

ct2=(x<l+[x:l./Y]+x31+i~) car3,

ct3 = [X : X/2] - ct4,

ct4=[I:I+l]Wl.

This system can be transformed to the following equivalent system :

%=[I: l],,rl

rl=I>N+3.+I~N+(X<l+[X:l./Y]+X~l+~.) [X:X/2]

[1:1+1]~~rl.

Applying Theorem 5 with r=j, to the second equation of the system we have

~1=(z~N~(X<1~[X:l./Y]+X3l~i~)~~[X:X/2]~~[I:z+1])*-I

> N-t;.

Thus, the semantics of the initial loop is established by the program expression

p=[Z:l] (I<N+q)* I>N+i,.

where

q=(X<l+[X:l./Y]+X31+3.) [X:X/2]-[1:1+1].

Assume that an optimizing compiler recognizes the expression 1./Y as an invariant

one [l] and moves it outside the loop. As a result, the loop is transformed to

Z=l./Y

DO11=1,N

IF(X.LT. 1) X=Z

1 x=x/2

Semantics c$ proyramminy languages 285

The semantics of this fragment are given by the program expression

fl=[z:l./Y]~[r:l]~(I<N+q)*~I>N+~,

where

To simplify the analysis, we use the field of real numbers to simulate the type REAL,

and the ring of integers to simulate the type INTEGER. Also, we assume that the

variables X and Y that appear in the initial fragment have been initialized. This makes

it possible to identify’ and 1 and to operate on logical expressions by the rules of

Boolean algebra. It is not difficult to show that the domains of nonterminating

wlp(p, F) and wlp(@, F) of both the initial and transformed fragments are empty.

Indeed,

wlp(li, F) - wlp([I:l,Z:l./Y]~(I<N+q)*~I>N+i,F)

- wlp([I: 1, Z: 1 ./Y], wlp((l<N+q)*, wlp(l>N+A, F)))

- wlp([I: 1, Z: 1 ./Y], wlp((l<N+q)*, F))

By rule (B2),

CO
wlp((I < N+q)*, F) - & wlp((l#N+q)“, I<N) - ; (I+n<N) .

n=O n=O

Thus,

wlp(ti, F) - wlp([I: 1, z: 1 ./Y], ni.(l+n<M))

- nio(l+niN) - F.

Similarly, wlp(p, F) - F. We now calculate the domains wlp(p, T) and wlp(& T) of

normal termination of both the initial and transformated fragments. We have

wlp(p, T) - wlp([I: l]~(lbN+q)*ol>N+/2,T)

- wlp([Z: 11, wlp((l<N+q)*, wlp(l>N+&T)))

- wlp([I : 11, wlp((I< N+q)*, I > N)) .
Since

wlp(ZbN+q, T) - !dN&(X<l&Y#OvX31))

it follows from (B2) that

wlp((1 d N-q)*, I > N) - c wlpU#N+q)“, Z>N)
n=o

- z>Nvz~N&z+1>N&(X<1&Y#Ovx~1)

286

Thus,

S.S. Guissuryan, A.L. Lrr.stowt.sk~

vI+l~N&I+2>N&(X/2<l&Y#OvX/2~l) v...

- I>Nv “gi (I=N--n+l &(X<2”_‘& Y#OvX32”-1))

W~P(P, T) - N<lv ;(n=N&(X<2”~1&YfOvX32”-1))
(n=l

- N<l v3n>l: (n=N8~(X<2”~‘& YfOvX32”~‘))

- N<l vN>l&(X<2”+‘& Y#OvX>2”+‘).

On the other hand,

wlp(L T) - wlp([I:l.Z:1./‘Y],wlp((l~N+~)*,I>N))

By induction on n,

wlp((ldN+cj)“,I>N) - I=N-ri+l

for every n 3 1. Consequently,

wlp((ldN+)*,I>N) - c wlp((l<N+q)“,I>N)
n=O

- I>Nv \\III=N-n+l
i ” = 0 1

Thus,

wlp(~% T) - wlp([Z:l./Y],wlp([l:l],I>Nv c I=N--n+l))
(n=O)

- wlp([Z:l.,Y];l>Nv(~PJ=~))

- wlp([Z:l./Y],N<lvN>l)

- wlp([Z : 1 ./Y-j, T)

- YfO.

Thus, as a result of the optimizing transformation, the domain of definition of the

program fragment under discussion has been restricted. For example, for N =5.

X = 16, Y= 0, the initial loop terminates normally, while its optimized version abnor-

mally terminates at the first operation.

4. Conclusion

In conclusion, we would like to say that our article presents in brief the mathemat-

ical basis of the approach to definition of semantics of programming languages. The

detailed description of the approach as well as applying the approach to the definition

Semantics of programming languages 287

of the semantics of the Fortran 77 language can be found in [13]. In contrast to

denotational, propositional, or operational approaches, the presented approach is

based on an abstraction of the real program in which its computational, functional

and propositional properties as well as data types, storage allocation, and data

initialization are taken into account.

The point is the different approaches to definition of semantics take into account

different properties of real programs and are oriented to a decision of different

problems. So, denotational and propositional approaches completely, while the op-

erational approach partially, do not take into account the computational properties

of programs that are connected with their execution. Of course, they provide tech-

niques for a formal analysis of functional [4, 16, 141 and propositional [6, 1 l] proper-

ties of programs, they provide techniques for the formal transformations of programs

that save their operational [17, IS] or functional [2, 121 properties. The integration of

the different approaches that makes it possible to define semantics of a programming

language completely enough, is very difficult because of the problem of the consist-

ency of the language’s descriptions provided by the different methods [S].

We hope that nice algebraic properties together with the model of a programming

language that is rich enough, make the presented method convenient for formal

analysis of real programming languages.

References

[I] A. Aho and J. Ullman, The Theory qf Parsing, Translation and Compiling (Prentice-Hall, Englewood
Cliffs., NJ, 1973).

[2] J. Backus, Can programming be liberated from the von Neumann Style? A functional style and its

algebra of programs, Comm. ACM 21 (8) (1978) 613-641.

[3] G. Birkhoff, Lattice Theory (AMS, Providence, RI, 1967).
[4] A. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood Cliffs., NJ, 1976).

[S] J.E. Donahue, Complementary Definitions of Programming Language Semantics, in: G. Coos and
J. Hartmanis, eds., Lecture Notes in Computer Science, Vol. 42 (Springer, Berlin, 1976).

[6] R.W. Floyd, Assigning meaning to programs. in: Proc. qf a Symposium in Applied Mathematics,

Vol. 19, Providence, 1967.

[7] S.S. Gaissaryan and A.L. Lastovetsky, An algebraic model of von Neumann programming languages,
Programmirouanie 10 (6) (1984) 12-22 (in Russian): translated as Programming & Comput. Sqftware 10
(1984) 241-249.

[S] S.S. Gaissaryan and A.L. Lastovetsky, Calculus of equivalencies of abstract programs, Program-

miroranie 11 (5) (1985) 20-31 (in Russian); translated as Programming & Comput. Software 11 (1985)

2655273.

[9] S.S. Gaissaryan and A.L. Lastovetsky, Calculus of propositional properties of programs, Program-

mirovanie 16 (3) (1990) 3644 (in Russian).

[IO] G. Gratzer, General Lattice Theory (Akademie Verlag, Berlin, 1978).
[l I] C.A.R. Hoar, An axiomatic approach to computer programming, C’omm. ACM 12 (lO)(l969) 322-329.

[I23 V.P. Kutepov and V.N. Falk, Functional systems: theoretical and practical aspects, Clabernetics E(3)

(1979) 46-58 (in Russian).

[I 33 A.L. Lastovetsky, Algebraic approach to semantics of programming languages, Ph.D. Thesis, Depart-

ment of Numerical Mathematics and Computer Science, Moscow Aviation Institute, 1985 (in

Russian).

[I43 Z. Manna. Marhrmcrficcrl Tl~rory of‘ Computcrrion (McGraw-Hill, New York, 1974).

[I 51 D. Scott. Lattice theory, data types and semantics, in : R. Rustin, ed.. Formu/ Srmtrntic,s of Proqrcrn-
ming Languuyes (Prentice-Hall, Englewood Cliffs., NJ, 1972).

[lh] D. Scott and C. Strachey, Towards a mathematical semantics for computer languages, in: J. Fox, ed.,
Compufers and Automata (Wiley, New York 1972).

[171 Yu.1. Yanov. On logical schemes of algorithms. Prohlom of Cyhrnrfic,s, Vol. 1 (Fizmatgiz, Moscow.

1958) (in Russian).

[IS] A.P. Yershov, On Yanov’s schemes, Prohlma o~Cyhwnrtic,s, Vol. 20 (Fizmatgiz. Moscow, 1968) (in
Russian).

