
A Non-Intrusive and Incremental Approach to Enabling Direct
Communications in RPC-based Grid Programming Systems

University College Dublin, School of Computer Science and Informatics

Technical Report UCD-CSI-2005-2

Alexey Lastovetsky, Xin Zuo, Peng Zhao

Abstract

This paper advocates a non-intrusive
and incremental approach to enabling
existing Grid programming systems with
new features. In particular, it presents a
software component enabling NetSolve
applications with direct communications
between remote tasks. The software
component is a supplementary one
working on the top of the basic NetSolve
system. Its design also allows remote tasks
to be freely mixed in a single application,
independent on whether each particular
task is enabled for direct communications
or not. Experiments with this software are
also presented.

1. Introduction

High performance Grid programming
systems have reached a certain level of
maturity. Two examples are NetSolve [1-3]
and Ninf [4] that allow scientific
programmers to develop reliable Grid
applications. The systems are quite easy to
install and use. They also demonstrate
high level of stability and reliability
achieved over years of testing and
maintenance.

On the other hand, the constantly
growing number of users and applications
results in the need of further development
of such systems in terms of functionality
and quality. Traditionally, addition of a
new feature to a Grid programming system

is achieved by changing the code of the
system and producing its new version.
This new version of the system has to
replace the previous one in order to enable
Grid applications with the new feature.

This approach to the evolution of Grid
programming systems has two serious
disadvantages. First of all, the change of
the system’s code may introduce bugs
resulting in the situation when some
applications, which have been developed,
tested and successfully executed with the
previous version of the system, will not
run properly with the new one. It can take
significant time and efforts to fix all the
newly introduced bugs and make all
broken applications run in the new
environment in the same way they did in
the old one.

Secondly, the new version of the
system has to replace the old version on all
computers of the Grid in order to support
the development and execution of
applications enabled with the new feature.
Such simultaneous and total replacement
can have very high organizational
overhead and sometimes be simply
unrealistic as different computers on the
Grid are managed and administered by
independent and, very often, loosely
connected users.

Thus, the traditional approach to
enabling the existing Grid programming
system with a new feature is:

• Intrusive, that is, the code of the

system is to be changed in order to
add the feature;

• Non-incremental, that is, to make the
system functional with the new
feature, the modified system has to
be installed on all the computers that
are supposed to participate in the
execution of applications.

The goal of our research is to
investigate if an existing Grid
programming system can be enabled with
new features in a non-intrusive and
incremental way.

Non-intrusiveness means that the
original system does not change and the
new features are provided by a
supplementary software component
working on the top of the system.
Correspondingly, all applications not
requiring those new features will only use
the basic original software and be
developed and executed in the same way
both in the original and modified systems.

Increment means that the
supplementary software component does
not have to be installed on all computers to
enable applications with the new features.
It can be done incrementally, step by step,
and the new features will be enabled in
part, with the completeness dependent on
how many nodes participating in the
execution of the application have been
upgraded with the supplementary software
component.

In this paper, we use one particular
well-established Grid programming
system and one particular feature, the
necessity of which is well recognized, to
demonstrate the feasibility of the non-
intrusive and incremental evolution of
Grid programming systems. The system is
NetSolve, and the feature is direct
communication between remote tasks.

The rest of the paper is structured as
follows. Section 2 describes in detail the
design and implementation of a

supplementary software component
enabling NetSolve applications with direct
communications between remote tasks in a
non-intrusive and incremental way.
Section 3 presents some experiments with
this software. Section 4 outlines related
work, and Section 5 concludes the paper.

2. Enabling direct communications in
NetSolve

NetSolve is positioned as a
programming system for high
performance distributed computing on
global networks based on GridRPC [5]. It
deals with the situation when some
components of the application cannot be
provided by the user and are only
available on remote computers. To
program a NetSolve application, the user
writes a NetSolve client program, which is
any program (say, in C or Fortran) with
calls to the NetSolve client interface. Each
call specifies the name of the remote task
to be performed, pointers to the data on
the user's computer required by the task,
and pointers to locations on the user's
computer where the results will be stored.
When the program runs, a NetSolve call
will result in a task to be executed on a
remote computer. The NetSolve
programming system is responsible for
selection of the remote computer to
perform the task, transferring input data
from the user's computer to the remote
computer, and delivering output data from
the remote computer to the user's one.

Thus, in NetSolve output data of
remote tasks are typically sent back to the
client upon completion of each remote task
even if the data are only needed as input
for some other remote tasks, resulting in
so-called bride communications when data
between remote tasks are sent through the
client machine. Such unnecessary bridge
communications can significantly increase

the execution time of NetSolve
applications. Therefore, the ability of
remote tasks to communicate directly is a
desirable feature of any RPC-based Grid
programming system, including NetSolve,
which leads to higher performance of its
applications.

One approach to enabling NetSolve
with direct communications between
remote tasks is presented in [6]. It is based
on some changes made in the original
NetSolve code to provide the new
functionality.

In this paper, we propose a lightweight
supplementary software component that
enables direct communication between
remote tasks in NetSolve in a non-
intrusive and incremental way. The main
features of this component are as follows:
1. The component is built on top of

NetSolve rather than built into the
system.

2. To enable direct communications, the
software component does NOT need
recompilation or reinstallation of the
NetSolve programming system.

3. It uses the existing programming
infrastructure and is functioning non-
intrusively on the top of the existing
functionality.

4. The software component does not have
to be installed on all nodes
simultaneously. It can be used to
enable direct communications between
remote tasks incrementally. It allows
for remote calls both to tasks enabled
for direct communications and to tasks
not enabled, within the framework of
the same application. Naturally, direct
communications are only possible
between enabled tasks.

2.1 Overview

We start presenting the software
component by a short description of its use.

 Client side: The only thing for client
programmers to do is to install the

wrapper API and Job Name Service
on the client side, then compile the
client program with the wrapper
library. The wrapper API allows the
programmers to explicitly specify the
dataflow between remote tasks. So
they only need to slightly modify their
client code. The principle is quite easy:
the programmer just replaces the
input/output arguments with handlers
as the input/output data.

 Procedure developers: The
procedure programmers should do
nothing to enable direct
communications. They develop their
own procedures as usual. The
supplementary software component
has no effect on both existing
procedures and newly added
procedures.

 Server administrator: To enable
direct communication control on
server side, the server administrator
needs to register the software
component as a new problem file to
NetSolve. No re-installation and re-
compilation of NetSolve itself are
needed.

2.2 A Client-side example
Before we start describing the model

and implementation, let us take a look at
an example of the use of the software
component. In the example, we want two
tasks, A and B, to be performed on remote
nodes. The output of task A is the input of
task B. Normally, the NetSolve client code
would be written like:

errno=netsl("A",inputA,outputA);
errno=netsl("B",outputA,inputB,outputB);

The default manner of mynetsl leaves
no options for the programmer to control
the dataflow. So the output of procedure A
has to be sent back to the client machine
and stored there in outputA, and then

transferred together with inputB to B. This
causes unnecessary communications. To
allow the programmer to explicitly specify
the optimal dataflow, we extend the API as
follows:

mynetsl("A",inputA,hdlA);
mynetsl("B",hdlA,inputB,outputB);

In this modified version, the output of
procedure A is represented by handler
hdlA. However the data are still stored on
the remote server. Upon invocation of B,
hdlA replaces outputA as B’s input
argument. The use of hdlA tells procedure
B where it can get its input. The advantage
of this approach is that it does not change
the program’s semantics: A and B are
called with the blocking routine, unlike
REDGRID [6], where one of these two
jobs must be altered to use the
nonblocking remote procedure call netslnb.

The other modification in the above
example is the use of hdlA instead of
outputA. This tells procedure A not to
return its result to the client, but leave it on
the remote server for someone to receive.
Another option here is to remotely call A
with the target’s handler. In this case, A
will directly send its output to that job.

Thus, programmers are given the
ability to explicitly specify the data flow in
their code. Although it may slightly impact
the RPC transparency, this will not
increase the programming difficulty. Very
slight changes to the existing client
programs are required to gain the benefit
of direct communications.

2.3 Architecture of the software
component

As we have described in the
introduction, our approach to enabling
direct communications is via a software
component supplementary to the existing
RPC-based Grid programming system,
which does NOT need recompilation or
reinstallation of the original Grid

programming system. The proposed
software component consists of three parts:
Client API & Argument Parser, Server
Connector and Job Name Service (JNS).
Figure 1 depicts the architecture of the
software component.

To use the direct communication
component, a client NetSolve programmer
needs to install the provided library on the
client side, use Client API to write his/her
own client program and compile the
program with the library. To enable direct
communications for existing NetSolve
client programs, very slight changes are
needed to be made as that has been
described in Section 2.2 (the changes
mainly include the replacement of real
data references by handlers). Wrapper
functions implementing Client API use
calls to the Argument Parser to parse the
list of arguments and generate
communication information for each
argument. The communication information
is then passed to the Server Connector,
which uses it when enabling direct
communications between remote servers.

Enabling direct communication on the
server side only includes registration of the
Server Connector as yet another NetSolve
problem. The Server Connector is mainly
responsible for receiving input data from
and sending output data to other servers. It
re-submits the task to the local server after
all the necessary data are successfully
received.

JNS is set up on the client side
automatically before client program is
executed to submit tasks to NetSolve
server. It contains all information about
every handler. Handler registration and
access are done during the execution of the
wrapper functions implementing the Client
API on the client side. There is no
communication between JNS and servers
or between JNS and Server Connector.

2.4 Client API and Argument Parser

Client API provides a uniform
interface for the client to make remote
procedure calls. Despite the modification
on the remote side, the wrapper API
allows the calls to be made in the same
manner. The only difference is in the
arguments. Like in NetSolve, we parse the
list of argument to construct the handler
array.

For each argument, the relevant
communication information is generated.
For each input argument, which is a
variable storing real data, the local IP
address and the port number are used as
such communication info. If this input
argument is a handler, then a request is
sent to the JNS to get the IP address and
the port number of the remote resource
and this information is used as
communication info for this handler.

For each output argument, which is a
variable storing real data, the client
wrapper function will set up a socket to
download output data from computational
servers. If this output argument is a
handler, the returned result information
from computational servers is sent to JNS
and registered there. So, in the future,
other computational tasks can require the
data source information from JNS and use
the obtained information to get real data.

A handler contains the data
source/target’s IP address and the port
number, which will be used to
send/receive data. In this sense, upon
making a call to NetSolve, this is actually
only a handler array which is transferred to
the remote server. All the other I/O data
transfer is managed by the Server
Connector. The pseudo code for our
wrapper for mynetsl() is in Appendix A.

In the wrapper function for mynetsl(),
if the client cannot find any server, which
has both Server Connector and the
requested remote procedure, it will still
run properly by using calls to the original

netsl() functions. In particular, the data
transfer between the client and the server
is performed with help of the client-side
JNS. The algorithm of selection of the
fastest server among all available servers
is the smae as the one implemented in the
NetSolve agent program.

2.5 Servers-side Connector

On the server side, a proxy program
called Server Connector is responsible for
interacting with clients and other Server
Connectors to enable direct
communications. The Server Connector
has two main functions. The first one is to
pass handler information between clients
and servers. This allows servers to know
how to get the data without bridge
communication.

The second function is the extraction
of the handlers’ information and using it to
download needed data through direct
communication. After all needed data have
been acquired, the Server Connector calls
the procedure to re-submit to the local host
to perform computations that the user
exactly requested for.

There is no difference in the way the
client and computational servers download
the result of the computations. The Server
Connector firstly returns the result’s
communication information to the client.
Then it sets up a socket waiting for the
client or the server to connect in to
download the result of computations. The
pseudo code for connector() is in
Appendix B.

2.6 Job Name Service

In the example given in Section 2.2,
procedure B is given a handler to locate A.
However, the handler is only meaningful
on the client side. It contains no
information about the job’s network
address and communication port number.
Therefore, we introduce an external name
service to register/search remote jobs.

Any procedure registers itself on a
dedicated Job Name Service (JNS) upon
its invocation. Other procedures may send
requests to the JNS to search for this
registered procedure. JNS is set up on the
client side automatically. During the
execution of the application, it contains all
information about every handler. Only
client has the permission to register or
access a handler on the JNS. There is no
communication and interaction between
JNS and computational servers.

Handler publication is made by calling
jobPublish(Handler, dataInfo), and
jobQuery(Handler, dataInfo) is used for
searching. In the prototype version of the
system, we use the following format to
label a specific job:

<jobAddr>
Handler= "hdlA"
dataInfo[0] = "csa004b3pc2.ucd.ie" // ip
dataInfo[1] = 2919 // port number
dataInfo[2] = 100 // matrix size
dataInfo[3] = 2 // requested times
dataInfo[4] = 0 // broadcast type
</jobAddr>

In this example, Handler contains the
name of the handler used in the function
prototype. The array dataInfo specifies the
data’s location, data’s format details and
transaction mode. This information allows
the job to be uniquely identified in the
network. Different jobs can use the JNS to
publish themselves, search others, and
exchange data. Also, the JNS is designed
as a system-independent system on the
client side, so that it can be applied to
different RPC-based systems and not
influenced by any fault or crash on the
server side.

3. Implementation and experiments

3.1 Implementation

Currently, we have a prototype
implementation of the software
component. Figure 2 depicts how this
component works. To connect A’s output
with B’s input, two calls of wrapper API
are made. A registers the contact address
on the JNS, where B gets this information.
Then these two jobs set up a connection
and pass through it the intermediate results.

Note that despite NetSolve was
assumed as the enabled system, nothing in
the implementation is specific for this
particular system. This makes the
proposed approach applicable to other
Grid RPC systems.

Since the inter-job communication is
provided in the form of external function,
it is possible for the client to connect calls
of different Grid RPC systems (for
example, feeding the input of a Ninf call
with the output of a NetSolve call).

3.2 Experiments

For our experiments we choose the
same remote computational task that has
been used in experiments with REDGRID
presented in [6], namely, matrix
multiplication. Experiments in [6] used 2
remote servers to perform 3 matrix
multiplications, and the client, agent and
servers all were in the same Ethernet
segment.

In our experiments, we used 8 remote
servers to perform 8 matrix multiplications.
The interconnecting network is based on
100 Mbit Ethernet with a switch enabling
parallel communications between
computers. Specification details of
computational nodes are given in Table 1.

Table 1. Installation and specifications of computational nodes

Name Architecture
Cpu
Mhz

Main
Memory

(mb)

Cache
(kb)

Pg1cluster01
Linux 2.6.8 - 1.521 smp Intel(R)

EON™
2048 1024 512

Pg1cluster02
Linux 2.6.8 - 1.521 smp Intel(R)

EON™
2048 1024 512

Pg1cluster03
Linux 2.6.8 - 1.521 smp Intel(R)

EON™
2048 1024 512

Csultra01
SunOS 5.8 sun4u sparc SUNW,

Ultra-5_10
440 512 2048

Csultra02
SunOS 5.8 sun4u sparc SUNW,

Ultra-5_10
440 512 2048

Csultra03
SunOS 5.8 sun4u sparc SUNW,

Ultra-5_10
440 512 2048

Csultra04
SunOS 5.8 sun4u sparc SUNW,

Ultra-5_10
440 512 2048

Csultra05
SunOS 5.8 sun4u sparc SUNW,

Ultra-5_10
440 512 2048

The client code WITH bridge
communications looks as follows:

 /* Compute matrix multiplications */
 mynetsl("matmul()", matA, matB, matC, n);
 mynetsl("matmul ()", matC, matD, matE, n);
mynetsl("matmul ()", matE, matF, matG, n);
mynetsl("matmul ()", matG, matH, matI, n);
mynetsl("matmul ()", matI, matJ, matK, n);
mynetsl("matmul ()", matK, matL, matM, n);
mynetsl("matmul ()", matM, matN, matO, n);
mynetsl("matmul ()", matO, matP, matQ, n);

The client code with direct
communications is as follows:

 /* Compute matrix multiplications */
mynetsl("matmul()", matA, matB, hdlC, n);

 mynetsl("matmul ()",hdlC, matD, hdlE, n);
mynetsl("matmul ()",hdlE, matF, hdlG, n);
mynetsl("matmul ()",hdlG, matH, hdlI, n);
mynetsl("matmul ()",hdlI, matJ, hdlK, n);
mynetsl("matmul ()",hdlK, matL, hdlM, n);
mynetsl("matmul ()",hdlM, matN, hdlO, n);
mynetsl("matmul ()",hdlO, matP, matQ, n);

Parameter n is the dimension of
matrices. matA, matB, matC, matD, matE,
matF, matG, matH, matI, matJ matK,
matL, matM, matN, matO, matP and matQ
are matrix data. hdlC, hdlE, hdlG, hdlI,
hdK, hdlM and hdlO are handlers, which
are used to eliminate bridge
communication. In the experiments, we
only measure the communication time of
trails.

We select 3 trails for each matrix size.
Experiment results are presented in Table
2. The average execution time of the two
applications (with bridge and direct
communications) is calculated for each set
of trails.

Figure 3 shows the communication
time as a function of matrix size. Figure 4
shows the speedup of the application with
direct communications over the one with
bridge communications. As expected, the
communication cost is visibly reduced

Table 2 Comparison of different communication Approaches (bridge and direct)
Trail 1 Trail 2 Trail 3 Average

Size
B D B D B D B D

Speedup

1000 38.3 28.7 39.5 29.2 38.6 29.1 38.8 29 25.2%
2000 155.5 115.7 151.2 113 153.4 110 153.4 112.9 26.4%
3000 342.9 238 345 255 340.8 260 342.9 251 26.8%
4000 607 428 604 436 611 450 607 438 27.8%
5000 920 691 923 671 908 636 917 666 27.4%
6000 1354 901 1379 1005 1402 1094 1378 1000 27.4%
7000 1840 1391 1810 1392 1895 1321 1848 1368 26.0%
8000 2460 1773 2395 1810 2453 1853 2436 1812 25.6%
9000 3069 2349 3095 2298 3023 2205 3062 2284 25.4%
10000 3563 2670 3810 2894 3750 2845 3708 2803 24.4%

B - Bridge Communication, D - Direct Communication; Time(second)

Table3. Speedup for different ratios of eliminated bridge communications
Ratio of Bridge

Communication Cut
(Theoretical Speedup)

3/12
(25.0%)

4/15
(26.7%)

5/18
(27.8%)

6/21
(28.6%)

7/24
(29.2%)

8/27
(29.6%)

9/30
(30.0%)

10/33
(30.3%)

B 1992 2502 3007 3518 4037 4546 5061 5581 Average
Value D 1550 1907 2255 2620 2963 3331 3702 4043

Speedup 22.2% 23.8% 25.0% 25.5% 26.6% 26.7% 26.9% 27.6%
B - Bridge Communication, D - Direct Communication; Time(second)

by using direct communications. In the
experiments, seven communication
bridges were eliminated among twenty
four communications. So, the theoretical
speedup is 7/24 = 29.2%. The obtained
experimental speedup ranges from 24% to
27%, which is close to the theoretical
value. We can also see that the
experimental results are similar to the
REDGRID ones, which range from 18% to
28%.

The speedup depends on the ratio of
the number of eliminated bridge
communications and the total number of
communications. Table 3 shows speedups
obtained for various ratios for the same
matrix size, 10000. The result of
experiments shows that the speedup due to
elimination of bridge communications
increases with the increase of the ratio. If
communication links between the
computers are of the same bandwidth, the
upper bound on the speedup is as follows:

%3.333/1)
3

1
(lim ==

×
−

∞>− n

n
n

If communication links connecting
remote computers are much faster than
communication links connecting the
remote computers and the client computer,
the speedup due to elimination of bridge
communications will be much higher. To
corroborate it, we design another
experiment. We manually make all bridge
communications be performed at the rate
of 10 Mbit per second. For the direct
communications between remote servers,
we still use 100 Mbit Ethernet
interconnecting network. Figure 5 shows
the communication time for this
configuration of the communication
network. Figure 6 presents the speedup of
the application with direct
communications over the one with bridge
communications in this case. The
experimental speedup is around 54% when
the ratio of eliminated bridge
communications is 2/9. Thus, much higher
speedup can be achieved in heterogeneous
communication networks, which are
typical for real-life Grid environments,

than in artificially designed homogeneous
ones.

4. Related work

To enable direct communications,
NetSolve introduces an original
mechanism called Request Sequencing [7].
The mechanism imposes a number of
restrictions on the sequence of remotely
called tasks, the most restrictive of which
is that all the tasks have to be performed
on the same computing node. Another
effort to reduce the overhead of bridge
communications in NetSolve is the
Logistical Computing and Internetworking
(LoCI) [8]. LoCI provides facility to
schedule the data storage at a place ‘close’
to the receiver. The mechanism is mainly
aimed at replicating data in order to keep
them even in the case of crash of some of
the computers. Although it is sufficient for
enabling direct communications, the goal
of building a complete network storage
system makes LoCI over-heavy for
enabling just this particular feature.

The REDGRID project [6] is closest to
our approach sharing the similar idea
behind its design. The main difference is
that REDGRID is built into NetSolve and
difficult to be migrated to other GridRPC-
based systems. The REDGRID project
uses an intrusive and non-incremental
approach and requires re-compilation and
re-installation of the modified NetSolve on
all involved computing nodes to enable
direct communication. Also the
REDGRID’s design is not extendable and
relies on the NetSolve architecture. A
certain amount of work is needed to port
REDGRID to other GridRPC-based
systems.

5. Conclusion

In this paper, we have presented an
approach to reducing unnecessary bridge
communications in RPC-based Grid

programming systems. The main advantage
of the approach is that it is non-intrusive,
requiring no changes in the enabled
programming system. It does NOT need
recompilation or reinstallation of the Grid
programming system. The approach is
incremental by nature allowing remote tasks
both enabled for direct communication and
not, to be freely mixed in a single
application. It can be applied to different
RPC-based Grid programming systems.
Finally the experimental results have shown
that the performance of Grid applications
can be significantly improved by using our
supplementary software component.

References

[1] http://icl.cs.utkedu/netsolve/

[2] H.Casanova, J.Dongarra. ”NetSolve: A
Network Server for Solving
Computational Science Problems.” The
International Journal of Supercomputer
Applications and High Performance
Computing, Volume 11, Number 3, pp.
212-223, 1997.

[3] D. Arnold, H. Casanova, J.
Dongarra. ”Innovation of the NetSolve
Grid Computing System.” Concurrency:
Practice and Experience, Volume 14,
numbers 13-15, pp. 1457-1479, 2002.

[4] Tanaka, Y., Nakada, H., Sekiguchi, S.,
Suzumura, T., Matsuoka, S.: Ninf-G: A
reference implementation of RPC-based
programming middleware for Grid
computing. Journal of Grid Computing,
Vol.1 No.1, pp. 41--51, 2003

[5] Seymour, K., Nakada, H., Matsuoka,
S., Dongarra, J., Lee, C., Casanova, H.:
Overview of GridRPC: A Remote
Procedure Call API for Grid Computing,
Proceedings of the Third International
Workshop on Grid Computing, 2002, 3-

540-00133-6, 274–278, Springer-Verlag

[6] Desprez, F., Jeannot, E.: Improving
the gridrpc model with data persistence
and redistribution. In: International
Symposium on Parallel and Distributed
Computing in association with HeteroPar
(2004) 193–200.

[7] Arnold, D., Agrawal, S., Blackford, S.,
Dongarra, J., Miller, M., Seymour, K.,
Sagi, K., Shi, Z., Vadhiyar, S.: Users’

Guide to NetSolve V1.4.1. Innovative
Computing Dept. Technical Report ICL-
UT-02-05, University of Tennessee,
Knoxville, TN (2002)

[8] Beck, M., Arnold, D., Bassi, A.,
Berman, F., Casanova, H., Dongarra, J.,
Moore, T., Obertelli, G., Plank, J., Swany,
M., Vadhiyar, S., Wolski, R.: Middleware
for the use of storage in communication.
Parallel Computing Volume 28, Issue
12 (December 2002)

Figure 1: Architecture of the supplementary software component enabling direct
communications in NetSolve applications

Figure 2: Implementation of transferring the output of procedure A to procedure B

as its input

* bridge communication x direct communication

Figure 3: Time elapsed for both communication types when all communication
links have the same bandwidth, 100Mb per sec.

* theoretical speedup x experimental speedup

Figure 4: Speedup due to the use of direct communications for the homogeneous
communication network.

■ bridge communication ▲ direct communication

Figure 5: Time elapsed for both communication types when communication client
and servers is at the rate of 10 Mb per sec, and communication between servers is at
the rate of 100 Mbit per sec.

▲experimental speedup

Figure 6: Speedup due to the use of direct communications for the heterogeneous

communication network.

Appendix A. Pseudo code of the
wrapper for mynetsl().

int mynetsl(ProcName,ArgList) {
// get list of Netsolve servers
server_list = my_NS_config();
for (i=0;i<number_of_servers;i++) {
 server_info[i]=get_info(servers_list);
}

// get list of problems for each server
for (i=0;i<number_of_servers;i++) {
 prob_list[i]=my_NS_problmes(server_info[i]);
}

// select servers which have registered both
// Connector and the problem “ProcName”
servers_available= myselect(server_info,
prob_list);

// if there is at least one server which has
// registered both problem and Connector
if (servers_available != NULL)
 {

// select fastest server from available servers
server_best=select_fastest(servers_available);

// generate communication information
// for each argument in Arglist by parsing
// the arguments
for (i=0;i<num_input_arg;i++) {
if LOCAL RESOURCE {

 // allocate local IP and port number
local ip and port -> ArgList_info[i];
}

else if HANDLER {
// get IP and port number from JNS
 ArgList_info[i]= myRequest(handler);;

 }
}

// make NetSolve non-blocking assignment call
// to invoke Server Connector
err=netslnb_assignment(“server_best:connecto

r”, ProcName,
ArgList_info);

// set up socket waiting for computational
// servers to connect in to download local
// input data described by Arglist_info.
for (i=0;i<num_input_arg;i++) {

mysocket_wait(data_input[i]);
}

// wait until result info is returned
result_info = mysocket_wait();

// receive results data from Server Connector,
// or submit this info to JNS
for (i=0;i<num_output_arg;i++) {
 if LOCAL RESULT {

 result[i] = mysocket_get(result_info[i]);
 }

 else if HANDLER {
 myRegister(result_info[i]);
 }

 }
}

// if there is no available server
// which has registered both
// the problem and Connector
else
 {

// get address of variables which store the result
// of computation from JNS.
addr_info=myRequest(ArgList);

// create a new ArgList by replacing handlers
// with address of variables which store the

result
// of computation

 new_ArgList = mycreate(ArgList, getPDF());

 // use original netsl to submit task
 err=netsl(ProcName, new_ArgList);

// register address of variables storing the result
// of computation to JNS
myRegister(new_ArgList);
}

}

Appendix B. Pseudo code for connector().

int connector(ProcName, ArgList_info) {
// check the ArgList_info

// get all input source information by
// extracting ArgList_info
source_info = extract(ArgList_info);

// set up sockets to download all input

// data by using input source information
for (i=0;i<ArgNum;i++) {

mysocket_get(source_info[Arg_num]);
}

// Re-Submit our computational function which
// user want to compute result
err=netslnb_assignment(“localhost:ProcName”

,input1,input2,…);

// fill result_info with server’s ip and port
// number
local ip and port -> result_info;
// return result_info to client
mysocket_send(result_info);
// set up socket waiting for client or
// another computational server to down
// -load result
mysocket_wait(result);
}

April 2005.

