
V.N. Alexandrov et al. (Eds.): ICCS 2006, Part III, LNCS 3993, pp. 1008 – 1011, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Non-intrusive and Incremental Approach to Enabling
Direct Communications in RPC-Based Grid

Programming Systems

Alexey Lastovetsky, Xin Zuo, and Peng Zhao

School of Computer Science and Informatics
University College Dublin
Belfield, Dublin 4, Ireland

{Alexey.Lastovetsky, Xin.Zuo, Peng.Zhao}@ucd.ie

Abstract. This paper advocates a non-intrusive and incremental approach to
enabling existing Grid programming systems with new features. In particular, it
presents a software component enabling NetSolve applications with direct
communications between remote tasks. The software component is a
supplementary one working on the top of the basic NetSolve system. Its design
also allows remote tasks to be freely mixed in a single application, independent
on whether each particular task is enabled for direct communications or not.
Experiments with this software are also presented.

1 Introduction

High performance Grid programming systems have reached a certain level of
maturity. Two examples are NetSolve [1-3] and Ninf [4] that allow scientific
programmers to develop reliable Grid applications. On the other hand, the constantly
growing number of users and applications results in the need of further development
of such systems in terms of functionality and quality.

Traditionally, addition of a new feature to a Grid programming system is achieved
by changing the code of the system to produce its new version. This approach to the
evolution of Grid programming systems has two serious disadvantages. First of all,
the change of the system’s code may introduce bugs and result in some applications
not running properly anymore or even crashing. Secondly, the new version of the
system has to replace the old version on all computers of the Grid in order to support
the development and execution of applications enabled with the new feature. Such
simultaneous and total replacement can have very high organizational overhead and
sometimes be simply unrealistic as different computers on the Grid are managed and
administered by independent and, very often, loosely connected users.

The goal of our research is to investigate if an existing Grid programming system
can be enabled with new features in a non-intrusive and incremental way. Non-
intrusiveness means that the original system does not change and the new features are
provided by a supplementary software component working on the top of the system.
Increment means that the supplementary software component does not have to be

 A Non-intrusive and Incremental Approach to Enabling Direct Communications 1009

installed on all computers to enable applications with the new features. It can be done
step by step and the new features will be enabled in part, with the completeness
dependent on how many nodes participating in the execution of the application have
been upgraded with the supplementary software component. In this paper, we use
NetSolve and one particular feature that is direct communication between remote
tasks, to demonstrate the feasibility of the non-intrusive and incremental evolution of
Grid programming systems.

The rest of the paper is structured as follows. Section 2 describes in detail the
design and implementation of a supplementary software component enabling
NetSolve applications with direct communications between remote tasks in a non-
intrusive and incremental way. Section 3 presents some experiments with this
software. Section 4 outlines related work and concludes the paper.

2 Enabling Direct Communications in NetSolve

NetSolve is positioned as a programming system for high performance distributed
computing on global networks based on GridRPC [5]. In NetSolve, output data of
remote tasks are typically sent back to the client upon completion of each remote task
even if the data are only needed as input for some other remote tasks, resulting in so-
called bridge communications which increase the execution time of applications. In
this paper, we propose a lightweight supplementary software component that enables
direct communication between remote tasks in NetSolve in a non-intrusive and
incremental way, without recompilation or reinstallation of the original NetSolve
programming system. We start presenting the software component by a short
description of its use. The only thing for client programmers to do is to install the
wrapper API and Job Name Service on the client side, then compile the client
program with the wrapper library. The procedure developers should do nothing to
enable direct communications and develop their own procedures as usual. To enable
direct communications on server side, the server administrator needs to register the
software component as a new problem file to NetSolve. No re-installation and re-
compilation for the system. The proposed software component consists of three parts:
Client API & Argument Parser, Server Connector and Job Name Service (JNS).

Client API provides a uniform interface for the client to make remote procedure
calls. Despite the modification on the remote side, the wrapper API allows the calls to
be made in the same manner. The only difference is in the arguments that can be not
only variables storing real data but also handlers, which is a variable storing real data,
the local IP address and the port number are used as such communication info. If
input argument is a handler, then a request is sent to the JNS to get the IP address and
the port number of the remote resource and this information is used as communication
info for this handler. If this output argument is a handler, the returned result
information from computational servers is sent to JNS and registered there. In this
sense, upon making a call to NetSolve, only a handler array that is transferred to the
remote server. The Server Connector manages all the other I/O data transaction.

Server Connector is on the server side, which is a proxy program responsible for
interacting with clients and other Server Connectors to enable direct communications.
When all necessary data have been acquired by Server Connector, it re-submit to the

1010 A. Lastovetsky, X. Zuo, and P. Zhao

local host to perform computations that the user exactly requested for. There is no
difference in the way the client and computational servers download the result of the
computations. The Server Connector firstly returns the result’s communication
information to the client. Then it sets up a socket waiting for the client or the server to
connect in to download the result of computations.

Job Name Service (JNS) is responsible for registration of procedure upon its
invocation during RPC call. Other procedures may send requests to the JNS to search
for registered procedure. During the execution of the application, it contains all
information about every handler. Only client has the permission to register or access a
handler on the JNS. There is no communication and interaction between JNS and
computational servers. Because JNS is designed as a system-independent system on
the client side, it can be applied to different RPC-based systems and not influenced by
any fault or crash on the server side.

3 Implementation and Experiments

For our experiments we choose the same remote computational task that has been
used in experiments with REDGRID presented in [6], namely, matrix multiplication.
Experiments in [6] used 2 remote servers to perform 3 matrix multiplications, and the
client, agent and servers all were in the same Ethernet segment. In our experiments,
we used 8 remote servers to perform 8 matrix multiplications. The interconnecting
network is based on 100 Mbit Ethernet with a switch enabling parallel
communications between computers.

Based on our experiments results we can make conclusion that communication cost
is visibly reduced by using direct communications, where seven communication
bridges were eliminated among twenty four communications. So, the theoretical
speedup is 7/24 = 29.2%. The obtained experimental speedup ranges from 24% to
27%, which is close to the theoretical value. We can also see that the experimental
results are similar to the REDGRID ones, which are ranging from 18% to 28%. The
speedup depends on the ratio of the number of eliminated bridge communications and
the total number of communications. If communication links connecting remote
computers are much faster than communication links connecting the remote
computers and the client computer, the speedup will be much higher. Another
experimental results show that speedup is around 54% while bridge communications
is performed at the rate of 10 Mbit/sec and the direct communications between remote
servers is performed at the rate of 100 Mbit/sec.

4 Related Works and Conclusion

To enable direct communications, NetSolve introduces an original mechanism called
Request Sequencing [7]. The most restrictive of which is that all the tasks have to be
performed on the same computing node. Another effort to reduce the overhead of
bridge communications in NetSolve is the Logistical Computing and Internetworking
(LoCI) [8]. The mechanism is mainly aimed at replicating data in order to keep them
even in the case of crash of some of the computers. Although it is sufficient for

 A Non-intrusive and Incremental Approach to Enabling Direct Communications 1011

enabling direct communications, the goal of building a complete network storage
system makes LoCI over-heavy for enabling just this particular feature. The
REDGRID project [6] is closest to our approach sharing the similar idea behind its
design, which uses an intrusive and non-incremental approach and requires re-
compilation and re-installation of the modified NetSolve on all involved computing
nodes. The main difference is that REDGRID is built into NetSolve and difficult to be
migrated to other GridRPC-based systems. Another related project is SmartNetSolve
[9], an extension of NetSolve aimed at higher performance of Grid applications,
which also enables direct communications in an intrusive and non-incremental way.

In this paper, we have presented an approach to reducing unnecessary bridge
communications in RPC-based Grid programming systems. The main advantage of
the approach is that it is non-intrusive, requiring no changes in the enabled
programming system. It does NOT need recompilation or reinstallation of the Grid
programming system. The approach is incremental by nature allowing remote tasks
both enabled for direct communication and not, to be freely mixed in a single
application. It can be applied to different RPC-based Grid programming systems.
Finally the experimental results have shown that the performance of Grid applications
can be significantly improved by using our supplementary software component.

This work was supported by the Science Foundation Ireland.

References

1. http://icl.cs.utkedu/netsolve/
2. Casanova H., Dongarra J.: NetSolve: A Network Server for Solving Computational Science

Problems. The International Journal of Supercomputer Applications and High Performance
Computing, Vol. 11, No. 3, pp. 212--223, 1997

3. Arnold D., Casanova H., Dongarra J.: Innovation of the NetSolve Grid Computing System.
Concurrency: Practice and Experience, Vol. 14, No. 13-15, pp. 1457-1479, 2002

4. Tanaka, Y., Nakada, H., Sekiguchi, S., Suzumura, T., Matsuoka, S.: Ninf-G: A reference
implementation of RPC-based programming middleware for Grid computing. Journal of
Grid Computing, Vol.1, No.1, pp. 41--51, 2003

5. Seymour, K., Nakada, H., Matsuoka, S., Dongarra, J., Lee, C., Casanova, H.: Overview of
GridRPC: A Remote Procedure Call API for Grid Computing. In: Proceedings of the Third
International Workshop on Grid Computing, pp. 274--278, Springer-Verlag, 2002

6. Desprez, F., Jeannot, E.: Improving the gridrpc model with data persistence and
redistribution. In: Proceedings of ISPDC 2004 / HeteroPar’04, pp. 193--200, IEEE
Computer Society, 2004

7. Arnold, D., Agrawal, S., Blackford, S., Dongarra, J., Miller, M., Seymour, K., Sagi, K., Shi,
Z., Vadhiyar, S.: Users’ Guide to NetSolve V1.4.1. Technical Report ICL-UT-02-05,
University of Tennessee, Knoxville, TN, 2002

8. Beck, M., Arnold, D., Bassi, A., Berman, F., Casanova, H., Dongarra, J., Moore, T.,
Obertelli, G., Plank, J., Swany, M., Vadhiyar, S., Wolski, R.: Middleware for the use of
storage in communication. Parallel Computing, Vol. 28, No. 12, 2002

9. Brady T., Konstantinov E., .Lastovetsky A.: SmartNetSolve: High Level Programming
System for High Performance Grid Computing. In: Proceedings of IPDPS 2006, IEEE
Computer Society, 2006

	Introduction
	Enabling Direct Communications in NetSolve
	Implementation and Experiments
	Related Works and Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

