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Abstract 

This paper advocates a non-intrusive 
and incremental approach to enabling 
existing Grid programming systems with 
new features. In particular, it presents a 
software component enabling NetSolve 
applications with direct communications 
between remote tasks. The software 
component is a supplementary one 
working on the top of the basic NetSolve 
system. Its design also allows remote tasks 
to be freely mixed in a single application, 
independent on whether each particular 
task is enabled for direct communications 
or not. Experiments with this software are 
also presented. 

 

1. Introduction 

High performance Grid programming 
systems have reached a certain level of 
maturity. Two examples are NetSolve [1-3] 
and Ninf [4] that allow scientific 
programmers to develop reliable Grid 
applications. The systems are quite easy to 
install and use. They also demonstrate 
high level of stability and reliability 
achieved over years of testing and 
maintenance. 

On the other hand, the constantly 
growing number of users and applications 
results in the need of further development 
of such systems in terms of functionality 
and quality. Traditionally, addition of a 
new feature to a Grid programming system 

is achieved by changing the code of the 
system and producing its new version. 
This new version of the system has to 
replace the previous one in order to enable 
Grid applications with the new feature. 

This approach to the evolution of Grid 
programming systems has two serious 
disadvantages. First of all, the change of 
the system’s code may introduce bugs 
resulting in the situation when some 
applications, which have been developed, 
tested and successfully executed with the 
previous version of the system, will not 
run properly with the new one. It can take 
significant time and efforts to fix all the 
newly introduced bugs and make all 
broken applications run in the new 
environment in the same way they did in 
the old one. 

Secondly, the new version of the 
system has to replace the old version on all 
computers of the Grid in order to support 
the development and execution of 
applications enabled with the new feature. 
Such simultaneous and total replacement 
can have very high organizational 
overhead and sometimes be simply 
unrealistic as different computers on the 
Grid are managed and administered by 
independent and, very often, loosely 
connected users. 

Thus, the traditional approach to 
enabling the existing Grid programming 
system with a new feature is: 

• Intrusive, that is, the code of the 



system is to be changed in order to 
add the feature; 

• Non-incremental, that is, to make the 
system functional with the new 
feature, the modified system has to 
be installed on all the computers that 
are supposed to participate in the 
execution of applications. 

The goal of our research is to 
investigate if an existing Grid 
programming system can be enabled with 
new features in a non-intrusive and 
incremental way. 

Non-intrusiveness means that the 
original system does not change and the 
new features are provided by a 
supplementary software component 
working on the top of the system. 
Correspondingly, all applications not 
requiring those new features will only use 
the basic original software and be 
developed and executed in the same way 
both in the original and modified systems.  

Increment means that the 
supplementary software component does 
not have to be installed on all computers to 
enable applications with the new features. 
It can be done incrementally, step by step, 
and the new features will be enabled in 
part, with the completeness dependent on 
how many nodes participating in the 
execution of the application have been 
upgraded with the supplementary software 
component. 

In this paper, we use one particular 
well-established Grid programming 
system and one particular feature, the 
necessity of which is well recognized, to 
demonstrate the feasibility of the non-
intrusive and incremental evolution of 
Grid programming systems. The system is 
NetSolve, and the feature is direct 
communication between remote tasks. 

The rest of the paper is structured as 
follows. Section 2 describes in detail the 
design and implementation of a 

supplementary software component 
enabling NetSolve applications with direct 
communications between remote tasks in a 
non-intrusive and incremental way. 
Section 3 presents some experiments with 
this software. Section 4 outlines related 
work, and Section 5 concludes the paper.  

 

2. Enabling direct communications in 
NetSolve 

NetSolve is positioned as a 
programming system for high 
performance distributed computing on 
global networks based on GridRPC [5]. It 
deals with the situation when some 
components of the application cannot be 
provided by the user and are only 
available on remote computers. To 
program a NetSolve application, the user 
writes a NetSolve client program, which is 
any program (say, in C or Fortran) with 
calls to the NetSolve client interface. Each 
call specifies the name of the remote task 
to be performed, pointers to the data on 
the user's computer required by the task, 
and pointers to locations on the user's 
computer where the results will be stored. 
When the program runs, a NetSolve call 
will result in a task to be executed on a 
remote computer. The NetSolve 
programming system is responsible for 
selection of the remote computer to 
perform the task, transferring input data 
from the user's computer to the remote 
computer, and delivering output data from 
the remote computer to the user's one. 

Thus, in NetSolve output data of 
remote tasks are typically sent back to the 
client upon completion of each remote task 
even if the data are only needed as input 
for some other remote tasks, resulting in 
so-called bride communications when data 
between remote tasks are sent through the 
client machine. Such unnecessary bridge 
communications can significantly increase 



the execution time of NetSolve 
applications. Therefore, the ability of 
remote tasks to communicate directly is a 
desirable feature of any RPC-based Grid 
programming system, including NetSolve, 
which leads to higher performance of its 
applications. 

One approach to enabling NetSolve 
with direct communications between 
remote tasks is presented in [6]. It is based 
on some changes made in the original 
NetSolve code to provide the new 
functionality.  

In this paper, we propose a lightweight 
supplementary software component that 
enables direct communication between 
remote tasks in NetSolve in a non-
intrusive and incremental way. The main 
features of this component are as follows: 
1. The component is built on top of 

NetSolve rather than built into the 
system. 

2. To enable direct communications, the 
software component does NOT need 
recompilation or reinstallation of the 
NetSolve programming system. 

3. It uses the existing programming 
infrastructure and is functioning non-
intrusively on the top of the existing 
functionality. 

4. The software component does not have 
to be installed on all nodes 
simultaneously. It can be used to 
enable direct communications between 
remote tasks incrementally. It allows 
for remote calls both to tasks enabled 
for direct communications and to tasks 
not enabled, within the framework of 
the same application. Naturally, direct 
communications are only possible 
between enabled tasks. 

2.1 Overview 

We start presenting the software 
component by a short description of its use. 

 Client side: The only thing for client 
programmers to do is to install the 

wrapper API and Job Name Service 
on the client side, then compile the 
client program with the wrapper 
library. The wrapper API allows the 
programmers to explicitly specify the 
dataflow between remote tasks. So 
they only need to slightly modify their 
client code. The principle is quite easy: 
the programmer just replaces the 
input/output arguments with handlers 
as the input/output data.  

 Procedure developers: The 
procedure programmers should do 
nothing to enable direct 
communications. They develop their 
own procedures as usual. The 
supplementary software component 
has no effect on both existing 
procedures and newly added 
procedures. 

 Server administrator: To enable 
direct communication control on 
server side, the server administrator 
needs to register the software 
component as a new problem file to 
NetSolve. No re-installation and re-
compilation of NetSolve itself are 
needed. 

2.2 A Client-side example 
Before we start describing the model 

and implementation, let us take a look at 
an example of the use of the software 
component. In the example, we want two 
tasks, A and B, to be performed on remote 
nodes. The output of task A is the input of 
task B. Normally, the NetSolve client code 
would be written like: 
 
errno=netsl("A",inputA,outputA); 
errno=netsl("B",outputA,inputB,outputB); 
 

The default manner of mynetsl leaves 
no options for the programmer to control 
the dataflow. So the output of procedure A 
has to be sent back to the client machine 
and stored there in outputA, and then 



transferred together with inputB to B. This 
causes unnecessary communications. To 
allow the programmer to explicitly specify 
the optimal dataflow, we extend the API as 
follows: 

mynetsl("A",inputA,hdlA); 
mynetsl("B",hdlA,inputB,outputB); 

In this modified version, the output of 
procedure A is represented by handler 
hdlA. However the data are still stored on 
the remote server. Upon invocation of B, 
hdlA replaces outputA as B’s input 
argument. The use of hdlA tells procedure 
B where it can get its input. The advantage 
of this approach is that it does not change 
the program’s semantics: A and B are 
called with the blocking routine, unlike 
REDGRID [6], where one of these two 
jobs must be altered to use the 
nonblocking remote procedure call netslnb. 

The other modification in the above 
example is the use of hdlA instead of 
outputA. This tells procedure A not to 
return its result to the client, but leave it on 
the remote server for someone to receive. 
Another option here is to remotely call A 
with the target’s handler. In this case, A 
will directly send its output to that job. 

Thus, programmers are given the 
ability to explicitly specify the data flow in 
their code. Although it may slightly impact 
the RPC transparency, this will not 
increase the programming difficulty. Very 
slight changes to the existing client 
programs are required to gain the benefit 
of direct communications. 

2.3 Architecture of the software 
component 

As we have described in the 
introduction, our approach to enabling 
direct communications is via a software 
component supplementary to the existing 
RPC-based Grid programming system, 
which does NOT need recompilation or 
reinstallation of the original Grid 

programming system. The proposed 
software component consists of three parts: 
Client API & Argument Parser, Server 
Connector and Job Name Service (JNS). 
Figure 1 depicts the architecture of the 
software component. 

To use the direct communication 
component, a client NetSolve programmer 
needs to install the provided library on the 
client side, use Client API to write his/her 
own client program and compile the 
program with the library. To enable direct 
communications for existing NetSolve 
client programs, very slight changes are 
needed to be made as that has been 
described in Section 2.2 (the changes 
mainly include the replacement of real 
data references by handlers). Wrapper 
functions  implementing Client API use 
calls to the Argument Parser to parse the 
list of arguments and generate 
communication information for each 
argument. The communication information 
is then passed to the Server Connector, 
which uses it when enabling direct 
communications between remote servers.  

Enabling direct communication on the 
server side only includes registration of the 
Server Connector as yet another NetSolve 
problem. The Server Connector is mainly 
responsible for receiving input data from 
and sending output data to other servers. It 
re-submits the task to the local server after 
all the necessary data are successfully 
received. 

JNS is set up on the client side 
automatically before client program is 
executed to submit tasks to NetSolve 
server. It contains all information about 
every handler. Handler registration and 
access are done during the execution of the 
wrapper functions implementing the Client 
API on the client side. There is no 
communication between JNS and servers 
or between JNS and Server Connector.  

2.4 Client API and Argument Parser 



Client API provides a uniform 
interface for the client to make remote 
procedure calls. Despite the modification 
on the remote side, the wrapper API 
allows the calls to be made in the same 
manner. The only difference is in the 
arguments. Like in NetSolve, we parse the 
list of argument to construct the handler 
array.  

For each argument, the relevant 
communication information is generated. 
For each input argument, which is a 
variable storing real data, the local IP 
address and the port number are used as 
such communication info. If this input 
argument is a handler, then a request is 
sent to the JNS to get the IP address and 
the port number of the remote resource 
and this information is used as 
communication info for this handler. 

For each output argument, which is a 
variable storing real data, the client 
wrapper function will set up a socket to 
download output data from computational 
servers. If this output argument is a 
handler, the returned result information 
from computational servers is sent to JNS 
and registered there. So, in the future, 
other computational tasks can require the 
data source information from JNS and use 
the obtained information to get real data. 

A handler contains the data 
source/target’s IP address and the port 
number, which will be used to 
send/receive data. In this sense, upon 
making a call to NetSolve, this is actually 
only a handler array which is transferred to 
the remote server. All the other I/O data 
transfer is managed by the Server 
Connector. The pseudo code for our 
wrapper for mynetsl() is in Appendix A. 

In the wrapper function for mynetsl(), 
if the client cannot find any server, which 
has both Server Connector and the 
requested remote procedure, it will still 
run properly by using calls to the original 

netsl() functions. In particular, the data 
transfer between the client and the server 
is performed with help of the client-side 
JNS. The algorithm of selection of the 
fastest server among all available servers 
is the smae as the one implemented in the 
NetSolve agent program. 

2.5 Servers-side Connector 

On the server side, a proxy program 
called Server Connector is responsible for 
interacting with clients and other Server 
Connectors to enable direct 
communications. The Server Connector 
has two main functions. The first one is to 
pass handler information between clients 
and servers. This allows servers to know 
how to get the data without bridge 
communication. 

The second function is the extraction 
of the handlers’ information and using it to 
download needed data through direct 
communication. After all needed data have 
been acquired, the Server Connector calls 
the procedure to re-submit to the local host 
to perform computations that the user 
exactly requested for. 

There is no difference in the way the 
client and computational servers download 
the result of the computations. The Server 
Connector firstly returns the result’s 
communication information to the client. 
Then it sets up a socket waiting for the 
client or the server to connect in to 
download the result of computations. The 
pseudo code for connector() is in 
Appendix B. 

2.6 Job Name Service 

In the example given in Section 2.2, 
procedure B is given a handler to locate A. 
However, the handler is only meaningful 
on the client side. It contains no 
information about the job’s network 
address and communication port number. 
Therefore, we introduce an external name 
service to register/search remote jobs. 



Any procedure registers itself on a 
dedicated Job Name Service (JNS) upon 
its invocation. Other procedures may send 
requests to the JNS to search for this 
registered procedure. JNS is set up on the 
client side automatically. During the 
execution of the application, it contains all 
information about every handler. Only 
client has the permission to register or 
access a handler on the JNS. There is no 
communication and interaction between 
JNS and computational servers. 

Handler publication is made by calling 
jobPublish(Handler, dataInfo), and 
jobQuery(Handler, dataInfo) is used for 
searching. In the prototype version of the 
system, we use the following format to 
label a specific job: 

<jobAddr> 
Handler= "hdlA" 
dataInfo[0] = "csa004b3pc2.ucd.ie" // ip 
dataInfo[1] = 2919 // port number 
dataInfo[2] = 100 // matrix size 
dataInfo[3] = 2 // requested times 
dataInfo[4] = 0 // broadcast type 
</jobAddr> 

In this example, Handler contains the 
name of the handler used in the function 
prototype. The array dataInfo specifies the 
data’s location, data’s format details and 
transaction mode. This information allows 
the job to be uniquely identified in the 
network. Different jobs can use the JNS to 
publish themselves, search others, and 
exchange data. Also, the JNS is designed 
as a system-independent system on the 
client side, so that it can be applied to 
different RPC-based systems and not 
influenced by any fault or crash on the 
server side.  

 

3. Implementation and experiments 

3.1 Implementation 

Currently, we have a prototype 
implementation of the software 
component. Figure 2 depicts how this 
component works. To connect A’s output 
with B’s input, two calls of wrapper API 
are made. A registers the contact address 
on the JNS, where B gets this information. 
Then these two jobs set up a connection 
and pass through it the intermediate results.  

Note that despite NetSolve was 
assumed as the enabled system, nothing in 
the implementation is specific for this 
particular system. This makes the 
proposed approach applicable to other 
Grid RPC systems. 

Since the inter-job communication is 
provided in the form of external function, 
it is possible for the client to connect calls 
of different Grid RPC systems (for 
example, feeding the input of a Ninf call 
with the output of a NetSolve call).  

3.2 Experiments 

For our experiments we choose the 
same remote computational task that has 
been used in experiments with REDGRID 
presented in [6], namely, matrix 
multiplication. Experiments in [6] used 2 
remote servers to perform 3 matrix 
multiplications, and the client, agent and 
servers all were in the same Ethernet 
segment. 

In our experiments, we used 8 remote 
servers to perform 8 matrix multiplications.  
The interconnecting network is based on 
100 Mbit Ethernet with a switch enabling 
parallel communications between 
computers. Specification details of 
computational nodes are given in Table 1.

 



Table 1. Installation and specifications of computational nodes 

Name Architecture 
Cpu 
Mhz 

Main 
Memory 

(mb) 

Cache 
(kb) 

Pg1cluster01 
Linux 2.6.8 - 1.521 smp Intel(R) 

EON™ 
2048 1024 512 

Pg1cluster02 
Linux 2.6.8 - 1.521 smp Intel(R) 

EON™ 
2048 1024 512 

Pg1cluster03 
Linux 2.6.8 - 1.521 smp Intel(R) 

EON™ 
2048 1024 512 

Csultra01 
SunOS 5.8 sun4u sparc SUNW, 

Ultra-5_10 
440 512 2048 

Csultra02 
SunOS 5.8 sun4u sparc SUNW, 

Ultra-5_10 
440 512 2048 

Csultra03 
SunOS 5.8 sun4u sparc SUNW, 

Ultra-5_10 
440 512 2048 

Csultra04 
SunOS 5.8 sun4u sparc SUNW, 

Ultra-5_10 
440 512 2048 

Csultra05 
SunOS 5.8 sun4u sparc SUNW, 

Ultra-5_10 
440 512 2048 

 
The client code WITH bridge 
communications looks as follows: 

  /* Compute matrix multiplications */ 
  mynetsl("matmul()", matA, matB, matC, n); 
  mynetsl("matmul ()", matC, matD, matE, n); 
mynetsl("matmul ()", matE, matF, matG, n); 
mynetsl("matmul ()", matG, matH, matI, n); 
mynetsl("matmul ()", matI, matJ, matK, n); 
mynetsl("matmul ()", matK, matL, matM, n); 
mynetsl("matmul ()", matM, matN, matO, n); 
mynetsl("matmul ()", matO, matP, matQ, n); 

The client code with direct 
communications is as follows: 

  /* Compute matrix multiplications */ 
mynetsl("matmul()", matA, matB, hdlC, n); 

  mynetsl("matmul ()",hdlC, matD, hdlE, n); 
mynetsl("matmul ()",hdlE, matF, hdlG, n); 
mynetsl("matmul ()",hdlG, matH, hdlI, n); 
mynetsl("matmul ()",hdlI, matJ, hdlK, n); 
mynetsl("matmul ()",hdlK, matL, hdlM, n); 
mynetsl("matmul ()",hdlM, matN, hdlO, n); 
mynetsl("matmul ()",hdlO, matP, matQ, n); 

Parameter n is the dimension of 
matrices. matA, matB, matC, matD, matE, 
matF, matG, matH, matI, matJ matK, 
matL, matM, matN, matO, matP and matQ 
are matrix data. hdlC, hdlE, hdlG, hdlI, 
hdK, hdlM and hdlO are handlers, which 
are used to eliminate bridge 
communication. In the experiments, we 
only measure the communication time of 
trails. 

We select 3 trails for each matrix size. 
Experiment results are presented in Table 
2.  The average execution time of the two 
applications (with bridge and direct 
communications) is calculated for each set 
of trails. 

Figure 3 shows the communication 
time as a function of matrix size. Figure 4 
shows the speedup of the application with 
direct communications over the one with 
bridge communications. As expected, the 
communication cost is visibly reduced

 



Table 2 Comparison of different communication Approaches (bridge and direct) 
Trail 1 Trail 2 Trail 3 Average 

Size 
B D B D B D B D 

Speedup 

1000 38.3 28.7 39.5 29.2 38.6 29.1 38.8 29 25.2% 
2000 155.5 115.7 151.2 113 153.4 110 153.4 112.9 26.4% 
3000 342.9 238 345 255 340.8 260 342.9 251 26.8% 
4000 607 428 604 436 611 450 607 438 27.8% 
5000 920 691 923 671 908 636 917 666 27.4% 
6000 1354 901 1379 1005 1402 1094 1378 1000 27.4% 
7000 1840 1391 1810 1392 1895 1321 1848 1368 26.0% 
8000 2460 1773 2395 1810 2453 1853 2436 1812 25.6% 
9000 3069 2349 3095 2298 3023 2205 3062 2284 25.4% 
10000 3563 2670 3810 2894 3750 2845 3708 2803 24.4% 

B - Bridge Communication, D - Direct Communication; Time(second) 
 

Table3. Speedup for different ratios of eliminated bridge communications 
Ratio of Bridge 

Communication Cut 
(Theoretical Speedup) 

3/12 
(25.0%) 

4/15 
(26.7%) 

5/18 
(27.8%) 

6/21 
(28.6%) 

7/24 
(29.2%) 

8/27 
(29.6%) 

9/30 
(30.0%) 

10/33 
(30.3%) 

B 1992 2502 3007 3518 4037 4546 5061 5581 Average 
Value D 1550 1907 2255 2620 2963 3331 3702 4043 

Speedup 22.2% 23.8% 25.0% 25.5% 26.6% 26.7% 26.9% 27.6% 
B - Bridge Communication, D - Direct Communication; Time(second) 

 
by using direct communications. In the 
experiments, seven communication 
bridges were eliminated among twenty 
four communications. So, the theoretical 
speedup is 7/24 = 29.2%. The obtained 
experimental speedup ranges from 24% to 
27%, which is close to the theoretical 
value.  We can also see that the 
experimental results are similar to the 
REDGRID ones, which range from 18% to 
28%.  

The speedup depends on the ratio of 
the number of eliminated bridge 
communications and the total number of 
communications. Table 3 shows speedups 
obtained for various ratios for the same 
matrix size, 10000. The result of 
experiments shows that the speedup due to 
elimination of bridge communications 
increases with the increase of the ratio. If 
communication links between the 
computers are of the same bandwidth, the 
upper bound on the speedup is as follows: 

%3.333/1)
3

1
(lim ==

×
−

∞>− n

n
n

 

If communication links connecting 
remote computers are much faster than 
communication links connecting the 
remote computers and the client computer, 
the speedup due to elimination of bridge 
communications will be much higher. To 
corroborate it, we design another 
experiment. We manually make all bridge 
communications be performed at the rate 
of 10 Mbit per second. For the direct 
communications between remote servers, 
we still use 100 Mbit Ethernet 
interconnecting network.  Figure 5 shows 
the communication time for this 
configuration of the communication 
network. Figure 6 presents the speedup of 
the application with direct 
communications over the one with bridge 
communications in this case. The 
experimental speedup is around 54% when 
the ratio of eliminated bridge 
communications is 2/9. Thus, much higher 
speedup can be achieved in heterogeneous 
communication networks, which are 
typical for real-life Grid environments, 



than in artificially designed homogeneous 
ones.  

4. Related work 

To enable direct communications, 
NetSolve introduces an original 
mechanism called Request Sequencing [7]. 
The mechanism imposes a number of 
restrictions on the sequence of remotely 
called tasks, the most restrictive of which 
is that all the tasks have to be performed 
on the same computing node. Another 
effort to reduce the overhead of bridge 
communications in NetSolve is the 
Logistical Computing and Internetworking 
(LoCI) [8]. LoCI provides facility to 
schedule the data storage at a place ‘close’ 
to the receiver. The mechanism is mainly 
aimed at replicating data in order to keep 
them even in the case of crash of some of 
the computers. Although it is sufficient for 
enabling direct communications, the goal 
of building a complete network storage 
system makes LoCI over-heavy for 
enabling just this particular feature. 

The REDGRID project [6] is closest to 
our approach sharing the similar idea 
behind its design. The main difference is 
that REDGRID is built into NetSolve and 
difficult to be migrated to other GridRPC-
based systems. The REDGRID project 
uses an intrusive and non-incremental 
approach and requires re-compilation and 
re-installation of the modified NetSolve on 
all involved computing nodes to enable 
direct communication. Also the 
REDGRID’s design is not extendable and 
relies on the NetSolve architecture. A 
certain amount of work is needed to port 
REDGRID to other GridRPC-based 
systems. 

5. Conclusion 

In this paper, we have presented an 
approach to reducing unnecessary bridge 
communications in RPC-based Grid 

programming systems. The main advantage 
of the approach is that it is non-intrusive, 
requiring no changes in the enabled 
programming system. It does NOT need 
recompilation or reinstallation of the Grid 
programming system. The approach is 
incremental by nature allowing remote tasks 
both enabled for direct communication and 
not, to be freely mixed in a single 
application. It can be applied to different 
RPC-based Grid programming systems. 
Finally the experimental results have shown 
that the performance of Grid applications 
can be significantly improved by using our 
supplementary software component. 
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Figure 1: Architecture of the supplementary software component enabling direct 
communications in NetSolve applications 

 



 
Figure 2: Implementation of transferring the output of procedure A to procedure B 

as its input 
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Figure 3:  Time elapsed for both communication types when all communication 
links have the same bandwidth, 100Mb per sec.  
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Figure 4: Speedup due to the use of direct communications for the homogeneous 
communication network. 
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Figure 5:  Time elapsed for both communication types when communication client 
and servers is at the rate of 10 Mb per sec, and communication between servers is at 
the rate of 100 Mbit per sec.  
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Figure 6: Speedup due to the use of direct communications for the heterogeneous 

communication network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

Appendix A. Pseudo code of the 
wrapper for mynetsl(). 
 
int mynetsl(ProcName,ArgList) { 
// get list of Netsolve servers 
server_list = my_NS_config(); 
for (i=0;i<number_of_servers;i++) { 
  server_info[i]=get_info(servers_list); 
} 
  
// get list of problems for each server 
for (i=0;i<number_of_servers;i++) { 
   prob_list[i]=my_NS_problmes(server_info[i]); 
} 
 
// select servers which have registered both 
// Connector and the problem “ProcName” 
servers_available= myselect(server_info, 
prob_list); 
 
// if there is at least one server which has  
// registered both problem and Connector 
if (servers_available != NULL) 
   { 

// select fastest server from available servers 
server_best=select_fastest(servers_available); 

 
// generate communication information 
// for each argument in Arglist by parsing 
// the arguments 
for (i=0;i<num_input_arg;i++) { 
if LOCAL RESOURCE { 

     // allocate local IP and port number 
local ip and port -> ArgList_info[i]; 
} 

else if HANDLER { 
// get IP and port number from JNS 
 ArgList_info[i]= myRequest(handler);; 

    } 
} 

 
// make NetSolve non-blocking assignment call 
// to invoke Server Connector 
err=netslnb_assignment(“server_best:connecto

r”, ProcName, 
ArgList_info); 

 

// set up socket waiting for computational 
// servers to connect in to download local 
// input data described by Arglist_info. 
for (i=0;i<num_input_arg;i++) { 

mysocket_wait( data_input[i] ); 
} 

 
// wait until result info is returned 
result_info = mysocket_wait(); 

 
// receive results data from Server Connector, 
// or submit this info to JNS 
for (i=0;i<num_output_arg;i++) { 
  if LOCAL RESULT { 

  result[i] = mysocket_get(result_info[i]); 
   } 

 else if HANDLER { 
   myRegister(result_info[i]); 
  } 

       } 
} 

//  if there is no available server 
//  which has registered both 
// the problem and Connector 
else 
   { 

// get address of variables which store the result  
// of computation from JNS. 
addr_info=myRequest(ArgList); 
 
// create a new ArgList by replacing handlers 
// with address of variables which store the 

result 
// of computation 

   new_ArgList = mycreate(ArgList, getPDF()); 
 
   // use original netsl to submit task 
  err=netsl(ProcName, new_ArgList); 
 
// register address of variables storing the result 
// of computation  to JNS 
myRegister(new_ArgList); 
} 

} 
 
 
 
 



Appendix B. Pseudo code for connector(). 
 
int connector(ProcName, ArgList_info) { 
// check the ArgList_info 
 

// get all input source information by 
// extracting ArgList_info 
source_info = extract(ArgList_info); 
 
// set up sockets to download all input 

// data by using input source information 
for (i=0;i<ArgNum;i++) { 

mysocket_get(source_info[Arg_num]); 
} 

 
// Re-Submit our computational function which 
// user want to compute result 
err=netslnb_assignment(“localhost:ProcName” 

,input1,input2,…); 
 
// fill result_info with server’s ip and port 
// number 
local ip and port -> result_info; 
// return result_info to client 
mysocket_send(result_info); 
// set up socket waiting for client or 
// another computational server to down 
// -load result 
mysocket_wait(result);
} 
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