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Abstract

Heterogeneous networks of computers (HNOCS) are becoming an increasingly popular platform
for executing parallel applications. HNOCs have been proposed as a viable and cost-effective
aternative to supercomputers because of the computation power they offer. The use of such
networks for parallel high-performance computing is limited only by the absence of appropriate
system software.

We propose Heterogeneous Message Passing Interface (HMPI), a unifying framework
designed specially for programming high-performance computations on HNOCs. HMPI provides
all the features to the user to write portable and efficient parallel applications on HNOCs. These
features automate all the main stages involved in application development on HNOCs:

Stage-1). Determination of the characterization parameters relevant to the computational
requirements of the applications and the machine capabilities of the heterogeneous system. These
are mainly the speeds of processors, the latencies and bandwidths of the communication links
between them, and the user-available memory capacity of each machine. The largest problem
size that can be run is limited by the user-available memory capacity on a given machine. These
parameters are determined before the application execution and form the model of executing
network of computers. HMPI provides interfaces to update the parameters of the model at
runtime taking into account the fluctuations of the network load.

Stage-2). Decomposition of the whole problem into a set of sub-problems that can be solved
in parallel by interacting processes. This step of heterogeneous decomposition is parameterized
by the characterization parameters determined in the first step. We propose Heterogeneous Data
Partitioning Interface (HDPI), which automates this step of heterogeneous decomposition. HDPI

provides API that allows the application programmers to specify simple and basic partitioning

XXX



criteriain the form of parameters and functions to partition the mathematical objects used in their
parallel applications.

Stage-3). Selection of the optimal set of processes running on different computers of the
heterogeneous network by taking into account the speeds of the processors, and the latencies and
the bandwidths of the communications links between them. HMPI provides a small set of
extensions to MPI, which automate the process of selection of such a group of processes that
executes the heterogeneous algorithm faster than any other group. The main goal of the design of
this APl in HMPI is to smoothly and naturally extend the MPI model for HNOCs.

Stage-4). Application program execution on the HNOCs. The command line user interface of
HMPI developed consists of a number of shell commands supporting the creation of a virtual
paralel machine and the execution of the HMPI application programs on the virtual parallel
machine. The notion of virtual parallel machine enables a collection of heterogeneous computers
to be used as single large paralel computer.

The merits of HMPI are demonstrated through the design, analysis, and implementation of
three applications on HNOCs. They are Matrix-matrix multiplication, Cholesky Factorization,
and EM3D. These applications are representative of many scientific applications. Experimental
results show that carefully designed HMPI applications can show very good improvements in
execution performance on HNOCs.

Once developed, an HMPI application will run efficiently on any HNOCs without any
changes to its source code (we call the property efficient portability). It can be seen that the
improved performance of the HMPI applications is not due to the fine-tuning of these

applications to a specific environment. By hiding the non-uniformity of the underlying
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heterogeneous system from the application programmer, the HMPI offers an environment that

encourages the design of heterogeneous parallel software in an architecture-independent manner.
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Introduction

CHAPTER 1

I ntroduction

Heterogeneous networks of computers (HNOCS) are becoming an increasingly popular platform
for executing parallel applications [ACP95, SDA96]. HNOCs have been proposed as a viable
and cost-effective alternative to supercomputers because of the computation power they offer.
The use of such networks for parallel high-performance computing is limited only by the absence
of appropriate system software.

The standard Message Passing Interface (MPI) [SOJ+96] is the main programming tool used
for programming high-performance computations on homogeneous distributed-memory
computer systems such as supercomputers and clusters of workstations. It is also normally used
to write parallel programs for heterogeneous networks of computers (HNOCSs). However, it does
not provide tools that address some additional challenges posed by HNOCs, which are outlined
below:

» Heterogeneity of processors. A good parallel application for HNOCs must distribute
computations unevenly taking into account the speeds of the processors. The efficiency
of the parallel application also depends on the accuracy of estimation of the speeds of the
processors of the HNOCs, which is difficult because the processors may demonstrate
different speeds for different applications due to differences in the set of instructions, the
number of instruction execution units, the number of registers, the structure of memory
hierarchy and so on.

* Ad hoc communication network. The common communication network is normally
heterogeneous. The latency and bandwidth of communication links between different

pairs of processors may differ significantly. This makes the problem of optimal
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distribution of computations and communications across the HNOCs much more difficult
than across a dedicated cluster of workstations interconnected with a homogeneous high-
performance communication network.

* Multi-user decentralized computer system. Unlike dedicated clusters and
supercomputers, HNOCs are not strongly centralized computer systems. A typical HNOC
consists of relatively autonomous computers, where each one may be used and
administered independently by its users. The first implication with the multi-user
decentralized nature of HNOC:s is the unstable performance characteristics of processors
during the execution of a parallel program as the computers may be used for other
computations and communications.

Thus the standard MPI does not provide features, which facilitate the writing of parallel
programs that distribute computations and communications unevenly, taking into account the
speeds of the processors, and the latencies and bandwidths of communication links. To the best
of our knowledge, there is no research effort made to address this challenge. We present an effort
in this direction — a small set of extensionsto MPI, called HMPI (Heterogeneous MPI), aimed at
efficient parallel computing on HNOCs, and its research implementation. The main goal of the
design of the APl in HMPI is to smoothly and naturally extend the MPI model for heterogeneous
networks of computers. This involves the design of alayer above MPI that does not involve any
changes to the existing MPI API. The HMPI APl must be easy-to-use and suitable for most
scientific applications. The HMPI APl must also facilitate transformation of MPI applications to
HMPI applications that run efficiently on HNOCs.

Application development on HNOCs consists of four stages:
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Stage-1). Determination of characterization parameters relevant to both the computational
requirements of the applications and the machine capabilities of the heterogeneous system using
information about the expected types of application problems and the machines in the
heterogeneous system. For example, for floating-point operations, the computational
requirements to be quantified are the number of each type of floating-point operation needed to
perform the calculation, and the capabilities of the machines to be quantified are the speeds for
these different types of floating-point operations, the latencies and the bandwidths of the
communication links between each pair of machines, and the user-available memory capacity of
each machine. The largest problem size that can be run is limited by the user-available memory
capacity on a given machine. Other parameters such as the number of memory levels of the
memory hierarchy and the size of each level of the memory hierarchy on each machine, memory
latency associated with each level of memory hierarchy, multiple instruction issue, instruction
pipelining etc are incorporated into the notion of speed of a processor.

Stage-2). Decomposition of the whole problem into a set of sub-problems that can be solved
in paralel by interacting processes. This step of heterogeneous decomposition is parameterized
by the characterization parameters determined in the first step, mainly, the speeds of processors
and the latencies and bandwidths of the communication links between them, and the user-
available memory capacity of the machine.

Stage-3). Matching and scheduling (mapping). The information generated in the previous
stages are used to derive the estimated execution time for a given sub-problem on a given
machine and the intermachine communication overhead associated with a given assignment of
sub-problems to machines. These static results and dynamic information about the current load

and status of the interconnection network can be used to determine the assignment of the sub-
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problems to paralel processes and the mapping of these parallel processes to the computers of
the executing network, that is, the selection of an optimal set of processes running on different
computers of the heterogeneous network by taking into account the speeds of the processors, and
the latencies and the bandwidths of the communications links between them.
Stage-4). Application program execution on the HNOCs.
The first stage in the development of HMPI involved the automation of steps 1, 3, and 4. It
involved the design of a small set of extensionsto MPI that can be used for
 Determination of the characterization parameters relevant to the computational
requirements of the applications and the machine capabilities of the heterogeneous
system, and
» Selection of the optimal set of processes running on different computers of the
heterogeneous network.
This was followed by an implementation of these set of extensions. The command line user
interface of HMPI developed consists of a number of shell commands supporting the creation of
a virtua paralel machine and the execution of the HMPI application programs on the virtual
parallel machine. The notion of virtual parallel machine enables a collection of heterogeneous
computers to be used as single large paralel computer. Rather than leaving the parallel
programmer to manually select each individual computer where tasks are to execute and then log
into each machine in turn to actually spawn the tasks and monitor the execution, the virtual
machine provides a simple abstraction to encompass the disparate machines.
While using HMPI for parallel solution of regular and irregular problems on HNOCs, we

found that the second step of heterogeneous decomposition can be very tedious and error-prone.
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An irregular problem is characterized by some inherent coarse-grained or large-grained
structure. This structure implies a quite deterministic decomposition of the whole problem into
relatively small number of subtasks, which are of different size and can be solved in parallel.
Correspondingly, a natural way of decomposition of the whole program, which solves the
irregular problem on a network of computers, is a set of parallel processes, each solving its
subtask and all together interacting via message passing. As sizes of these subtasks are typically
different, the processes perform different volumes of computation. Therefore, the mapping of
these processes to the computers of the executing HNOC should be performed very carefully to
ensure the best execution time of the program.

The most natural decomposition of a regular problem is a large number of small identical
subtasks that can be solved in parallel. As those subtasks are identical, they are all of the same

size. Multiplication of two nxn dense matrices is an example of a regular problem. This

problem is naturally decomposed into n” identical subtasks, each of which is to compute one
element of the resulting matrix. The main idea behind an efficient solution to a regular problem
on a heterogeneous network of computers is to transform the problem into an irregular problem,
the structure of which is determined by the structure of the executing network rather than the
structure of the problem itself. So, the whole regular problem is decomposed into a set of
relatively large sub-problems, each made of a number of small identical subtasks stuck together.
The size of each subproblem, that is, the number of elementary identical subtasks constituting the
subproblem, depends on the speed of the processor, on which the subproblem will be solved.
Correspondingly, the parallel program, which solves the problem on the heterogeneous network

of computers, is a set of parallel processes, each solving one subproblem on a separate physical
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processor and all together interacting via message passing. The volume of computations
performed by each of these processes should be proportional to its speed.

Thus while the step of problem decomposition is trivial for irregular problems, it becomes
key for a regular problem. In fact, at this very step the application programmer designs a
heterogeneous data parallel algorithm by working out a generic decomposition of the regular
problem parameterized by the number and speed of processors. Most typically the generic
decomposition takes the form of data partitioning. The application programmers need to solve
corresponding data partitioning problems and design and implement all supportive code from
scratch. Existing programming systems for heterogeneous paralel computing [AKL+99,
LAK+00, Las02] support the mapping of paralel algorithms to the executing network but
provide very poor support for generic heterogeneous decomposition of regular problems
parameterized by the number and speed of processors. This motivated us to try and automate the
step of heterogeneous decomposition of regular problems by designing a library of functions
solving typical partitioning problems for networks of heterogeneous computers. Our origina
approach wasto do it by just collecting existing a gorithms, designing an API to these algorithms
and implementing the API. The main problem we came across was that no classification of
partitioning problems was found which could be used as a basis of APl design. Existing
algorithms created a very fragmented picture. Therefore an important goal of our research
became to classify partitioning problems for networks of heterogeneous computers. Such
classification had to help to specify problems with known efficient solutions and identify open
problems. Then based on this classification an APl would have to be designed and partialy
implemented (for problems that have known efficient solutions). An additional requirement to

this classification was that it had to be useful for distributed computing on networks as well.
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Therefore, we propose a classification of mathematical problems encountered during
partitioning of datawhen designing parallel algorithms on networks of heterogeneous computers.
Our approach to this classification is based on two corner stones:

» A redigtic performance model of networks of heterogeneous computers,

* A natura classification of mathematical objects most commonly used in scientific,
engineering and business domains for parallel (and distributed) problem solving on
networks of heterogeneous computers.

Our classification of problems consists of two categories. problems with known efficient
solutions and open problems. Based on this classification, we suggest an API for partitioning
mathematical objects commonly used in scientific and engineering domains for solving problems
on networks of heterogeneous computers. The API is part of the Heterogeneous Data Partitioning
Interface (HDPI). These interfaces alow the application programmers to specify simple and
basic partitioning criteriain the form of parameters and functions to partition their mathematical
objects. These partitioning interfaces are designed to be used along with various programming
toolsfor paralel and distributed computing on heterogeneous networks.

We evauate HMPI using three applications on HNOCs. They are Matrix-matrix
multiplication, Cholesky Factorization, and the EM3D application simulating the interaction of
electric and magnetic fields on a three-dimensional object. These applications are representative
of many scientific applications. Experimental results show that carefully designed HMPI
applications can show very good improvements in execution performance on HNOCs.

The ultimate goal of this work is to provide a unifying framework designed specially for

programming high-performance computations on HNOCs. We seek to demonstrate that HMPI
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can provide a simple programming approach, portable applications, efficient performance, and

predictable execution on HNOCs. Our results fall into the following categories:

Extensionsto MPI.

» Heterogeneous Data Partitioning Interface (HDPI).

* HMPI application programming.

* Programming environment to support HMPI programming.

* Experimentation demonstrating the effectiveness of HMPI in writing portable and

efficient parallel applications.

The rest of the thesis addresses each of the above contributions. Chapter 2 provides a survey
of related work. Chapter 3 presents the model of HMPI. The high-level architectura details of a
research implementation of HMPI are also presented in this chapter. The classification of
partitioning problems and the Heterogeneous Data Partitioning Interface (HDPI) are presented in
Chapter 4. The methodology and features of the HMPI library are illustrated with some
representative parallel HMPI applications in Chapter 5. Results of experiments with these
applications on HNOCs investigate the merits of using HMPI. Conclusions and directions for

future work follow in Chapters 6 and 7.
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CHAPTER 2

Related Work

The section surveys related work from the literature, which includes mainly:

High-level tools facilitating the implementation of paralel agorithms on distributed-
memory architectures.

Extensions to Message Passing Interface (MPI) and runtime systems that distribute data
efficiently and automatically when there are changes in the application or the underlying
environment.

Implementations of MPI that adopt runtime adaptation schemes to find an efficient data
distribution when workload and communication characteristics of a program change at
runtime.

Research dealing with a combined approach of compile-time analysis, runtime load
distribution, and cooperation of operating system scheduler for improved utilization of
resources on HNOC:s.

Data partitioning algorithms for mathematical objects most commonly used in scientific,
engineering and business domains for paralel (and distributed) solving problems on
HNOCs and performance models used for such data partitioning algorithms.

Performance models of paralel architectures, execution-time estimation models for
HNOCs, and models analysing the scalability of heterogeneous parallel algorithms.

Static and dynamic mapping strategies used for matching and scheduling of application
tasks to the machines.

High performance computing on global networks.
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2.1 High-leve Parallel Programming T ools

The paralel programming tools developed to facilitate the implementation of paralel
algorithms on distributed memory-architectures include (MPI) [SOJ+96], Pardlel Virtua
Machine (PVM) [GBD+94], High Performance Fortran (HPF) ([HPF94], [HPF97]),
Dataparallel-C [HQ91], and mpC [AKL+99, LAK+00, Las02].

PVM and MPI are the main programming tools used for programming high-performance
computations on homogeneous distributed-memory computer systems such as supercomputers
and clusters of workstations. They are aso normally used to write paralel programs for
heterogeneous networks of computers (HNOCSs). They are message passing packages providing,
in fact, the assembler level of parallel programming for HNOCs.

The most important new concept introduced by MPI is the communicator. The communicator
allows the programmer to safely separate messages that do not have to be logically mixed, even
when the messages are transferred between processes of the same group. Logicdly a
communicator may be seen as a separate communication layer associated with a group of
processes. There may be several communicators associated with the same group, providing
nonintersecting communication layers. It is this very feature that allows the programmer to use
MPI for writing parallel libraries. In other words, the programmer can write an MPI subprogram
that can be safely used by other programmers in their MPI programs without any knowledge of
the details of its implementation. In contrast, PVM does not have the capacity to separate safely
communication layers for message passing, and therefore it cannot be used for implementation of
paralel libraries. The point is that the only unique attribute characterizing a PVM process is its
ID assigned at runtime to each process of the PBM program. All other communication attributes,

which could be used to separate messages, such as groups and tags, are user-defined. Therefore
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they do not have to be unique at runtime, especidly if different modules of the program are
written by different programmers.

Central to the design of PVM is the notion of a “virtual machine” — a set of heterogeneous
hosts connected by a network that appears logically to the user as a single large parallel
computer. The virtual machine in PVYM aso serves to encapsulate and organize resources for
parallel programs. Further, this resource abstraction is carefully layered to alow varying degrees
of control. The user might create an arbitrary collection of machines and then treat them as
uniform computational nodes, regardless of their architectural differences. Although MPI does
not have a concept of a virtual machine, MPI provides a higher level of abstraction on top of the
computing resources in terms of message passing topology. In MPI a group of tasks can be
arranged in a specific logical interconnection topology. A clear distinction must be made
between the virtual process topology and the topology of the underlying, physical hardware. The
virtual topology can be exploited by the system in the assignment of processes to physical
processors.

However, these tools do not provide features to facilitate the development of adaptable
parallel applications: that is, such applications that distribute computations and communications
in accordance with input data and the peculiarities of the executing heterogeneous network. Even
the topological facilities of the MPI have turned out to be insufficient to solve the problem. So,
to ensure the efficient execution of the program on a particular network, the user must use
facilities external to the program, such as boot schemes and application schemes [BDV94]. If the
user is familiar with both the topology (that is, the structure and processor/link performances) of
the target network and the topology (that is, the paralel structure) of the application, then, by

means of use of such configuration files, he or she can map the processes, which constitute the
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program, onto processors of the network to provide the most efficient execution of the program.

Some tools that support and facilitate such a static mapping have appeared, but if the application

topology is defined at run time (that is, if it depends on the input data) this approach will not

work.

The standard MPI specification does not provide tools that address some additional

challenges posed by HNOCs, which are outlined below:

Heterogeneity of processors. A good parallel application for HNOCs must distribute
computations unevenly taking into account the speeds of the processors. The efficiency
of the parallel application also depends on the accuracy of estimation of the speeds of the
processors of the HNOCs, which is difficult because the processors may demonstrate
different speeds for different applications due to differences in the set of instructions, the
number of instruction execution units, the number of registers, the structure of memory
hierarchy and so on.

Ad hoc communication network. The common communication network is normally
heterogeneous. The latency and bandwidth of communication links between different
pairs of processors may differ significantly. This makes the problem of optimal
distribution of computations and communications across the HNOCs much more difficult
than across a dedicated cluster of workstations interconnected with a homogeneous high-
performance communication network. Other issue is that the common communication
network can use multiple network protocols for communication between different pairs
of processors. A good paralel application should be able to use multiple network
protocols between different pairs of processors within the same application for faster

execution of communication operations.
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* Multi-user decentralized computer system. Unlike dedicated clusters and
supercomputers, HNOCs are not strongly centralized computer systems. A typical HNOC
consists of relatively autonomous computers, where each one may be used and
administered independently by its users. The first implication with the multi-user
decentralized nature of HNOC:s is the unstable performance characteristics of processors
during the execution of a parallel program as the computers may be used for other
computations and communications. The second implication is the much higher
probability of resource failuresin HNOCs compared to dedicated cluster of workstations,
which makes fault tolerance a necessary feature for paralel applications running on
HNOC:s.

Thus, there are three important challenges (though these are not the only ones) posed by

HNOCs, which are not addressed by the standard MPI specification.

Firstly, the standard MPI does not provide a means for employment of multiple network
protocols between different pairs of processors for efficient communication in the same MPI
application. A standard implementation of MPI does not address the challenge either. There have
been majority of vendor implementations addressing this issue especialy the use of shared
memory and TCP/IP in MPICH [GLD+96], the support for multiple communication mediums
(but not more than one device simultaneously) TCP, SMP, Myrinet, and InfiniBand in MPI/Pro
[RS99, Dim01], and support of multiple communication devices simultaneously in WMPI
[MS98b]. At the same time, there have been some research efforts to address this challenge
implicitly, via advanced non-standard implementations of the standard MPI specification (Nexus

[FGK+97], Madeleine [ABNOO)).
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Secondly, the standard MPI does not provide a means for the writing of fault-tolerant parallel
applications for HNOCs. There are some research efforts made recently to address this challenge
such as MPI-FT [LNL+00], MPI/FT [BNC+01], and the fault-tolerant MPI (FT-MPI) [FBDO1].
MPI-FT proposes a fault tolerant and recovery scheme for MPI, consisting of a detection
mechanism for detecting process faillures and a recovery mechanism. The recovery function
simulates all the communication of the processes with the dead one by re-sending to the
replacement process all the messages destined for the dead one. In MPI-FT, each process keegps a
buffer with its own message traffic, or a monitoring process, called the Observer, receives and
stores all message traffic. MPI/FT is a high-performance MPI-1.2 implementation enhanced with
low-overhead functionality to detect and recover from process failures. FT-MPI is aso an MPI-
1.2 specification implementation that provides process level fault tolerance at the MPI API level.
FT-MPI survives the crash of n-1 processes in an n-process job, and, if required, can
respawn/restart them. It allows the application to continue using a communicator with the failed
rank while explicitly excluding communication with the failled rank, or to shrink the
communicator by excluding the failed rank, or to spawn a new process to take the place of the
failed process. However, it is dtill the responsibility of the application to recover the data
structures and the data on the crashed processes.

Thirdly, the standard MPI does not provide features, which facilitate the writing of parallel
programs that distribute computations and communications unevenly, taking into account the
speeds of the processors, and the latencies and bandwidths of communication links.

High Performance Fortran (HPF) is a high-level parallel language that was originaly
designed for (homogeneous) supercomputers as the target architecture. HPF was standardized in

1994 as HPF 1.1 [HPF94]. It only provided regular mapping patterns and did not support uneven
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distribution of the array elements over processors, necessary for balanced mappings of
heterogeneous algorithms. HPF 2.0 [HPF97] was standardized in 1997. HPF 2.0 provides
extended mapping features that permit greater control over the mapping of data, including
facilities for dynamic realignment and redistribution of arrays at runtime (REALIGN,
REDISTRIBUTE, DYNAMIC directives), mapping of data among subsets of processors,
mapping of pointers and components of derived types, and support for irregular distribution of
data (GEN_BLOCK and INDIRECT distributions). The “generalized” block distribution,
GEN_BLOCK, allows contiguous segments of an array, of possibly unequal sizes, to be mapped
onto processors. The INDIRECT distribution allows a many-to-one mapping of elements of a
dimension of a data array to a dimension of a target processor arrangement. Thus, HPF-2
provides some basic support for programming heterogeneous algorithms. At the same time, HPF-
2 provides no language constructs alowing the programmer to better control mapping of the
heterogeneous algorithms to HNOCs. The HPF programmer has to rely on some default mapping
provided by the HPF compiler.

Dataparallel-C is an extension to ANSI C that allows programmers to write efficient code for
paralle systems. It brings the data parallel programming model to C. It presents the model of
computation characterized by a global name space, synchronous execution, and virtual
processors as the unit of paralelism. Virtual processors are alocated in groups of like type. Each
virtual processor in the group has an identical memory layout. The Dataparallel C programmer
specifies a virtual processor’'s memory layout using syntax similar to the C struct using a new
keyword domai n. Dataparallel C allows additional information to be provided by the
programmer in order to aid the compiler in the mapping of virtual processors to physical

processors. The array dimension of the domain array establishes a virtual topology. A one-
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dimensional domain array is considered to be a ring of virtual processors, a two-dimensional
domain array is considered to be a torus (doughnut topology). Dynamic load balancing is
accomplished through periodic exchange of load information during calls to the routing library at
runtime.

The mpC language is an ANSI C superset designed speciadly for programming high-
performance computations on HNOCs. The main idea underlying mpC language, is to provide
language constructs that allow the user to define in detail an abstract heterogeneous parallel
machine that is most appropriate to hissher parallel agorithm. The mpC language allows the
programmer to define at runtime all the main features of parallel agorithm, which have an
impact on the execution performance of the application on heterogeneous platforms, including:

* Thetota number of processes executing the algorithm,

* The total volume of computations to be performed by each of the processes in the group

during the execution of the algorithm,

* The total volume of data to be transferred between each pair of processes in the group

during the execution of the agorithm, and

* The order of execution of the computations and communications by the involved parallel

processes in the group, that is, define exactly how the processes interact during the
execution of the algorithm.

Such an abstraction of parallel agorithm is called a network type. The mpC programming
system uses the information extracted from the definition of network type together with
information about actual performances of processors and communication links of the executing
network to map the processes of the parallel program to this network in such a way that better

execution time is achieved. The most important features of mpC are:
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» once developed, an mpC application will run efficiently on HNOCs without any changes
to its source code.

* it dlows one to write applications adapting not only to nomina performances of
processors but also to redistribute computations and communications dependent on
dynamic changes of workload of separate computers of the executing network.

The mpC language provides al the facilities lacking in the other high-level tools. It expresses
both data and control paralelism. Like HPF, it includes a vector subset, named the C[] language
[GL94] to provide data paralelism. It provides implicit communication through message
passing, that is, the programmer does not have to program the communication. It also supplies
mechanisms, in the form of network types, to the user to guide the mapping process essential for

exploiting his or her knowledge of the application.

2.1.1 Summary

The various programming environments for HNOCs surveyed, excluding mpC, lack either the
facilities to describe the virtual parallel system, or such facilities are too poor to specify an
efficient distribution of computations and communications over the target network. The
problems with mpC are mainly to do with the learning curve associated with a high-level parallel
language. The other issue is the limitation on its adaptability to unanticipated machines,
algorithmic models and data structures. In many cases these require new semantics to be added

to the language for efficient implementations to be automatically generated.

2.2 M Pl Extensionsd/l mplementationsfor HNOCs

Dyn-MPI [WLN+03] extends MPI by providing specialized facilities for memory allocation,

communication, and node participation. The key component of Dyn-MPI is its run-time system,
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which efficiently and automatically redistributes data on the fly when there are changes in the
application or the underlying environment. Dyn-MPI also provides a facility for removing nodes
from the computation when their participation degrades performance. However converting an
MPI program to a Dyn-MPI program can require major modifications for it to run efficiently on
HNOCs. These include allocation functions for all potentially re-distributable arrays and
determination of Deferred Regular Section Descriptors (DRSDs) for each array. Also the
computational model of Dyn-MPI is essentially Single Program Multiple Data (SPMD), in which
each node executes the same program text but will take different execution paths through this
text depending on the input data.

AMPI [BKS+01, LBKO02] is an implementation of a significant subset of MPI 1.1 Standard
over CHARM++ [KK93]. AMPI utilizes the dynamic load-balancing capabilities of CHARM++
by associating a “user-level” thread with each CHARM++ migratable object. User’s code runs
inside this thread, so that it can issue blocking receive calls similar to MPI, and still present the
underlying scheduler an opportunity to schedule other computations on the same processor. The
runtime system keeps track of computation loads of each thread as well as communication graph
between AMPI threads, and can migrate these threads in order to balance the overall load while
simultaneously minimizing communication overhead. However converting an MPI program to
an AMPI program can require major modifications for it to run efficiently on HNOCs. These
include privatization of global variables, registering chunk data and providing a packing
subroutine to the AMPI runtime system to pack the thread' s data, and the migration decision has
to be made by the user through a call to migration subroutine even though the actual migration of

the chunk is done by the system’ s load balancing strategy.
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Tern [KS01] is an implementation of a subset of the MPI standard for message passing
paralel programming, and augments the MPI standard to provide for multithreaded execution. It
provides the ability to transparently migrate threads between the nodes executing the paralel
application thus achieving parallel program performance improvement through load balance and
improved fault tolerance. Tern makes use of a novel lazy heap migration protocol, which can
greatly reduce the amount of time necessary to migrate a thread and its corresponding data
regions. However in athreaded environment, static and global variables will be shared among all
threads executing in the same process and so need to be made thread-specific. Tern provides a
compiler directive prefix that is required to be added to each global variable and static-local
variable declaration. This alocates thread-specific instances of all variables utilizing the concept
of thread-local storage. Tern exposes the policy mechanisms used to guide migration decisions to
the user, allowing for customizable thread migration policies. Tern provides two mechanisms for
safely migrating a user thread. The first mechanism allows the user to insert migration cals in
the user thread. However this mechanism requires that the user knows exactly where to insert the
migration calls. Alternatively, Tern runtime system migrates the thread depending on the policy
mechanisms devised by the user.

CRAUL [RDO01] is a runtime system that combines compile-time analysis, runtime load
balancing and locality considerations, and cooperative scheduling support from the operating
system for improved performance of parallel programs on HNOCs. The CRAUL compiler is a
Stanford University Intermediate Format (SUIF) compiler [AAL+95] with two additional passes.
The first pass works before the parallel code generation and inserts code with access information
about each parallél region’s access patterns. The second pass works on parallelized programs and

modifies the loop structure so that a task queue is used. The runtime system uses this loop and
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accesses information to partition the available work based on locality of data access as well as
resource availability. The operating system responds to application-specific information on
scheduling needs while respecting fairness. The operating system also provides feedback to the
application about the scheduling status of the cooperating processes, alowing the runtime to
make resource management decisions based on this information.

However, the CRAUL compiler lacks the more complex translation mechanisms essential to
extract paralelism from less easily analyzable loops. In such cases, the user needs to insert the
required data structures manually into an aready paralelized program. The problem of
portability and reusability of the parallel code generated is not addressed. Also CRAUL does not
provide features required to capture programmer’s knowledge of an application to the level
necessary to automatically provide an efficient implementation on a heterogeneous system.
CRAUL shields the user from data distribution details but does not supply mechanisms for the
user to guide the mapping process essential for exploiting his or her knowledge of the

application.
2.2.1 Summary

The various extensions to MPI and its implementations surveyed shield the user from data
distribution details. These research efforts provide compiler and runtime systems that perform
the tedious and error-prone chore of load balancing. However the tasks of mapping of the
parallel processes to the executing heterogeneous network and scheduling are not addressed.
These tools aso do not provide mechanisms to the programmer to guide the load balancing,
mapping and scheduling processes that can exploit his or her knowledge of the application.
Instead they tend to automatically discover the algorithmic properties from the code, which is

non-trivial in many aspects. Ideally atool must supply mechanisms to the programmer so that he
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or she can provide information to it that can assist in finding the most efficient implementation
on a HNOCs. Combining the system’s detailed analysis with the programmer’s high-level
knowledge of the application is essential in finding more efficient mappings than either one

alone is capable of achieving.

2.3 Data Partitioning

The core of scientific, engineering or business applications is the processing of some
mathematical objects that are used in modeling corresponding real-life problems. In particular,
partitioning of such mathematical objectsis a core of any data parallel algorithm. Our analysis of
various scientific, engineering and business domains resulted in the following short list of
mathematical objects commonly used in parallel and distributed agorithms: sets (ordered and
non-ordered), dense matrices (and multidimensiona arrangements) and sparse matrices,
graphs, and trees (atreeisagraph in which any two vertices are connected by exactly one path).
Sets
A set isawell-defined collection of objects considered as awhole. The objects of a set are called
elements or members. We consider the elements of the set to represent independent chunks of
computations, each of equal size (i.e., each requiring the same amount of work), which can be
computed without reference to each other i.e., without communication.
There are two main criteria used for partitioning a set:
1) The number of elementsin each partition should be proportional to the speed of the
processor owning that partition.
2) The sum of weights of the elements in each partition should be proportional to the speed

of the processor owning that partition.
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Additional restrictions that may be imposed on partitioning of an ordered set are:

The elements in the set are well ordered and should be distributed into digoint contiguous

chunks of elements.

The most general problem of partitioning a set can be formulated as follows:

Given: (1) A set of n elements with weights w; (i=0,...,n-1), and (2) A well-ordered set of p
processors whose speeds are functions of the size of the problem x (We define the size of
the problem to be the amount of data stored and processed by the sequential algorithm),

s=fi(x), with an upper bound b on the number of elements stored by each processor

Partition the set into p digoint partitions such that: (1) The sum of weights in each partition
is proportional to the speed of the processor owning that partition, and (2) The number of
elements assigned to each processor does not exceed the upper bound on the number of

elements stored by it.

The most general partitioning problems for a set and an ordered set are very difficult and open

for research.

One example of a specia partitioning problem for aset is:

Given: (1) A set of n elements, (2) A well-ordered set of p processors whose speeds are
represented by single constant numbers, S,S1,...,S-1, and (3) There are no limits on the
maximal number of elements assigned to a processor,

Partition the set into p digoint partitions such that the number of elements in each partition

is proportional to the speed of the processor owning that partition.
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The algorithm used to perform the partitioning is quite straightforward, of complexity O(p?)
[BBP+01]. The agorithm uses a naive implementation. The complexity can be reduced down to

O(pxlog,p) using ad hoc data structures [BBP+01].

Dense M atrices

Matrix partitioning algorithms are usually designed during the implementation of heterogeneous
paralel agorithms for linear algebra ([CQ93], [KLO1], [BBR+01], [BBP+01]). These are
modifications of traditional homogeneous algorithms with mappings for HNOCs. The mappings
take into account all peculiarities of the corresponding parallel algorithms and are based on very
careful performance analysis. The typical partitioning of a matrix uses block-cyclic distribution
of matrices on either a one-dimensional or on a two-dimensional grid of processors. Blocked
versions of the parallel agorithms for matrix multiplication and linear system solvers are used in
Scal APACK (Scaable Linear Algebra Package) [CDD+96] to squeeze the most out of state-of-
the-art processors with pipelined arithmetic units and multilevel memory hierarchy. The block
cyclic distribution has been also incorporated in the HPF language [HPF97].

Sparse Matrices

A sparse matrix is a matrix populated primarily with zeros. More precisely, a matrix is
considered sparse if acomputation involving it can utilize the number and location of its nonzero
elements to reduce the run time over the same computation on a dense matrix of the same size. It
IS customary to store an nxn matrix in an nxn array. However, if the matrix is sparse, storage is
wasted because a magjority of the elements of the matrix are zero and need not be stored
explicitly. For sparse matrices, it is common practice to store only the nonzero entities and to

keep track of their locationsin the matrix. A variety of storage schemes are used to store and
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Figure2.1: A 6x6 sparse matrix and its representation in Compressed Storage Row (CSR) format.

manipulate sparse matrices [KGG+94]. There is no single best data structure for storing sparse
matrices. Different data structures are suitable for different operations.
There are two methods to partition a sparse matrix:
» The application of set partitioning algorithms to the data storage scheme used for storing
a sparse matrix. For example, assuming that a sparse matrix is stored in CSR
(Compressed Sparse Row) format. In CSR format illustrated in Figure 2.1, there are three
arrays to store an nxn sparse matrix with g nonzero entries: 1). A gx1 array VAL contains
the nonzero elements. These are stored in the order of their rows. 2) A gx1 array J that
stores the column numbers of each nonzero element. 3) An nx1 array |, the i-th entry of

which points to the first entry of the i-th row in VAL and J. The sparse matrix is then
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partitioned such that the number of elementsin the array VAL (the array is assumed to be
an ordered set) is proportional to the speed of the processor.

* Transformation of a sparse matrix into a graph and application of graph partitioning

algorithms to the graph.

Balay et al. [BGM+97] propose PETSc, which is a suite of data structures and routines for
scalable (parallel) solution of scientific applications modeled by partial differentia equations.
PETSc supports variety of sparse storage formats because no single sparse storage format is
appropriate for all problems.

Birov et al. [BPB+99] present a parallel mathematical library suite for sparse matrices. The
Parallel Mathematical Libraries Project (PMLP) constitutes a concerted effort to create a
supportable, comprehensive “Sparse Object-oriented Mathematical Library Suite” PMLP
includes operations on various matrix types such as general, banded, symmetric, banded
symmetric, skew symmetric, hermitian, skew hermitian, and lower and upper triangular matrices.
Furthermore, PMLP provides functionality independent of the internal data representation of
irregular sparse objects and different storage matrix formats (e.g. coordinate, compressed sparse
column, compressed sparse row, sparse diagonal, dense, Ellpack/Itpack, and skyline) are
included.

Graphs
The standard graph partitioning approach has been to divide the vertices of the graph into
approximately equal-weight partitions (balance computations) and minimize the number of cut

edges between partitions (minimize total runtime communication). Formally, the k-way graph

partitioning problem is defined as follows. Given a graph G=(V,E) with [\/| =n, partition Vinto k

subsets, V1,Va,..., Vi such that V, NV, =@ for iz, M|=n/k, and U, V, =V, and the number of
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Figure 2.2: Edge cuts versus communication volume.

edges of E whose incident vertices belong to different subsets is minimized. The k-way graph
partitioning problem can be naturally extended to graphs that have weights associated with the
vertices and the edges of the graph. In this case, the goal is to partition the vertices into k disjoint
subsets such that the sum of the vertex-weights in each subset is the same, and the sum of the
edge-weights whose incident vertices belong to different subsets is minimized. A k-way graph
partition of V is commonly represented by a partition vector P of length n, such that for every
vertex vV, P[v] is an integer between 1 and k, indicating the partition to which vertex v
belongs. Given a partition P, the number of edges whose incident vertices belong to different
subsets is called the edge-cut of the partition.

Unfortunately, the standard graph partitioning approach has several significant shortcomings.
Firstly, the edge cut metric that it tries to minimize is, a best, an imperfect model of
communication in a parallel computation. Edge cuts are not proportional to the total
communication volume as illustrated in Figure 2.2. The ovals correspond to different processors
among which the vertices of the graph are partitioned. Assume that each edge has a weight of

two corresponding to one unit of data being communicated in each direction, so the weight of the
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cut edges is ten. However, observe that the data from node v2 on processor P1 need only be
communicated once to processor P2; similarly with nodes v4 and v7. Thus, the actua
communication volume is only seven. In general, the edge cut metric does not recognize that two
or more edges may represent the same information flow, so it overcounts the true volume of
communication. The model also suffers from alack of expressibility that limits the applications
it can address.

Secondly, the time to send a message on a parallel computer is a function of the latency (or
start-up time) as well as the size of the message. As has been observed by a number of
researchers, graph partitioning approaches try to (approximately) minimize the total volume but
not the total number of messages. Depending on the machine architecture and problem size,
message latencies can be more important than message volume.

Third, the performance of a parallel application is generaly limited by the slowest processor.
Even if the computational work is well balanced, the communication effort might not be. Rather
than minimizing the total communication volume or even the total number of messages, we may
instead wish to minimize the maximum volume and/or number of messages handled by any
single processor. As severa researchers have noted, the standard edge cuts measure does not
encapsulate this type of objective.

The standard model using an undirected graph can only encode symmetric data dependencies
and symmetric partitions. These limitations are a particular problem for iterative solvers on
unsymmetrical and non-square matrices. Hendrickson and Kolda [HKOOQ] propose a bipartite
graph model (A bipartite graph is a special graph where the set of vertices can be divided into

two digoint sets with two vertices of the same set never sharing an edge) for describing matrix-
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vector multiplication that addresses some of these shortcomings. The bipartite model can also be
applied to other problems involving unsymmetrical dependencies and multiple phases.

Edge cuts are not equal to communication volume, as illustrated in Figure 2.2. The true
communication volume is not a function of the number of edges being cut, but rather the sum of

the number of processors to which each vertex has connections. More formally, Given a graph

G=(V,E) with V| =n, and a partition vector P of length n such that P[v] stores the number of the

partition that vertex v belongs to. Let V, [JV be the subset of interface vertices. That is, each

vertex vV, is connected to at least one vertex that belongs to a different partition. For each
vertex v[1V, let Nadj[Vv] be the number of domains other than P[v] that the vertices adjacent to v

belong to. The total communication volume is defined as> Nadj[v]. This is the tota

v
communication volume incurred by the partitioning because each interface vertex v needs to be
sent to al of its Nadj[v] partitions. This is also called the boundary cut of the partition. In
particular, if w, is the amount of data that needs to be sent for vertex v, then the boundary cut

is )" w, x Nadj[v] . Minimizing boundary cutsis a non-traditional graph partitioning problem, but

VIV,

it can be addressed using the same algorithmic tools that have been developed for other
partitioning variants. A more elegant expression of this metric is in the hypergraph model
proposed by [CA96, PCA+96]. By partitioning the hypergraph so that hyperedges are split
among as few processors as possible, the model correctly minimizes communication volume.

The constraint partitioning model proposed by Karypis and Kumar [KK98a] can be used for
multi-phase calculations. In the multi-constraint model, each vertex is assigned a vector of m
weights that represent the work associated with that vertex in each of the m computational

phases. The goal is to partition the vertices of that graph in such a way that communication is

28



Related Work

minimized and each of the m weights is balanced. In this way, each phase of the computation
will be load balanced. The goal is to compute a k-way partitioning such that each one of the m
weights is individually balanced within a specified tolerance. As an example, consider the
multiphysics ssmulation (Multiphysics simulation is based on a single computational framework
for the modeling of multiple interacting physica phenomena) in which the amount of
computation as well as the memory requirementsis not uniform across the mesh. Existing single-
constraint graph partitioning agorithms alow us to easily partition the mesh among the
processors such that either the amount of computations is balanced or the amount of memory
required by each partition is balanced; however, they do not allow to compute a partitioning that
simultaneously balances both of these quantities.

A related model is the multi-objective approach of Schloegel et al. [SKK99a]. This model
attempts to address the common situation in which a partition should simultaneously minimize
severa cost functions. To achieve this, each edge is given a vector of m weights, each of which
reflects one of the m different cost functions. The goal of the partitioning is to balance the vertex
weights in such a way that each of the cost functions is kept small. They discuss two ways of
disambiguating the definition of a good multi-objective solution, which are (i) to prioritize the
objectives, and (ii) to combine the objectives into a single objective. In the priority based
formulation, the user is allowed to assign a priority ranging from one to m to each of the m
objectives. The multi-objective partitioning problem becomes that of computing a k-way
partitioning such that it simultaneously optimizes al the m objectives, giving preferences to the
objectives with higher priorities. In the combination-based formulation, multiple objectives are

combined into a single objective and then the single objective optimization technique is used.

29



Related Work

Mhudtskives] Graph Bisacian

:lllllll rﬂlll:l.lr'.'l'l.“

Coiigisiang Plhiie
I
I

- r:}@ -

Inial Pariiioning Pluoss

Figure 2.3: The various phases of the multilevel graph bisection. During the coarsening phase, the size of the graph
is successively decreased; during the initial partitioning phase, a bisection of the smaller graph is computed; and
during the uncoarsening phase, the bisection is successively refined asit is projected to the larger graphs. During the
uncoarsening phase the light lines indicate projected partitions, and dark lines indicate partitions that were produced

after refinement.

Typicaly, this is done by taking the sum of the elements of the objective vector weighted by a
preference vector, p.

In the skewed model developed by Pellegrini [Pel94] and Hendrickson et al. [HLD97], each
vertex is allowed a set of k preference values expressing its relative desire to be in each of the k
sets. When partitioning a graph, let each vertex i have adesire to be in set k denoted by dy(i). The
goal then is to minimize the cut edges and maximize the satisfied desires. Let (i) be the set to
which vertex i is assigned. We want to find a mapping s, which minimizes the following

objective function.
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Minimize Zaj{ ‘(’)"E(ai) (')‘;hsém;@) - de) 0i=0,1,...n
where g; denotes an edge between vertices i and j and wy(i) and we(e;) representing weights of
vertices and edges respectively.

The different graph partitioning models described above are only viable if efficient and
effective algorithms can be developed to partition them. Spectra partitioning algorithms are
known to produce good partitions for a wide class of problems, and they are used extensively
[PSL90, HL93b, BS89]. Geometric partitioning al gorithms use the geometric information of the
graph to find a good partition [Rag93, MTV91]. Multilevel algorithms [BJ93, HL93a] have been
a universal approach to solving the graph partitioning problem on homogeneous networks of
computers. There are three different stages to multilevel graph partitioning algorithms as shown
for multilevel graph bisection in Figure 2.3. First, a sequence of smaller and smaller graphs is
created from the origina graph. Second, the smallest graph is partitioned. And third, the partition
is propagated back through the sequence of graphs, with an occasional local refinement. Some of
the options applicable to the three phases in the multilevel partitioning algorithms are outlined
below:

(1). Coarsening Phase
* Procedure to determine the maximal matching. We define a matching of agraph G as
a subset Ep, of the edges E with the property that no two edges in E,, share an
endpoint. A maximum matching of graph G is a matching of G with the greatest
number of edges while a maximal matching is a matching which is not contained in

any larger matching. While any maximum matching is certainly maximal, the reverse
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C

Figure 2.4: A sample graph.

is not generaly true. In the graph shown in Figure 2.4, {a}, {b,d}, and {c,e} are dll
maximal matchings, but only the last two are maximum matchings.
0 Random Edge Matching (RM) [BJ93, HL934],
0 Heavy Edge Matching (HEM) [KK95],
o0 Light Edge Matching (LEM) [KK95],
0 Heavy Cligue Matching (HCM) [KK95].
* Node reduction between successive coarsening levels,
e Maximum number of verticesin the coarsest graph.
(2). Partitioning Phase
e Spectral Bisection (SB) [BS89, HL934a],
» Kernighan-Lin Algorithm (KL)/Fiduccia-Mattheyses [KL70, FM82],
»  Graph Growing Algorithm (GGP) [GL81, GS94, CL94],
*  Greedy Graph Growing Algorithm (GGGP) [KK95].
(3). Uncoarsening Phase
» Kernighan-Lin Refinement [KL70, HL93a, KK95],
* Boundary Kernighan-Lin Refinement [KL70, HL93a, KK95].
METIS [KK95] is a set of programs for partitioning graphs, partitioning finite element

meshes, and for producing fill reducing orderings for sparse matrices. The agorithms

32



Related Work

implemented in METIS are based on the multilevel graph partitioning schemes. ParMETIS is an
MPI-based parallel library that implements a variety of algorithms for partitioning unstructured
graphs, meshes, and for computing fill-reducing orderings of sparse matrices. ParMETIS extends
the functionality provided by METIS and includes routines that are especially suited for paralel
Adaptive Mesh Refinement (AMR) computations and large scale numerical ssimulations. The
agorithms implemented in ParMETIS are based on the paralel multilevel k-way graph-
partitioning algorithms described in [KK97], the adaptive repartitioning algorithm described in
[SKKOQ], and the parallel multi-constrained algorithms described in [SKK99b]. hNMETIS is a set
of programs for partitioning hypergraphs such as those corresponding to VLSI circuits. The
algorithms implemented by hMETIS are based on the multilevel hypergraph partitioning scheme
described in [KAK+97] and [KK98b].

Chaco [HL94] contains a variety of graph partitioning agorithms including spectral
bisection, quadrisection and octasection, the inertial method, the Kernighan-Lin/Fiduccia-
Mattheyses algorithm and multilevel partitioners. Advanced techniques that are new to version
2.0 include terminal propagation (a method for improving data locality adapted from the circuit
community), the ability to map partitions intelligently to hypercube and mesh architectures, and
easy access to the Fiedler vector to assist the development of new applications of spectral graph
algorithms.

JOSTLE [WCOO0] is a software package designed to partition unstructured meshes (for
example, finite element or finite volume meshes) for use on distributed memory parallel
computers. It can also be used to repartition and load-balance existing partitions (such as those
deriving from adaptive refined meshes). It achieves this by modeling the mesh as an undirected

graph and then using state-of-the-art graph partitioning techniques. JOSTLE takes into account
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heterogeneous CPU performance using integral |oad-balancing capabilities. For example, given a
graph of say 75 vertices and two processors, with processor 1 twice as fast as processor 2, the
user may impose a penalty weight (based on the relative speeds and the total vertex weight; in
this case 25) on processor 2 to simulate its slower performance. The load-balancer within
JOSTLE then balances the total graph weight plus any pendty weights (in this example
75+25=100) and gives an equal share (50) to each processor. Because processor 2 has a penalty
weight of 25, its share of the vertices is 25 as compared with the 50 of processor 1 and so the
partition is balanced to reflect the relative performance of the processors.

Walshaw and Cross [WCO01] modify the multilevel algorithms in order to minimize a cost
function based on a model of the communications network supplied by the user at runtime. They
dea with networks in which the communications cost (both latency and bandwidth) is not
uniform across the inter-processor network. Let G=(V,E) be an undirected graph of vertices V,
with edges E which represent the data dependencies in the mesh. To model the true
communication cost and build the cost function, a weight is assigned to the link between every
pair of processors giving a network N represented by a weighted graph N(P, L), where P is the
set of p processors and L the set of interprocessor edges which is complete (i.e., there is an edge
for every pair of processors) and weighted. The contribution to the cost function from every cut

edge (v,\w) with vIS, and w§; (S and §; are the subdomains assigned to processors p and q

respectively)is defined to be |(v,w)| [{p,q)|, the weight of the cut edge multiplied by the weight

of the link over which it passes. Thus given a partition 7:V - P, the cost function is given by

= 3 |vw)|fmw), mw))

(v.W)E,
where E; is the set of cut edges. The mapping problem can then be defined as. given a graph

G=(V,E) and a processor network N(P, L), find 72:V — P, a mapping of vertices to processors,
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such that ‘Sp‘ <S where S:=(|V|/P] for all subdomains S, and such that I is minimized. They

do not address the issue of heterogeneous CPU performance. This is taken care of by load
balancer within JOSTLE. The mapping algorithm is then compared with the two stage approach
of partitioning of the graph such that edge cut is minimized followed by mapping of subdomains
to processors (also known as processor assignment).

Kumar et al. [KDB02] employ a multilevel heterogeneous partitioner developed for
distributed heterogeneous systems that differs from existing partitioners in that it takes into
account both the system and work load graphs. In their model, the heterogeneous system consists
of processors with varying processing power and an underlying non-uniform communication
network. The partitioning algorithm employed, called Minimax, generates and maps partitions
onto a heterogeneous system with the objective of minimizing the maximum execution time of
the distributed parallel application.

Trees

In graph theory, atree is a graph in which any two vertices are connected by exactly one path.
The most general problem of partitioning a tree can be formulated as follows. Given atree T
consisting of n vertices {0---,n-1 with weights vi (i=01---,n-1) and m edges
{01,---,m-1 with weights g (j =01,---,m-1) and given alinear array of p processors whose
speeds are functions of the size of the problem x, s, = f,(X),s, = f,(X),...,s,, = f,4(X) and
there is an upper bound by (k=01,---, p—1) on the number of vertices that each processor can
hold, partition the tree into p digoint subtrees such that

* The sum of weights of the vertices in each partition (subtree) is proportional to the speed

of the processor owning that partition.
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* The number of vertices assigned to each processor does not exceed the upper bound on

the number of vertices stored by it.

* Theedgecut isminimal.

This is an open problem for research. The partitioning operations on graphs can be used to
partition a tree into digoint partitions when there is no restriction that al the digoint partitions
have to be subtrees.

Perl and Schach [PS81] present efficient algorithms for a max-min k-partitioning problem,
which can be formulated as follows. Given a tree T with n vertices and m edges and a
nonnegative weight associated with each vertex. Let k < n be a positive integer. The problem is
to delete k edges in the tree so as to maximize the weight of the lightest of the resulting
connected subtrees.

Becker et al. [BPS82] present efficient algorithms for min-max k-partitioning problem,
which can be formulated as follows: Given a tree T with n vertices and m edges and a
nonnegative weight associated with each vertex. Let k < n be a positive integer. The problem is
to delete k edges in the tree so as to minimize the weight of the heaviest of the resulting
connected subtrees.

Frederickson [Fre9l] present linear time algorithms for partitioning a tree with weights on
the nodes by removing k edges so as to either minimize the maximum weight component or
maximize the minimum-weight component.

The data partitioning approaches described above use different performance models of
HNOC:s to distribute computations amongst the processors involved in their execution. All the
models use a single positive number to represent the speed of a processor, and computations are

distributed amongst the processors such that their volume is proportiona to this speed of the
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processor. However these models are efficient only if the relative speeds of the processors
involved in the execution of the application are a constant function of the size of the problem and
can be approximated by a single number. This is true mainly for homogeneous distributed
memory systems where:

* The processors have almost the same size at each level of their memory hierarchies, and

» Each computational task assigned to a processor fitsin its main memory.

But these models become inefficient in the following cases:

* The processors have significantly different memory structure with different sizes of
memory at each level of memory hierarchy. Therefore, beginning from some problem size,
the same task will still fit into the main memory of some processors and stop fitting into
the main memory of others, causing the paging and visible degradation of the speed of
these processors. This means that their relative speed will start significantly changing in
favor of non-paging processors as soon as the problem size exceeds the critical value.

* Evenif the processors of different architectures have ailmost the same size at each level of
the memory hierarchy, they may employ different paging algorithms resulting in different
levels of speed degradation for the task of the same size, which again means the change of
thelir relative speed as the problem size exceeds the threshold causing the paging.

Thus considering the effects of processor heterogeneity, memory heterogeneity, and the effects
of paging significantly complicates the design of agorithms distributing computations in
proportion with the relative speed of heterogeneous processors. One approach to this problem is
to just avoid the paging as it is normally done in the case of parallel computing on homogeneous
multi-processors. However avoiding paging in local and global HNOCs may not make sense

because in such networks it is likely to have one processor running in the presence of paging
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faster than other processors without paging. It is even more difficult to avoid paging in the case
of distributed computing on global networks. There may not be a server available to solve the
task of the size you need without paging.

Therefore, to achieve acceptable accuracy of distribution of computations across
heterogeneous processors in the possible presence of paging, a more redlistic performance model
of a set of heterogeneous processors is needed. This model must integrate the essential features
underlying applications run on HNOCs, mainly, the speeds of the processors, the latency and the
bandwidth of the communication links between the processors, the memory heterogeneity in
terms of the number of memory levels of the memory hierarchy and the size of each level of the

memory hierarchy, and the effects of paging.

2.3.1 Summary

From the survey on data partitioning, it can be concluded that no classification of partitioning
problems currently exists. Only matrix and graph partitioning problems have been widely
studied. It isto be noted aso that the algorithms solving these problems use performance models
that do not take into account all the essentia features underlying applications run on HNOCs,
mainly, the speeds of the processors, the latency and the bandwidth of the communication links
between the processors, the memory heterogeneity in terms of the number of memory levels of

the memory hierarchy and the size of each level of the memory hierarchy, and the effects of

paging.
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2.4 Performance M odels of Parallel Computers

A good deal of theoretical research has focused on models of parallel computers. The most
widely used parallel models are the parallel random access machine (PRAM) [FW78], the bulk-
synchronous paralel model (BSP) [Va90], and the LogP model [CKP+93]. All the models
assume a parallel computer to be a homogeneous multiprocessor.

The PRAM is the most simplistic parallel computational model. The PRAM model consists
of p sequential processors sharing a globa memory. During each time step or cycle, each
processor executes a RAM instruction or accesses global memory. After each cycle, all
processors implicitly synchronize to execute the next instruction. The PRAM model assumes that
synchronization and communication is essentially cost free. However, these overheads can
significantly affect algorithm performance. By ignoring costs associated with exploiting
pardlelism, the PRAM is a simple abstraction, which alows the designer to expose the
maximum possible computational parallelism in a given task. Many modifications to the PRAM
have been proposed that attempt to bring it closer to practical parallel computers.

The BSP model is a bridging model that consists of p paralel/memory modules, a
communication network, and a mechanism for efficient barrier synchronization of all the
processors. It is referred to as a bridging model because it lies between hardware and
programming models. It is efficient both in implementing high-level language features and
algorithms, as well as in being implemented in hardware. A computation consists of a sequence
of supersteps. During a superstep, each processor performs synchronously some combination of
local computation, message transmissions, and message arrivals. Three parameters characterize
the performance of a BSP computer. p represents the number of processors, L measures the

minimal number of time steps between successive synchronization operations, and g represents
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the minimum time interval between consecutive message transmissions on a per-processor basis.
Thetotal execution time for the program is the sum of all superstep times.

An approach related to BSP is the LogP model. LogP models the performance of point-to-
point messages with three parameters: o (computation overhead of handling a message), g (time
interval between consecutive message transmissions at a processor), and L (latency for
transmitting a single message). The LogP model has been successfully used for developing fast
and portable parallel algorithms for (homogeneous) supercomputers. LogGP [AIS+95] is an
extension of LogP used to study the impact of long messages on agorithm design. LoGPC
[MF98] models the network contention effects. PLogP model [KBVO0Q] is an extension of the
LogP model. PLogP model is defined in terms of end-to-end latency L, sender and receiver
overheads, o{(m) and o,(m) respectively, gap per message g(m), and number of nodes involved in
communication P. In this model sender and receiver overheads and gap per message depend on
the message size. Notion of latency and gap in PLogP model dightly differs from that of the
LogP/LogGP model. Latency in PLogP model includes all contributing factors, such as copying
data to and from network interfaces, in addition to the message transfer time. Gap parameter in
PLogP model is defined as the minimum time interval between consecutive message
transmissions or receptions, implying that at all times g(m) >= ogm) and g(m) <= o,(m).
Nonetheless, the LogP model or its extensions are inappropriate to model HNOCs, mainly due to
their non-deterministic nature and irregularity.

There are a few computational approaches to support heterogeneous parallel computation,
namely, Heterogeneous Coarse-grained Multicomputer (HCGM) [Mor98], Heterogeneous Bulk
Synchronous Parallel (HBSP) [WP00], and k-Heterogeneous Bulk Synchronous Parallel

(HBSP*) [Wil00]. HCGM models parallel computers consisting of p heterogeneous processors.
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Since processors have varying computing capabilities, s represents the speed of processor P;.
The model assumes memory and communication speeds of the processors are proportiona to
their computational speeds.

The HBSP* model is an extension of the BSP model of parallel computation. In the HBSP*
model, HBSP is synonymous with HBSP". The HBSP* model extends BSP hierarchically to
address k-level heterogeneous parallel systems. Here, k represents the number of network layers
present in the heterogeneous environment. Unlike BSP, the HBSP* model describes multiple
heterogeneous parallel systems connected by some combination of interna buses, local-area
networks, campus-area networks, and wide-area networks. Furthermore, the HBSP* incorporates
parameters that reflect the relative computational and communication speeds of each of the k
levels. An HBSP* computation consists of some combination of super'-steps. During a super'-
step, each level i node performs asynchronously some combination of local computation,
message transmissions to other level i machines, and message arrivals from its peers. A message
sent in one super'-step is guaranteed to be available to the destination machine at the beginning
of the next super'-step. Each super'-step is followed by a global synchronization of al the level i
computers.

Communication models have been developed recently for improving the performance of
point-to-point and collective communication operations on HNOCs. The Efficient Collective
Operations package [LB96], built on top of PVM, proposes heuristics to partition the
participating workstations of a collective communication operation into subnetworks based on
pair-wise round-trip latencies. Next, it divides the required communication steps into two major
phases: inter-subnetwork and intra-subnetwork. Different trees are used for performing collective

communication operations in each of these phases. However such latency measurements do not
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show the impact of heterogeneity on communication send/receive overhead (the fixed component
and the variable component depending on the message length). Banikazemi et al. [BMD98]
propose a model that addresses this issue by estimating the cost of point-to-point communication
on HNOCs and uses it for characterizing the performance of different collective communication
operations. The model takes into account both the fixed component of communication
send/receive overhead and the variable component of communication overhead and the
transmission component.

The performance of the MPI’s collective communications is critical in most MPI-based
applications. A genera agorithm (which employs a best collective communication algorithm
using best buffer size with optimal number of processors involved in the collective
communication) for a given collective communication operation may not give good performance
on all systems due to the differences in architectures, network parameters and the storage
capacity of the underlying MPI implementation. [VFD0OOa, VFDO04b] discuss an approach in
which the optimum algorithm and optimum buffer size for a given collective communication on
a system is determined by conducting experiments on the system. The experiments were
conducted in severa phases. In the first phase, the best buffer size for a given agorithm for a
given number of processors is determined by evauating the performance of the algorithm for
different buffer sizes. In the second phase, the best algorithm for a given message size is chosen
by repeating the first phase with a known set of algorithms and choosing the best algorithm that
gives the best result. In the third phase, the first and second phases are repeated for different
numbers of processors. They present techniques to reduce the large number of experiments.
[GAB+05] attempt to analyze and improve collective communication in the context of the

widely deployed MPI programming paradigm by extending accepted models of point-to-point
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communication, such as Hockney, LogP/LogGP, and PLogP. The predictions from the models
were compared with the experimentally gathered data and the findings were used to optimize the
implementations of collective operationsin the FT-MPI library.

Bhat et al. [BRP99] propose a framework, which deals with the development of efficient
collective communication systems on grid-based distributed computing systems. It consists of
anayticd models of the heterogeneous system, scheduling agorithms for the collective
communication pattern, and performance evaluation mechanisms. Kielman et al. [KBGOQ]
present a performance model dealing with the optimization of MPI’s collective operations on
clustered wide-area systems. They use two techniques: selecting suitable communication graph
shapes, and splitting messages into multiple segments that are sent in paralel over different
WAN links.

The HIHCoCP mode [CFM+01] (for Hierarchica Hyperclusters of Heterogeneous
Processors) builds on these existing models. A hypercluster is a cluster of cluster of ... of cluster
of processors. It characterizes a hypercluster via parameters that reflect its tri-axial
heterogeneity: the individual processors message-processing times for the various network
levels, and the latencies, link-bandwidths, and capacities of the networks at each level of the
hierarchy.

Lastovetsky [Las02] uses a model of the executing network of computers, where each
computer is characterized by seven parameters. These are

a) the number of processors,

b) the speed of the computer demonstrated on execution of some serial test code. This value

isupdated at runtime by the execution of therecon statement.

¢) thetotal number of paralel processesto run on the computer,
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d) the scalahility of the communication layer provided by the computer, and

e) the last three parameters determine the speed of point-to-point data transfer between
processes running on the same computer as function of size of the transferred data block.
The fifth parameter specifies the speed of transfer of data block of 64 bytes (measured in
bytes per second),

f) the speed of transfer of data block of 64 bytes, and

g) the speed of transfer of data block of 64° bytes.

The speed of transfer of a data block of an arbitrary size is calculated by interpolation of the
measured speeds.

Severa research efforts have dealt with the problem of performance prediction for parallel
applications executed on HNOCs, that is, predict the execution times of these applications on
HNOCs. Yan et al. [YZS96] present a two-level model to study performance predictions for
parallel computing on HNOCs. On the top level a semi-deterministic task graph is used to
capture the parallel execution behavior including the variances of communications and
synchronizations. On the bottom level, a discrete time model is used to quantify effects from
NOW systems. An iterative process is used to determine the interactive effects between network
contention and task execution. Figueira and Berman [FB96] present a model, which predicts
contention effects in Host/MPP coupled heterogeneous platforms. The model provides a
contention measure, the slowdown factor, to adjust the computation times and communication
costs of an application to accommodate for system load. The adjusted applications can be used to
rank candidate schedules of application tasks to system resources.

Kishimoto and Ichikawa [KI04] adopt a multiprocessing approach to estimate the best

processing element (PE) configuration and process alocation based on an execution-time model
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of the application. The execution time is modeled from the measurement results of various
configurations. Then, a derived model is used to estimate the optima PE configuration and
process allocation.

Anglano [Ang98] developed a methodology for the construction of performance models
whose analysis allows the estimation of the execution time of parallel applications on HNOCs.
The methodology uses Timed Petri Nets to represent the behavior of parallel programs, and a
contention model based on queuing theory to quantify the effects of resource contention on the
execution time of the applications processes.

Clematis and Corana [CC99] propose a performance model of heterogeneous networks of
computers for analysis of the performance of heterogeneous paralel algorithms in order to
predict their efficiency without real execution of the algorithms in heterogeneous environments.

Lastovetsky [Las02] uses execution time estimation models to predict the total time of
execution of the algorithm on the underlying hardware without its real execution. The
estimations are then used to solve the problem of selection of optimal set of processes executing
on different computers of the heterogeneous network. These estimation models are based on the
performance model of the paralel algorithm, and the performance model of the executing
network of computers, which reflects the state of this network just before the execution of the
parallel agorithm.

Several authors consider scalability more important for heterogeneous parallel algorithms
than efficiency.

Zhang and Yan [ZY95] present models which quantify the heterogeneity of networks and
characterize the performance effects. The models consider effects of both the heterogeneity and

time-sharing in a non-dedicated environment. Speedup, efficiency, and scalability are defined.
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These metrics define heterogeneity based on the different loads on the participating machines.
The models assumed a cluster of similar machines connected by a uniform network and each
machine can execute on task (process) at a given point of time. Al-Jaroodi et al. [AMJ+03]
extend the metrics to evaluate the performance of heterogeneous parallel applications. The
extensions mainly accommodate the varying platforms and operating environments used and the
possibility of having multiple tasks of the parallel application on each machine.

Donaldson et al. [DBP94] consider a theoretical basis for calculating speedup in a
heterogeneous environment, and give definitions for speedup and superlinear speedup in a
heterogeneous network. Based on these definitions, it is observed that speedup for an arbitrary
task graph can be viewed as having both a heterogeneous component and a parallel component.
Additional analysis of the special case of linear task graphs shows that in a heterogeneous
network, not only is superlinear speedup (When adding more CPUs to parallel execution of a
program, the program normally speeds up in conformity with Amdahl's Law. However, when
adding CPUs accidentally relieves some other bottleneck, the speedup can exceed the number of
CPUs added. Thisis superlinear speedup: improvement out of proportion to the hardware added)
possible, but unbounded speedup is possible even without exploiting parallelism across
machines.

Post and Goosen [PGO1] suggest that traditional measures used for evaluating parallel
performance, such as speedup and efficiency, are not appropriate for evaluating parallel
performance of a heterogeneous system. They illustrate the use of linear speed to be a better
aternative. Linear speed is essentially the inverse of elapsed time. They aso show how linear
efficiency may be used to evauate paralel performance of a heterogeneous system, and help

assess how efficient the system is. Linear efficiency is an extension to the linear speed and is
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calculated by dividing the potential linear speed of a system (sum of seria linear speeds of
processors used) by the actual linear speed achieved by the system for a parallel execution.

Sun [Sun02] studies the relation between scalability and execution time. Based on newly
uncovered relations, the concept of range comparison is introduced. Unlike conventional
execution time comparison in which performance is compared at a given paralel platform and at
a specified system and problem size, range comparison compares performance over awide range
of ensemble and problem size via performance crossing point analysis. Crossing point analysis

finds slow/fast performance crossing points of parallel algorithms and machines.

2.4.1 Summary

The proposed models demonstrate that a small set of machine characteristics must be taken into
consideration when programming high-performance computations on HNOCs: computing
bandwidth, communication latency, communication overhead, communication bandwidth,
network contention effects and memory hierarchy. Early computational models used a few
parameters to describe the features of parallel machines. However recent models attempt to
bridge the gap between software and hardware by using more parameters to capture the essential
characteristics of parallel machines. A comprehensive performance model of heterogeneous
networks of computers should be able to accomplish the following tasks:

* Analysis of the performance of heterogeneous parallel algorithms in order to accurately
predict their efficiency without real execution of the algorithms in heterogeneous
environments,

* Accurately predict the execution time of paralel applications to provide efficient

mappings on HNOCs.
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Such acomprehensive model is still far away from realization.

2.5 Static and Dynamic M apping Strategies

To minimize the execution time of a parallel application running on a heterogeneous computing
system, an appropriate mapping scheme to allocate the application tasks to the processors is
needed. The general problem of mapping tasks to processors (defined as matching and
scheduling) has been shown to be NP-complete [IK77, Fer89]. Norman and Thanisch [NT93]
classify versions of the mapping problem and present existing research results. We present a
brief summary of their work here for completeness.

No Task Precedence

The simplest and the most computationally tractable models of parallel computation are those
where computations are modeled as tasks, each of which is executed sequentialy on a single
processor and between which there is no communication. The problem is simply an assignment
problem, one of balancing the load on the various processors to which the computation is being
mapped.

Model 1: No Precedence

An instance of the model can be formulated as follows: An instance A of the model isa 3-Tuple,

atupleis afinite sequence of objects, (P, I, f), where P isaset of n processors, I"is set of | tasks
and f:I - Z; (where Z, isaset of positive integers including zero) is afunction such that f(y)

returns the time to compute task y. Let F denote the set of all surjective mappings from 7" to the
collection of singleton subsets of P. A function f from aset X to aset Y is said to be surjective, if
and only if for every element y of Y, thereis an element x in X such that f(x) =y, thatis, fis

surjective if and only if f(X) = Y. A singleton is a set containing a single element. Fo may be
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thought of as the set of possible task mapping functions. For each gn(Falet h_:P - 2" denote

the function which returns the set of tasks mapped to a given processor by mapping function gn.

The makespan M, associated with the mapping function g, is defined as:

M, =max( 2. f)

piP  yOhy,(p)

We can pose the following decision problem:
Decision Problem 1 Given an instance A of the above model and a positive integer k does there
exist a function gn[JFa such that My, < k?
Decision Problem 1 is NP-complete in the case of two or more identical processors.
Taskswith Precedence
Multicomputer programs with inter-task communications are better modeled by an alternative
formulation. Below a model of non-preemptive scheduling is described where tasks show
dependencies, and the dependency is satisfied at the termination of the precedent task.
Model 2: Precedence With No Cost
Aninstance A of the model isa3-Tuple (P, 4, f.), where P is a set of n processors; 4 = (I',4) isa
directed acyclic graph DAG (A DAG isadirected graph that contains no cycles) where I"is a set

of | tasks and 4 represents a partial order on the tasks; f_:I" - Z; is afunction such that f.(y)

returns the time to compute task y. Let Fa denote the set of all surjective mappings from 7" to the

collection of singleton subsets of P. Fa may be thought of as the set of possible task mapping
functions. For each gnOFa let h :P - 2" denote the function which returns the set of tasks

mapped to a given processor by mapping function g, For each gn[IFa let S, denote the set of

valid schedules for a given mapping gm. The makespan Mg of a schedule sl1S; is given simply

by:
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M, =max (i) + f.(»))
yar

Decision Problem 2 Given an instance A of the model 2 and an integer k, does there exist a
mapping function gn[JFa such that there exists a schedule s[1S,, such that Mg < k?

Decision Problem 2 is NP-complete for general n, even if the range of f; is{1}, or in the case of
n = 2 if the range of fc is{1,2} (the range of a function is the set of all values produced by a
function).

Task Precedence and Communication Delays

The model described before captures the essence of interprocessor communication in terms of
the implied precedence, but fails to capture any of the overheads associated with message
transfer. This and the following models are extensions to the previous model which attempt to
characterize the overheads of communication in different ways.

Model 3: Precedence With Communication Delay

Aninstance A of the model isa4-Tuple (P, 4, f., 7), where P isa set of n processors; 4 = (I',4) is
aDAG where I" is a set of | tasks and 4 represents a partial order on the tasks; f.:I" - Z; isa
function such that f¢(y) returns the time to compute task y and 7 is an integer communication
delay. Let Fa denote the set of all task mapping functions g, such thatg, :I - 2°. Function
OmJFa returns the set of processors on which a task is executed in the mapping defined by gn,.
For each g, we define a corresponding function let h_:P - 2" denote the function which
returns the set of tasks mapped to a given processor by mapping function gn. For each g, we

define the set S, of allowable schedules s such thats: ' xP — Z; where, for any given sOS,, if

yOhm(p), then s(y,p) is undefined, otherwise s(y,p) is the time at which task y is executed on

processor p. The makespan M of a schedule s[1S,is given simply by:
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M =max max st p)+ f.(»))

poP  yih,(p)
Decision Problem 3 Given an integer k and a 3-tuple B=(4, f., 7), where the range of f; is
restricted to {1}, does there exist an instance A = (P, 4, f., 7) of Model 3 for which thereis a
mapping function gn[JFA , and an associated scheduling function s1S;, such that Mg < k?
Decision Problem 3 is NP-complete.
Cost Based Models
Model 4: Communication Costs and Computation Costs
An instance A of the model isa4-Tuple (P, 4, fq, fo), where P is a set of n processors; 4 = (I',4)

isan undirected graph where I"is a set of | tasks and 4 is a set of undirected edges corresponding

to communication between processes; f,:I'xP - Z; isa function such that fy(y,p) returns the

time to compute task y on processor p; f,:A - Z; is afunction returning the cost associated

with communication between processes if they are mapped to different processors. Given A, we
can consider Fa of functions which map from 7" onto P. This may be thought of as the set of all
task mapping functions. For each gm[JFa we can define a corresponding function h_:P - 2",
which returns the set of tasks mapped to a given processor by mapping function gm. Now, the

global cost of computation associated with mapping function gy, is given by:

U,=> f,(r.9,()
yar

and the global cost of communication associated with gy, is:

Vo= D ((ro)

{r,0}08I9m ()£ gm(0)
And the total cost Ry, of amapping is given by:

Rn= Umnt+Vn
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Decision Problem 3 Given an instance A of Model 4 and an integer k: does there exist a
mapping function g, Fa such that Ry< k?

Stone [Sto77a, Sto77b, Sto78] shows an optimal agorithm for Model 4 with n=2. Fernandez-
Baca [Fer89] has proved that Decision Problem 4 is NP-complete if all of the following
restrictions hold:

* Therangeof fyis{0},

* Therangeof feis{1},

s n=3

* /A is both planar and bipartite. In graph theory, a planar graph is a graph that can be

embedded in a plane so that no edges intersect and a bipartite graph is a special graph
where the set of vertices can be divided into two digoint sets with two vertices of the
same set never sharing an edge.

Many heuristics (approximation algorithms) have been developed to obtain near-optimal
solutions to the mapping problem. Mapping agorithms are usualy classified as static or
dynamic. In static mapping, mapping decisions are taken before executing the application and
are not changed until the end of the application. In dynamic mapping, mapping decisions are
taken while the program is running.

In [BSB+99], a collection of eleven static mapping heuristics has been studied and compared
by simulation studies under one set of common assumptions. First, some preliminary terms must
be defined. Let a meta-task be defined as a collection of independent tasks with no data
dependencies. It is assumed that the size of the meta-task (number of tasks to execute), t, and the
number of machines in the heterogeneous computing environment, m, are static and known a

priori. It is assumed that an accurate estimate of the expected execution time for each task on
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each machine is known priori to execution and contained within an ETC (expected time to
compute) matrix. ETC(i,j) gives the estimated execution time for task i on machine j. Machine
availability time, mat(j), is the earliest time a machine j can complete the execution of all the
tasks that have been previously assigned to it. Completion time, ct(i,j), is the machine availability
time plus the execution time of task i on machine j, i.e., ct(i,j) = mat(j) + ETC(i,j), where . The
performance criterion used to compare the results of the heuristics is the maximum value of
ct(i,j), for0<i<tand 0<j <m, for each mapping, also known as the makespan. Each heuristic
is attempting to minimize the makespan (i.e., finish execution of the meta-task as soon as
possible).

The static mapping heuristics are

Opportunistic Load Balancing (OLB). OLB assigns each task, in arbitrary order, to the

next available machine, regardless of the task’ s expected machine time on that machine.

* User Directed Assignment (UDA). UDA assigns each task, in arbitrary order, to the
machine with the best expected execution time for that task, regardless of that machine's
availability.

» Fast Greedy. Fast Greedy assigns each task, in arbitrary order, to the machine with the
minimum completion time for that task.

* Min-min. The Min-min heuristic begins with the set of all unmapped tasks. Then, the set

of minimum completion times is found. Next, the task with the overall minimum

completion time is selected and assigned to the corresponding machine. Intuitively, Min-
min attempts to map as many tasks as possible to their first choice of machine (on the

basis of completion time), under the assumption that this will result in shorter makespan.
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GA_matching_scheduling() {
initial population generation;

evaluation;
while (stopping criteria not met) {
selection;
Crossover;
mutation;
avaluation;
}

ocutput the best solution found;

Figure 2.5: General procedure for a Genetic Algorithm, based on [SP94].

Max-min. The Max-min heuristic is similar to Min-min heuristic except that the task
with the overall maximum completion time is selected and assigned to the corresponding
machine. The motivation behind Max-min is to attempt to minimize the penalties
incurred by delaying the scheduling of long-running tasks.
Greedy. The Greedy heuristic is literaly a combination of Min-min and Max-min
heuristics. It performs both of the Min-min and Max-min heuristics, and uses the better
solution.
Genetic Algorithm (GA). Genetic Algorithms (GAS) are a popular technique used for
searching large solution spaces (e.g., [SY 96, WSR+97]). Figure 2.5 shows the stepsin a
genera Genetic Algorithm: (1) an encoding, (2) an initial population, (3) an evauation
using a particular fitness function, (4) a selection mechanism, (5) a crossover mechanism,
(6) amutation mechanism, and (7) a set of stopping criteria.

The characteristics of this GA-based approach [WSR+97] include: separation of the
matching and the scheduling representations, independence of the chromosome structure

from the details of the communication subsystem, and consideration of overlap among all
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computations and communications that obey subtask precedence constraints. Each
chromosome consists of two parts. the matching string and the scheduling string. Thus, a
chromosome represents the subtask-to-machine assignments (matching) and the
execution ordering of the subtasks assigned to the same machine.

The GA implemented operates on a population of 200 chromosomes (possible
mappings) for a given meta-task. The initial population is generated using two methods:
(@ 200 randomly generated chromosomes from a uniform distribution, or (b) one
chromosome that is a Min-min solution and 199 random solutions (mappings). The GA
executes eight times (four times with initial populations from each method), and the best
of the eight mappingsis used as the fina solution.

After the generation of the initia population, al of the chromosomes in the
population are evaluated (i.e., ranked) based on their fitness value (i.e., makespan), with
the smaller fitness value being a better mapping. Then the main loop in Figure 2.5 is
entered and a rank based roulette wheel scheme [SP94] is used for selection.

Next, the crossover operation selects a pair of chromosomes and chooses a random
point in the first chromosome. After crossover, the mutation operation is performed.
Mutation randomly selects a task within the chromosome, and randomly reassigns it to a
new machine.

Finally, the chromosomes from this modified population are evaluated again. The GA
stops when any one of three conditions is met: (a) 1000 total iterations, (b) no changein
the elite chromosome for 150 iterations, and (c) all chromosomes converge.

Simulated Annealing (SA). SA is an iterative technique that considers only one possible

solution (mapping) for each metatask at a time. This solution uses the same
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representation for a solution as the chromosome for the GA. SA uses a procedure that
probabilistically allows poorer solutions to be accepted to attempt to obtain a better
search of the solution space (e.g., [CP96, KGV 83, RN95]). This probability is based on a
system temperature that decreases for each iteration. As the system temperature “cools,”
it is more difficult for currently poorer solutions to be accepted. The initial system
temperature is the makespan of the initial mapping.

The specfic SA procedure implemented here is as follows. The initial mapping is
generated from a uniform random distribution. The mapping is mutated in the same
manner as the GA, and the new makespan is evaluated. The decision agorithm for
accepting or rejecting the new mapping is based on [CP96]. If the new makespan is
better, the new mapping replaces the old one. If the new makespan is worse (larger), a

uniform random number z[J[0,1) is selected. Then, zis compared with y, where

1
old makespan - new makespan
temperature

y:

1+¢( )

If z>y the new (poorer) mapping is accepted, otherwiseit is rejected, and the old mapping
iskept.

After each mutation, the system temperature is decreased by 10%. This defines one
iteration of SA. The heuristic stops when there is no change in the makespan for 150
iterations or the system temperature reaches zero.

Genetic Simulated Annealing (GSA). The GSA heuristic is a combination of the GA
and SA techniques. In genera, GSA follows procedures similar to the GA heuristic.
However, for the selection process, GSA uses the SA cooling schedule and system

temperature.
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» Tabu. Tabu search is a solution space search that keeps track of the regions in solution
space, which have already been searched so as not to repeat a search near these areas.

« A’. A’ isatree search beginning at a root node that is usually a null solution. As the tree
grows, intermediate nodes represent partial solutions (a subset of tasks are assigned to
machines), and leaf nodes represent final solutions (all tasks are assigned to machines).

The results obtained from executing these heuristics show that GA was the best heuristic for
most cases, followed closely by Min-min. If the best mapping available in less than one minuteis
desired, Min-min should be used; if more time is available for finding the best mapping, GA and
A" should be considered.

Wu and Shu [WSO01] propose an algorithm, named Relative Cost (RC) algorithm, to obtain
optimal mapping. The proposed algorithm retains the advantage of the Min-min agorithm and
achieves good load balance at the same time. As one of its limitations, Min-min algorithm gives
small tasks higher priorities and therefore assigns them early, going against the genera principle
that the large tasks should be mapped first for a balanced load. When small tasks execute firgt, it
tends to execute a few larger tasks near the end, leaving some machine sitting idle, which results
in poor system utilization. The RC algorithm uses a new criterion of relative cost to determine
the mapping order of tasks. In the RC agorithm, the higher priority is given to tasks that

* have agood match between tasks and machines; and

e minimize the completion time.

Baraglia et al. [BFRO3] propose a static graph-based mapping agorithm, caled
Heterogeneous Multi-Phase Mapping (HMM) that permits a suboptimal mapping of a parallel
application onto a heterogeneous computing distributed system by using alocal search technique

together with atabu search heuristic.

57



Related Work

Maheswaran et al. ((MAS+99a], [MAS+99Db]) study two types of dynamic mapping

heuristics: on-line and batch mode heuristics. In the on-line mode, a task is mapped into a

machine as soon as it arrives at the mapper. In the batch mode, tasks are not mapped onto the

machines as they arrive; instead they are collected into a set that is examined for mapping at

prescheduled times called mapping events. While on-line mode heuristics consider a task for

mapping only once, batch mode heuristics consider a task for mapping at each mapping event

until the task begins execution. Each heuristic is attempting to minimize the makespan (i.e.,

finish execution of the meta-task as soon as possible).

The on-line mode mapping heuristics are:

Minimum Completion Time (MCT). The MCT heuristic assigns each task to the
machine that results in the task’s earliest completion time. This causes some tasks to be
assigned to machines that do not have the minimum execution time for them.

Minimum Execution Time (MET). The MET heuristic assigns each task to the machine
that performs the task’ s computation in the least amount of execution time. This heuristic,
in contrast to MCT, does not consider machine ready times.

Switching Algorithm (SA). The SA heuristic uses the MCT and MET heuristics in a
cyclic fashion depending on the load distribution across the machines.

K-percent Best (KPB). The KPB heuristic considers only a subset of machines while
mapping a task. The subset is formed by picking the (kxm/100) (where m is the number
of machines) best machines based on the execution times for the task, where 100/m<k

<100. Thetask is assigned to a machine that provides the earliest completion time.
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e Opportunistic Load Balancing (OLB). OLB assigns the task to the machine that
becomes ready next. If multiple machines become ready at the same time, then one
machineis arbitrarily chosen.

The batch mode mapping heuristics use two interval strategies. The regular time interval
strategy maps the meta-tasks at regular intervals of time except when al the machines are busy.
In the fixed count strategy, the length of the mapping intervals will depend on the arrival rate and
the compl etion rate. The batch mode mapping heuristics studied are:

* Min-min and Max-Min. These heuristic are similar to the static mapping heuristics

discussed above.

» Sufferage. The sufferage heuristic is based on the idea that better mappings can be
generated by assigning a machine to atask that would “suffer” most in terms of expected
completion time if that particular machineis not assigned to it.

Batch mode heuristics can cause some tasks to be starved of machines. To reduce starvation,
ageing schemes are implemented.

In the on-line mode, the KPB heuristic outperformed the other heuristics on all performance
metrics. In the batch mode, the Min-min heuristic outperformed the Sufferage and Max-min
heuristics in the average sharing penalty. However, the Sufferage heuristic performed the best
with respect to makespan.

Maheswaran and Siegel [MS98a] present a dynamic mapping heuristic called the hybrid
remapper. The hybrid remapper is based on a centralized policy and improves a statically
obtained initial mapping and scheduling by remapping to reduce the overall execution time.

During application execution, the hybrid remapper uses run-time values for the subtask
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completion times and machine availability times whenever possible. The hybrid remapper
assumes a fully connected, contention-free communication model.

Tan et al. [TSA+97] present a mathematical framework that models the matching of subtasks
to machines, scheduling of subtasks' computation, scheduling of intermachine communication
steps, and selection of sources of shared data items for intermachine communication (data
relocation). Initially, it is assumed at any instant of time, only one machine is being used for
program execution and only one subtask is being executed. Based on this assumption, a
polynomial agorithm is introduced to optimize scheduling and data relocation with respect to
any given matching of subtasks to machines. It is assumed that matching is static and has aready
been done.

Cierniak et al. [CLZ97] propose compile-time techniques for scheduling parallel loops for a
HNOCs. They propose a simple model for use in compiling for a network of processors, and
develop compiler agorithms for generating optimal and near-optimal schedules of 1oops for load
balancing, communication optimizations, network contention, and memory heterogeneity.

All the static and dynamic strategies discussed above make very little suggestions about the
nature of scheduled tasks (if any) considering them as a set of independent equal units. They pay
more attention to the model of the heterogeneous hardware. Also it is assumed that the
application program is decomposed into subtasks, each of which is computationally
homogeneous. But this process of decomposition isitself atedious and error-prone task.

Lastovetsky [Las02] present a mapping algorithm that solves the problem of optimal
mapping of processes into the set of processes executing on different computers of the

heterogeneous network. The solution to the problem is based on the following:
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*  The mpC model of the parallel algorithm, which should be executed. This model alows
the programmer to define at runtime all the main features of parallel algorithm, which
have an impact on the execution performance of the application on heterogeneous
platforms.

* The performance model of the executing network of computers, which reflects the state
of this network just before the execution of the parallel algorithm.

* A map of processes of the parallel program, for each computer displaying both the total
number of running processes and the number of free processes.

Each particular mapping is characterized by the estimation of the time of execution of the
algorithm on the network of computers. The estimation is calculated based on the performance
model of the parallel algorithm and the model of the executing network of computers. The mpC
runtime system finds a mapping at runtime using an approximate solution obtained in a

reasonable amount of time.

2.5.1 Summary

A heterogeneous computing system provides a variety of different machines executing an
application whose subtasks have diverse execution requirements. The subtasks must be assigned
to machines (matching) and ordered for execution (scheduling) such that the overall application
execution time is minimized. It is well known that such a matching and scheduling (mapping)
problem is, in general, NP-complete. Therefore, many heuristics have been developed to obtain
near-optimal solutions to the mapping problems. The heuristics can be static or dynamic. The
heuristics depend on the performance models of the computers in the executing heterogeneous

network discussed previously. The quality of these heuristics depends on how accurately the

61



Related Work

performance models of the computers in the executing heterogeneous network estimate the

subtask computation times on various machines and inter-machine data transfer times.

2.6 High-Per formance Computing on Global Networks

A few approaches to high-performance computing on global networks have been proposed. The
main software chalenges include achieving high performance via paralelism, managing and
exploiting component heterogeneity, resource management, file and data access, fault-tolerance,
ease-of-use and user interfaces, protection and authentication, and exploitation of high-
performance protocols.

NetSolve [CD96] is a system used to support high-performance scientific computations on
globa networks. NetSolve offers the ability to look for computational resources on a network,
choose the best available, solve the problem, and return the solution to the user. Good
performance is ensured by a load-balancing policy that enables NetSolve to use the
computational resources as efficiently as possible. NetSolve is designed to run on any
heterogeneous network and isimplemented as a fault-tolerant client-server application.

Computational Grid [FK98] is a platform for the implementation of high-performance
applications using widely dispersed computational resources. NASA's Information Power Grid
(IPG) [JGN99] is a high-performance computing and data grid. Grid users can access widely
distributed heterogeneous resources from any location, with IPG middleware adding security,
uniformity, and control.

Legion [GW97] is an object-based, meta-systems software project, which connects networks,
workstations, supercomputers, and other computer resources together into a system that can

encompass different architectures, operating systems, and physical locations. Legion provides a
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coherent framework in which these elements can be combined into a metasystem. One can draw
on these combined resources to parallelize complex problems and run programs more efficiently
without worrying about different languages, conflicting platforms, or hardware failure. Legion
seamlessly schedules and distributes your processes on available and appropriate hosts, then
returns the results.

The goa of the Condor Project [LLM88] is to develop, implement, deploy and evaluate
mechanisms and policies that support High Throughput Computing (HTC) on large collections
of distributively owned computing resources. Condor is a specialized workload management
system for compute-intensive jobs. Like other full-featured batch systems, Condor provides ajob
gueuing mechanism, scheduling policy, priority scheme, resource monitoring, and resource
management. Users submit their serial or paralel jobs to Condor, Condor places them into a
gueue, chooses when and where to run the jobs based upon a policy, carefully monitors their
progress, and ultimately informs the user upon completion. Condor’s periodic checkpointing
provides fault tolerance.

The core part of any software system for high-performance computing on global networksis
a tool for monitoring the network performance of a global computing network. The Network
Weather Service (NWS) [WS97] is such a tool that periodically monitors and dynamically
forecasts the performance various network and computational resources can deliver over a given
time interval. The service operates a distributed set of performance sensors (network monitors,
CPU monitors, etc.) from which it gathers readings of the instantaneous conditions. It then uses
numerical models to generate forecasts of what the conditions will be for a given time frame.
NWS is used by dynamic schedulers and to provide statistical Quality-of-Service readings in a

networked computational environment. The forecaster module in NWS applies a set of
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forecasting models and dynamically chooses the forecasting technique that has been most
accurate over the recent set of measurements. The forecaster process in NWS produces a
predicted value of deliverable performance during a specified time frame for a specified
resource.

Gloperf [ASW+98] is a network performance monitoring system for grid computations built
as a part of the Globus grid computing toolkit [FK97]. Globus is used to develop the
fundamental technology that is needed to build computational grids, execution environments that
enable an application to integrate geographicaly-distributed instruments, displays, and
computational and information resources. Gloperf makes simple, end-to-end TCP measurements
requiring no special host permissions. Gloperf is primarily a sensor and collection mechanism; it
does not contain any prediction models.

The AppLeS project [BWF+96] is developing scheduling protocols from an applications
point of view to provide a mechanism for scheduling individual applications at machine speeds
on production heterogeneous systems. AppLeS agents utilize a network performance monitoring
system such as NWS or Gloperf to monitor the varying performance of resources potentially
usable by their applications. Each AppLeS uses static and dynamic application and system
information to select viable resource configurations and evaluate their potential performance.
AppLEeS then interacts with the relevant resource management system to implement application
tasks.

SmartNet [FGA+98] is a resource scheduling system for distribution environments. It allows
users to execute jobs on complex networks of different computers as if they were a single

machine, or meta-computer. In general, optimal multiprocessor scheduling is NP-complete, and
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hence SmartNet employs heuristics when it searches for a near-optimal mapping of jobs to
machines and job execution schedule.

The Management System for Heterogeneous Networks (MSHN) [HKJ+99] is a resource
management system for use in heterogeneous environments. Its main goal is to determine the
best way to support the execution of many different applications, each with its own quality of
service (QoS) requirements in a distributed, heterogeneous environment. MSHN evolved in part
from the scheduling framework SmartNet but its research expanded into the following areas
relevant to most resource management systems (RMS).

* An RMS needs to consider that the overhead of jobs sharing resources, such as networks

and file servers, can have significant impact on mapping and scheduling decisions.

* AnRMS must support adaptive applications.

* An RMS must deliver good QoS to many different sets of simultaneous users, some of

whom may be executing compute-intensive jobs and some of whom jobs with real-time

requirements.

2.7 Summary

The tools designed for programming high-performance computations on HNOCs must provide
mechanisms to automate the tedious and error-prone tasks:
» Parameter determination characterizing the computational requirements of the parallel
application and the capabilities of the machines,
» Data partitioning,
* Matching and Scheduling, and

« Task execution.
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Ideally a tool must supply mechanisms to the programmer so that he or she can provide
information to it that can assist in finding the most efficient implementation on HNOCs.
Combining the system’s detailed analysis with the programmer’s high-level knowledge of the
application is essentia in finding more efficient mappings than either one alone is capable of
achieving. The performance models used by the tools must take into account all the essential
features underlying applications run on HNOCs, mainly, the speeds of the processors, the effects
of paging and the latency and the bandwidth of the communication links between the processors.
The model of the executing network of computers must take into consideration the essential set
of machine characteristics such as computing bandwidth, communication latency,
communication overhead, communication bandwidth, network contention effects and the
memory hierarchy. Such a model must have enough parameters for it to be efficient and
accurate.

We present, in the chapters to follow, tools that automate the main steps involved in
application development on HNOCs. These tools employ performance model of the executing
network of computers that takes into account the main features that have an essential impact on

application execution performance on HNOCs.
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CHAPTER 3

Outline of HMPI
This chapter presents asmall set of extensionsto MPI that can be used for
* Determination of the characterization parameters relevant to the computational
requirements of the applications and the machine capabilities of the heterogeneous
system, and

» Selection of the optimal set of processes running on different computers of the

heterogeneous network.

The standard Message Passing Interface (MPI) specification provides communicator and
group constructors, which allow the application programmers to create a group of processes that
execute together some parallel computations to solve a logica unit of a parallel agorithm. The
participating processes in the group are explicitly chosen from an ordered set of processes. This
approach to the group creation is quite acceptable if the MPI application runs on homogeneous
distributed-memory computer systems, one process per processor. In this case, the explicitly
created group will execute the parallel algorithm typically with the same execution time as any
other group with the same number of processes, because the processors have the same computing
power, and the latency and the bandwidth of communication links between different pairs of
processors are the same. However on HNOCs, a group of processes optimally selected by taking
into account the speeds of the processors, and the latencies and the bandwidths of the
communication links between them, will execute the parallel algorithm faster than any other
group of processes. Selection of processes in such a group is usualy a very difficult task. It
requires the programmers to write a lot of complex code to detect the actual speeds of the

processors and the latencies of the communication links between them, and then to use this
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information to select the optimal set of processes running on different computers of
heterogeneous network.

The main idea of HMPI is to automate the process of selection of such a group of processes
that executes the heterogeneous algorithm faster than any other group.

The first step in this process of automation is the specification of the performance model of
the heterogeneous parallel algorithm in performance model definition language. Performance
model is a tool supplied to the programmer to specify his or her high-level knowledge of the
application that can assist in finding the most efficient implementation on HNOCs.

The second step involves the writing of an HMPI application. A typical HMPI application
consists of HMPI group management operations and the execution of the computations and
communications involved in the execution of the parallel algorithm employed in the application
by the members of the group. During the creation of a group of processes, HMPI runtime system
solves the problem of selection of the optimal set of processes running on different computers of
the heterogeneous network. The solution to the problem is based on the following:

* The performance model of the paralel algorithm in the form of the set of functions

generated by the compiler from the description of the performance model.

» The performance model of the executing network of computers, which reflects the state

of this network just before the execution of the parallel agorithm.

The accuracy of the performance model of the executing network of computers depends upon
the accuracy of the estimation of the actual speeds of processors and the communication model
of the executing network of computers. HMPI provides operations to dynamically update the

estimation of processor speeds and parameters of communication model at runtime.
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Thus if the performance model of the parallel agorithm embodies the programmer’s high
level knowledge of the application, the performance model of the executing network of
computers expresses the detailed analysis of the executing network of computers. Using these
two models is essentia in finding more efficient mappings than either one alone is capable of
achieving.

The main contributionsin this chapter are:

a) Thedesign of HMPI API. The main goa of the design of the API in HMPI isto smoothly
and naturaly extend the MPI model for heterogeneous networks of computers. This
involves the design of a layer above MPI that does not involve any changes to the
existing MPI API. The HMPI API must be easy-to-use and suitable for most scientific
applications. The HMPI APl must aso facilitate transformation of MPI applications to
HMPI applications that run efficiently on HNOCs.

b) The first research implementation of HMPI.

¢) The design and application of HMPI+ScaLAPACK tool to speed up ScaLAPACK
applications on heterogeneous networks of computers.

While presenting the HMPI API, we present additional background material just to make this
chapter self-contained. This material is mainly the mapping algorithms used to solve the problem
of selection of processes, the estimation procedure to estimate the time of execution for a
particular mapping, and the model of a heterogeneous network of computers.

This chapter is structured as follows:

» Section 3.1 presents the specification of the performance model definition language.

» Section 3.2 presents the HMPI group management operations.
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Section 3.3 presents the HMPI operation HVPlI _Recon that enables the user to
dynamically update the estimation of processor speeds at runtime. This operation
facilitates writing parallel programs sensitive to dynamic changing loads.

Section 3.4 presents the HMPI operation HVPI _Ti neof that allows the user to predict
the total time of the algorithm execution on the underlying hardware without its real
execution. This feature allows the programmer to write such a parallel program that can
follow different parallel algorithms to solve the same problem, making choice at runtime
depending on the particular executing network and its actual performance.

Section 35 presents the HMPI group constructor operation
HWPlI _G oup_aut o_cr eat e that detects the optimal number of processes that can
execute the parallel application.

Section 3.6 outlines the typical steps involved in the development of an HMPI program.
Section 3.7 presents the steps involved in the transformation of an MPI program to an
HMPI program.

Section 3.8 gives an overview of aresearch implementation of HMPI.

Section 3.9 summarizes the features of HMPI.

3.1 Outline of Performance M oddl Definition L anguage

HMPI allows application programmers to describe a performance model of their implemented

heterogeneous algorithm. This model allows specification of al the man features of the

underlying parallel algorithm that have an essential impact on application execution performance

on HNOCs. These features are;

The total number of processes executing the algorithm.
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» Thetotal volume of computations to be performed by each of the processes in the group

during the execution of the algorithm,

* The total volume of data to be transferred between each pair of processes in the group

during the execution of the algorithm, and

» The order of execution of the computations and communications by the involved parallel

processes in the group, that is, how exactly the processes interact during the execution of
the algorithm.

HMPI provides a small and dedicated model definition language for specifying this
performance model. This language uses most of the features in the specification of network types
of the mpC language presented in [AKL+99, LAK+00, Las02].

mpC is a high-level paralel language (an extension of ANSI C), designed specidly to
develop portable adaptable applications for heterogeneous networks of computers. mpC allows
the programmer to define at runtime al the main features of the underlying parallel agorithm,
which have an impact on the application execution performance, namely, the total number of
participating parallel processes, the total volume of computations to be performed by each of the
processes, the total volume of data be transferred between each pair of processes, and how
exactly the processes interact during the execution of the algorithm. Such an abstraction of
paralel algorithm is called a network type in mpC. Given a network type, the programmer can
define a network object of this type and describe in details al the computations and
communications to be performed on the network object.

HMPI's performance model definition language only uses the specification of the network
types in mpC. The specification of performance model in HMPI is the same as the specification

of the performance model in mpC in the form of network type. Thus it can be said that HMPI’'s

71



Outline of HMPI

model definition language is a subset of mpC language in that it uses only the feature of network
typesin mpC.

A compiler compiles the description of this performance model to generate a set of functions.
The functions make up an algorithm-specific part of the HMPI runtime system.

We illustrate the features of the HMPI’s performance model definition language with a tool,
which automatically transforms ScaLAPACK [CDD+96] programs solving dense linear algebra
problems on massively parallel processors (MPP) into programs solving the same problems on

HNOCs with good performance improvements.

3.1.1 Homogeneous Distribution of Data with Heter ogeneous Distribution

of Processes

In this section we present a tool that transforms ScaLAPACK programs that solve dense linear
algebra problems on massively parallel processors (MPP) into parallel applications that solve the
same problems on HNOCs with good performance improvements.

The input to the tool is a homogeneous parallel algorithm that solves the problem on MPPs.
The transformed application for HNOCs distributes data across parallel processes exactly in the
same fashion as its homogeneous prototype. However, the transformed application uses a
modified algorithm that allows more than one process involved in its execution to be run on each
processor so that the number of processes running on the processor is proportiona to its speed.
In other words, while distributed evenly across parallel processes, data and computations are
distributed unevenly over processors of the heterogeneous network, and this way each processor

performs the volume of computations proportional to its speed.
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The strategy employed by the tool is based on HeHo strategy (heterogeneous distribution of
processes over processors and homogeneous block distribution of data over the processes)
presented by Kalinov and Lastovetsky [KLO1]. They analyze two strategies, which are HeHo and
HoHe (homogeneous distribution of processes over processors with each process running on a
separate processor and heterogeneous block cyclic distribution of data over the processes). Both
strategies were implemented in the mpC language. The first strategy is implemented using calls
to ScaLAPACK; the second strategy is implemented with calls to LAPACK [ABB+92] and
BLAS [DCD+90]. They compare the strategies using Cholesky factorization on a network of
workstations. They show that for heterogeneous parallel environments both the strategies HeHo
and HoHe are more efficient that the traditional homogeneous strategy HoHo (homogeneous
distribution of processes over processors and homogeneous distribution of data over the
processes as implemented in ScaLAPACK). They aso show that HoHe strategy is more efficient
than the HeHo strategy (speedup of 40% observed on networks where the ratio of the speed of
the fastest processor to the speed of the slowest processor is 7.1).

The main disadvantage of the HoHe strategy is non-Cartesian nature of the data distribution
(Cartesian data distribution is shown in Figure 3.16). This leads to additional communications
that can be essentia in the case of large networks. The HeHo strategy is easy to accomplish. It
allows the usage of high-quality software, such as ScaLAPACK, developed for homogeneous
distributed memory systems in heterogeneous environments and to obtain a good speedup with
minimal expenses. However the HeHo strategy does not take into account processor memory
size. For an application dealing with big matrices, it can cause paging, which in turn causes
slowing down of the parallel application. Therefore to use this strategy it is necessary to restrict

the number of processes running on processors in accordance with the estimated size of the
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application and the main memory available. We aim to do further research to find the crossover
point between HoHe and HeHo strategies in case of large networks.

Thus the main purpose of the tool is to allow the application programmers to convert
conventional paralel applications that are designed to run on MPPs to applications that run
efficiently on HNOCs without rewriting these applications. The tool adopts a multiprocessing
approach, which does not aim to extract the maximum performance from a heterogeneous
network but provides an easy and simple way to execute a wide range of conventional
applications on HNOCs with good performance improvements.

We illustrate the features of the tool by transforming a sample ScaLAPACK [CDD+96]
program. ScaLAPACK is a well-known standard package of high-performance linear algebra
routines for distributed-memory message passing MIMD computers and networks of
workstations supporting PVM and/or MPI . It is a continuation of the LAPACK project, which
designed and produced analogous software for workstations, vector supercomputers, and shared-
memory paralel computers. Both libraries contain routines for solving systems of linear
eguations, least squares problems, and eigenvalue problems.

Consider the ScaLAPACK program computing matrix multiplication using the routine
PDGEMM shown in Figure 3.1. This routine performs any of the following matrix-matrix
operations:

C = axAxB+pxC

C = axAxBT+pxC

C = axA'xB+pxC

C=axAxBT+BxC

where a and § are scalars and A, B, and C are matrices.
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PROCGRAM HPDGEMM

| NTEGER DLEN, M K, N, NB, ICTXT, INFO, MYCOL, MYROW
$ NPCOL, NPROW MP, KP, KQ NQ

$ DESCA( DLEN_ ), DESCB( DLEN_ ), DESCC( DLEN_ )
PARAMVETER ( DLEN. = 9, LLD = 9)

EXTERNAL BLACS EXI T, BLACS GRI DEXI T, BLACS GRI DI NFO

$ DESCI NI T, PDGEMM

Define process grid

CALL BLACS GET( -1, 0, ICTXT)
CALL BLACS GRIDI NI T( | CTXT, ‘Row mmjor’, NPROW NPCOL )
CALL BLACS_GRI DI NFQ({ | CTXT, NPROW NPCOL, MYROW MYCOL )

MP = NUMROC( M NB, MYROWN 0, NPROW)
KP = NUMROC( K, NB, MYROW 0, NPROW)
KQ = NUMROC( K, NB, MYCOL, 0, NPCOL )
NQ = NUMROC( N, NB, MYCOL, 0, NPCOL )
Initialize the array descriptors for the matrices A, B, and C

CALL DESCINIT( DESCA, M K, NB, NB, 0, O, ICTXT, MAX( 1, M),

$ I NFO )

CALL DESCINIT( DESCB, K, N, NB, NB, 0, 0, ICTXT, MAX( 1, KP ),
$ | NFO )

CALL DESCINIT( DESCC, M N, NB, NB, 0, 0, ICTXT, MAX( 1, MP ),
$ I NFO )

Cenerate random matrices A, B, and C
CALL PDVATGEN( ...)
Call the ScalLAPACK routi ne PDGEMM

CALL PDGEMM ‘No transpose’, ‘No transpose’, M N, K 1., A 1, 1,
DESCA, B, 1, 1, DESCB, 1., C, 1, 1, DESCC)

Rel ease the process grid
Free the BLACS cont ext

* % X ok

CALL BLACS_GRIDEXI T( | CTXT )

* %

Exit the BLACS
CALL BLACS EXIT( 0 )

STOP
END

Figure 3.1: The most relevant fragments of code of the ScalL APACK program computing matrix-matrix

multiplication using PDGEMV
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int nmain(int argc, char **argv) {

static int p, g0 m n, k, kb, kp, kq, mycol, myrow, ictxt, desca[9], input_p[2],
descbh[9], descc[9], rc, info, i, nmp, nmg, info, i__1, nrhs,
i aseed, ibseed, icseed, c_ 0 =0, c_1 =1, nd, **dp, output_p;

static double *a, *b, *c;

voi d *rodel _par ans;

HWPI _Group gi d;

HWPI Init(argc, argv);

// Estimation of speeds of the processors

if (HWPI_I's_menber (HVPI _PROC_WORLD GROUP)

HWPI _Recon( & dgenm i nput_p, 2, &output_p);
/1 Model paraneter initialization
if (HWPI_Is_host()) {

nmodel _parans[0] = n;
nodel _parans[1] = kb;
}
/1 HWPI Goup creation
if (HWI _Is_host())

HWPI _Group_aut o_creat e( &gi d, &HWPI _Mbdel _pdgenm nodel _par ans);
if (HWI _Is_free())

HWPI _G oup_aut o_creat e( &gi d, &HWPI _Model _pdgenm NULL);
/1 Execution of the algorithm
if (HWI _Is_nenber(&gid)) {

MPI _Conm al gocomm = *( MPI _Commt) HVPI _Get _comm{ &gi d) ;

HWPI _G oup_t opol ogy(&gi d, &nd, dp);

p = (*dp)[0];

q = (*dp)[1];

i ctxt = Csys2bl acs_handl e(al goconm) ;

/1 Form BLACS context based on al goconm

Cblacs_gridinit(&ctxt, "r", p, d);

// Initialize the process grid

bl acs_gridinfo__ (& ctxt, &p, &g, &nyrow, &nycol);

np = nunrtoc_(&m &kb, &nyrow, &c__ 0, &p);

kp = nunroc_(&, &kb, &nyrow, &c__ 0, &p);

kg = nunroc_(&, &kb, &nycol, &__ 0, &Qq);

ng = nunroc_(&n, &kb, &nycol, &__ 0, &q);

i1 = max(1, np);

descinit_(desca, &m &k, &nb, &nb, &__0, &_ 0, & ctxt, & __1, & nfo);
i1 = max(1,kp);

descinit_(desch, &, &n, &nb, &b, & _ 0, &_ 0, & ctxt, & 1, & nfo);
i1 = max(1, np);

descinit_(descc, &m &n, &nb, &b, &__0, &_ 0, & ctxt, & __1, & nfo);
i aseed = 100;

pdnat gen_( & ctxt, "No transpose", "No transpose", &descal?2],

&desca[ 3], &desca[4], &desca[5], a, &desca[8], &desca[6],

&desca[ 7], & aseed, &c__ 0, &np, &c__0, &kq, &myrow, &mycol, &p, &Q4);
i bseed = 200;
pdnat gen_( & ctxt, "No transpose", "No transpose", &descb[2],

&desch[ 3], &desch[4], &descb[5], b, &desch[8], &desch[6],

&desch[ 7], & bseed, &c_ 0, &p, &c_ 0, &ng, &myrow, &mycol, &p, &Q);
/1 Conput e C=AxB
pdgemm ( & ctxt, "No transpose", "No transpose", &descc[2], &descc[3],
&descc[ 4], &descc[5], c, &descc[8], &descc[6], &descc[7], & cseed, &__ 0, &,
&__ 0, &ng, &myrow, &mycol, &p, &Q);
/'l Rel ease the process grid, Free the BLACS cont ext
blacs_gridexit__(& ctxt);

/1 HWPl Goup Destruction
if (HWPI_Is_nenber(&gid))

HWPI _G oup_free(&gid);
HWPI _Finalize(0);

Figure 3.2: The most relevant fragments of generated HMPI code computing matrix-matrix multiplication using

PDGEMMon heterogeneous networks.
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There are four basic steps involved in calling a ScaLAPACK routine.

1.

Initialize the process grid. The BLACS_GET routine returns the default system context
for input to BLACS_GRI DI NI T. The routine BLACS_GRI DI NI T is called to map the
processes sequentially in row-major order into the process grid. The first parameter to
this routine is the system context to be used in creating the BLACS context. The second
parameter to this routine indicates how to map processes into the process grid. The third
and fourth parameters indicate the number of rows and number of columns in the process
grid. The routine BLACS_GRI DI NFO returns the row and column index in the process
grid of the calling process.

Distribution of the matrix on the process grid. Each global matrix that is to be distributed
across the process grid must be assigned an array descriptor using the ScaL APACK
TOOLS routine DESCI NI T. A mapping of the global matrix onto the process grid is
accomplished using the user-defined routine PDMATGEN.

Call the ScaLAPACK routine PDGEMV

Release the process grid via a call to BLACS _GRI DEXI T. When all the computations

have been completed, the program is exited with acall to BLACS_EXI T.

3.1.2 Main Constructs of Performance Model Definition Language

This program is input to the tool, which generates a C program shown in Figure 3.2. The tool

uses the performance model definition pdgenmshown below:

/*
/*
/*
/*
/*
/*

OO, WNPEF

*[/ algorithmpdgemm(int n, int b, int p, int Q)

*/ {

*/ coord I =p, J=q;

*/ node {1>=0 && J>=0: bench*((n/(b*p))*(n/(b*q))*(n/b));};
*/ link (K=p, L=0q)

*/ {
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[* 7 * [ >=0 && J>=0 && I!=K :

[* 8 */ [ engt h*((n/(b*p))*(n/(b*qg))*(b*b)*si zeof (doubl e))
[* 9 */ [1, J]l->[K J];

/* 10 */ | >=0 && J>=0 && J!=L:

[* 11 */ l ength*((n/ (b*p))*(n/(b*qg))*(b*b)*sizeof (doubl e))
[* 12 */ [1, J]->[I, L];

[* 13 */

}s
[* 14 */ parent[ O, 0];
[* 15 */ scheme

/[* 16 */ {

[* 17 */ int i, j, k;

[* 18 */ for(k = 0; k < n; k+=b)

[* 19 */ {

[* 20 */ par(i = 0; i < p; i++4)

[* 21 */ par(j =0; j <q; j++)

[* 22 */ if () '= ((k/b)%))

[* 23 */ (100.0/(n/(b*q))) Wo[i,((k/ib)o)]->[i,]];
[* 24 */ par(i = 0; i < p; i++)

[* 25 */ par(j =0; j <q; j++)

[* 26 */ if (i '= ((k/b)%))

[* 27 *] (100.0/(n/(b*p))) Wo[((k/Ib)%p),j]->[i,]];
[* 28 */ par(i = 0; i < p; i++)

[* 29 */ par(j = 0; j < .q; i++)

/[* 30 */ ((100.0xb)/n) Wo[i,|j];

[* 31 */ }

[* 32 */ };

[* 33 *| };

This performance model definition describes the ssmplest scenario performed by the pdgemm
routine in ScaLAPACK, which uses outer-product algorithm using the logical LCM hybrid
algorithmic blocking strategy [PD99]. The performance model definition describes the paralel
matrix-matrix multiplication of two dense square matrices A and B of size nxn. The distribution
blocking factor b used in the matrix-matrix multiplication is assumed to be equa to the
algorithmic blocking factor. The performance model definition also assumes that the matrices are
divided into whole number of blocks of size equal to distribution blocking factor, that is,

(n%{ bxp)) and (n% bxq)) (seeexplanation of variables below) are both equal to zero.

Coordinate Declar ation

78



Outline of HMPI

Line 1 is a header of the performance model declaration. It introduces the name of the
performance model pdgenm parameterized with the scalar integer parameters n, b, p, and q.
Parameter n is the size of square matrices A, B, and C. Parameter b is the size of the distribution
blocking factor. Parameters p and q are output parameters representing the number of processes
along the row and the column in the process grid arrangement. The scope of the parametersisthe
corresponding performance model declaration. The declaration of the performance model is aso
called atopology.

The body of the performance model declaration starts at line 3. Line 3 is a coordinate
declaration declaring the coordinate system to which the processor nodes of the network are
related. It introduces integer coordinate variable | ranging from O to p-1, and integer
coordinate variable J ranging from 0 to - 1. For example, the coordinate declaration

coord x = 100, y = 10, z = p;
declares a 3-D coordinate system, which a network containing up to 100x10xp nodes may be

related to.

Node Declar ation

Line 4 is a node declaration. It relates the virtual processors to the coordinate system declared
and specifies the (absolute) volume of computations to be performed by each of the processors.
Line 4 declares that the relative volume of computations to be performed by the virtual processor
with coordinates (1,J) is ((n/ (b*p))*(n/ (b*qg))*(n/b)). Line 4 dso stands for the
predicate for all 0<I <p and 0<J<q then a virtual processor, whose relative volume of

computationsis ((n/ (b*p))*(n/ (b*q))*(n/ b)), isrelated to the point with coordinate

[, J].
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Consider the following performance model definition
algorithmWb(int m int n, int dim[n]) {
coord I=m J=n;
node {
| ==0 && J>0: void;
| ==0 && J==0: d[I][J];
default: d[1][J]*n;

s
parent [0, O];
};

In the node declaration, a processor node of the type void has no data and does not take part in
computations. The equivalent interpretation is that the type void indicates that no processor is
related to the positions with the corresponding coordinates. In this example, the keyword void in
the position of the processor type indicates that no processors are related to the points with
coordinates| 0, J] , where(0<J<n).

When processing a node declarator, the compiler evaluates the (logical) expression for every
permissible set of values of the coordinate variables. If the value is non-zero (that corresponds to
the logical value true), a processor of the specified type and performing the specified volume of
computationsis related to the coordinates.

The default node declarator declares the volume of computations performed by al the
processor hodes whose coordinates do not satisfy any (logical) expression in the rest of the node
declarators of the node declaration. If there does not exist a default node declarator, these
processor nodes shall have the type void.

Therefore in this example, the virtual processor with coordinates [ 0, 0] performs relative
volume of computations equal to d[ O] [ O] whereas the rest of the virtual processors, that is
processors with coordinates [ |, J], where (0<l <m) and (0<J<n), perform relative

volume of computationsequal to d[ 1] [ J] *n.
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Specification of the volume of computation is not as easy. What is the natural unit of
computation to measure the volume of computations performed by the process? The main
requirement is that if given the volume of computation measured in those units, the HMPI
runtime system should be able to accurately estimate the time of execution of the corresponding
computations by any process of the program.

The solution proposed in the performance model definition language is that the very code
that was used to estimate the speed of physical processors of the executing network can also
serve as a unit of measure for the volume of computation performed by processes of the parallel
algorithm.

The line 4 of node declaration specifies that the volume of computations to be performed by
the virtual processor with coordinates (1,J) is ((n/ (b*p))*(n/(b*q))*(n/b)) times
bigger than the volume of computations performed by the benchmark code. The statement
bench just specifies that as a unit of measurement, the volume of computation performed by
some benchmark code is used. It is presumed that the benchmark code, which is used for

estimation of speed of physical processors, multiplies two dense square bxb matrices.

Link Declaration

Lines5-13 are alink declaration. This specifies:

» thelinks between the virtual processors,

» the pattern of communication among the abstract processors, meaning a set of
communication links over which the abstract processors communicate with each other,

and
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» thetota volume of datato be transferred between each pair of virtual processors during
the execution of the algorithm.

Lines 7-9 of the link declaration describe communications related to matrix A. Obviously,
abstract processors from the same column of the processor grid do not send each other elements
of matrix A. Only abstract processors from the same row of the processor grid send each other
elements of matrix A. Abstract processor Py will send (n/ (bxp)) x(n/ (bxq) ) xbxb number
of elements of matrix A to processor Pk;. The volume of data in one bxb block is given by
(b*b) *si zeof (doubl e) and so the total volume of data transferred from processor Py; to
processor Py will begiven by (n/ (bxp) ) x(n/ (bxq) ) xbxbxsi zeof (doubl e) .

Lines 7-9 also stand for the predicate for all 0<I <p and 0<J<qif | #K then there exists
a link connecting virtual processors with coordinates [I , J] and [K, J] and the total amount of
data transferred through this link from [1,J] to [K, J] is
(n/ (b*p))*(n/(b*q))*(b*b) *si zeof (doubl €) during the execution of
the al gorithm

The second statement in the | i nk declaration describes communications related to matrix B.
Obvioudly, only abstract processors from the same column of the processor grid send each other
elements of matrix B. In particular, processor P;; will send all its bxb blocks of matrix B to all
other processors from column J of the processor grid. Abstract processor Py; will send
(n/ (bxp)) x(n/ (bxq)) xbxb number of elements of matrix B to processor P, . The volume
of data in one bxb block is given by ( b*b) *si zeof (doubl e€) and so the total volume of
data transferred from processor P;; to processor P, will be given by

(n/ (bxp)) x(n/ (bxq)) xbxbxsi zeof (doubl e).
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Figure 3.3: The pattern of communication among the processors. (a) A star communication pattern, (b) A ring

communication pattern, and (¢) A tree communication pattern.

In general, the performance model definition language allows static and dynamic
communication patterns.
The communication pattern shown in Figure 3.3(a) with the performance model definition
shown below represents star pattern.
algorithm Star(int p, int comm {
coord | =p;
[ink {
| >0: | ength*(commtsi zeof (double)) [I]->[0];
3
3
The communication pattern shown in Figure 3.3(b) with the performance model definition
shown below represents ring pattern.
algorithmRi ng(int p, int comm {
coord | =p;
[ink {
| >=0: | engt h*(commtsi zeof (double)) [1]->[(]+1) %] ;
3

b
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The communication pattern shown in Figure 3.3(c) with the performance model definition
shown below represents tree pattern.

al gorithm Tree(int p, int comm {

coord | =p;
link {
| >=0: | engt h*(commtsi zeof (double)) [I]->[2*]+1],
[1]->[2%i +2];

3
The following performance model definition represents a dynamic communication pattern,

al gorithm Dynam cPattern(int p, int pattern) {
coord | =p;
node {1>=0: bench*l;};
[ink {
patter n==STAR: | engt h* (Il *si zeof (double)) [O]->[1];
pattern==RI NG | ength*(Il*sizeof (double))
} [11->[(1+1)/p];

b

which describes the star or ring communication topology depending on parameter pattern.

Par ent Declar ation

Line 14 is a parent declaration. It specifies the coordinates of the parent processor node in a
given coordinate system. If a performance model declaration does not contain a parent node
declaration, the parent is specified implicitly and has zero number in the natural numeration of
processor nodes. The parent is the so-called virtual host-processor, which always maps onto the
host-process associated with the user’ s terminal.

If we need the parent of the performance model pdgenm to have not the least but the
greatest coordinates, line

parent [p-1,9-1];
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has to be used in the definition of performance model pdgenmminstead of line

parent [0, 0];

The HMPI groups are not absolutely independent of each other. Every newly created group
has exactly one process shared with already existing groups. That process is caled a parent of
this newly created group, and is the connecting link, through which results of computations are

passed if the group ceases to exist.

Scheme Declar ation

Line 15 introduces the scheme declaration. The scheme block describes how exactly virtual
processors interact during the execution of the algorithm. The scheme block is composed mainly
of two types of units. They are computation and communication units. Each computation unit is

of the form e%%][i] specifying that e percent of the total volume of computations is performed

by the virtual processor with the coordinates (i ). Each communication unit is of the form

e%%[i] — []] specifying transfer of datafrom virtual processor with coordinatesi to the virtual

processor with coordinates j . There are two types of agorithmic patterns in the scheme
declaration. They are sequential and parallel. Some examples of the sequential algorithmic
patterns are
for (el; e2; e3) a
for (el;, e2; e3)
for (eel; ee2; eel)

a

if (e) al else a2
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The parallel algorithmic patterns are specified by the keyword par and they describe parallél

execution of some actions (mixtures of computations and communications). Some examples of

the parallel agorithmic patterns are

pa

r (el; e2; e3) a

par (el; e2; e3)

par (eel; ee2; ee3l)
if (e) al else a2

The scheme declaration describes ( n/ b) successive steps of the agorithm. At each step k,

Lines 21-23 describe communications related to matrix A. A column of bxb blocks of
matrix A is communicated horizontally. If processors Py; and Pg; are involved in this
communication so that P; sends a part of this column to Py, then the number of bxb
blocks transferred from P,; to Pxy will be ( n/ (bxp) ) . The total number of bxb blocks

of matrix A, which processor P;; sends to processor Pgj, is

=————x100
(n/(bxp)) % (n/(b>q)) (n/(bxq))

(n/ (bxp) ) x(n/ ( bxq)) .Therefore, (Vbxp) 100 1

percent of datathat should bein total sent from processor P,; to processor Px; will be sent
at the step. The second nested par statement in the main f or loop of the schene
declaration specifies this fact. Again, we use the par agorithmic patterns in this
specification to stress that during the execution of this communication, data transfer
between different pairs of processorsis carried out in parallel.

Lines 24-27 describe communications related to matrix B. A row of bxb blocks of matrix
B is communicated vertically. For each pair of abstract processors P; and Py involved in
this communication, P;; sends a part of this row to P,.. The number of bxb blocks

transferred from Py; to P, will be (n/ (bxq)) . The total number of bxb blocks of
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matrix B, which processor P;; sends to processor Py, is (n/ (bxp)) x(n/ (bxq)).

Therefore, (W(bxq)) x100= _ x100 percent of data that should be
(n/(bx p)) x (n/(bxq)) (n/(bxp))

in total sent from processor P, to processor P, will be sent at the step. The first nested
par statement in the main f or loop of the schene declaration just specifies this fact.
The par agorithmic patterns are used to specify that during the execution of this
communication, data transfer between different pairs of processors is carried out in
paraldl.

Lines 28-30 describe computations. Each abstract processor updates each its bxb block
of matrix C with one block from the pivot column and one block from the pivot row, so
that each block c; (i,]0{1...,n}) of matrix C will be updated, ¢; =c; +a, xb,. The
processor performs the same volume of computation at each step of the algorithm.

100xb

Therefore, at each of (n/ b) steps of the algorithm the processor will perform

percent of the volume of computations it performs during the execution of the algorithm.

The third nested par statement in the main f or loop of the schene declaration just

specifies this fact. The par agorithmic patterns are used here to specify that all abstract
processors perform their computationsin parallel.

The scheme declaration shown is relatively simple. It just reflects the relative simplicity of

the underlying parallel agorithm. In general, the performance model definition language allows

the programmer to describe quite sophisticated heterogeneous parallel algorithms by means of

wide use of parameters, locally declared variables, functions, expressions and statements.
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3.1.3 Structure of Target Program
The transformed HMPI application performs typically the following steps. The HMPI calls are
explained in detail in the sections that follow.

1. Theinitidization of HMPI runtime using the function HMPI _I ni t ..

2. Thisisfollowed by dynamic refreshment of the estimation of the processor speeds using
the function HVPI _Recon. The benchmark code used in the call to HMPlI _Recon isa
serial BLAS version of the parallel ScaLAPACK routine. In this case, the BLAS routine
DCGEMM multiplying two dense square matrices is used to dynamicaly refresh the
processor speeds. An interesting issue is the choice of size of the matrix that is to be used
in the benchmark code. An approximation of the size of the matrix used is equal to the
size of the matrix used in the paralel application divided by the square root of the total
number of processes that are available for computation. For example, if the total number
of processes available for computation are mand the size of the matrix to be solved isn,

the size of the matrix used in the benchmark code in the call to HVPI _Recon can be

n/ v/m. This is an approximation because the optimal number of processes that can
execute the parallel application (detected by HVPI _Gr oup_aut o_cr eat €) may not
be equal to the total number processes available for computation.

3. Creation of a HMPI group of processes using the function
HWPI _G oup_aut o_cr eat e to obtain ahandle to the HMPI group of MPI processes.
This function detects the optimal number of processes that can execute the parallel
application, that is, finds the optima arrangement of processes in a grid. During the
creation of a HMPI group of processes, the mapping of the parallel processes to the

executing network of computers is performed such that the number of processes running
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on each processor is proportional to its speed. In other words, while distributed evenly
across parallel processes, data and computations are distributed unevenly over processors
of the heterogeneous network, and this way each processor performs the volume of
computations proportional to its speed. The function cals HWPI _|s_host,
HWI |s free, and HWI | s _nenber are explained in sections on HMPI group
management functions.

Conversion of the handle to the HMPI group of MPI processes obtained previously to an
MPI communicator using the function call HVPI _Get _conmm

Conversion of the MPI communicator to an integer BLACS handle, which can be passed
into grid creation routine. This is done using the interim BLACS routine
Csys2bl acs_handl e.

Creation of the BLACS context using the integer BLACS handle. This is done using the
interim BLACSroutineCbl acs_gridinit.

The four basic steps involved in calling a ScaLAPACK routine described previously are

then performed.

An interesting issue is the choice of the total number of processes to be alocated to each

participating computer when the user starts up the application. Some basic rules to choose the

number of processes to allocate per each processor can be followed:

1.

2.

First of all, the number of processes running on each computer should not be less than the
number of processors of the computer just to be able to exploit al the available processor
resources.

The upper bound on the number of processes to alocate per computer is limited by the

underlying operating system and/or the underlying MPI implementation. For example,
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Name(umberof | gigqure | BU | hamay | | S
(mBytes)
pglcluster0l (2) "Iinrt‘gl’zs)ﬁfégzzémp 2048 1024 512
pglcluster02 (2) "Iinrt‘gl’zs)ﬁfégzzémp 2048 1024 512
pglcluster03 (2) "Iinrt‘gl’zs)ﬁfégzzémp 2048 1024 512
pglclustero4 (2) "Iinrt‘gl’zs)ﬁfégzzémp 2048 1024 512
csserver (4) "Iinrt‘gl’zs)ﬁ;’égﬁsgmp 2867 8192 512

Table 3.1: Specifications of the five computers used for running a ssmple HMPI application involving HMPI group

creation and destruction.

int main(int argc, char **argv)
-
int p;
HWI _Group gid;
HWI Init(argc, argv);
if (HWI _Is _host())
p = 5;
if (HWI _Is _host())
HWI _Group_create(&gid, &HWPI _Model sinple, &p);
if (HWI Is free())
HWI G oup_create(&gid, &HWPlI _Model _sinple, NULL);
if (HWPI _|Is_nenmber(&gid))
HWI _G oup_free(&gid);
HWPI _Fi nalize(0);

Figure 3.4: A simple HMPI application that calls HMPI runtime initialization, group creation and HMPI runtime

finalization.

the LAM/MPI 7.1.1 installed under the operating systems Solaris 2.9 and Linux 2.6.8-
1.521smp does not specify any limit on the number of LAM processes that can
beexecuted on each processor. Therefore the maximum number of processesin this case

is
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Simple HMPI application
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Figure 3.5: Demonstration of the influence of the growth of the number of processes on the overhead associated
with HMPI group creation and destruction. The execution times are for a simple HMPI application shown in Figure
3.4 run on the network shown in Table 3.1. Only 5 processes are members of the HMPI group and are involved in
the execution of the algorithm whereas the rest of the processes are idle and not involved in any computations. For
the first point, a process is run on each computer of the network. For experimental point i (i>1), 5xi processes are

run on each computer of the network.

limited by the operating system and can be obtained by using the UNIX command
‘ulimt -u’. However, the upper bound on the number of processes executed on each
processor is roughly equal to the ratio of speed of the fastest processor to speed of the
slowest processor on the executing network of computers.

3. The other factor affecting the execution performance of the application is the size of main
memory on the computer. It must be ensured that the sum total of the amount of main
memory used by all the processes allocated to a computer not exceed the size of main
memory of the computer. This is because when the data size of the application is larger

than the main memory size of the computer, the performance is adversely affected
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Name(umberof | gigqure | BU | hamay | | S
(mBytes)
pglclusterol (1) "Iinrt‘gl’zs)ﬁfégzzémp 2048 1024 512
pglcluster02 (1) "Iinrt‘gl’zs)ﬁfégzzémp 2048 1024 512
pglcluster03 (1) "Iinrt‘gl’zs)ﬁfégzzémp 2048 1024 512
pglclustero4 (1) "Iinrt‘gl’zs)ﬁfégzzémp 2048 1024 512
csultra0i (1) S“ggﬁffuﬁna‘_‘g _S‘logr ¢ 440 512 2048
csultra02 (1) 5“28,3\?\/8&:‘:; _S‘logr ¢ 440 512 2048
csultra03 (1) 5“28,3\?\/8&:‘:; _S‘logr ¢ 440 512 2048
csultrad4 (1) S”ggﬁ\ffuﬁ“t‘r”a‘_‘g _S'logr ¢ 440 512 2048
csultra0s (1) S”ggﬁ\?fuﬁ“t‘r”a‘_‘g _S'logr ¢ 440 512 2048
csultra0s (1) S”ggﬁ\?fuﬁ“t‘r”a‘_‘g _S'logr ¢ 440 512 2048
csultra07 (1) S”ggﬁ\ffuﬁ‘t‘r”a‘_‘g _ngr ¢ 440 512 2048

Table 3.2: Specifications of the eleven computers used for running a simple HMPI application involving HMPI

group creation and destruction (only one process run per processor).

int main(int argc, char **argv) {
int p;
HWPI _Group gi d;
HWPI Init(argc, argv);
if (HWPI _|Is host())
p = HWPI _G oup_si ze( HWPI _COVM WORLD GROUP) ;
if (HWPI _Is_host())
HWPI _Group_create(&gid, &HWPI _Model _sinmple, &p);
if (HWI Is free())
HWPI _Group_create(&gid, &HWPI Model sinmple, NULL);
if (HWPI _|Is _nmenber(&gid))
HWPI _Group_free(&gid);
HWPI _Fi nalize(0);

Figure 3.6: A ssimple HMPI application that calls HMPI runtime initialization, group creation and HMPI runtime

finalization (HMPI group consists of one process per computer).
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Simple HMPI application
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Figure 3.7: Demonstration of the influence of the growth of the number of computers on the overhead associated
with HMPI group creation and destruction. The execution times are for a simple HMPI application shown in Figure

3.6 run on the network shown in Table 3.2.

because the dominant computation times were used by the operating system to do context
switch and page swapping between main memory and disk.

If an HMPI application does not define a significant amount of static data, then all the
processes, which are not involved in the execution of the paralel algorithm, are very light-
weighted and do not consume too many resources such as processor cycles or memory. The
overheads associated with these processes are the initialization and finalization of HMPI runtime
and the communications associated with the synchronizations involved during the creation and
the destruction of the HMPI groups. It is observed that these overheads do not grow rapidly with
the growth of the total number of processes but is more sensitive to the number of computers
used. Figure 3.5 shows that the growth of the number of processes does not result in a large

increase in the overheads. The experiments are performed on local network of 5 Linux
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Total Absolute | Absolute
Name (Number , cpu Main Cache Speed Speed
Architecture
of Processor s) MHz | Memory | (kBytes) | (dgemm) (dgesv)
(mBytes) (MFlops) | (MFlops)

Linux 2.6.8-

pglcluster0l (2) 1|.§t2;(smmp 2048 1024 512 2429 2139
XEON(TM)
Linux 2.6.8-

pglcluster02 (2) ﬁ'gtzell(smmp 2048 1024 512 2429 2139
XEON(TM)
Linux 2.6.8-

pglcluster03 (2) 1|.§t2;(smmp 2048 1024 512 2429 2139
XEON(TM)
Linux 2.6.8-

pglcluster04 (2) 1|.§t2;(smmp 2048 1024 512 2429 2139
XEON(TM)

Linux 2.4.18-3
zaphod (1) 1686 Intel Pentium 997 256 256 563 494
1l
Linux 2.6.5-1.358
maxft (1) Lx 265 731 128 256 412 392

Table 3.3: Specifications of six computers of a heterogeneous network to determine the influence of blocking factor

on HMPI+ScalL APACK application.

computers shown in Table 3.1. Figure 3.7 shows the influence of the growth of the number of
processes on the overhead associated with HMPI group creation and destruction. The
experiments are performed on local network of eleven heterogeneous computers shown in Table
3.2.

There are two other important issues, one is the optimal arrangement of processes in the grid
and the other is the blocking factor used to distribute the rows and the columns of the matrices
involved in the computation. The optimal arrangement of processes in the process grid is
determined by the HMPI function HMPlI _Gr oup_aut o_cr eat e.

To determine the optimal blocking factor to be used to distribute the rows and the columns of

the matrices involved in the computation, a heterogeneous local network of 6 Linux computers
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b
18 36 54 72 90 180

n
1080 7.19 6.52 7.28 7.55 6.98 7.14
2160 18.39 19.35 20.18 19.83 18.94 20.05
3240 48.52 48.77 49.38 48.33 47.33 47.35
4320 101.56 100.43 100.77 104.72 100.44 104.91
5400 190.81 188.37 203.19 195.60 189.64 181.68

Table 3.4: Results of experiments on network shown in Table 3.3. n is the size of the matrix. b is the distribution
blocking factor. The execution times of the parallel matrix-matrix multiplication obtained by executing the routine
pdgemmare given in seconds. The process grid used in the experiments is p=3, q=3 (one process per processor

configuration).

b
18 36 54 72 90 180
n
1080 7.71 7.49 8.17 8.27 7.78 8.43
2160 15.30 13.62 14.47 13.21 13.10 13.31
3240 30.75 23.14 23.54 22.85 22.37 24.66
4320 55.68 48.41 48.78 45.80 44.96 45.07
5400 99.22 86.21 81.80 76.05 82.20 81.55

Table 3.5: Results of experiments on network shown in Table 3.3. n is the size of the matrix. b is the distribution
blocking factor. The execution times obtained by executing the routine pdgesv are given in seconds. The process

grid used in the experimentsis p=3, q=3 (one process per processor configuration).

shown in Table 3.3 is used in the experiments. The computers used in the experiments are
connected to communication network, which is based on 100 Mbit Ethernet with a switch
enabling parallel communications between the computers. The experimental results are obtained
by averaging the execution times over a number of experiments. It is observed that the execution
times are the same no matter what algorithmic blocking factor is used. Table 3.4 shows the

experimental results using the routine pdgenmmperforming parallel matrix-matrix multiplication.
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Figure 3.8: Results obtained using the network of heterogeneous computers shown in Table 3.3. (a) Comparison of
speedups of matrix-matrix multiplication using the routine pdgermm (b) Comparison of speedups of solving linear

system of equations using the routine pdgesv.

Table 3.5 shows the experimental results using the routine pdgesv, which computes the

solution to areal system of equations.
However to ensure efficient data distribution, it is recommended that any blocking factor
between 32 to 64 be used to distribute the rows and the columns of the matrices involved in the

computation of the linear algebra kernel [BCC+97].
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Figure 3.8(a) shows the experimental results using the routine pdgenm performing parallel
matrix-matrix multiplication on the heterogeneous network shown in Table 3.3. Figure 3.8(b)
shows the experimental results using the routine pdgesv, which computes the solution to a real
system of equations on the heterogeneous network shown in Table 3.3. The speedup calculated is
the ratio of the execution time of the ScaLAPACK program over the execution time of the HMPI
program.

The absolute speeds of the processors are obtained based on serial versions dgenmm and
dgesv of the corresponding paralel routines pdgemmand pdgesv. For dgenm the size of the
square matrix used is 1000x1000. For dgesv, the size of the square matrix used is
2000x%2000. It can be seen that the fastest processors are on the pglcluster computers and the
slowest processor is maxft. The number of processes to be run on each processor is equal to the
ratio of the absolute speed of the fastest processor to the absolute speed of the slowest processor.
For the experiments shown in Figure 3.8, the number of processes run on each processor in
pglcluster is 6, on zaphod is 2, and on maxft is 1. This is because each processor on pglcluster
computers is 6 times faster than the processor on maxft and the processor on zaphod is 2 times
faster than the processor on maxft. So the total number of processes available to the HMPI
program for computation is 6x8 + 2x1 + 1x1 = 51.

The HMPI program detects the optimal process grid arrangement from the set of possible 2D
process grid arrangements of 51 processes. Since the number of 2D process grid arrangements is
large, the HMPI program uses the HMPI function
HWI G oup_heuristic_auto _create instead of the  HMPI function
HVPI _G oup_aut o_cr eat e, which evaluates all the possible 2D process grid arrangements.

The function HVPI _Group_heuri stic_auto_create uses heuristics to reduce the
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number of process arrangements to evaluate. The heuristics used are that for a 2D process grid
arrangement, the row and column distribution blocking factors must be an integer multiple of the
number of processes along the row of the grid and number of processes along the column of the
grid respectively. The ScaLAPACK program uses a 2x5 grid of processes (using one process
per processor configuration).

It should also be noted that the HMPI functions HMPI _Gr oup_aut o_create and
HWPI G oup_heuristic_auto_create find the optima process arrangement and not
the optimal number of processes to run on each processor.

The Figures 3.8(a) and (b) show the speedup of the HMPI programs over ScaLAPACK

programs.

3.2 HMPI Group Management Functions

Having provided such a description of the performance model, application programmers can use
a new operation, whose interface is shown below, which tries to create a group that would
execute the heterogeneous algorithm faster than any other group of processes,
HWI G oup_creat e(HWI _G oup* gid,

const HWPI _Model * perf _nodel,

const voi d* nodel paraneters)
where per f _nodel is ahandle that encapsulates al the features of the performance model in
the form of a set of functions generated by the compiler from the description of the performance
model, nodel par anet er s are the parameters of the performance model. This function
returns an HMPI handle to the group of MPI processesin gi d.

Userscan use gi d, the HMPI handle to the group of MPI processes to perform various group

management operations. This handle is intended to be opaque to the application. The users
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should not attempt to predict its values or modify it without using functions supplied with this

library.
al gorithm Nbody(int p, int k, int n[p])
{
coord | =p;
node {
| >=0: bench*((n[I]/K)*(n[I]/Kk));
1
[ink {
[>0: length*(n[l]*sizeof (Body)) [I]->[0];
pérent[O];
schene {
int i;
par (i = 0; i < p; i++) 100%4i];
par (i =0; i < p; i++) 100%84i]->[0];
1
1

Figure 3.9: Specification of the performance model of the parallel algorithm of the simulation of evolution of

bodies in the HMPI' s performance definition language.

int main(int argc, char **argv) {
int p, k, i, *nodel paranms, *nbodies;
HWI _Group gid;
HWI Init(argc, argv);
if (HWI _Is_host()) {
/1 First paraneter to the perfornmance nodel
nodel _parans[ 0] = p;
/'l Second paraneter to the perfornmance nodel
nodel parans[ 1] = k;
/1 Values of third vector paraneter
/1 to the perfornmance nodel
for (i =0; i <p; i++)
nodel parans[ 1+1+i] = nbodies[i];

if (HWI _Is _host())

HWPI _G oup_create(&gi d, &HWPI _Mbdel _Nbody, nodel _parans);
if (HWI _Is free())

HWI _Group_create(&gid, &HWPI _Model Nbody, NULL);
if (HWPI _|Is nenber(&gid)) {

/1 conputations and conmuni cati ons are perforned here

HVPI _Fi nal i ze(0):

99



Outline of HMPI

Figure 3.10: The most principal code of the HMPI program illustrating the creation of the optimal group of

processes using the operation HVPI _Gr oup_cr eat e.

In HMPI, groups are not absolutely independent of each other. Every newly created group
has exactly one process shared with already existing groups. That process is called a parent of
this newly created group, and is the connecting link, through which results of computations are
passed if the group ceases to exist. HMPI _Gr oup_cr eat e is a collective operation and must
be called by the parent and all the processes, which are not members of any HMPI group.

To illustrate the usage of the function HWPI _G oup_creat e, consider the HMPI
application shown in Figures 3.9 and 3.10. This program simulates the evolution of a system of
starsin a galaxy (or a set of galaxies) under the influence of Newtonian gravitational attraction.

Consider the block of code containing the call to HMPI _Gr oup_cr eat e shown in Figure
3.10. The first parameter gi d is an output parameter, which is an HMPI handle to the group of
MPI processes. The second parameter HVPlI _Model _Nbody is an input parameter, which is a
handle to the performance model. It is a structure generated by the performance model definition
language compiler from the compilation of the performance model definition shown in Figure
3.9. The generated code is shown in appendix A. In the current implementation of HMPI, the
scalar and the vector parameters to the performance model must be of type integer. Vector
parameters can be multidimensional arrays. However, the declaration of any vector parameter
with dimensions parameterized by scalar parameters must follow the declaration of the scalar
parameters. In the example shown in Figure 3.9, the vector parameter n, which is an indexed set
of integers of size p, follows the scalar parameter p.

The third parameter nodel _par ans isaone-dimensional array containing all the values of

the parameters to the performance model. As can be seen from the Figure 3.10, the host process
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fills the parameter nodel _par ans with the first parameter to the performance model, which is
the number of processes p involved in the execution of the heterogeneous agorithm, the second
parameter to the performance model, which is the number of bodies in the group used in the
benchmark code, and finally the last parameter to the performance model, which is the vector
parameter of p groups wherei -th element contains the number of bodiesin i -th group. Only the
parent of the group, which is the host process in this case, need only fill in the model parameters.

HVPI _Group_cr eat e is acollective operation called by the parent and al the processes,
which are not members of any HMPI group. The parent of the group in this case is the host
process. The host process is a member of the pre-defined HMPI group HMPI _ HOST _GROUP.
This group consists of exactly one virtual processor, which always maps onto the host process
associated with the user’s terminal. The function HVPI _I's_host returnst r ue if the process
calling this function is the host process otherwise f al se. The function HVPI Is free
returnst r ue if the processisfree, that is, the process is not a member of any group and f al se
otherwise,

The application programmers should avoid using groups created with the MPI group
constructor operations, to perform computations and communications in parallel with HMPI
groups, as it may not result in the best execution performance of the application. The point is that
the HMPI runtime system is not aware of any group of MPI processes, which is not created
under its control. Therefore, the HMPI runtime system cannot guarantee that an HMPI group will
execute its parallel algorithm faster than any other group of MPI processes if some groups of
MPI processes, other than HMPI groups, are active during the algorithm execution.

Application programmers must use the group destructor operation, whose interface is shown

below, to free resources associated with a group,
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HWI G oup_free(HWl _G oup* gid)
where gi d isthe HMPI handle to the group of MPI processes. Thisis a collective operation and
must be called by all the members of this group. There are no analogs of other group constructors
of MPI such as the set-like operations on groups and the range operations on groups in HMPI.
Thisis because:
* Firstly, HMPI does not guarantee that groups composed using these operations can
execute alogical unit of parallel agorithm faster than any other group of processes, and
» Secondly, it is relatively straightforward for application programmers to perform such
group operations by obtaining the groups associated with the MPI communicator given

by the HMPI_Get_comm operation, whose interface is shown below.

const MPI _Commt¥ HWPI _Get _conm (
const HWPI _Group* gid)
This function returns an MPI communicator with communication group of MPI processes

defined by gi d. Thisisalocal operation not requiring inter-process communication.

The other additional group management operations provided by HMPI apart from the group

constructor and destructor are the following group accessors:
* HWPI _G oup_rank to get the rank of the processin the HMPI group,
* HWPI _G oup_si ze to get the number of processesin this group,
* HWPI _Group_parent to get therank of the parent of this group, and

* HWPI _Goup_perfornmances to get the relative speeds of the processes in this

group.
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When describing the features of the performance model definition language, we mentioned
that the declaration of the performance model is aso caled atopology. Thus in HMPI, there is
an implicit virtual process topology associated with HMPI groups. The operations used to get the

information about the topology of the HMPI group of processes are:

 HWI _Goup_topo_size to get the number of dimensions of the process

arrangement of the virtual process topology of the HMPI group,

e HWPI _G oup_topol ogy to get the number of processes in each dimension of the

process arrangement of the virtual process topology of this HMPI group,

* HWPI _Goup_coordof to get the coordinates of the process in the virtual process

topology of thisHMPI group,

« HWPI _Rank to get the rank of the process in a group given its coordinates in the virtual

process topology of this HMPI group, and

« HWPI _Coor dof to get the coordinates of the process in the virtual process topology of

the HMPI group given the rank of the processin this HMPI group.

3.2.1 Mapping Algorithm

During the creation of this group of processes, HMPI runtime system solves the problem of
selection of the optimal set of processes running on different computers of the heterogeneous
network. The solution to the problem is based on the following:

* The performance model of the paralel algorithm in the form of the set of functions

generated by the compiler from the description of the performance model.
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» The performance model of the executing network of computers, which reflects the state
of this network just before the execution of the parallel algorithm. This model considers
the executing heterogeneous network as a multilevel hierarchy of interconnected sets of
heterogeneous multiprocessors. This model takes into account the material nature of

communication links and their heterogeneity.

3.2.1.1 Model of a Heter ogeneous Networ k of Computers

The model of a heterogeneous network of computers alows for the material nature of
communication links and their heterogeneity. Each computer in this model is characterized by
two attributes:

* Thetime of execution of a(serial) test code on the computer;

»  Thenumber of physical processors.

The first attribute is a function of time, and it can vary even during the execution of the same
HMPI application. The second attribute is a constant and it determines how many noninteracting
processes can run in parallel on the computer without loss of speed.

The model considers the executing heterogeneous network as a multilevel hierarchy of
interconnected sets of heterogeneous multiprocessors. The hierarchy reflects the heterogeneity of
communication links and can be represented in the form of an attributed tree.

Each node of the tree represents a homogeneous communication space of the heterogeneous
network. The first attribute associated with an internal node is the set of computers, which is just
aunion of setsof computers associated with its children.

The second is the speed of data transfer between two computers from different sets

associated with its children. This attribute characterizes point-to-point communication at this
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communication layer and is a function of size of the transferred data block, s(d). Note, that s(0)
isnot zero and equal to startup time of point-to-point communication at this layer.

The third attribute specifies if the communication layer alows parale point-to-point
communications between different pairs of computers without loss of data transfer speed, or the
layer serializes al communications. This attribute can have two values — Serial and Parallel. A
pure Ethernet network is serial. At the same time, the use of switches can make it parallel.

The next group of attributes is only applicable to a parallel communication layer. It
characterizes collective communication operations such as broadcast, scatter, gather, and
reduction. The point is that a collective communication operation cannot be considered as a set
of independent point-to-point communications. It normally has some specia process, caled root,
which isinvolved in more communications than other participating processes.

The level of parallelism of each of the collective communication operations depends on its
implementation and is reflected in the model by means of the corresponding attribute. For
example, the attribute f,, characterizes the level of parallelism of the broadcast operation. It is
supposed that the execution timet of this operation can be calculated as follows

t = fp * tp + (1- fp)*ts

where t . is the time of purely serial execution of the operation, and t . is the time of idedly
parallel execution of this operation (0 <=f y <= 1).

Each leaf node of this tree represents a single (homogeneous) multiprocessor computer.
This communication model addresses n-level heterogeneous paralel systems, where n
represents the number of network layers present in the heterogeneous environment. This model

describes multiple heterogeneous paralel computers connected by some combination of internal
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buses, local-area networks, campus-area networks, and wide-area networks. As a result, it can

guide the design of applications for traditional paralel systems, heterogeneous or homogeneous

ABCDE
Paralld:
S)(d) 1 be, ]
ngH e
ABC DE
Parallel: Parallel:
si(d), foa,, Sp(d), foo,,
fg]_,,... fgz,,...
A na=8 B ng=1 C | nc=1 Np=2 E | ne=1
Paralledl: Serial: Serial: Serial: Serial
sa(d), foa,, sg(d) sc(d) So(d) Se(d)
ng,, e
ba(t) ba(t) be(t) bp(t) be(t)

Figure 3.11: Hierarchical model of a heterogeneous network of five computers.

clusters, the Internet, and computational grids. Furthermore, this model incorporates parameters
that reflect the relative computational and communication speeds at each of the n levels.
Figure 3.11 depicts the model for alocal network of 5 computers, named A, B, C, D and E.

Computer A is a distributed-memory 8-processor computer, D is a shared-memory 2-processor
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server. Computers B, C and E are uniprocessor workstations. The local network consists of 2
segments with A, B and C belonging to the first segment. Computers D and E belong to the
second segment.

The speed of transfer of a data block of k bytes from a process running on computer C to a

process running on computer D is estimated by s 0( k) , meanwhile the speed of transfer of the

same data block from a process running on computer C to a process running on computer A is

estimated by sl( K) .

The level of parallelism of a broadcast involving processes running on computers B, C, and E

isf bo' meanwhile that of abroadcast involving processes running on computer A isf DA

The communication model presented is simple and rough enough. It is used at runtime by the
HMPI programming system to predict the execution time of the implemented parallel algorithm.
It uses a small number of integral attributes presenting some average characteristics rather than
detailed and fine-structured description.

The main reason of this simplicity is that the target architecture for HMPI is common
networks of computers, which normally are multi-user environments of irregular structure with
not very stable characteristics. Therefore, fine-grained communication effects can hardly be
reliably predicted for that architecture.

Secondly, HMPI is aimed at programming applications, in which computations prevail over
communications, i.e., the contribution of computations in the total execution time is much higher
than that of communications. If it is not the case, it normally means that the main goa of the
application is not to speed up the solution of some individual problem, and the distribution of its
components over different computers is its intrinsic feature, i.e., the application is actually

distributed not parallel one.
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Thus, HMPI needs an efficient communication model of common heterogeneous networks of
computers suitable for prediction of the execution time of data transfer operations involving the
transfer of relatively big volumes of data. The accuracy of the prediction does not need to be too
high because the contribution of communications in the total execution time is supposed to be
relatively small. Actually, the accuracy cannot be high because of the nature of the modelled
hardware.

The main disadvantage of the communication model that should be addressed in the future
work isthat it is static. An efficient way to update its parameters at runtime to reflect the current
situation could improve its accuracy. Another possible direction of improvement is the model of
parallel communication layer and collective communication operations. More experiments with
different network configurations are needed to make the model more accurate for a wide range of

common networks.

3.2.1.2 Overview of the Mapping Algorithm

The agorithms used to solve the problem of selection of processes are discussed in [Las02]. We
describe the mapping algorithm here in order to make this composition self-contained.

Each particular mapping, :1->C, where | is a set of processes of the group, and C={cy,
C1,...,Cu-1} 1S a set of computers of the executing network, is characterized by the estimation of
the time of execution of the algorithm on the network of computers. The estimation is calculated
based on the performance model of the paralle agorithm and the model of the executing
network of computers.

Idedlly, the HMPI runtime system should find such a mapping that is estimated to ensure the
fastest execution of the parallel algorithm. In general, for an accurate solution of this problem as

many as M* possible mappings have to be probated to find the best one (here, K is the power of
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the set | of processes of the group). Obvioudly, that computational complexity is not acceptable
for a practical algorithm that should be performed at runtime. Therefore, the HMPI runtime
system searches for some approximate solution that can be found in some reasonable interval of
time, namely, after probation of MxK possible mappings instead of M.

The underlying algorithm is the following. At the preliminary step, the set | isre-ordered in
accordance with the volume of computations to be performed by the virtual processors, so that
the most loaded virtual processor will come first. Let P={px} (k=0, .., K- 1) be this well-
ordered set. Let Q be a subgroup of the abstract group formed by the set P, ={ pi } (i =0, .., )
of virtual processors. By definition, a subgroup is aresult of projection of the abstract group onto
some subset of its virtual processors. Semantically, the subgroup is equivalent to its supergroup
modified in the following way:

» The zero volume of computations is set for each virtual processor not included in the
subgroup;
* The zero volume of communications is set for each pair of virtual processors such that
at least one of which not included in the subgroup.
Finally, let c; denote the j -th computer from the set C. Then the main loop of the algorithm can
be described by the following pseudo-code:
for(k=0; k<K; k++) {
for(j=0, tpest=MAXTIME, Cpest=Co; j<M j++) {
if(pk is not a parent of the group) {
Map pk to c;

Estinmate execution time t for this mapping of Q to C
if(t<tbest) {

t pest =t ;
Cpest =Cj;
}
Unmap pk

}
}
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Map pk tO Copest
} The presented algorithm reflects the focus of HMPI on applications with computations
prevailing over communications. Therefore, the algorithm is driven by virtual processors not
communication links. Another argument for that approach is that the maximal number of virtual
communication links is equal to the total number of virtual processors squared. Therefore, in
general, an agorithm driven by virtual links would be more expensive.

Informally, the algorithm first maps the most loaded virtual processor not taking into account
other virtual processors as well as communications. Then, given the first virtual processor
mapped, it maps the second most loaded virtual processor only taking into account
communications between these two processors and so on. At the i-th step, it maps the i-th most
loaded virtual processor only taking into account data transfer between these i virtual processors.
This algorithm exploits the obvious observation that the smaller are things, the easier they can be
evenly distributed. Hence, bigger things should be distributed under weaker constraints than
smaller ones. For example, if you want to distribute a number of balls of different size over a
number of baskets of different size, you better start from the biggest ball and put it into the
biggest basket; then put the second biggest ball into the basket having the biggest free space and
so on. This algorithm keeps balance between ball sizes and free basket space and guarantees that
if at some step you don’'t have enough space for the next ball, it smply means that there is no
way to put all the balls in the baskets. Similarly, if the above algorithm cannot balance the load
of actual processors in case of practically zero communication costs, it smply means that there is
no way to balance them at all. This algorithm will also work well if data transfer between more

loaded virtual processors is more significant than data transfer between less loaded ones. In this
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case, more loaded virtual communication links are taken into account at earlier stages of the
algorithm.

An obvious case when this mapping algorithm may not work well is when the least |oaded
virtual processor is involved in transfer of much bigger volume of data than more loaded ones,
and the contribution of communications in the total execution time is significant. But even quick

analysis shows that it is not the case for most parallel algorithms.

3.3 Dynamic Updating of Processor Performances Ussng HM Pl Recon

During the creation of a group of processes, HMPI runtime system solves the problem of
selection of the optimal set of processes running on different computers of the heterogeneous
network. The solution to the problem is based on the following:

* The performance model of the paralel algorithm in the form of the set of functions

generated by the compiler from the description of the performance model.

* The performance model of the executing network of computers, which reflects the state

of this network just before the execution of the parallel algorithm.

The accuracy of the performance model of the executing network of computers depends upon
the accuracy of the estimation of the actual speeds of processors. HMPI provides an operation to
dynamically update the estimation of processor speeds at runtime. It is especially important if
computers, executing the target program, are used for other computations as well. In this case,
the actual speeds of processors can dynamically change dependent on the external computations.
The use of this operation, whose interface is shown below, alows the application programmers
to write parallel programs, sensitive to such dynamic variation of the workload of the underlying

computer system,
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typedef void (*HWPI _Benchmar k _function)(
const void*, int, void*);
HWPI _Recon(HWPI _Benchmar k_function func,
const voi d* input_p,
int numof paraneters, void* output_p)
where all the processors execute the benchmark function func in paralel, and the time elapsed
by each of the processors to execute the code is used to refresh the estimation of its speed. Thisis
a collective operation and must be called by all the processors in the group associated with the
predefined communication universe HMPI_PROC_WORLD of HMPI.

This interface is designed based on the recon statement provided by the mpC language to
perform refreshment of the relative performances of processors of the executing network of
heterogeneous computers. HMPI_Recon call is executed by all the processors, which are
members of HMPI_PROC_WORLD_GROUP.

HMPI provides a predefined communication universe HMPI_COMM_WORLD, whichisa
communicator consisting of all processes available for the computation in a HMPI application;
this communicator has the same value in al processes. It is an anaog of
MPI_COMM_WORLD, the predefined communication universe defined in the standard MPI
specification. It cannot be deallocated during the life of the process. The group corresponding to
this communicator is a pre-defined constant HMPI_COMM_WORLD_GROUP. HMPI also
provides a communication universe HMPI_PROC_WORLD, which is a communicator
consisting of one process per processor. The group corresponding to this communicator is a pre-
defined constant HMPI_PROC_WORLD_GROUP.

A typical parallel application is composed of one or more phases, which are sections of code
comprised of computations and communications. If the phases are distinct, the application

programmer has to optimally distribute computations involved in each phase amongst processors

involved in executing the phase. To achieve load balance in each phase, we distribute
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voi d Phasel benchnar k_code(const void*, int, void*);
voi d Phase2_benchmar k_code(const voi d*, int, void*);
int main() {

f'br (i =0; i < nunmber_of iterations; i++) {
doubl e *phasel_speeds, *phase2_speeds;
/ / Phasel

if ((HWPI _I's_menber (HWPI _PROC WORLD GROUP)) {
HWPI _Recon(&Phasel _benchmar k_code, ..);
HWPI _Get processors_i nfo(phasel_speeds);
}
/1 Distribute computations using the speeds
HWPI _Group_create(..);
// Execution of the conputations and communications
/1 Free the group
/| Phase?2
if ((HWPI _I's_menber (HWPI _PROC WORLD GROUP)) {
HWPI _Recon( &Phase2_benchmar k_code, ..);
HWPI _Get processors_i nfo(phase2_speeds);
}
/1 Distribute computations using the speeds
HWPI _Group_create(..);
// Execution of the conputations and comuni cati ons
/1 Free the group

Figure 3.12: An example illustrating the usage of the operation HVPI _Recon to write paralel programs sensitive

to dynamic changing loads.

computations in that phase such that the volume of computations that is executed by each
processor is proportional to its speed. Thusif the phases are distinct, the application programmer
has to determine the speeds of the processors for each phase. To determine the speeds of the
processors for each phase, the application programmer provides benchmark code that is
representative of the basic computations performed in that phase to HVPlI _Recon. For each
phase, al the processes, which are the members of HMPI _ PROC_WORLD GROUP, execute the
benchmark code. The relative speeds are determined from the time taken to execute the
benchmark code. It is to be noted that the computation portions of each communication operation

in a phase (preparation of the message by adding header, trailler, and error correction
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information, execution of the routing algorithm) must be taken into account. If the phases are not
distinct, it is sufficient to use the speeds determined for one phase to be used in al the phases.
However if the processors used in the execution of the parallel application are used for externd
computations, it is recommended that HVPI _Recon be used to determine the speeds of the
processors for each phase so that computations are distributed over the processors in accordance
to their actual performances at the moment of execution of the computations.

The accuracy of HVPI _Recon depends upon how accurately the benchmark code provided
by the user reflects the core computations of each phase. If the benchmark code provided is an
accurate measurement of the core computations in each phase, HVPl _Recon gives an accurate
measure of the speeds.

Figure 3.12 illustrates the usage of HVPI _Recon to write parallel programs sensitive to the
dynamic variation of the workload of the underlying computer system. As can be seen from the
figure, the combination of calls HMPI _Recon and HVPI _Group_creat e can be used for
each distinct phase of the parallel application to create a group of processes that executes the
computations and communications in that phase with best execution performance. One of the
approaches to tackle applications that do not have very uniform iterations is to break down the
non-uniform iterations in the application into sets of uniform iterations. For each such set of
uniform iterations, a performance model is designed. A group of processes is then created that
can execute the set of uniform iterations with best execution performance and destroyed at the

end of execution of the set.
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3.4 Estimation of Execution Time of an Algorithm using HMPI Timeof

Another principal operation provided by HMPI allows application programmers to predict the
total time of execution of the algorithm on the underlying hardware without its real execution. Its
interface is shown below,

HWPI _Ti meof (const HWMPI _Mbdel * perf _nodel,
const voi d* nodel paraneters)

This function allows the application programmers to write such a parallel application that can
follow different parallel agorithms to solve the same problem, making choice at runtime
depending on the particular executing network and its actual performance. This is a local
operation that can be called by any process, which is a member of the group associated with the
predefined communication universe HMPI _ COVM WORLD of HMPI.

This interface is designed based on the t i meof operator provided by the mpC language,
which predicts the total time of the algorithm execution on the underlying hardware without its
real execution.

This function invokes the HMPI runtime system, which selects the optimal set of processes
based on the performance model of the parallel algorithm per f _nodel , and the performance
model of the executing network of computers, which reflects the state of this network just before
the execution of the parallel agorithm. The estimated execution time of the algorithm by this
optimal set of processes is then returned. The parameters nodel paraneters to the
performance model are usually the following:

*  Number of processesin each dimension of the process arrangement.

o Data distribution parameters specifying how the data is distributed amongst the

processes, and the amount of data that is transferred between the pair of processes.
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The process calling this function provides this information to the HMPI runtime system,
which uses it along with the model of the executing network of computers to estimate the time of
execution of the algorithm.

The estimation procedure is explained in detail in [Las02] and is presented here in order to
make this composition self-contained. The time of execution for each mapping, W 1->C, where |

is a set of the processes of the group, and C :{co,cl,---,cM _]} is a set of computers of the

executing network, is estimated. The estimation time for the optima mapping, which would
ensure the fastest execution of the parallel algorithm, isreturned. In general, for accurate solution
of this problem as many as M possible mappings have to be probated to find the best one (here,
K isthe power of the set | of processes of the group). Obviously, that computational complexity
is not acceptable for a practical agorithm that should be performed at runtime. Therefore, the
HMPI runtime system searches for some approximate solution that can be found in some
reasonable interval of time, namely, after probation of MxK possible mappings instead of M.

The estimation procedure is summarized here. Each computation unit in the scheme
declaration of the form e%%][i] is estimated as follows:

timeof (e¥®4i]) = (el 100) xv;xb,i)(to),

where v; is the total volume of computations to be performed by the virtual processor with the
coordinatesi , and byi)(to) isthetime of execution of the benchmark code on the computer
(i) provided by the execution of the HMPI_Recon call (t o denotes that time when this
execution took place).

Each communication unit of the form e%%][i] — [j] specifying transfer of data from virtua

processor with coordinatesi to the virtual processor with coordinatesj is estimated as follows:

timeof (e%®4i]->[j]) =(e/100)XW 5 XSy(i)-spcj) (W),
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where w; _5; is the total volume of data to be transferred from the virtual processor with the
coordinates i to the virtual processor with the coordinates j , and Syiy-suj)(W->j) is the
speed of transfer of data block of wi . »j bytes between computers (i) and p(j ).

Simple calculation rules are used to estimate the sequential algorithmic patterns in the
scheme declaration. For example, the estimation of the pattern

for (el; e2; e3) a
is calculated as follows:

for (T=0, el; e2; e3)
T +=tinme taken to execute action a

The rules just reflect semantics of the corresponding serial algorithmic patterns. The rule to
estimate time for a parallel agorithmic pattern
par (el; e2; e3) a

is more complicated.

Let A={ ao, a1, .., an 1} be aset of the actions ordered in accordance with the estimation of
the time of their execution, namely, ti nmeof (ap) >=ti neof (a;) >=..>=ti neof (an1) . Let
B be a subset of A consisting of all actions that only perform communications, B={ by, b1, ..,
bo1}. Let C={co, C1, .., Cm1} . Finaly, let v; be the number of virtual processors mapped on
the computer c;, and f; be the total number of physical processors of the computer. Then the

rule to calculate the estimation T of the pattern looks as follows:

for(j=0, T=0; j<M j++) {
for(i=0, To=0, k=0; k<Upper(v;, f;) && i<N, i++) {
if(aj performs some conputations on c;) {
To += tinmeof (a);
k++;
}

}
T = max(T, To);
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}
T = max(T, tinmeof(B));
Here, the function Upper isdefined asfollows:
Upper (x, y) = if(x/y <= 1)
then 1
else if ((x/y)*y == Xx)
then x/y
el se x/y+1
Informally, the above system of loops first computes for each computer the estimation T, of the
time of parallel execution of those actions, which use that computer for some computations. The
estimation is calculated, proceeding from the assumption, that if the number of parallel actions
on one computer exceeds the number of its physical processors, then
e The actions are distributed evenly over the physical processors, that is, the number of
actions executed by different physical processors differs by at most one;
« Themost computationally intensive actions are executed on the same physical processor.
Then those paralel actions, which are not related to computations, that is, perform pure
communications, are taken into account. These communication actions make up the set B. Let
| (B) be the least communication layer covering al communication links involved in B, and let
fu, f g bethelevel of parallelism of broadcast and gather correspondingly for this layer. Then the
rule to calculate the estimation T of paralel execution of communication operations from set B
looks as follows:
if(1(B) is serial)
for(i=0, T=0; i<Q i++)
T += timeof (bi);
el se if(B matches broadcast/scatter) {
for(i=0, Tseri.al =0, Tparalter=0; 1<Q i++) {
Tseria += ti ITEOf(bI) ;

Tparaiter = max(Tz, timeof(bi));

}
T = fb*TparaIIeI +(1-fp)* Tserial
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el se if(B matches gather) {
for(i=0, Tseriar=0, Tparaiier=0; 1<Q i++) {
Tseria += timeof (bj);
Tparaiter = max(Tz, timeof(bi));

}
T = fg*TparaIIeI +( 1'fg)*TseriaI

}

el se
for(i=0, T=0; i<Q i++)
T += max(T, timeof(bi));

The rule just sums the execution time of parallel communication operations if the underlying
communication layer serializes al data packages. Otherwise we have a parallel communication
layer, and if the set B of communication operations looks like broadcasting or scattering, i.e., one
virtual processor sends data to other involved virtual processors, then the time of parallel
execution of the communication operations is calculated as if they performed broadcast.
Similarly, if B looks like gathering, i.e., one virtual processor receives data from other involved
virtual processors, then the time of parallel execution of the communication operations is
calculated as if they performed gather. In al other cases, it is assumed that B is a set of
independent point-to-point communications. It is responsibility of the programmer not to specify
different communication operations sharing the same communication link as parallel ones.

The rule for estimation of the execution time of the parallel algorithmic pattern is the core of
the entire mapping algorithm determining its accuracy and efficiency. It takes into account
material nature and heterogeneity of both processors and network equipment. It relies on fairly
allocating processes to processors in a shared-memory multiprocessor normally implemented by
operating systems for processes of the same priority (HMPI processes are just the case). At the
same time, it proceeds from the pessimistic point of view when estimating workload of different

processors of that multiprocessor. Estimation of communication cost by the rule is sensitive to

scalability of the underlying network technology. It treats differently communication layers
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serializing data packages and supporting their parallel transfer. The most typical and widely used
collective communication operations are treated specifically to provide better accuracy of the
estimation of their execution time. An important advantage of the rule is its relative simplicity
and effectiveness. The effectiveness is critical because the algorithm is supposed to be multiply
executed at runtime.

Most disadvantages of the rule are just the backside of its simplicity and the necessity to keep
it effective. Except some common collective communication operations, it is not sensitive to
different collective communication patterns such as ring data shifting, tree reduction, etc.,
treating al them as a set of independent point-to-point communications. The main problem is
that recognition of such patterns is very expensive. A possible solution is introduction in the
performance model definition language some explicit constructs for communication pattern
specification as a part of the scheme description. Another disadvantage of the rule affecting the
accuracy of estimation is that any set of parallel communications is treated as if they al take
place at the same communication layer in the hierarchy, namely, at the lowest communication
layer covering all involved processors. In reality, some of the communications may use different
communication layers. Incorporation of multi-layer parallel communications in this agorithm
without significant loss of its efficiency is a very difficult problem, which is supposed to be
addressed in future work.

HVPI _Ti meof can thus be used to estimate the execution time on HNOCs for each
possible set of model parameters nodel _par anet er s. Application programmers can use this
function creatively to design best possible heuristics for the set of parameters. Depending on the

time estimated for each set, the optimal values of the parameters are determined. These values
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are then passed to the performance model during the actual creation of the group of processes

using the function HWPI _Group_cr eat e.

The accuracy of the estimation by HVPI _Ti meof is dependent on the following:

The accuracy of the performance model of the algorithm designed by the user,

The quality of the heuristics designed for the set of parameters provided to the
performance model,

The accuracy of the performance model of the executing network of computers. This
depends on the accuracy of the measurements of the processor speeds given by
HVPI _Recon and the communication model of the executing network of computers.
Currently the communication model used in HMPI runtime system is static. Future works
would address the issue of efficiently updating the parameters of communication model

at runtime.
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3.5 Detection of Optimal Number of Processes using

HMPI Group auto create

One of the most important parameters, which influence the performance of the paralel
application on HNOCs, is the number of processes used to execute the paralel application.
Another principal operation provided by HMPI allows application programmers not to bother
about finding the optimal number of processes that can execute the parallel application. They can
specify only the rest of the parameters thus leaving the detection of the optima number of
processes to the HMPI runtime system. Itsinterface is shown below.
HWI G oup_auto_create (

HWI G oup* gid, const HWPI _Model * perf _nodel,

const voi d* nodel paraneters)
This function returns an HMPI handle to the group of MPI processesin gi d.

The parameter perf nodel is a handle that encapsulates all the features of the
performance model in the form of a set of functions generated by the compiler from the
description of the performance model.

The parameter nodel _paraneters is an input parameter. User fills the parameter
nodel _par anet er s with values of the input parameters and ignores the return parameters
specifying the number of processes to be involved in executing the algorithm and their relative
performances.

HVPI _Group_aut o_cr eat e is a collective operation and must be called by the parent
and all the processes, which are not members of any HMPI group.

There are no restrictions imposed by the function HVPlI _Gr oup_cr eat e. It just uses the
input parameters provided to create a group of MPI processes. However, the function

HVPlI _G oup_aut o_cr eat e imposes certain restrictions, which are explained below:
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1. The application programmers describe a performance model of their implemented
heterogeneous algorithm. The output parameters to the performance model are placed last
in the list of parameters to the performance model. The output parameters are the number
of processes in each dimension of the processor arrangement and an array representing
the relative performances of the processors. Consider for example the performance model
of an application multiplying two dense nxn matrices on one-dimensional processor
arrangement.

al gorithm AxB_1d(int n, int p, int speeds[p]) {
b
In this performance model, the scalar parameter n is an input parameter whereas the
scalar parameter p representing the number of processes in the linear array and the vector
parameter speeds of size p representing the relative performances are the output
parameters. These are the output parameters because these are determined by the function
cal HWPI _G oup_aut o_cr eat e. Consider for example the performance model of an
application multiplying two dense nxn matrices on two dimensional processor grid.
algorithm AxB 2d(int n, int p, int g, int speeds[pxq]) {
\
In this performance model, the scalar parameter n is an input parameter whereas the
scalar parameter p representing the number of processes in the column dimension of the
processor grid arrangement, scalar parameter g representing the number of processes in
the row dimension of the processor grid arrangement and the vector parameter speeds

of sizepxq representing the relative performances are the output parameters.

123



Outline of HMPI

So generally speaking, the output parameter list contains scalar parameters, each
parameter representing the number of processes in a dimension of the processor
arrangement and a vector parameter representing the relative performances of the
processors, the size of the vector being equal to the product of these scalar parameters.

If the value of any parameter used in the body of the performance model declaration is
dependent on the output parameters, then it should be obtained using functions. This is
mainly the case for data distribution parameters, whose values are parameterized by
number of processes in each dimension of the processor arrangement and the relative
performances of the processors. This is because the  function
HWPI _G oup_aut o_cr eat e executes the performance model for different processor
arrangements and hence the values of the parameters dependent on the arrangement of
processors and their speeds should be obtained by using functions. Consider for example
the performance model of an application implementing a paralel algorithm of the
simulation of evolution of n bodies on one-dimensional processor arrangement.

int My_allocation_using function(

int I, int p, int *speeds, int n);
al gorithm Nobody(int n, int p, int speeds[p]) {
coord | =p;
node {

| >=0: bench*(n*
My _all ocation_using function(l, p, speeds, n));

3
In this performance model, to calculate the volume of computations in the node

declaration performed by the processor with coordinate |, a function must be used (a

user-defined function My_al | ocati on_usi ng_function is used in this case)
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which calculates and returns the number of bodies allocated to the processor |
proportional to its speed.

3. For the function call to HMPI _G oup_aut o_cr eat e, the application programmers

supply values for the input parameters in the parameter list to the performance model.
The output parameters are ignored.

After the call to the function HVPI _Group_aut o_creat e, the output parameters,
namely, the number of processes in each dimension of the processor arrangement can be
obtained by using the HMPI group accessor function HVPI _Gr oup_t opol ogy and the
relative performances of the processors can be obtained by using the HMPI accessor function
HWI _G oup_performances. All the members of the group then use the optimal
performances to distribute computations such that the volumes of computations are proportional
to their performances. This is followed by execution of the algorithm by the members of the
group.

The function HVPI _Group_auto create evauates al the possible process
arrangements. For each process arrangement, the function call HVPI _Ti neof is used to
estimate the time of execution of the algorithm. The estimation is calculated based on the
performance model of the paralel agorithm and the model of the executing network of
computers. The function HVPI _Gr oup_aut o_cr eat e returns the process arrangement that
results in the least estimated time of execution of the algorithm. As discussed in Section 3.4, the
function call HVPI _Ti meof invokes the mapping algorithms of the HMPI runtime system to
select such a mapping that is estimated to ensure the fastest execution of the parallel agorithm.
During the execution of the mapping algorithm, the HMPI runtime system searches for some

approximate solution that can be found in some reasonable interval of time by probation of a
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subset of al possible mappings. During the execution of the mapping algorithm at the
preliminary step, the HMPI runtime system re-orders the set of processors in accordance with the
volume of computations to be performed by the processors, so that the most loaded processor
comes first. The mapping agorithm thus re-orders processors in a non-increasing order of their
speeds along each dimension of the processor arrangement. Beaumont et al. [BBP+01] show that
the optimal mapping is one of the possible non-increasing arrangements where processors are
arranged in a non-increasing order of their speed along each row and along each column of the
2D processor grid arrangement. The function HVPI _Gr oup_aut o_cr eat e thus internally
invokes mapping algorithms that use this heuristic, which is to arrange the processors in a non-
increasing order of their speed along each row and along each column of the 2D processor grid
arrangement, in order to find the optimal number of processes that can execute the parallel
application on HNOCs. The heuristics used may not be the best possible heuristics in most
particular cases.
The  pseudo-code of our research  implementation of the  function
HVPlI _G oup_aut o_cr eat e isshown below:
int i, pa, *opt_a, *a;
double t, T, *speeds, *opt_speeds;
voi d *nodel paraneters;
/1 Parent of the group
if ("HWI Is free()) {
int p = HWI _Get _nunber _of free processes() + 1;
Cet ProcessSpeeds(speeds) ;
Cener at eProcessArrangenents(p, a, &pa);
for (i=0, T=DBL_MAX; i<pa; i++) {
/1l Estimate the tinme of execution for
/'l process arrangenent a;
Fi | | Model Paranet ers(perf_nodel, &a[i], speeds,
nodel paraneters);
t = HWPI _Ti neof (perf_nodel, nodel paraneters);
if (t <T) {

T=1t,;
opt _a = &a[i];
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opt _speeds = speeds;
}
}
Fi I | Model Par anet ers(perf _nodel, opt_a, opt_speeds,
nodel _paraneters);

HWI G oup_create(gid, perf_nodel, nodel paraneters);
return HVPlI _SUCCESS;

}

/'l Processes that are not nenbers of any group

HWI G oup_create(gid, perf_nodel, NULL);

return HVPI _SUCCESS

The function HWPI _Group_auto_creat e first computes the number of processes
available for computation. This includes the parent and all the processes, which are not members
of any HMPI group. The function

HWPI _Get nunber _of free_processes()
returns the number of processes, which are not members of any HMPI group. This number is
incremented by one to account for the parent of the group.

The function Get Pr ocessSpeeds returns the relative performances of the processes that
are available for computation.

Then the function Gener at ePr ocessAr r angenent s generates al the possible process
arrangements. For example, if the number of processes available for computation is 9 and the
topology (given by the performance model definition) isa2-D process grid arrangement ( p, q) ,
where p and g are the number of processes along the row and along the column of the process
grid respectively, this function returns the following process arrangements:

(1,1) (2,2) (1,3) (1,4) (1,5 (1,6) (2,7) (1,8) (1,9
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3)

(4,1) (4,2
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(5,1)

(6,1)

(7,1)

(8,1)

(9,1)
For each process arrangement generated above, the time of execution of the algorithm is
estimated using the function HVPI _Ti neof discussed in Section 3.4. The process arrangement
that results in the least estimated time of execution is returned along with the relative
performances of the processes in this process arrangement.
Complexity. Assume that the number of processes available for computation is p and the
number of computers in the executing network is M For each process arrangement generated, the
time of execution of the algorithm is estimated using HVPI _Ti nmeof . Assume there are pa
number of process arrangements and the set of process arrangements is represented by a.

The overhead of the estimation of time of execution of the agorithm for each process
arrangement is a product of two terms. The first term is the number of mappings probated. This
is equal to the number of computers of the executing network multiplied by the number of
processes in the process arrangement (Refer to Section 3.2.1.2). The second term is the overhead
associated with estimation of time of execution of the algorithm for each such mapping. Thisis
dependent on the code written by the user in the scheme declaration of the performance model
definition to model how exactly the processes interact during the execution of the algorithm.

The calculation of the total overhead involved in a cal to the function
HWPI G oup_aut o_creat e becomes complicated if this overhead associated with the

estimation of execution time of the algorithm is a function of the number of processes involved
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in the execution of the algorithm and the size of the problem. To simplify the calculation of the
total overhead, we assume the time of estimation of execution time of the algorithm for each
mapping to be a function of the size of the problem F(n) . We assume this dependency on the size
of the problem to be the same for every process arrangement. We also assume only two-
dimensional process arrangements.

Thetotal overhead involved in acal to the function HVPI _Group_auto_createis

pa
:Z(Estimation of execution time for process arrangemernt ai)

= i(M ><(number of processes in process arrangement a, )x F(n))
i=1

pa
=M x F(n) x> (number of processes in process arrangemert a, )
i

Now consider for example p=5, then the possible two-dimensional process arrangements are

{(1,2),(2,2),(1,3),(1,4),(1,5),(2,1),(2,2),(3,1),(4,1),(5,1)}, the term

pa
Z(number of processes in process arrangement a, ) is equal to 1x1 + 1x2 + 1x3 + 1x4 + 1x5 +

i=1
2x1 + 2x2 + 3x1 + 4x1 + 5x1, which can be rearranged as (1+2+3+4+5) + 2x(1+5/2) + 3%(5/3)
+ 4x(5/4) + 5%(5/5).

Thus the total overhead is equal to
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:MxF(n)x{1+2+3+ +2x(1+2+3+---+gj+3x(1+2+3+---+gj+.--+px[gj}
Y
Py PP
xCrp | [Dx(C+
:MxF(n)x pxp+l) (p+1) +2x 2 2 - 22 +3x 3 3 > +.4+pxl

—M><F(n)>< X p+1+(2 1) (g+1j+---+(g+1J}

=M x F(n) > {p {1+2+3+ +p}+(1+1+ +1)}
=0('V'xF(n)xgx{pX(loge(p))+(1+1+--~+1})

= O(M F(n)><g><{p><(loge(|0))+ s)
=O(M x F(n)x p’ xlog, p)

The sum for large p for the harmonic series (1+%+:—13+~-.+1j =0(log.p). The sum of the
Y

series 1+2+3+...+p is equa to w

. Assuming one process per processor configuration

and that the number of computers in the executing network is p, the tota overhead is
= O(px F(n) x p*> xlog_p) = O(F(n) x p* xlog,p) . For process arrangements with d dimensions
in general, the total overhead can be calculated to be equal to O(F(n) x p® xlog pxd).

HMPI provides a variant of the operation HVPl _Group_aut o_creat e that alows
application programmers to supply heuristics that minimize the number of process arrangements
evaluated. Itsinterface is shown below.

typedef int (*HWPI _Heuristic_function)(

int np, int *dp, void *nodel parans, int paramcount);
HWI G oup_heuristic_auto _create (

HWI G oup* gid, const HWPI _Model * perf _nodel,

HVWPI Heuristic_function hfunc,

voi d* nodel paraneters)
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Application programmers provide the heuristic function hfunc. The input parameter np is the
number of dimensions in the process arrangement. The input parameter dp is an integer array of
sizenp containing the number of processes in each dimension of the process arrangement. The
input parameter nodel _par ans are the parameters supplied to the performance model. The
input parameter par am_count isthe number of parametersin nodel _par ans.

The function HVPI _Group_heuri sti c_aut o_cr eat e evauates a process arrangement
only if the heuristic function hfunc returns true. A simple heuristic function is shown below,
which returns avalue trueif and only if the process arrangement is a square grid.

int Square_grid_only(
int np, int *dp, void *nodel parans, int paramcount){
if ((np ==2) && (dp[0] == dp[1]))
return true;
return fal se;

}

The function HVPlI _Group_heuri stic_auto_creat e evauales process arrangements
that are square grids if this heuristic function is provided as an input. HMPI also provides
predefined heuristic functions. The rest of the parameters to the function
HWPlI _G oup_heuri stic_auto_creat e have same meaning as those for the operation

HVPlI _G oup_aut o_creat e.

3.5.1 Experimental Resultsusing HMPI_Group_auto_create

The example shown in Figures 3.13, 3.14, 3.15, and 3.16 illustrates the usage of the function
HWI G oup_auto_create on 1-D processor arrangements. The example used is an
application multiplying matrix A and the transposition of matrix B on p interconnected

heterogeneous processors, i.e., implementing matrix operation C=AxB', where A, B are dense
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nxn matrices. This application assumes one process per processor configuration and implements
a nave heterogeneous algorithm shown in Figures 3.13 and 3.14. It can be summarized as

follows:

» Each element in Cisasquare rxr block and the unit of computation is the computation

of one block, i.e., amultiplication of rxn and nxr matrices.

* TheA, B, and C matrices are identically partitioned into p horizontal slices. Thereis one-
to-one mapping between these dlices and the processors. Each processor is responsible

for computing its C dlice.

C=AxBT

S

Figure 3.13: Matrix operation C=AxB'" with matrices A, B, and C unevenly partitioned in one dimension. The

dlices mapped onto a single processor are shaded in black.

A B

AR RIS

Figure 3.14: One step of parallel multiplication of matrices A and B. The pivot row of matrix B (shown slashed) is
first broadcast to all processors. Then each processor computes, in parallel with the others, its part of the

corresponding column of the resulting matrix C.
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* At each step, a row of matrix B (the pivot row), representing a column of blocks of
matrix BT, is communicated (broadcast) vertically; and al processors compute the
corresponding column of Cin paraldl.

* Because al C elements require the same amount of arithmetic operations, each processor
executes an amount of work proportional to the number of blocks that are allocated to it,
hence, proportional to the area of its slice. Therefore, to balance the load of the processor,
the area of the slice mapped to each processor is proportional to it speed.

» Communication overheads may exceed gains due to parallel execution of computations.
Therefore, there exists some optimal subset of available processors to perform the matrix
multiplication. The function HVPI _G oup_auto_create detects this optimal
Subset.

The definition of Par al | el AXBT given in Figure 3.15 describes the performance model of

this heterogeneous algorithm.

The performance model Par al | el AXBT describing the algorithm has 5 parameters.
Parameter n is the size of square matrices A, B, and C. It is assumed that the test code, used for
the estimation of the speed of actual processors, multiplies rxn and nxt matrices, where t is
small enough compared to n and supposed to be a multiple of r.

Parameters p and speeds are output parameters. They represent the number and the
performances of processorsin the optimal subset respectively.

Function Get _ny_partition used in the node and |ink declarations is a set
partitioning API, which is part of the Heterogeneous Data Partitioning Interface (HDPI)
presented in Chapter 4. It partitions a set of n elements into p digoint partitions such that the

number of elements in each partition is proportional to the speed of the processor owning that
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int Get_ny partition(int i, int p, const int *speeds, int n);
al gorithm Paral |l el AXBT(int n, int r, int t, int p,
i nt speeds[p]) {

coord | =p;
node {
| >=0: bench*((n/r/t)*Get _ny_partition(l, p, speeds, n));
i
li J=p) {

(
=J. length*(Get_ny partition(J, p, speeds, n)
*n*si zeof (doubl e)) [J]->[1]

b
parent [0];
schene {
int i, j, PivotProcessor=0, PivotRow=0, d[p];
Partition_unordered_set(p, 1, speeds, NULL, NULL, n,
NULL, -1, NULL, NULL, d);
for (i =0; i < (n/r); i++, PivotRow=1) {
i f (PivotRow >= d[ PivotProcessor]) {
Pi vot Processor ++;
Pi vot Row = 0;
}
for (j =0; j <p; j++)
if (j '= PivotProcessor)
((200. 00*r)/d[ Pi vot Processor]) %%
[ Pivot Processor]->[j];
par (j =0; j <p; j+4)
((200.00*r)/n) Wo[j];

Figure 3.15: Specification of the performance model of an algorithm of parallel matrix multiplication in the HMPI's

performance definition language.

partition. It returns the number of elements in thei -th partition belonging to the i -th processor.
The node declaration specifies the volume of computations to be performed by the i -th
processor executing the algorithm. The unit of computation used to measure the volume is the
computation of one element of the resulting matrix C. It is presumed that function
seri al AXBT used in HVPI _Recon to update the performance model of the executing
network of computers just implements this elementary computation. The | i nk declaration

specifies that each processor will send its B slice to all other processors executing the algorithm.
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i nt

mai n() {

int opt_p, *opt_speeds, *nodel _paranms, n, r, t, nd, **dp;
int output_p, input_p[3]={n, r, t};

HWPI _Group gi d;

HWI Init(argc, argv);

if

}
i f

((HWPI _I's_nenber (HVPI _PROC WORLD _GROUP) ) {
HWPI _Recon(&seri al AXBT, input_p, 3, &output_p);

(HWPI _I's_host()) {

/1 The user fills in only the first three paraneters
/1 Parameters ‘p’ and ‘speeds’ returned by

/1 the call to function HWI_Group_auto_create

nodel _par ans[ 0] n;

nodel _par ans[ 1] r;

nodel _par ans[ 2] t;

(HWPI _I's_host())

HWI _Group_auto_create (&gid, &HWPI _Mddel parall el AxBT,
nodel _par ans)

(HWPI _Is _free())

HWPI _Group_auto_create (&gid, &HWPI _Mbdel paral | el AxBT,
NULL)

(HWPI _I's_menber (&gi d)){

HWPI _Group_t opol ogy(&gi d, &nd, dp);

opt_p = (*dp)[0];

HVPI _Group_performances(&gi d, opt_speeds);

/1 Distribute conputations using the optinmal speeds of

/] processes.

/1 conputations and comruni cati ons are perforned here

(HWVPI _I's_nenber ( &gi d))

HWPI _Group_free(&gid);

HVPI _Fi nal i ze(0);

The schene declaration specifies n/ r successive steps of the algorithm. At each step, the

Figure 3.16: The most principal fragments of the usage of function HWPI _G  oup_aut o_cr eat e for detection
of the optimal subset of processors to execute the parallel matrix multiplication and creation of the corresponding

optimal group of processes (one process per processor configuration is assumed).

processor Pi vot Pr ocessor , which hold the pivot row, sends it to rest of the processors thus
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executing (r/ d[ Pivot Processor]) x100 percent of total data transfer through the
corresponding data link. Then, all processors compute the corresponding column of blocks of
matrix C in parallel, each thus executing (r/ n)x100 percent of the total volume of
computation to be performed by the processor.

Function Partition_unordered_set used in the schene declaration is a set
partitioning API, which is part of the Heterogeneous Data Partitioning Interface (HDPI)
presented in Chapter 4. It is used to partition a set of sizen into p digoint subsets on a linear
array of p processors such that the number of elementsin each subset is proportiona to the speed
of the processor owning that subset.

The most principal fragments of rest of the code of the parallel application are shown in the
mai n function in Figure 3.16.

HMPI runtime system is initialized using operation HWVPI I nit. Then, operation
HVWPI _Recon updates the estimation of performances of processors using some serid
multiplication of test matrices using function ser i al AxBT.

This is followed by the creation of a group of processes using operation
HWPI _G oup_aut o_cr eat e. Users specify only the first three model parameters to the
performance model and ignore the return parameters specifying the number of processes to be
involved in executing the algorithm and their performances. This function calculates the optimal
number of actual processes to be involved in the parallel matrix multiplication and their
performances. After the execution of the function HVPI _G- oup_aut o_cr eat e, the optimal
number of actual processes opt _p is obtained by using the HMPI group accessor function
HWPI _G oup_t opol ogy and their performances opt _speeds are obtained by using the

HMPI group accessor function HVPlI _ G- oup_pef or nances.
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Total Main
Narg:eo((l:\lgt)se)r of Architecture I\(/J;Fl)—fz Memory (ISS Cth;)
(mBytes) y
FreeBSD 5.2.1-RELEASE
afflatus(1) 1386 Intel® Pentium®4 | 5557 2048 1024
Processor supporting HT
technology
FreeBSD 5.2.1-RELEASE
aries2(1) 1386 Intel® Pentium® 4 2457 512 1024
Processor
Linux 2.4.18-10smp
pglclusterOl (2) Intel(R) XEON(TM) 1977 1024 512
Linux 2.4.18-10smp
pglcluster02 (2) Intel(R) XEON(TM) 1977 1024 512
Linux 2.4.18-10smp
pglcluster03 (2) Intel(R) XEON(TM) 1977 1024 512
maxft (1) Linux 2.6.5-I1|.I358 Pentium 731 128 256
zaphod (1) Linux 2.4.18-14 497 128 512
SunOS 5.8 sun4u sparc
csultra0l (1) SUNW,Ultra:5 10 440 512 2048
SunOS 5.8 sun4u sparc
csultra02 (1) SUNW,Ultra:5 10 440 512 2048
SunOS 5.8 sun4u sparc
csultra03 (1) SUNW,Ultra:5 10 440 512 2048
SunOS 5.8 sun4u sparc
csultra04 (1) SUNW,Ultra:5 10 440 512 2048
SunOS 5.8 sun4u sparc
csultra05 (1) SUNW,Ultra:5 10 440 512 2048
SunOS 5.8 sun4u sparc
csultra06 (1) SUNW,Ultra:5 10 440 512 2048

Table 3.6: Specifications of the sixteen heterogeneous processors used for the parallel matrix multiplication (only

ONe Process is run per processor).

The members of this group then perform the computations and communications of the
heterogeneous parallel algorithm using standard MPI means. This is followed by freeing the
group using operation HVPI _ G oup_f r ee and the finalization of HMPI runtime system using

operation HVPI _Fi nal i ze.
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Size of HMPI application using HMPI application using MPI
matrix HVWPI G oup_auto create | HWI _Goup_create
()

Optimal Execution time Execution Time (sec) Execution
number of (sec) (p=16) Time (sec)
processors (p=16)

(p)
1280 7/8 79 98 114
1408 717 98 114 141
1536 77 116 134 162
1664 77 135 155 194
1792 7/8 160 179 224
1920 7/8 173 203 244
2048 77 193 225 282
2176 717 208 247 321
2304 8 240 280 360
2432 16 325 280 406
2560 16 353 308 441
3840 16 558 545 1979
5120 16 832 847 3584
6400 16 1593 1574 8385
7680 16 1820 1815 16024

Table 3.7: Comparison of execution times of the parallel matrix multiplication. There are a total of 16 processes

available for computation in the parallel matrix multiplication. For each problem size, the HMPI application using

HVPI _Group_aut o_creat e finds the optimal number of processes whereas the HMPI application using

HVPI _Gr oup_cr eat e and the MPI application use al the available 16 processes. The MPI application does not

take into account the speeds of the processors and the latencies and the bandwidths of the communication links

between them.

A heterogeneous local network of 16 different FreeBSD, Solaris, and Linux workstations

shown in Table 3.6 is used in the experiments. The computers used in the experiments are

connected to communication network, which is based on 100 Mbit Ethernet with a switch

enabling parallel communications between the computers. The experimental results are obtained
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Figure 3.17: Results obtained using the heterogeneous network of computers shown in Table 3.6. The results for
‘HMPI auto’ are for the HMPI application using the function HVPI _Gr oup_aut o_cr eat e. The results for
‘HMPI’ are for the HMPI application using the function HMPI _Gr oup_aut o_create and ‘MPI’ are for the
MPI application using al the available 16 processes. (a) Comparison of execution times of Matrix-matrix
multiplication using horizontal striped partitioning of matrices for the sizes of the matrix in the range 1000-3000. (b)
Comparison of execution times of Matrix-matrix multiplication using horizontal striped partitioning of matrices for

the sizes of the matrix in the range 3000-8000.

by averaging the execution times over a number of experiments. Table 3.7 and Figure 3.17 show
the experimental results using the parallel matrix multiplication for different matrix sizes.

It can be seen that for problem sizes ranging from 1280 to 2304, the optimal number of
processes detected by the function HVPI _Group_aut o_creat e is 7 or 8 depending on the
size of the matrix and the current performance demonstrated by different processors. For
problem sizes beyond 2304, the optimal number of processes detected is 16, which is equal to the
total number of parallel processes available for computation. It can also be seen that when the
optimal number of processes detected by the function HVPlI _ G oup_aut o_cr eat e is equa

to the total number of parallel processes available for computation, the execution times of the
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HMPI application using the function HVPI _Gr oup_aut o_cr eat e are amost the same as the
execution times of the HMPI application using the function HVPI _Gr oup_cr eat e, which
creates a group consisting of all the parallel processes available for computation. This is to be
expected because the function HVPI _Group_aut o_cr eat e essentially detects the optimal
number of processes and calls the function HMPI _Gr oup_cr eat e providing the optimal
number of processes as an input parameter. Thus the function HVPI _Group_auto_create
by choosing the optimal number of processes to be involved in executing the application
automatically removes some nodes from the computation when their participation degrades
performance or when their participation does not affect the performance. The MPI application
performs very poorly on this network because it does not take into account the speeds of the
processors and the latencies and the bandwidths of the communication links between them.

The example described above illustrates the usage of the function
HWI G oup_auto_create to create a group of processes with optimal number of
processes arranged linearly to solve the problem of paralel matrix-matrix multiplication. Hence
the example demonstrates mainly the utility of the function HVPlI _Gr oup_aut o_cr eat e on
1-D processor arrangements. However this function can be used for different arrangements of
processors and its significance is demonstrated below on parallel matrix-matrix multiplication
employing heterogeneous 2D block cyclic distribution.

Consider the problem of paralel matrix multiplication (MM) on HNOCs. The agorithm of
execution of the matrix operation C=AxB on a HNOC is obtained by modification of the
ScaLAPACK [CDD+96] 2D block-cyclic MM algorithm. The modification is that the Cartesian
heterogeneous 2D block-cyclic data distribution (shown in Figure 3.18) is used instead of the

standard homogeneous data distribution. Thus, the heterogeneous algorithm of multiplication of
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(a) Partition between processor columns. (b) Partition between processor rows.
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(c) Final Partition.

Figure 3.18: Example of two-step Cartesian distribution of a 6 X 6 generalized block over a 3% 3 processor grid.

0.11 0.17 0.05
The relative speed of processors is given by matrix S=| 0.17 0.09 0.08 |. (a) At the first step, the 6% 6
0.05 0.25 0.03

square is distributed in a one-dimensional block fashion over processors columns of the 3xX 3 processor grid in

proportion 0.33:0.51:0.16 = 2:3:1. (b) At the second step, the 6X 6 square is distributed in a one-

dimensional block fashion over processors rows of the 3X3 processor grid in proportion

0.33:0.34:0.33 = 2:2:2.(c) Fina partition.
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two dense square (nxr )x(nxr ) matrices A and B on an pxq grid of heterogeneous processors

can be summarised as follows (graphically illustrated in Figure 3.19):

Each element in A, B, and C is a square r xr block and the unit of computation is the
updating of one block, i.e.,, a matrix multiplication of size r . Each matrix is partitioned
into generalized blocks of the same size (I _pxr)x(l _qgxr), where p<l _p<n,
g<! _qg<n. The generaized blocks are identically partitioned into pxq rectangles, each
being assigned to a different processor. The area of each rectangle is proportional to the
speed of the processor that stores the rectangle. The partitioning of a generalized block is
performed as follows:

0 Each element in the generalized block is a square r xr block of matrix elements.

The generalized block isan| _pxl| _q rectangle of r xr blocks.

o First, the generalized block | _pxI _q is partitioned into q vertical dlices, so that

p
the area of the j-th dlice is proportiona to an (see Figure 3.18(a)). It is

i1
supposed that blocks of the j-th slice will be assigned to processors of the j-th
column in the pxq processor grid. Thus, at this step, we balance the load between
processor columns in the pxq processor grid, so that each processor column will
store avertical slice whose areais proportional to the total speed of its processors.

0 Then, the generalized| _pxI _q is partitioned into p horizontal dlices, so that the

q
area of the i-th dlice is proportional to Zsj (see Figure 3.18(b)). It is supposed

j=1
that blocks of the i-th slice will be assigned to processors of the i-th row in the

pxq processor grid. Thus, at this step, we balance the load between processor
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Figure 3.19: One step of the agorithm of parallel matrix-matrix multiplication based on heterogeneous two-

dimensional block distribution of matrices A, B, and C. First, each r xr block of the pivot column a,, of matrix A

(shown shaded dark grey) is broadcast horizontally, and each r xr block of the pivot row h< of matrix B (shown

shaded dark grey) is broadcast vertically.

rows in the pxq processor grid, so that each processor row will store a horizontal
slice whose areais proportional to the total speed of its processors.
* Ateachstepk,
o Eachr xr block ay of the pivot column of matrix A is sent horizontally from the
processor, which stores this block, to -1 processors (see Figure 3.19);
o Each rxr block by of the pivot row of matrix B is sent verticaly from the
processor, which stores this block, to p-1 processors (see Figure 3.19);
« Each processor updates its rectangle in the C matrix with one block from the pivot row

and one block from the pivot column.
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int Get_my_width(int i, int j, int p, int g, const int *speeds,
int td, int I_p, int |1_q);

int Get_ny_height(int i, int j, int p, int g, const int *speeds,
int td, int I_p, int |1_q);

typedef struct {int I; int J;} Processor;

al gorithm Parallel AxB(int n, int r, int |_p, int |_q,
int p, int g, int speeds[pxq])
{

coord | =p, J=q;
node {1>=0 && J>=0:
bench*(Get _ny_width(l, J, p, g, speeds, CARTESIAN, | _p, |_q)
*(CGet_my_height(l, J, p, q, speeds, CARTESIAN, | _p, |_q)
*(n/1_p)*(n/1_g)*n);};
l'ink (K=p, L=q)

| >=0 && J>=0 && |!=K:
length*(Get_ny_width(l, J, p, q, speeds, CARTESIAN, | _p, |_q)
*CGet_nmy_height(l, J, p, g, speeds, CARTESIAN, |_p, |_q)
*(n/l_p)*(n/l_q)*(r*r)*sizeof (double)) [I, J] ->[K J];

| >=0 && J>=0 && J!=L:
length*(Get_ny_width(l, J, p, q, speeds, CARTESIAN, | _p, |_q)
*CGet_nmy_height(l, J, p, g, speeds, CARTESIAN, |_p, |_q)
*(n/l_p)*(n/l_q)*(r*r)*sizeof (double)) [I, J] ->[I, L];

h
parent [0, 0];
schene {
int k, *w, *h, *trow, *tcol;
Processor Root, Receiver, Current;
Partition_matrix_2d(p, g, 1, speeds, NULL, NULL, |_p, |_g, CARTESI AN,
w, h, trow, tcol, NULL, NULL);
for(k = 0; k < n; k++) {
int Acolum = k% _q, Arow;
int Brow = k% _p, Bcol um;
par(Arow = 0; Arow < | _p; )

Get _matrix_processor (Arow, Acolum, p, g, w, h, trow, tcol, &Root);
par (Receiver.J = 0; Receiver.J < q; Receiver.J++)
i f(Root.J !'= Receiver.J)
(100. 00/ (W Root . J]*(n/1_q)))
Who[Root.l, Root.J] -> [Root.l, Receiver.J];
Arow += h[Root.I];

par (Bcolum = 0; Bcolum < 1_q; )

Get _matrix_processor(Brow, Bcolum, p, g, w, h, trow, tcol, &Root);
par (Receiver.l = 0; Receiver.|l < p; Receiver.|++)
if(Root.l !'= Receiver.l)
(100. 00/ ((h[Root.1])*(n/1_p)))
%Wh[Root.l, Root.J] -> [Receiver.|, Root.J];
Bcol um += w{ Root . J];
}
par(Current.l = 0; Current.l < p; Current.|++)
par(Current.J = 0; Current.J < q; Current.J++)
(100.00/n) %o [Current.l, Current.J];

Figure 3.20: Specification of the performance model of the algorithm of parallel matrix multiplication based on
heterogeneous two-dimensional block-cyclic distribution of matrices in the HMPI's performance definition

language.
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The definition of Par al | el AxB given in Figure 3.20 describes the performance model of
this heterogeneous algorithm.

The performance model Par al | el AxB describing the agorithm has 6 parameters.
Parameter r specifies the size of a square block of matrix elements, the updating of which is the
unit of computation of the algorithm. Parameter n is the size of square matrices A, B, and C
measured in r xr blocks. Parameters| p, and | _q are the sizes of the generalized block along
the row and along the column and are also measured inr xr blocks.

Parameters p, q, and speeds are output parameters. They represent the number of processes
aong the row and the column in the process grid arrangement and the performances of
processors in the optimal subset respectively.

The function Get _nmy_wi dth and Get _ny_hei gth used in the node and |i nk
declarations and the function Partition_matri x_2d used in the schene declaration is a
matrix partitioning API, which is part of the Heterogeneous Data Partitioning Interface (HDPI)
discussed in Chapter 4.

The function Partition_matri x_2d is used to partition a matrix of size | _pxl _q
into pxq digoint rectangles on a 2D processor grid arrangement ( p, q) such that the area of
each rectangle is proportional to the speed of the processor owning that rectangle.

The function Get _nmy_wi dt h( I, J, ..) returns the width of the J-th rectangle belonging
to the processor whose column index in the process grid is J (see Figure 3.18(a)). All widths are
measured in r xr blocks. The function Get _ny_hei ght (1, J, ..) returnsthe width of the -
th rectangle belonging to the processor whose row index in the process grid is | (see Figure

3.18(b)). All heights are measured inr xr blocks.
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The coor d declaration introduces 2 coordinate variables, | ranging from O to p-1, and J
ranging from0 to g- 1.

The node declaration associates the abstract processors with this coordinate system to form
apxq grid. It aso describes the absolute volume of computation to be performed by each of the
processors. As a unit of measure, the volume of computation performed by the code multiplying
two r xr matrices is used. At each step of the algorithm, abstract processor P,; updates

(w; Xh;)xn, rxr blocks, where w;,h; are the width and height of the rectangle of a
generalised block assigned to processor Py, and n, isthe total number of generaised blocks. As

computations during the updating of one r xr block mainly fall into the multiplication of two
r xr blocks, the volume of computations performed by the processor P; at each step of the

agorithm will be approximately (w,, xh,;)xn, times larger than the volume of computations
performed to multiply two r xr matrices. As w,; isgivenbyw J], h; isgivenby h[I], n, is

givenby (n/1 _p)*(n/1 _q), andthetotal number of steps of the algorithm is given by n, the
total volume of computation performed by abstract processor P;  will  be
WJIl*h[I]*(n/l _p)*(n/l_g)*n times bigger than the volume of computation
performed by the code multiplying two r xr matrices.

The | i nk declaration specifies the volumes of data to be transferred between the abstract
processors during the execution of the algorithm. The first statement in this declaration describes
communications related to matrix A. Obviously, abstract processors from the same column of the
processor grid do not send each other elements of matrix A. Only abstract processors from the
same row of the processor grid send each other elements of matrix A. Abstract processor Py; will

send elements of matrix A to processor Px. only if its rectangle R in a generalised block has
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horizontal neighbours of the rectangle Rq. assigned to processor Pk,. In that case, processor Py;

will send @l such neighbours to processor Px.. Thus, in total processor Py will send N, xn,

r xr blocks of matrix A to processor P, where N, isthe number of horizontal neighbours of
rectangle R, in rectangle R3, and n, isthetotal number of generalised blocks. As N, isgiven
by wJ]* h[I], n, isgiven by (n/I _p)*(n/l_q), and the volume of data in one r xr

block is given by (r*r)*si zeof (doubl e), the tota volume of data transferred from
processor P to processor PxL will be given by
WJI]*h[1]*(n/1 _p)*(n/l _q)*(r*r)*si zeof (doubl e).

The second statement in the | i nk declaration describes communications related to matrix B.
Obvioudly, only abstract processors from the same column of the processor grid send each other
elements of matrix B. In particular, processor P;; will send al itsr xr blocks of matrix B to al
other processors from column J of the processor grid. The total number of r xr blocks of matrix
B assigned to processor Pjisgivenbyw J] *h[I]*(n/l _p)*(n/l _q).

The schene declaration describes n successive steps of the algorithm. At each step k,

A row of r xr blocks of matrix B is communicated vertically. For each pair of abstract

processors P,; and Pk involved in this communication, P; sends a part of this row to Pkg.

The number of r xr blocks transferred from Py to Py will bew,, X(ILJ where

(ﬁj is the number of generalised blocks along the row of r xr blocks. The tota

number of r xr blocks of matrix B, which processor P,; sends to processor Pgj, is

n .. N . Therefore,
p

l_q

(WIJ thJ)x I
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n
("] 1
= x100 = ———— %100 percent of data that should be in total

n n n
wW.. Xxh,.)x X
( 13 IJ) | p I _q l’]IJ XL_pj

sent from processor Py; to processor Py will be sent at the step. The first nested par
statement in the main f or loop of the schene declaration just specifies this fact. The
par algorithmic patterns are used to specify that during the execution of this
communication, data transfer between different pairs of processors is carried out in
parallel.

A column of r xr blocks of matrix A is communicated horizontaly. If processors P; and

PxL are involved in this communication so that P;; sends a part of this column to Pk,

then the number of r xr blocks transferred from Py; to Pk, will be H ;. X(ILJ , Where
Y

H ;. isthe height of the rectangle area in a generalised block, which is communicated

from Py; to Pk, and (%} is the number of generalised blocks along the column of

r xr blocks. The total number of r xr blocks of matrix A, which processor P,; sends to

processor PkL, IS N, ><|L><|L . Therefore,
— -4
n n
H 13KL X(ij H 1JKL X(Ip] 1
. = . x100 = _n = x100 = —————=x100
n
NIJKLXGXG (HIJKLXWIJ)XGXG W, X(l_qJ

percent of data that should be in total sent from processor P; to processor Py, will be
sent at the step. The second nested par statement in the main f or loop of the schene

declaration specifies this fact. Again, we use the par agorithmic patterns in this
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specification to stress that during the execution of this communication, data transfer
between different pairs of processorsiscarried out in parallel.

- Each abstract processor updates each its r xr block of matrix C with one block from the

pivot column and one block from the pivot row, so that each block ¢; (i, j 0{1...,n}) of
matrix C will be updated, ¢; =c; +a, *b,;. The processor performs the same volume of

computation at each step of the algorithm. Therefore, at each of n steps of the algorithm
. 100 . . .
the processor will perform — percent of the volume of computations it performs during
n

the execution of the agorithm. The third nested par statement in the main f or loop of
the schene declaration just specifies this fact. The par agorithmic patterns are used

here to specify that all abstract processors perform their computationsin parallel.
Function Get _matri x_processor is used in the schene declaration to iterate over
abstract processors that store the pivot row and the pivot column of r xr blocks. It returnsin its
last parameter the grid coordinates of the abstract processor storing the r xr block, whose
coordinates in a generalised block of a matrix are specified by its first two parameters. This
function is also a matrix partitioning API, which is part of the Heterogeneous Data Partitioning

Interface (HDPI) discussed in Chapter 4.

The performance model Par al | el AxB shown in the Figure 3.20 is applicable to the
heterogeneous algorithm with CARTESI AN data distribution. However this model can be made
generic and applicable for any type of distribution by adding an extra parameter to its parameter
list (the type of distribution) and using heterogeneous data partitioning APl (presented in Chapter
4) in the body of the performance model. This extra parameter is the type of data distribution

such as COLUVN_BASED or ROW BASED or CARTESI AN or RECURSI VE.
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i nt

mai n(int argc, char** argv) {
int opt_p, opt_q, *opt_speeds, *nodel parans, nd, **dp;
int output_p, input_p[2] ={n, r};
int n, r, I_p, | _q;
HWPI _Group gi d;
HWI Init(argc, argv);
if (HWPI_Ils_menmber (HVWPI _PROC_ WORLD _GROUP) )
HWPI _Recon(& MKM input_p, 1, &output p);
if (HWI _Is_host()) {
/1 The user fills in only the first four paraneters
/1 Paranmeters ‘p’, ‘q’, and ‘speeds’ returned by
/1 the call to function HWI_Group_auto_create
nodel _parans[0] = n;
nodel _parans[ 1] = r;
nodel _parans[2] = | _p;
nodel _parans[3] =1 _q;
}
if (HWPI _Is_host())
HWPI _Group_aut o_create(&gid, &HWPI _Model Parall el AxB,
nodel _par ans) ;
if (HWI Is free())
HWPI _Group_auto_create(&gid, &HVPI _Model Parall el AxB,
NULL) ;
if (HWPI _Is_nmenmber(&gid)) {
HWPI _Group_t opol ogy(&gi d, &nd, dp);
opt_p = (*dp)[0];
opt_q = (*dp)[1];
HWPI _Group_performances(&gi d, opt_speeds);
/1 conputations and comruni cati ons are perforned here
/1 using standard MPI routines.
}

(HWPI _I's_menber (&gid)) {
HWI _Group_free(&gid);

}
HVPI _Fi nal i ze(0);

al gorithm Paral |l el AxB(int n,
int type_of distribution,

int r, int | _p, int |

int p, int q,

150

Figure 3.21: The most principal fragments of the usage of function HVPI _Gr oup_aut o_cr eat e for detection
of the optimal processor grid arrangement to execute the parallel matrix multiplication implementing the algorithm
of parallel matrix multiplication based on heterogeneous two-dimensional block-cyclic distribution of matrices and

creation of the corresponding optimal group of processes (one process per processor configuration is assumed).

-q,
i nt speeds[p*q])
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The most principal fragments of the rest code of the paralel application are shown in the

mai n functionin Figure 3.21.

HMPI runtime system is initidised using operation HWVPI I nit. Then, operation
HVWPI _Recon updates the estimation of performances of processors using the serid
multiplication of test matrices of size r xr. The computations performed by each processor

mainly fall into the execution of callsto function r Mk M

This is followed by the creation of a group of processes using operation
HWPI _G oup_aut o_creat e. Users specify only the first four model parameters to the
performance model and ignore the return parameters specifying the number of processes in each
dimension of the processor grid arrangement to be involved in executing the algorithm and their
performances. This function detects the optimal grid arrangement of processes to be involved in
the parallel matrix multiplication and their performances. After the execution of the function
HVWPI _Group_aut o_cr eat e, the optimal grid arrangement of processes (opt _p, opt _q) is
obtained by using the HMPI group accessor function HVPlI _G oup_t opol ogy and their
performances opt _speeds are obtained by using the HMPI group accessor function
HWPI _G oup_pef or mances.

The members of this group then perform the computations and communications of the
heterogeneous parallel algorithm using standard MPI means. This is followed by freeing the
group using operation HVPI _Gr oup_f r ee and the finalization of HMPI runtime system using
operation HVPI _Fi nal i ze.

A heterogeneous local network of 12 different FreeBSD, Solaris, and Linux workstations
shown in Table 3.8 is used in the experiments. The computers used in the experiments are

connected to communication network, which is based on 100 Mbit Ethernet with a switch

151



Outline of HMPI

Total Main
Nargreo((ls\le;srgt)se)r of Architecture I\(/J;Fl)—fz Memory (ISS Cth;)
(mBytes) y
FreeBSD 5.2.1-RELEASE
afflatus(1) 1386 Intel® Pentium®4 | og67 2048 1024
Processor supporting HT
technol ogy
FreeBSD 5.2.1-RELEASE
aries2(1) 1386 Intel® Pentium® 4 2457 512 1024
Processor
Linux 2.4.18-10smp
pglclusterOl (2) Intel(R) XEON(TM) 1977 1024 512
Linux 2.4.18-10smp
pglcluster02 (2) Intel(R) XEON(TM) 1977 1024 512
Linux 2.4.18-10smp
pglcluster03 (1) Intel(R) XEON(TM) 1977 1024 512
SunOS 5.8 sun4u sparc
csultraOl (1) SUNW,Ultra-5, 10 440 512 2048
SunOS 5.8 sun4u sparc
csultra02 (1) SUNW,Ultra-5, 10 440 512 2048
SunOS 5.8 sun4u sparc
csultra03 (1) SUNW,Ultra-5, 10 440 512 2048
SunOS 5.8 sun4u sparc
csultra04 (1) SUNW,Ultra-5, 10 440 512 2048
SunOS 5.8 sun4u sparc
csultra05 (1) SUNW,Ultra-5, 10 440 512 2048

Table 3.8: Specifications of the twelve heterogeneous processors used for the parallel matrix multiplication using
heterogeneous 2D block cyclic distribution. pglcluster01, pglcluster02, and pglcluster03 are all dua processor
machines whereas the rest of them are all single processor machines. Only one processor on pglcluster03 is used for

the experiments. Only one process is run per processor.

enabling paralel communications between the computers. The experimental results are obtained
by averaging the execution times over a number of experiments. Tables 3.10 and 3.12 show the
experimental results using the parallel matrix multiplication using heterogeneous block-cyclic

distribution for different matrix sizes.
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Size of matrix MPI
(n)

(p,a)=(3,4)

Execution time (sec)
P —

1536 248
3072 1252
4608 3447
6144 7692

Table 3.9: Execution times of the parallel matrix multiplication using homogeneous block cyclic distribution. There
are atotal of 12 processes available for computation. The values of p=3, q=4, r =32, _p=1536, and | _q =1536 are

used in the experiments.

Size of HMPI application using HMPI application using
matrix | HVPlI _Group_aut o_create HVPI _G oup_create
(n) (p.9)
Optimal grid arrangement 112 | (26) | 34 | 43 | (62 | (12,1)
(p.9) =(3, 4)

Execution time (sec) Execution time (sec)
P EE————————§—§—§—§—§—§—§8§Sy
1536 35 86 47 35 42 48 87
3072 167 347 208 | 164 | 178 | 197 | 351
4608 452 843 | 651 | 442 | 507 | 543 | 813
6144 905 1723 | 1582 | 875 | 1286 | 1229 | 1536

Table 3.10: Comparison of execution times of the parallel matrix multiplication using heterogeneous block cyclic
distribution. There are a total of 12 processes available for computation. For each problem size, the HMPI
application using HMPl _Gr oup_aut o_cr eat e finds the optimal arrangement of processesin a grid. The values

of r=32,1 _p=1536, and | _q =1536 are used in the experiments.
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Size of matrix MPI
(n)

(p.a)=(3,4)
Execution time (sec)

2304 622
4608 3914
6912 14220

Table 3.11: Execution times of the parallel matrix multiplication using homogeneous block cyclic distribution.
There are a total of 12 processes available for computation. The values of p=3, q=4, r=32, | _p=2304, and | _q

=2304 are used in the experiments.

Size of HMPI application using HMPI application using
matrix | HVMPlI _Group_aut o_create HVPI _G oup_create
(n)
(p.q)
Optimal grid arrangement 112 | (26) | (34 | 43 | (62 | (12,1)
(p.q) =(4.3)
Execution time (sec) Execution time (sec)
2304 97 187 106 83 80 | 102 193
4608 530 875 643 515 | 517 | 557 815
6912 1855 2486 | 2182 | 1800 | 1802 | 2052 | 2236

Table 3.12; Comparison of execution times of the parallel matrix multiplication using heterogeneous block cyclic

distribution. Thevaluesof r =32, 1 _p=2304, and | _q =2304 are used in the experiments.

For thevaluesof r =32, 1 _p=1536, and | _q=1536 used in the experiments, the optimal grid
arrangement of processes (p, q) detected by the function HVPI _ G oup_aut o_create is

(3, 4) . For the optimal processor grid arrangement ( 3, 4) , it can be seen that the execution
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(p,a) (12113 (149 (16 (18 (19 (112 ]| (21 | (22 | (23
Estimated
Execution | 7198 | 4798 | 3599 | 2052 | 1772 | 1772 | 1772 | 7198 | 3599 | 2043
time
(p,a) (24)1(26) 131 B2 B3 B4 | 4)) | (42 | (43 | (61)
Estimated
Execution | 1699 | 1699 | 4798 | 2068 | 1652 | 1651 | 3599 | 1678 | 1617 | 2052
time

(p.a) 62 | (81) | (91) | (121)
Estimated

Execution | 1652 | 1772 | 1772 | 1772
time

Table 3.13: Estimated execution times of the parallel matrix multiplication using heterogeneous block cyclic
distribution for all the possible processor grid arrangements such that ((I _p/r)%p), (I _q/r)%q)) are
zero (that is the matrices are partitioned into an whole number of generalized blocks). There are a total of 12
processes available for computation. The values of r =32, | _p=2304, | _g=2304, and size of the matrix nxr =6912

are used in the experiments.

times of the HMPI application using the function HVPl _G oup_aut o_cr eat e are greater
than the execution times of the HMPI application using the function HMPI _Gr oup_cr eat e by
some seconds. This is because the function HMPlI _Gr oup_aut o_cr eat e tries to estimate the
execution time of the paralel matrix-matrix multiplication for each possible processor grid
arrangement and calls the function HVPI _Group_cr eat e, providing the optimal grid
arrangement of processes as an input parameter. Thus this marginal difference in the execution
times between the HMPI application using the function HVPI _Gr oup_aut o_cr eat e and the
HMPI application using the function HMPlI _Gr oup_cr eat e is the extra time involved in
detecting the optima grid arangement of processes by the function

HVPI G oup_auto_create.
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For thevalues of r =32, | _p=2304, and | _g=2304 used in the experiments, the optimal grid
arrangement of processes detected by the function HVPlI _Group_auto_createis(4, 3). 1t
can be seen from the execution times of the HMPI application using the function
HVPI _Group_cr eat e that the optimal processor grid arrangements are ( 3, 4) , and (4, 3)
from all the possible grid arrangements. For the valuesof r =32, | _p=2304, 1 _q=2304, and size
of the matrix nxr =6912 used in the experiments, the Table 3.13 shows the estimated execution
timesfor all the possible processor grid arrangements.

The experimental results for the MPI application are shown in Tables 3.9 and 3.11. It
performs very poorly on this network compared to the HMPI equivalent because it does not take
into account the speeds of the processors and the latencies and the bandwidths of the

communication links between them.

3.6 Model of HMPI Program

A typicad HMPI application starts with the initialization of the HMPI runtime system using the
operation

HWI Init (int argc, char** argv)
where ar gc and ar gv are the same arguments, passed into the application, as the arguments to
mai n. This routine must be called before any other HMPI routine and must be called once. This
routine must be called by all the processes running in the HMPI application.

After the initialization, application programmers can cal any other HMPI routines. In
addition, MPI users can use norma MPI routines, with the exception of MPI initialization and
findization, including the standard group management and communicator management routines

to create and free groups of MPI processes. However, they must use the predefined
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communication universe HVPI _COVM WORLD of HMPI instead of MPI _COVM WORLD of

MPI.

The initialization of HMPI runtime system istypically followed by

Updating of the estimation of the speeds of processors with HMPI_Recon;

* Finding the optimal values of the parameters of the parallel agorithm with

HMPI_Timeof;

* Creation of a group of processes, which will perform the parallel agorithm, by using

HMPI_Group_createor HMPI_Group_auto_create,

» Execution of the parallel algorithm by the members of the group. At this point, control is
handed over to MPI. MPI and HMPI are interconnected by the operation
HWPI _Get _conm which returns an MPI communicator associated with communication
group of MPI processes. Application programmers can use this communicator to call the
standard MPI communication routines during the execution of the parallel agorithm.

This communicator can safely be used in other MPI routines.
* Freeing the HMPI groupswith HVPI _Group_fr ee.
* Finalizing the HMPI runtime system by using operation
HWPI _Finalize (int exitcode).

An HMPI application is like any other MPI application and can be deployed to run in any
environment where MPI applications are used. HMPI applications can be run in environments

where batch queuing and resource management systems are used. However HMPI usesits own
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Figure 3.22: Development process of an HMPI application. To build HMPI applications, an application
programmer describes a performance model using the model definition language, compiles the performance model
description into a set of functions, writes the application using the HMPI interfaces to create groups of processes to

execute the parallel algorithm.

measurements and performance models of the underlying system for running parallel
applications efficiently.
Note, that in general, the architecture of HMPI summarized in Figure 3.20 has similarities to

the architectural framework of the CORBA specification [OMG98].

3.7 Transformation of MPI to HM Pl

The section explains the steps involved in the transformation from an MPI program to an HMPI

program.
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int main(int argc, char **argv) {
int i, x,y, I, m¢t, n r, nme p, *d
doubl e val, *A, *B, *C, *tenp;

MPI I nit(&argc, &argv);
MPI _Comm r ank( MPl _COVWM WORLD, &ne);
MPI _Comm si ze( MPI _COVM WORLD, &p);

/1 Honmpgeneous data distribution
Partition_unordered_set(p, 1, NULL, NULL, NULL, n,
NULL, -1, NULL, NULL, d);

/1l Execution of the algorithmby the nenbers of MPI_COWM WORLD
for (i =0; i <(n/r); i++) {
i nt PivotProcessor = Get_set _processor(i, n/r, p, 0, d);
MPI _Bcast (tenp, n*r, MPI_DOUBLE, PivotProcessor,
*MPI _COVM WORLD) ;
for (x = 0; x < d[ne]; x++)
for (y =0; y < (n/r); y++)
for (I =0; | <r; [++)
for (m=0; m<r; m+) {
for (val =0, t =0; t <r; t++) {
val += Al Xx*r*n + i*r + |*n + t]
*tenp[y*r + t*r + m;
}
dx*r*n + y*r + I*r + nl += val;
}
}
MPl _Finalize();

Figure 3.23: The most relevant fragments of code of the MPI program implementing the parallel matrix-matrix

multiplication algorithm shown in Figures 3.13 and 3.14.

Consider the example multiplying matrix A and the transposition of matrix B on p
interconnected heterogeneous processors, i.e., implementing matrix operation C=AxB', where
A, B are dense nxn matrices. This application assumes one process per processor configuration
and implements a naive heterogeneous algorithm shown in Figures 3.11 and 3.12. Figure 3.21
shows the MPI program. Figure 3.15 shows the performance model of the matrix-matrix

multiplication algorithm and Figure 3.24 shows the HMPI program.
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The straightforward transformations consist of one-to-one replacement of the MPI
components by the HMPI counterparts. They are:

« HWI InitforMPlI Init,HVWl FinalizeforMPl Finalize.

« HMPI pre-defined universe HWPI _Conm wor |l d for MPI pre-defined universe

MPI _Comm wor | d.

* HMPI group accessors HVPI _Group_r ank, and HWPI _G oup_si ze for MPI group
accessorsMPl _Group_r ank,and VPl _G oup_si ze.

There is absolutely no change in the code consisting of computations and communi cations of
the parallel agorithm between an HMPI program and the MPI program. The MPI communicator
used in this code can be replaced with the MPI communicator provided by the operation
HWPI _Get _common the HMPI group of processes.

The other transformations are a bit involved and are outlined below in the order of increasing
complexity:

» Determination of the speeds of the processors using HVPI _Recon.

* Creation of an HMPI group of processes that will execute the heterogeneous parallel
algorithm using the operation HWPI _Group_create. The parameters to the
performance model passed to this operation can be packed using the function
HWPI _Pack _nodel paraneters.

» Destruction of an HMPI group once the execution of the algorithm is finished using the
operation HVPI _Gr oup_fr ee. Thisissimilar to the group destructor for an MPI group
of processes Pl _G oup_free.

» Description of the heterogeneous algorithm in the form of a performance model.
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int main(int argc, char **argv) {
int i, x,y, I, mt, n r, ne, p, *d, nd, **dp, *opt_speeds, opt_p;
int output_p, input_p[3] ={n, r, t};
doubl e val, *A, *B, *C, *tenp;
doubl e *speeds;
voi d *nodel _par ans;
HWI _Group gid;
HWPI I nit(argc, argv);
MPl _Comm si ze( HWPI _COVWM WORLD, &p);
/1 Estimation of speeds and data distribution using the speeds
if ((HWI _I's_nenber ( HVPI _PROC WORLD GROUP))
HWPI _Recon( &seri al AXBT, input_p, 3, &output_p);
HWPI _G oup_per f or mances( HVPI _COVM WORLD GROUP, &speeds);
/| Het erogeneous data distribution
Partition_unordered_set(p, 1, speeds, NULL, NULL,
n, NULL, -1, NULL, NULL, d);
/1 HWPl Goup creation
if (HWI _Is_host()) {
nmodel _par ans[ 0] =n;
nodel _parans[ 1] =r;
nmodel _parans[ 2] =t ;
HWPI _Group_auto_create(&gid, &HWI _Model parall el AXBT, nodel _parans);

if (HWI _Is free())
HWPI _Group_auto_creat e(&gid, &HWI _Mbodel _paral | el AxBT, NULL);
/1 Execution of the algorithmby the nenbers of the group
me = HWPI _G oup_rank(&gid);
if (HWI _Is_nmenber(&gid)) {
HWPI _Group_t opol ogy(&gi d, &nd, dp);
opt_p = (*dp)[0];
HWPI _Group_per formances(&gi d, opt _speeds);
Partition_unordered_set(opt_p, 1, opt_speeds, NULL, NULL, n,
NULL, -1, NULL, NULL, d);
MPI _Comm mxm _conm = *( MPl _Comt ) HWPI _Get _comm &gi d) ;
for (i =0; i < (n/r); i++) {
int PivotProcessor = Get_set_processor(i, n/r, p, 0, d);
WPl _Bcast (tenp, n*r, MPI_DOUBLE, PivotProcessor, nxm.comm;
for (x = 0; x <d[nme]; x++)
for (y = 0; y < (nfr); y++)
for (I =0; | <r; [++)
for (m=0; m<r; m+) {
for (val =0, t =0; t <r; t++)
val += A[Xx*r*n + i*r + 1*n + t]
*tenp[y*r + t*r + m;
gx*r*n + y*r + | *r + nm += val;

}
}
}
/1 HWPl G oup Destruction
if (HWPI _I's_nenber(&gid)){

HWPl _Group_free(&gid);

}
HWPI _Fi nalize(0);

Figure 3.24: The most relevant fragments of code of the HMPI program implementing the parallel matrix-matrix

multiplication algorithm shown in Figures 3.13 and 3.14.
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It can be seen that the most involved part in the transformation process is the design of the
performance model.

The main constructs of the specification of the performance model definition language are
briefly described here. The coord declaration specifies the arrangement of processes. The node
declaration describes the total volume of computations to be performed by each of the processes
in the group during the execution of the algorithm. The link declaration specifies the total
volume of datato be transferred between each pair of processes in the group during the execution
of the algorithm. The scheme declaration describes the order of execution of the computations
and communications by the involved parallel processes in the group, that is, how exactly the
processes interact during the execution of the algorithm.

The parameters to the performance model are mainly and usually the number of processesin
each dimension of the process arrangement and data distribution parameters specifying how the
datais distributed amongst the processes, and the amount of data that is transferred between the
pair of processes. For example, if the mathematical objects used in the parallel algorithm are sets,
the data distribution parameters are usually an array giving the number of elements in the set
assigned to each processor proportional to the speed of the processor and an array giving the
number of elements transferred between pairs of processors. If the mathematical objects used are
matrices, the data distribution parameters are arrays giving the geometric dimensions of the
partitions, which are rectangles assigned to each processor. If the mathematical objects used are
graphs and trees, the data distribution parameters are arrays giving the number of nodes assigned
to each processor and the edges that cross between pairs of processors.

It would appear that the description of the heterogeneous algorithm in the form of the

performance model could be very complicated. However the user who has designed an MPI
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application has complete knowledge of the essential features of the parallel agorithm used in the
MPI application. While designing the performance model, al that the user has to do is to
explicitly specify these features in a parametric way. The specification of the performance model
provides all the features to allow the user to specify all these features outlined previoudy in a
general way without going into the nitty-gritty of the parallel algorithm.

The complexity of the performance model depends on how complex is the algorithm that the
user has designed for the parale application. The user can smplify the design of the
performance model by ignoring some details of the parallel agorithm that have little or no
influence on the performance of the parallel application. The performance model language offers
al the features allowing the users to design al types of performance models ranging from the
simplest to most complicated, and from not very accurate to very accurate for their paralle
application. In some cases, a simple performance model can be designed that can accurately
represent the essential features of the paralel agorithm used in their parallel applications. The
specification of the performance model is comprehensive enough for expressing many scientific
applications, as shown by the examples presented in this chapter and the scientific applications
presented in Chapter 5 on HMPI application programming. At the same time it is expected to be
improved based on the feedback from the scientific community using it.

An interesting topic is applications where different parallel agorithms are coupled. There are
many ways of writing performance models and programming such applications in HMPI. If the
application is composed of two algorithms that are loosely coupled, two different groups of
different performance models executing the algorithms in paralel can be created. The HMPI
runtime system will try to map the algorithms in such a way to ensure the best execution

performance of the whole application. Alternatively, two different groups of different
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performance models executing the agorithms serially can be created (especialy, in the case of
strong data dependency). In the latter case, the first group must be destroyed before the second
one is created to make al resources available when mapping each of the algorithms on the
underlying hardware. If the two algorithms are tightly coupled, they can be described using a
single performance model and executed on the same group.

Future work may involve the development of a tool that would automatically make some
straightforward transformations to an MPI program to convert it into an HMPI program. The tool
could be as simple as a script or a preprocessor that generates a basic working version of an
HMPI program from an input MPI program. All that the application programmer will have to do
is to design a performance model and input this performance model and MPI programs to the
compiler or preprocessor. Hooks can be provided that allow the application programmers to
specify the different stages of an MPI program that would aid the transformation process. These
are the following:

* MPIinitialization,

» Datadistribution,

» Execution of the algorithm by the processes of MPI _COVM WORLD, and

* MPI finalization.

Based on this information, a basic working version of a HMPI program can be generated from
the performance model provided by the application programmer and the static program analysis
of the MPI program. The basic working version would contain the following:

» HMPI initialization replacing the MPI initialization,

» Data distribution using the speeds of the processors. This step uses the Heterogeneous

Data Partitioning Interface (HDPI) presented in Chapter 4. The application programmer
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must dynamically update the processor speeds at runtime using HMPlI _Recon before
distributing the data.

Creation of a HMPI group of processes. The call to the HMPI group creation function
HWPI _G oup_cr eat e isinserted. The handle to the performance model in the group
creation function is generated by compiling the performance model provided as input by
the application programmer. The application programmer will have to fill in the model
parameters using the function HVPI _Pack _nodel _par anet er s.

Execution of the algorithm by the processes of MPI communicator associated with the
HMPI group of processes. This piece of code is similar to the MPI code except that the
MPI communicator MPI _COVM WORLD is replaced by the MPI communicator
associated with the HMPI group of processes

Destruction of the HMPI group of processes. The call to the group destruction function
HWPI _G oup_freeisinserted, and

HMPI finalization replacing the MPI finalization.

3.8 A Resear ch | mplementation of HM Pl

The first version of a research implementation of HMPI is available from our homepage

http://cs-www.ucd.ie/~hmpi.

The HMPI programming system includes the following components:

A compiler to compile the performance model definitions.

Run-time support system (RTSS).
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e Library consisting of extensionsto MPI and data partitioning API called HDPI (presented
in Chapter 4). Currently this API has bindings to only ANSI C. Future work will involve
design of bindingsto C++, FORTRAN, and Java.

* Command-line user interface.

The compiler compiles the description of a performance model to generate a set of functions
with calls to functions of RTSS. RTSS manages processes, constituting the parallel program, and
provides communications. It encapsulates a particular communication platform (currently, a
subset of MPI) ensuring platform-independence of the rest of system components. The
command-line interface consists of tools for virtual paralel machine (VPM) management and
execution of HMPI applications on the VPM.

Appendix B contains the HMPI Programmer's guide and instalation guide. The
Programmer’s guide presents the HMPI library consisting of extensions to MPI and
Heterogeneous Data Partitioning Interface (HPDI presented in Chapter 4) and the command-line
interface to manage virtua parallel machine (VPM) and execute HMPI applications on VPM.
The installation guide presents instructions to install HMPI on UNIX platforms (currently HMPI
isavailable only for UNIX platforms).

In the following sections, we explain how to describe aVVPM followed by the structure of the
topology file, representing the model of the executing network of computers, generated during
the creation of a VPM. We then present the model of HMPI program. This is followed by
explanation of the synchronization functions and functions of RTSS performing process

management tasks ensuring proper execution of HMPI applications.
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3.8.1Virtual parallel machine

The description of a virtual parale machine (VPM) on which the HMPI applications are
executed is provided in a VPM description file. A VPM description file consists of lines of two
kinds. Lines starting with symbol ‘# are treated as comments. All other lines should be of the
following format:

<nanme> <nunber of processes> [nunber of processors]
where <name> is the name of the corresponding computer as it appears in the system
‘I et c/ host s’ file, <nunber _of processes> is the number of processes to run on the
computer, and [ nunber _of processors] is the number of processors present on the
computer (thisis not mandatory). The host computer must go first in the file.

For example, the following file describes VPM consisting of three computers (al pha,

bet a, and gamma), five processes running on each computer, and the host computer isal pha:

al pha 5

beta 5
ganma 5

The VPM can be created, opened, closed or queried using VPM management tools. During the
creation of the VPM, atopology file is generated that contains information on the model of the

executing network of computers. The topology file for the VPM described previoudly is shown

below:
paral l el (0.49, 0.97) c62377 c967039 c801049
#al pha
S2 p6667 n5 serial ¢2285064 c107326590 c99523787
#bet a
s2 p5556 n5 serial ¢1312665 c80473880 c98430419
#ganmma

s2 p5556 n5 serial c1956722 c78885862 c99667528

167



Outline of HMPI

In the topology file, each computer is characterized by 7 parameters. The first parameter, s,
called scalability determines how many non-interacting processes may run on the computer in
parallel without loss of speed. This is useful, for example, if the computer is a multiprocessor
workstation. If the field [ nunmber _of processors] is specified in the VPM description
file, the parameter s represents the number of processors. The second parameter, p, determines
the performance of the computer demonstrated on executed of some seria test code. One can see
that the computer al pha isthe most powerful and the computer ganmma is the least powerful.
Note that at runtime HMPlI _Recon updates the value of the parameter for each participated
computer.

The third parameter, n, determines the total number of parallel processes to run on the
computer. One can see that five processes are run on each computer.

The fourth parameter determines the scalability of the communication layer provided by the
compuiter. Inthis case, all computers provide serial communication layers.

Finally, the last three parameters determine the speed of point-to-point data transfer between
processes running on the same computer as a function of size of the transferred data block. The
first of them specifies the speed of transfer of a data block of 64 bytes (measured in bytes per
second), and the second and third specify that of 64% and 64° bytes corresponding.

The homogeneous communication space of higher level is aso characterized by those three
parameters. Besides, the layer is detected as a parallel communication layer with factors 0.49 and

0.97 characterizing the level of parallelism of broadcast and gather correspondingly.

3.8.2Model of HMPI program

All processes constituting the target HMPI program are divided into two groups: special process,

the so-called dispatcher, playing the role of computing space manager, and common processes.
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The dispatcher works as a server. It receives regquests from the common processes and sends
them commands.

At any time of the target program running, any process is either free (unemployed) or a
member (employed) of one or several HMPI groups. Employing processes in created groups and
dismissing them are the responsibility of the dispatcher. The only exception is the host-process
representing the pre-defined virtual host processor, which always maps onto the first process
associated with the user’'s terminal (host computer). Thus, just after initialization of HMPI
runtime the computing space is represented by the host and a set of temporarily free
(unemployed) processes. The main problem in managing processes is employing them in HMPI
groups and dismissing them. The solution to this problem establishes the whole structure of a
HMPI program and forms the requirements for the synchronization functions and the functions
of the RTSS.

During the HMPI runtime initialization, the host-process reads and parses the topology file to
initialize the HMPI runtime environment. The topology fileis an ASCII file, which is generated
during the creation of a virtua parallel machine on which the HMPI applications are executed.
Thisfile contains information on the model of the executing network of computers. The topology
information is then sent to the dispatcher, which stores the information.

To create a HMPI group, its parent sends a creation request to the dispatcher. The request
contains the full topological information on the group to be created. To compute the topological
information, the parent uses the set of functions generated by the compiler from the description
of the performance model of the paralel algorithm. Consider the description of the performance

model Nbody shown in Figure 3.9 and the generated code shown in appendix A.
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The function MPC_Net Type_Nbody power returns the number of processesin the group.
Since the RTSS uses a linear numeration of processes from 0 to n- 1, where n is the tota
number of processes, the functions MPC Net Type Nbody coord2nunber and
MPC Net Type_Nbody nunber 2coor d convert the coordinates of a process into its linear
number and vice versa. This linear numeration is determined by the lexicographic ordering on
the set of coordinates of processors. The function MPC_Net Type_Nbody_par ent returnsthe
linear number of the parent process. The function MPC_Net Type Nbody node returns the
type and relative peformance of the specified processor. The function
MPC_Net Type_Nbody | i nk returns the length of the directed link connecting a pair of
processors. And finally the function MPC_Net Type_Nbody_mappi ng estimates the time of
execution of the parallel algorithm for a mapping.

On the other hand, the dispatcher keeps information on the performance model of the
executing network of computers, which reflects the state of this network just before the
execution of the parallel agorithm. Based on the topological information sent by the parent and
the performance model of the executing network of computers that it stores, the dispatcher
selects a set of free processes, which are the most appropriate to be employed in the group to be
created. After that, it sends to every free process a message saying that whether the process is
employed in the group or not.

To destroy a HMPI group, its parent sends a message to the dispatcher. Note, that the parent
remains employed in other groups, which share it with the group to be destroyed. In HMPI,
groups are not absolutely independent of each other. Every newly created group has exactly one
process shared with already existing groups. That process is the parent of this newly created

group, and is the connecting link, through which results of computations are passed if the group
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ceases to exist. The rest of the members of the destroyed group become free and begin waiting
for commands from the dispatcher.

Any process can detect its member/free status. It is employed and not free if a call to function
HWPI |s free returnsf al se. Otherwise the processis free. Any process can detect if itisa
member of aHMPI group. A HMPI group is represented via its descriptor. If the descriptor gi d
corresponds to a HMPI group, then a process is a member of the HMPI group if and only if the
function call HVPI _I s_nenber ( &gi d) returnst r ue. In this case, the descriptor gi d allows
the process to obtain comprehensive information about the group as well as identify itself in the
group.

Creating a group involves its parent, all free processes and the dispatcher. The parent of the
group callsthe function

HWI G oup_create(&gid, &perf_nodel, nodel p)
where gi d is the group descriptor, per f _nodel is the handle to the performance model, and
nodel p are the parameters to the performance model. For the creation of the first HMPI group,
the host-process can be used as the parent. The function HVPI _Gr oup_cr eat e computes all
the topological information and sends a creation request to the dispatcher. In the meantime, free
processes are waiting for commands from the dispatcher at a so-called waiting point in the
function call

HWPI G oup _create(&gid, &perf nodel, NULL)

A free process leaves the waiting point either after it becomes employed in the group the
descriptor of which is pointed to by gi d or after the dispatcher sends, to al free processes, the

command to leave the current waiting point.
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3.8.3 Structure of HMPI program
The basic HMPI program model permits and supports the creation of no more than one group at
atime and the existence of no more than one group at atime. The structure of a HMPI program

using the basic model is explained using an example shown below:

[* 1 */ int main(int argc, char **argv) {

[* 2 */ voi d *rmodel p;

[* 3 */ HWI _Group gidl, gid2;

[* 4 *] HWPl _Init(argc, argv);

[* 5 */ // Parent sends a creation request to the dispatcher.

[* 6 */ /1 After the group is created, Host sends a message

[* 7 */ /1 to the dispatcher. After receiving the nessage the

[* 8 */ /1l dispatcher sends all free processes a command ordering
[* 9 */ /1 themto | eave the waiting point on line 14

[* 10 */ if (HWPI _Is_host())

[* 11 */ HWPI _Group_create(&gi dl, &perf nodel, nodel p);

[* 12 */ /1 Free processes wait here for commands from di spat cher
[* 13 */ if (HWI _Is free())

[* 14 */ HWPI _Group_create(&gi dl, &perf nodel, NULL);

[* 18 */ /1 Execution of the algorithmby the menbers of the group
[* 19 */ if (HWPl _I's_menber(&gidl)) {.}

[* 20 */ I/ Parent sends a destroy request to the dispatcher

[* 21 */ /1 OQther nenmbers of the group become free here

[* 22 */ if (HWPl _Is_menber (&gidl))

[* 23 */ HWPI _Group_free(&gidl);

[* 24 *] /1 The process is repeated for the creation of the second
[* 25 */ /1 group

[* 26 */ if (HWPI _Is_host())

[* 27 */ HVPI _G oup_creat e( &gi d2, &perf_nodel, nodel p);

[* 28 */ Il Free processes wait here for commands from di spatcher
[* 29 */ if (HWI _Is free())

[* 30 */ HWPl _Group_cr eat e( &gi d2, &perf_rmodel, NULL);

[* 31 */ /1 Execution of the algorithmby the menbers of the group
[* 32 */ if (HWPI_Is_nenber(&gid2)) {.}

[* 33 */ I/ Parent sends a destroy request to the dispatcher

[* 34 */ /1 Cther nembers of the group become free here

[* 35 */ if (HWPI _I's_nenber(&gid2))

[* 36 */ HWPI _Group_free(&gid2);

[* 37 */ /!l Free processes wait here for commands from di spatcher
[* 38 */ /1 Al conmon processes sync here

[* 39 */ HVPI _Finalize(0);

[* 40 */ }
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If creation of more than one group in parallel and existence of more than one group is
required, additional synchronization functions are provided, which must be used to write correct
HMPI programs. However it is to be noted that no synchronization functions are necessary if the
basic moddl is followed. We have noticed that the programming becomes complicated when
synchronization functions are used. From the applications experimented with HMPI, we have
observed that such complicated programming is not required. However, we explain the usage of

the additional synchronization functions below for compl eteness.

[* 1 */ int main(int argc, char **argv) {

[* 2 */ voi d *nodel p;

[* 3 */ HWPl _Group gi d;

[* 4 *] HWPl _Init(argc, argv);

[* 5 */ I/ Parent sends a creation request to the dispatcher

[* 6 */ if (HWPI _I's_host())

[* 7 */ HVPI _G oup_create(&gid, &perf_nodel, nodel p);

[* 8 */ Il Free processes wait here for commands from di spat cher

[* 9 */ if (HWI _Is free())

[* 10 */ HWPI _Group_create(&gid, &perf _model, NULL);

[* 11 */ /!l Host sends a message to the dispatcher. After receiving
[* 12 */ /1 the message the dispatcher sends all free processes a

[* 13 */ /1 command ordering themto |eave the waiting point on line 10
[* 14 */ if (HWPl _I's_host())

[* 15 */ HWPI _Notify_ free_processes();

[* 16 */ /! Epilogue of waiting point. All comon processes sync here
[* 17 */ /1 Execution of the algorithmby the menbers of the group
[* 18 */ if (HWPI_I's_nenmber(&gid)) {.}

[* 19 */ I/ Parent sends a destroy request to the dispatcher

[* 20 */ /1 OQther nenmbers of the group become free here

[* 21 */ if (HWPl _I's_menber (&gid))

[* 22 *] HWPI _Group_free(&gid);

[* 23 */ /1 Free processes wait here for commands from di spatcher

[* 24 */ if (HWl Is free())

[* 25 */ HWPI Wit _free processes();

[* 26 */ if (HWPI _Is_host())

[* 27 */ HWPI Notify free processes();

[* 28 */ /1 Epilogue of waiting point. Al commobn processes sync here
[* 29 */ HWPI _Fi nal i ze(0);

/[* 30 */ }
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In general, aHMPI program involving the creation of a HMPI group has two waiting points.
The first waiting point on line 10 is called the creation waiting point. Here free processes wait
for commands on group creation. The second waiting point on line 25 is called the destruction
waiting point. Here the free processes wait for commands on group destruction in the function
cal HWI _Wait _free_processes on line 25. In genera, free processes not only
participate in the creation/destruction of HMPI groups but also take part in overall computations
(that is, in computations distributed over the entire computing space) and/or in the creation and
destruction of HMPI groups defined in nested blocks.

The coordinated arrival of all the common processes must be made sure at the epilogue of the
waiting points at lines 16 and 28. The following steps ensure it:

e It must be made sure that al other employed processes, which might send a
creation/destruction request expected in the waiting point, have aready reached the
epilogue. This can be ensured by putting barriers using the function call
HVWPlI _Barrier;

e The host sends a message to the dispatcher in the function call
HVPI Notify free processes (shown on lines 15 and 27) saying that any
creation/destruction request expected at this waiting point will not come yet and that the
free processes should be ordered to leave the waiting point (shown on lines 10 and 25
respectively);

» After receiving the message, the dispatcher sends all free processes a command ordering
them to leave the waiting point;

» After receiving the command, each free process |eaves the waiting point and reaches the

epilogue.
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int nmain(int argc, char **argv) {
HWPI _Group gidl, gid2, gid3;
HWPI Init(argc, argv);
if (HWI _Is_host())
HWPI _G oup_creat e( &gi d1, &perf_nodel, nodel p);
/] Creation waiting point 1
if (HWI _Is_free())
HWPI _G oup_creat e(&gi d1, &perf_nodel, NULL);
if (HWI _Is_host())
HWPl _Notify_free_processes();
/1 Epilogue of waiting point 1
/1 Execution of the algorithmby the nenbers of the group gidl
if (HWPI_Is_parent(&gidl))
HWPI _G oup_creat e( &i d2, &perf_nodel, nodel p);
/1 Creation waiting point 2
if (HWI _Is_free())
HWPI _G oup_creat e( &gi d2, &perf_nodel, NULL);
if (HWPI_Is_nenber(&gidl))
HWPI _Barrier(&gidl);
if (HWI _Is_host())
HWPl _Notify_free_processes();
/1 Epilogue of waiting point 2
/'l Execution of the algorithmby the nenbers of the group gid2
if (HWPI _Is_nenber(&gid2))
HWPI _G oup_free(&gi d2);
// Destruction waiting point 3
if (HWI _Is_free())
HWPI _Wait_free_processes();
if (HWI _Is_host())
HWPl _Notify_free_processes();
if (HWPI_Is_nenber(&gidl))
HVPI _Barrier(&gidl);
/1 Epilogue of waiting point 3
if (HWPI _Is_parent(&gidl))
HWPI _G oup_creat e( &i d3, &perf_nodel, nodel p);
// Creation waiting point 4
if (HWI _Is_free())
HWPI _G oup_creat e( &i d3, &perf_nodel, NULL);
if (HWPI_Is_nenber(&gidl))
HWPI _Barrier(&gidl);
if (HWI _Is_host())
HWPl _Notify_free_processes();
/1 Epilogue of waiting point 4
/1 Execution of the algorithmby the nenbers of the group gid3
if (HWPI _Is_nenber(&gid3))
HWPI _G oup_free(&gid3);
// Destruction waiting point 5
if (HWI _Is_free())
HWPI _Wait_free_processes();
if (HWI _Is_host())
HWPl _Notify_free_processes();
/1 Epilogue of waiting point 5
if (HWPI _Is_nenber(&gidl))
HWPI _G oup_free(&gidl);
// Destruction waiting point 6
if (HWI _Is_free())
HWPI _Wait_free_processes();
if (HWI _Is_host())
HWPl _Notify_free_processes();
/1 Epilogue of waiting point 6
HWPI _Finalize(0);
}

Figure 3.25: HMPI program illustrating the coordinated arrival of processes at the epilogues of the waiting points.

Figure 3.25 shows an example HMPI program demonstrating the coordinated arrival of

processes at epilogues of the waiting points.
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3.9 Summary

We have presented HMPI, an extension of MPI for programming high-performance
computations on heterogeneous networks of computers. The main idea of HMPI is to automate
the process of selection of a group of processes, which would execute the heterogeneous
algorithm faster than any other group. HMPI provides features that alow the user to carefully
design their parallel applications that can run efficiently on HNOCs. The features that affect the
efficiency of the process of selection are:

» The accuracy of the performance model designed by the application programmers to
describe their implemented heterogeneous algorithm. The performance model definition
language is used to describe their implemented heterogeneous algorithm. It provides
comprehensive features to express many scientific parallel applications. These features
allow the application programmers to design all types of performance models ranging
from the simplest to most complicated, and not very accurate to most accurate for their
parallel applications.

* The accuracy of HVPI _Recon. The accuracy of HVPlI _Recon depends upon how
accurately the benchmark code provided by the application programmers reflects the core
computations of each phase of their parallel applications. If the benchmark code provided
IS an accurate measurement of the core computations in each phase, HVPI _Recon gives
an accurate measure of the speeds.

* The accuracy of HVPI _Ti meof . The accuracy of the estimation by HVPI _Ti neof is
dependent upon the following:

0 The accuracy of the performance model,
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0 The quality of the heuristics designed for the set of parameters provided to the
performance model,

o The accuracy of the model of the executing network of computers. This depends
on the accuracy of the measurements of the processor speeds given by
HWPI _Recon and the communication model of the executing network of
computers. Currently the communication model used in HMPI runtime system is
static. Future works would address the issue of efficiently updating the parameters
of communication model at runtime.

From the performance models presented in this chapter and in Chapter 5 on HMPI
application programming, it can be seen that a performance model can be written that is generic
enough to be used for any type of data distribution. The generality of the performance model is
achieved through using generic parameters in its parameter list and using data partitioning HPDI
API (presented in Chapter 4) in the body of the performance model. Such performance models
are only written once and used for different types of data distribution.

Thus HMPI provides all the features to the user to write portable and efficient parallel
applications on HNOCs.

In the next chapter, we present Heterogeneous Data Partitioning Interface (HDPI) that
automates one of the important stages of application development on HNOCs, namely,
decomposition of the whole problem into a set of sub-problems that can be solved in parallel by
interacting processes. This step of heterogeneous decomposition is parameterized by the speeds
of processors and the latencies and bandwidths of the communication links between them, the
number of memory levels of the memory hierarchy and the size of each level of the memory

hierarchy on each machine.
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CHAPTER 4

The Heter ogeneous Data Partitioning I nterface (HDPI):
Overview, Design and Preliminary Results

Parallel solution of regular and irregular problems on a HNOCSs typically consists of following
macro-steps:

1. Determination of characterization parameters relevant to both the computationa
requirements of the applications and the machine capabilities of the heterogeneous
system using information about the expected types of application problems and the
machines in the heterogeneous system.

2. Decomposition of the whole problem into a set of sub-problems that can be solved in
paralel by interacting processes.

3. The mapping of these parallel processesto the computers of the network.

4. Application program execution on the HNOCs.

An irregular problem is characterized by some inherent coarse-grained or large-grained
structure. This structure implies a quite deterministic decomposition of the whole problem into
relatively small number of subtasks, which are of different size and can be solved in parallel.
Correspondingly, a natural way of decomposition of the whole program, which solves the
irregular problem on a network of computers, is a set of parallel processes, each solving its
subtask and all together interacting via message passing. As sizes of these subtasks are typically
different, the processes perform different volumes of computation. Therefore, the mapping of
these processes to the computers of the executing HNOC should be performed very carefully to
ensure the best execution time of the program.

The most natura decomposition of a regular problem is a large number of small identical

subtasks that can be solved in parallel. As those subtasks are identical, they are all of the same
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size. Multiplication of two nxn dense matrices is an example of a regular problem. This

problem is naturally decomposed into n” identical subtasks, each of which is to compute one
element of the resulting matrix. The main idea behind an efficient solution to a regular problem
on a heterogeneous network of computers is to transform the problem into an irregular problem,
the structure of which is determined by the structure of the executing network rather than the
structure of the problem itself. So, the whole regular problem is decomposed into a set of
relatively large sub-problems, each made of a number of small identical subtasks stuck together.
The size of each subproblem, that is, the number of elementary identical subtasks constituting the
subproblem, depends on the speed of the processor, on which the subproblem will be solved.
Correspondingly, the parallel program, which solves the problem on the heterogeneous network
of computers, is a set of parallel processes, each solving one subproblem on a separate physical
processor and all together interacting via message passing. The volume of computations
performed by each of these processes should be proportional to its speed.

Thus, while step 2 of problem decomposition is trivial for irregular problems, it becomes key
for a regular problem. In fact, at this very step the application programmer designs a
heterogeneous data parallel algorithm by working out a generic decomposition of the regular
problem parameterized by the number and speed of processors. Most typically the generic
decomposition takes the form of data partitioning.

Existing programming systems for heterogeneous paralel computing [AKL+99, LAK+00,
Las02] automate the steps 1, 3, and 4 of application development on HNOCs, that is, provide
features that determine the characterization parameters of applications run on HNOCSs, support
the mapping of parallel algorithmsto the executing network, and the execution of applications on

HNOCs. However, they provide very poor support for generic heterogeneous decomposition of
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regular problems implied by the number and speed of processors. The application programmers
need to solve corresponding data partitioning problems and design and implement all supportive
code from scratch. Our own experience with using mpC and HMPI for paralel solution of
regular problems on networks of computers has shown how tedious and error-prone this step of
application development can be.

This motivated us to try and automate the step of heterogeneous decomposition of regular
problems by designing a library of functions solving typical partitioning problems for networks
of heterogeneous computers. Our original approach was to do it by just collecting existing
algorithms, designing an API to these algorithms and implementing the API. The main problem
we came across was that no classification of partitioning problems was found which could be
used as a basis of API design. Existing algorithms created a very fragmented picture. Therefore
the main goa of our research became to classify partitioning problems for networks of
heterogeneous computers. Such classification had to help to specify problems with known
efficient solutions and identify open problems. Then based on this classification an APl would
have to be designed and partially implemented (for problems that have known efficient
solutions). An additiona requirement to this classification was that it had to be useful for
distributed computing on networks as well.

Our approach to classification of partitioning problems is based on two corner stones.

* Aredigtic performance model of networks of heterogeneous computers,

* A natura classification of mathematica objects most commonly used in scientific,
engineering and business domains for paralel (and distributed) solving problems on networks of
heterogeneous computers.

The main contributionsin this chapter are:
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a) The design of HDPI APl based on a redistic performance model of networks of
heterogeneous computers.

b) The design of efficient set partitioning algorithms using a realistic performance model of
networks of heterogeneous computers. These algorithms solve the problem of optimal
distribution of computational tasks on a network of heterogeneous computers when one or
more tasks do not fit into the main memory of the processors and when relative speeds
cannot be accurately approximated by constant functions of problem size.

This chapter is structured as follows.

* Section 4.1 presents a redistic performance model of networks of heterogeneous
computers.

0 Section 4.1.1 presents an efficient procedure for building a piecewise linear
function approximation of the speed function of a processor with hierarchical
memory structure. The procedure tries to minimize the experimental time used for
building the speed function approximation.

» Section 4.2 presents the list of mathematical objects commonly used in parallel and
distributed algorithms.

» Section 4.3 presents the classification of the problems encountered during partitioning of
sets. Based on this classification, we suggest an API for partitioning sets.

» Section 4.4 presents the classification of the problems encountered during partitioning of
dense matrices. Based on this classification, we suggest an API for partitioning dense
matrices.

» Section 4.5 presents the classification of the problems encountered during partitioning of

graphs. Based on this classification, we suggest an API for partitioning graphs.
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» Section 4.6 presents the classification of the problems encountered during partitioning of
trees. Based on this classification, we suggest an API for partitioning trees.
» Section 4.7 presents algorithms of partitioning sets.

0 Section 4.7.1 presents the formulation of a problem of partitioning of an n-element
set over p heterogeneous processors using the performance model presented in
section 4.1. We present an efficient solution to the problem of the complexity
Qp?xl og,n).

0 Section 4.7.2 presents the formulation of a problem of partitioning of an n-element
set over p heterogeneous processors when there is an upper bound on the size of
the task that can be solved by each processor. We extend the performance model
presented in section 4.1 for solving this problem and give an efficient solution to

the problem of the complexity Q(p>xI ogzn).

4.1 A Realistic Performance M odéel of Networ ks of Heter ogeneous Computers

This section presents a performance model of a network of heterogeneous computers that
integrates some of the essential features of a heterogeneous network of computers having a major
impact on the performance, such as the processor heterogeneity, the heterogeneity of memory
structure, and the effects of paging.

A number of agorithms of paralel solution of scientific and engineering problems on
HNOCs have been designed and implemented [CQ93, CQ95, KL01, BBR+01]. They use
different performance models of HNOCs to distribute computations amongst the processors

involved in their execution. All the models use a single positive number to represent the speed of
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a processor, and computations are distributed amongst the processors such that their volume is
proportional to this speed of the processor. Cierniak et al. [CLZ97] use the notion of normalized
processor speed (NPS) in their machine model to solve the problem of scheduling parallel loops
at compile time for HNOCs. NPS is a single number and is defined as the ratio of time taken to
execute on the processor under consideration, with respect to the time taken on a base processor.
In [BBP+01] and [PD99], normalized cycle-times are used, i.e. application dependent elemental
computation times, which are computed via small-scale experiments (repeated severa times,
with an averaging of the results). Several scheduling and mapping heuristics have been proposed
to map task graphs onto HNOCs [TSA+97, MS98a, 1098]. These heuristics employ a model of a
heterogeneous computing environment that uses a single number for the computation time of a
subtask on a machine. Yan et al. [YZS96] use a two-level model to study performance
predictions for parallel computing on HNOCs. The model uses two parameters to capture the
effects of an owner workload. These are the average execution time of the owner task on a
machine and the average probability of the owner task arriving on a machine during a given time
step.

However these models are efficient only if the relative speeds of the processors involved in the
execution of the application are a constant function of the size of the problem and can be
approximated by a single number. This is true mainly for homogeneous distributed memory
systems where:

* The processors have almost the same size at each level of their memory hierarchies, and

» Each computational task assigned to a processor fitsin its main memory.

But these models become inefficient in the following cases:
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* The processors have significantly different memory structure with different sizes of
memory at each level of memory hierarchy. Therefore, beginning from some problem size,
the same task will still fit into the main memory of some processors and stop fitting into
the main memory of others, causing the paging and visible degradation of the speed of
these processors. This means that their relative speed will start significantly changing in
favor of non-paging processors as soon as the problem size exceeds the critical value.

* Evenif the processors of different architectures have ailmost the same size at each level of
the memory hierarchy, they may employ different paging agorithms resulting in different
levels of speed degradation for the task of the same size, which again means the change of
thelir relative speed as the problem size exceeds the threshold causing the paging.

Thus considering the effects of processor heterogeneity, memory heterogeneity, and the effects
of paging significantly complicates the design of algorithms distributing computations in
proportion with the relative speed of heterogeneous processors. One approach to this problem is
to just avoid the paging as it is normally done in the case of parallel computing on homogeneous
multi-processors. However avoiding paging in local and global HNOCs may not make sense
because in such networks it is likely to have one processor running in the presence of paging
faster than other processors without paging. It is even more difficult to avoid paging in the case
of distributed computing on global networks. There may not be a server available to solve the
task of the size you need without paging.

Therefore, to achieve acceptable accuracy of distribution of computations across
heterogeneous processors in the possible presence of paging, a more readlistic performance model
of aset of heterogeneous processors is heeded. Therefore we suggest amodel where the speed of

each processor is represented by a continuous and relatively smooth function of the problem size
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whereas standard models use a single number to represent the speed. This model integrates some
of the essential features underlying applications run on general-purpose common heterogeneous
networks, such as the processor heterogeneity in terms of the speeds of the processors, the
memory heterogeneity in terms of the number of memory levels of the memory hierarchy and the
size of each level of the memory hierarchy, and the effects of paging. This model is application-
centric in the sense that generally speaking different applications will characterize the speed of
the processor by different functions.

In this model, we do not incorporate one feature, which has a significant impact on the optimal
distribution of computations over heterogeneous processors. This feature is the latency and the
bandwidth of the communication links interconnecting the processors. This factor can be ignored
if the contribution of communication operations in the total execution time of the application is
negligible compared to that of computations. Otherwise, any algorithm of distribution of
computations aimed at the minimization of the total execution time should take into account not
only the heterogeneous processors but also the communication links whose maximal number is
egual to the total number of heterogeneous processors squared. This significantly increases the
gpace of possible solutions and increases the complexity of data partitioning algorithms. Any
performance model must also take into account the contention that may be caused in the
network. On a heterogeneous network of workstations using Ethernet as the interconnect, the
performance will suffer if many messages are being sent at the same time. Therefore it is
desirable to schedule a paralel program in such a way that only one processor sends a message
at a given time. So optimal communication schedules must be obtained to reduce the overall
communication time. The communication scheduling algorithms must be adaptive to variations

in network performance and that derive the schedule at runtime based on current information
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Machine , Total Main Cache

Name Architecture cpu MHz Memory (kBytes)

(kBytes) y
Comp1 Linux 2.4.20-8 Intel(R) 2793 513304 512
Pentium(R) 4
SunOS 5.8 sun4u sparc

Comp2 SUNW,Ultra:5_10 440 524288 2048
Comp3 Windows AMD Athlon XP 3000 1030388 512
Comp4 Linux 2.4.7-10 1686 730 254524 256

Table 4.1: Specifications of four heterogeneous computers, on which applications are run to determine the effect of

caching and paging in reducing their execution speed.
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Figure 4.1: The effect of caching and paging in reducing the execution speed of each of the four applications run on
network of heterogeneous computers shown in Table 4.1. (a) ArrayOpsF, (b) MatrixMultATLAS, and (c)

MatrixMult. P is the point where paging starts occurring.
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about network load. However the problem of finding the optima communication schedule is NP-
complete. The issues involved in including the cost of communications are discussed in more
detail in [DLO4]. Bhat et al. [BPR99] present a heuristic algorithm that is based on a
communication model that represents the communication performance between every processor
pair using two parameters. a start-up time and a data transmission rate. The incorporation of
communication cost in our functiona model and subsequent derivation of efficient data
partitioning algorithms using this model is a subject of our future research. In this work, we
intend to fully focus on the impact of the heterogeneity of processors on optimal distribution of
computations.

There are two main motivations behind the representation of the speed of the processor by a
continuous and relatively smooth function of the problem size. First of all, we want the model to
adequately reflect the behavior of common, not very carefully designed applications. Consider
the experiments with a range of applications differently using memory hierarchy that are
presented in [LTO4] and shown in Figure 4.1. Carefully designed applications ArrayOpsF and
MatrixMultAtlas, which efficiently use memory hierarchy, demonstrate quite a sharp and
distinctive performance curve of dependence of the absolute speed on the problem size. For these
applications, the speed of the processor can be approximated by a step-wise function of the
problem size. At the same time, application MatrixMult, which implements a straightforward
algorithm of multiplication of two dense square matrices and uses inefficient memory reference
patterns, displays quite a smooth dependence of speed on the problem size. For such
applications, the speed of the processor can not be accurately approximated by a step-wise
function. It should be approximated by a continuous and relatively smooth function of the

problem size if we want the performance model to be accurate enough.
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Figure 4.2: Effect of workload fluctuations on the execution of application MatrixMultATLAS on computers shown
in Table 4.1. The width of the performance bands is given in percentage of the maximum speed of execution of the
application. (a) Performance band for Compl, (b) Performance band for Comp2, and (c) Performance band for

Comp4.

The other main motivation is that we target general-purpose common heterogeneous networks
rather than dedicated high performance computer systems. A computer in such a network is
persistently performing some minor routine computations and communications just as an
integrated node of the network. Examples of such routine applications include email clients,
browsers, text editors, audio applications, etc. As aresult, the computer will experience constant
and stochastic fluctuations in the workload. This changing transient load will cause a fluctuation

in the speed of the computer in the sense that the execution time of the same task of the same
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size will vary for different runs at different times. The natural way to represent the inherent
fluctuations in the speed is to use a speed band rather than a speed function. The width of the
band characterizes the level of fluctuation in the performance due to changes in load over time.
The shape of the band makes the dependence of the speed of the computer on the problem size
less distinctive and sharp even in the case of carefully designed applications efficiently using the
memory hierarchy. Therefore, even for such applications the speed of the processor can be
realistically approximated by a continuous and relatively smooth function of the problem size.
Figure 4.2 shows experiments conducted with application MatrixMultATLAS on a set of
computers whose specifications are shown in Table 4.1. The application employs the level-3
BLAS routine dgemm [DCD+90] supplied by Automatically Tuned Linear Algebra Software
(ATLAS) [WPDOQ]. ATLAS is a package that generates efficient code for basic linear algebra
operations. The package, which contains code generators, sophisticated timers, and robust search
routines, achieves this by adapting itself to differing architectures via code generation coupled
with timing. The computers have varying specifications and varying levels of network
integration and are representative of the range of computers typically used in networks of
heterogeneous computers.

Representation of the dependence of the speed on the problem size by a single curve is
reasonable for computers with moderate fluctuations in workload because in this case the width
of the performance band is quite narrow. On networks with significant workload fluctuations, the
speed function of the problem size should be characterized by a band of curves rather than by a
single curve. In the experiments that we have conducted, we observed that computers with high
level of integration into the network produce fluctuations in speed that is in the order of 40% for

small problem sizes declining to approximately 6% for the maximum problem size solvable on
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the computer. The influence of workload fluctuations on the speed becomes less significant as
the execution time increases. There is a close to linear decrease in the width of the performance
band as the execution time increases. For computers with low level of integration, the width of
the performance band was not greater than around 5-7% even when there was heavy file sharing
activity. It is observed that for computers already engaged in heavy computational tasks, the
addition of heavy loads just shifts the band to alower level with the width of the band remaining
constant, that is, the upper and lower levels of speed are reduced with the width representing the
difference between the levels remaining the same. However more experimental study needs to be
carried out to accurately represent the width of the performance bands for computers with
varying levels of integration to increase the efficiency of the model. This is a subject of our
future research where we intend to improve our functiona model by adding an additional
parameter that reflects the level of workload fluctuations in the network.

The functional model does not take into account the effects on the performance of the
processor caused by several users running heavy computational tasks simultaneously. It supposes
only one user running heavy computational tasks and multiple users performing routine
computations and communications, which are not heavy like email clients, browsers, audio
applications, text editors etc.

In the next section, we present a practical procedure to build a piecewise linear function
approximation of the speed band of a processor, the width of the band representing the
fluctuations in speed due to changes in load over time. However, the problem of efficiently
building and maintaining the functional model requires further study and is open for research.

The problem of optimally scheduling divisible loads has been studied extensively and the

theory is commonly referred to as Divisible Load Theory (DLT). The main features of earlier
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works in DLT [BGM+96, DWO03a] are they assume distributed systems with a flat memory
model and use a linear mathematical model where the speed of the processor is represented by a
constant function of the problem size. Drozdowski and Wolniewicz [DWO03b] propose a new
mathematical model that relaxes the above two assumptions. They study distributed systems,
which have both the hierarchical memory model and a piecewise constant dependence of the
speed of the processor on the problem size. However the model they formulate is targeted mainly
towards optimal distribution of arbitrary tasks for carefully designed applications on dedicated
distributed multiprocessor computer systems whereas our model is aimed towards optimal
distribution of arbitrary tasks for any arbitrary application on general-purpose common

heterogeneous networks.

4.1.1 Procedure for Building the Functional Performance Model

We use piecewise linear function approximation illustrated in Figure 4.3 to represent the speed
band of a processor, the width of the band representing the fluctuations in speed due to changes
in load over time. Each of the approximations is built using a set of few experimentally obtained
points. The more points used to build the approximation, the more accurate the approximation is.
However it is prohibitively expensive to use large number of points. Hence an optimal set of few
points needs to be chosen to build an efficient piecewise linear function approximation of the
speed band. Such an approximation built gives the speed of the processor for any problem size
with certain accuracy within the inherent deviation of the performance of computers typically

observed in the network.
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Figure 4.3: Using piecewise linear approximation to build speed bands for 2 processors. The circular points are
experimentally obtained whereas the sguare points are calculated using heuristics. The speed band for processor
si(x) is built from 3 experimentally obtained points (application run on this processor uses memory hierarchy
inefficiently) whereas the speed band s,(x) (application run on this processor uses memory hierarchy efficiently) is

built from 4 experimentally obtained points.

This section is organized as follows. We start with the formulation of the speed band
approximation building problem. This is followed by a section on obtaining the load functions
characterizing the level of fluctuation in load over time. Then we present the assumptions
adopted by our procedure and some operations and relations related to the piecewise linear
function approximation of the speed band. We then explain our procedure to build the piecewise
linear function approximation. And finaly we demonstrate the efficiency of our procedure by
performing experiments using a matrix multiplication application and a Cholesky Factorization
application that use memory hierarchy efficiently and a matrix multiplication application that

uses memory hierarchy inefficiently on alocal network of heterogeneous computers.
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Figure 4.4: (a) Real-life speed band of a processor, (b) Real-life speed band of a processor and a piecewise linear

function approximation of a processor, (c) The speeds syax(X) and Sqyin(X) representing a cut of the real band used to

build the piecewise linear approximation, and (d) Piecewise linear approximation built by connecting the cuts.

4.1.1.1 Problem Formulation
For a given application in areal-life situation, the performance demonstrated by the processor is
characterized by a speed band representing the speed function of the processor with the width of
the band characterizing the level of fluctuation in the speed due to changes in load over time.
Thisis shown in Figure 4.4(a).
The problem is to find experimentally an approximation of the speed band of the processor

that can represent the speed band with sufficient accuracy and at the same time spend minimum
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experimental time to build the approximation. One such approximation is a piecewise linear
function approximation which accurately represents the real-life speed band with a finite number
of points. Thisis shown in Figure 4.4(b).

The piecewise linear function approximation of the speed band of the processor is built using
a set of experimentally obtained points for different problem sizes.To obtain an experimental
point for a problem size x (we define the size of the problem to be the amount of data stored and
processed by the application), we execute the application for this problem size. We measure the
ideal execution time tigeas and not the real time of execution. We define tjqea as the time it would
require to solve the problem on a completely idle processor. For example on UNIX platforms,
this information can be obtained by using the time utility or the getrusage() system call. The
ideal speed of execution Sgeq IS then equal to the volume of computations divided by tiges. We
assume we have the load functions of historical load data |nax(t) and Imin(t), which are the
maximum and minimum load averages observed over increasing time periods. The load average
is the number of active processes running on the processor at any time. We make a prediction of
the maximum and minimum average load, |maxpredicted(X) and Iminpredicted(X) respectively, that
would occur during the execution of the application for the problem size x. The creation of the
functions Inax(t) and lyin(t) and predicting the load averages are explained in detail in the next
section. Using Sgea and the load averages predicted, we caculate shax(X) and smin(x) for a

problem size x:

S (X) = Sgear (X) =i, pregicea (X) X Sgea (X)

Sinin (9 = S (9 = . precictea (X) X S (X)
The experimental point is then given by a vertical line connecting the points (X, Snax(X)) and

(X, Smin(X)). We call this vertical line the “cut” of the real band. This is illustrated in Figure

4.4(c). The difference between the speeds smax(X) and smin(X) represents the level of fluctuation in
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the speed due to changes in load during the execution of the problem size x. The piecewise linear
approximation is obtained by connecting these experimental points as shown in Figure 4.4(d). So
the problem of building the piecewise linear function approximation is to find a set of such
experimental points that can represent the speed band with sufficient accuracy and at the same
time spend minimum experimental time to build the piecewise linear function approximation.
Mathematically the problem of building piecewise linear function approximation can be
formulated as follows:
Definition. Piecewise Linear Function Approximation Building Problem PLFABP(I min(t),lmax(t)):
Given the functions I min(t) and Imax(t) (Imin(t) and Iax(t) are functions of time, characterizing the
level of fluctuation in load), obtain a set of n experimental points representing the piecewise
linear function approximation of the speed band of a processor, each point representing a cut

given by (Xi,Smax(Xi)) and (Xi,Smin(Xi)) Where x; is the size of the problem and Smax(Xi) and Smin(Xi)

Absolute speed

( ) Real-life speed band

X size of the problem X
k Kk

1 2

Figure 4.5: The non-empty intersectional area of piecewise linear function approximation with the real-life speed

band is a simply connected surface.
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are speeds calculated based on the functions |min(t) and Imax(t) and ideal speed Sgeq at point i,
such that:

* The non-empty intersectional area of piecewise linear function approximation with the

real-life speed band is a ssimply connected surface (A surface is said to be connected if a

path can be drawn from every point contained within its boundaries to every other point. A

topological space is simply connected if it is path connected and it has no holes. This is

illustrated in Figure 4.5), and

n
* the sum Zti of the times is minima where t; is the experimental time used to obtain
i=1

point i.
We provide an efficient and a practical procedure to build a piecewise linear function

approximation of the speed function of a processor.

4.1.1.2 Load Functions

There are a number of experimental methods that can be used to obtain the functions | (t) and
Imax(t) (characterizing the level of fluctuation in load over time) input to our procedure for
building the piecewise linear function approximation.

One of the methods is to use the metric of Load Average. Load Average measures the number
of active processes at any time. High load averages usually means that the system is being used
heavily and the response time is correspondingly slow. The operating system maintains three
figures for averages over one, five and fifteen minute periods. There are aternative metrics
available through many utilities on various platforms such as vmstat (UNIX), top (UNIX),

perfmon (Windows) or through performance probes and they may be combined to more
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Figure 4.6: (a) |max(t) and I,in(t) are generated from the load history. (b) A plot of pointsin matrix A. (C) lex(t) and

[ rin(t), the maximum and minimum loads cal culated from the matrix of load averages A.

accurately represent utilization of a system under a variety of conditions [WSS0Q]. In this work,

we will use the load average metric only.

The load average data is represented by two piecewise linear functions: Imax(t) and Imin(t). The

functions describe load averaged over increasing periods of time up to a limit w as shown in

Figure 4.6(c). This limit should be at most the running time of the largest foreseeable problem,

which is the problem size where the speed of the processor can be assumed to be zero (thisis

given by problem size b discussed in section on speed function approximation building

procedure). For execution of a problem with a running time greater than this limit, the values of
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the load functions at w may be extended to infinity. The functions are built from load averages
observed every A time units. One, five or fifteen minutes are convenient values for A as
statistics for these time periods are provided by the operating system (using a system call
getloadavg()). Alternate values of A would require additional monitoring of the load average and
trandation into A time unit load average.

The amount of load observations used in the calculation of | ma(t) and Imin(t) is given by h, the
history. A sliding window with alength of w passes over the h most recent observations. At each
position of the window a set of load averages is created. The set consists of load averages
generated from the observations inside the window. If A were one minute, a one minute average
would be given by the first observation in the window, a two minute average would be the
average of the first and second observations in the window, and so on. While the window is
positioned completely within the history, a total of w load averages would be created in each set,
the load averages having periods of A, 24, ... wA time units. The window can move atotal of w
times, but after the (h — w)-th time, its end will slide outside of the history. The sets of averages
created at these positions will not range as far as wA but they are still useful. From all of these
sets of averages, maximum and minimum load averages for each time period A, 2A, ... WA are
extracted and used to create the functions | max(t) and I min(t).

More formally, if we have a sequence of observed loads: |,,1.,...,1,,, then the matrix A of load

averages created from observations is defined as follows:

Ay - - G '+Z‘I‘1|
X y k
_ . _ k:J - R . .
A= | < x wherea; —ﬁ,foralll =1.h;j=1.wandi+j<h Q)
aw,l X X X
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The elements marked as x in the matrix A are not evaluated as the cal cul ations would operate on
observations taken beyond |. Imax(t) and lmin(t), are then defined by the maximum and minimum
calculated j-th load averages respectively, i.e. the maximum or minimum value of arow j in the
matrix (see Figure 4.6). Points are connected in sequence by straight-line segments to give a
continuous piecewise function. The points are given by:
h
e (1) = rngx (a,.j)

N ©
lnin(1) = rTilzlln (an)

Initial generation of the array has been implemented with a complexity of h x (W)Z. Maintaining

the functions |max(t) and Inin(t) after a new observation is made has a complexity of w”. A, h,
and w may be adjusted to ensure the generation and maintenance of the functions is not an
intensive task.

When building the speed functions Syin(X) and Spax(X), we execute the application for a
problem size x. We then measure the ideal time of execution tiges. We define tigea as the time it
would require to solve the problem on a completely idle processor. On UNIX platforms it is
possible to measure the number of CPU seconds a process has used during the total time of its
execution. Thisinformation is provided by the time utility or by the getrusage() system call. We
assume that the number of CPU seconds a process has used is equivalent to time it would take to
complete execution on a completely idle processor: tigea. We can then estimate the time of

execution for the problem running under any load | with the following function:

0=t O

This formula assumes that the system is uniprocessor, that no jobs are scheduled if the load is

one or greater and that the task we are scheduling isto run asanice' d process (niceisan
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Figure 4.7: Intersection of load and running time functions (Formula 3).

operating system call that alows a process to change its priority), only using idle CPU cycles.
These limitations fit the target of execution on non-dedicated platforms. If a job is introduced
onto a system with aload of, for example, 0.1, the system has a 90% idle CPU, then the formula
predicts that the job will take 1/0.9 times longer than the optimal time of execution: tjgeq.

In order to calcul ate the speed functions Syin(X) and Snax(X), we need to find the points where
the function of performance degradation due to load (Formula 3) intersects with the history of
maximal and minimal load |max(t) and Imin(t) as shown in Figure 4.7. For a problem size x, the
intersection points give the maximum and minimum predicted 10adS |maxprediced(X) and
Imin,predicted(X). Using these loads, the speeds Syin(X) and Smax(X) for a problem size x are

cdculated as:

Srex () = S () =i, predicted (X) X Sge (X) (4)
Siin (%) = Sgear (%) = . pregictea (X) X Sgees (X) )
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Figure 4.8: Permissible shapes of the graphs representing the real-life speed bands of two processors.
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Figure 4.9: (a) Shape of real-life speed function of processor for applications that use memory hierarchy efficiently,

(b) Shape of real-life speed function of processor for applications that use memory hierarchy inefficiently.

where S, (X) is equa to the volume of computations involved in solving the problem size x

divided by the ideal time of execution tjgeq.

4.1.1.3 Assumptions

We make some assumptions on the real-life speed band of a processor. Firstly, there are some

shape requirements.

201



The Heterogeneous Data Partitioning Interface (HDPI)

(d) We assume that the upper and lower curves of the speed band are continuous functions of
the size of the problem.

(b) The permissible shapes of the real-life speed band are:

» The upper curve and the lower curve are both a non-increasing function of the size of
the problem for all problem sizes (as shown by s;(x) in Figure 4.8).

» The upper curve and the lower curve are both a non-decreasing function of the size of
the problem followed by a non-increasing function of the size of the problem (as
shown by s,(x) in Figure 4.8).

(c) A straight line intersects the upper curve of the real-life speed band in no more than one
point between its endpoints and the lower curve of the real-life speed band in no more than
one point between its endpoints as shown for applications that use memory hierarchy
efficiently in Figure 4.9(a) and for applications that use memory hierarchy inefficiently as
shown in Figure 4.9(b).

(d) We assume that the width of the real-life speed band, representing the level of fluctuations
in speed due to changesin load over time, decreases as the problem size increases.

These assumptions are justified by experiments conducted with a range of applications
differently using memory hierarchy presented in [LTO4].

Secondly, we do not take into account the effects on the performance of the processor caused
by severa users running heavy computational tasks simultaneously. We suppose only one user
running heavy computational tasks and multiple users performing routine computations and
communications, which are not heavy like email clients, browsers, audio applications, text

editors etc.
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4.1.1.4 Definitions

Before we present our procedure to build a piecewise linear function approximation of the speed
band of a processor, we present some operations and relations on cuts that we use to describe the
procedure. The piecewise linear function approximation of the speed band of the processor is
built by connecting these cuts.
1. Weuse I at problem size x to represent the interval (Smin(X),Smax(X)). Ix is the projection
of the cut Cx connecting the points (X,Smin(X)) and (X,Smax(X)) on the y-axis.
2. lx<lyif and only if Spax(X)<Smax(y) and Smin(X)<Smin(y).
3. IxNly represents intersection between the intervals (Smin(X),Smax(X)) and (Smin(y),Smax(y)). If
IxNly=@ where @ represents an empty set with no elements, then the intervals are
digoint. If IxNly=ly, then the interva (Smin(X),Smax(X)) contains the interval

(Smin(Y),Smax(Y)), that i, Smax(X)=Smax(y) @nd Smin(X)<Smin(y)

4. I=lyif and only if Iy<lyand Iy<l.

4.1.1.5 Speed Function Approximation Building Procedure

Procedur e Geometric Bisection Building Procedure GBBP(l yux(t),Imin(t)). The procedure to build
the piecewise linear function approximation of the speed band of a processor consists of the
following steps and isillustrated in Figure 4.10:

1. We select an interval [a,b] of problem sizes where a is some small size and b is the
problem size large enough to make the speed of the processor practically zero. In most
cases, a is the problem size that can fit into the top level of memory hierarchy of the
computer (L1 cache) and b is the problem size that is obtained based on the maximum

amount of memory that can be allocated on heap. To calculate the problem size b, we run
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Figure 4.10: (a) to (f) Illustration of the procedure to obtain the piecewise linear function approximation of the
speed band for a processor. Circular points are experimentally obtained points. Square points are points of
intersection that are calculated but not experimentally obtained. White circular points are experimentally obtained

and that fall in the current approximation of the speed band.
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amodified version of the application, which includes only the code that allocates memory
on heap. For example consider a matrix-matrix multiplication application of two dense
square matrices A and B of size nxn to calculate resulting matrix C of size nxn, the
modified version of the application would just contain the allocation and de-allocation of
matrices A, B, and C on heap. This modified version is then run until the application fails
due to exhaustion of heap memory, the problem size at this point gives b. It should be
noted that finding the problem size b by running the modified version should take just
few seconds.

We obtain experimentally the speeds of the processor at point a given by snha(a) and

Snin(@) and we set the absolute speed of the processor at point b to 0. Our initial
approximation of the speed band is a speed band connecting cuts C, and C,. This is
illustrated in Figure 4.10(a).
. We experiment with problem sizes a and 2a. If l,:<l, Or 125N15=124, We replace the current
approximation of the trapezoidal speed band with two trapezoidal connected bands, the
first one connecting the cuts C, and C,, and the second one connecting the cuts Cy, and
Cp. We then consider the interval [2a,b] and apply step 3 of our procedure to thisinterval.
The speed band in this interval connecting the cuts at problem sizes 2a and b is input to
step 3 of the procedure. We set X t0 2a and Xyign to b.

If 1:=<l25, we recursively apply this step until |x+1yxa<lka OF lg+1yxa<lka=lK+1)xa. WE
replace the current approximation of the speed band in the interval [kxab] with two
connected bands, the first one connecting the cuts Cya and Cy+1)xa @nd the second one
connecting the cuts Cy+1)xa and Cp. We then consider the interval [(k+1)xa,b] and apply

the step 3 of our procedure to thisinterval. The speed band in this interval connecting the
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cuts C+1)xa @nd Cp, is input to step 3 of the procedure. We set et 10 (K+1)*xa and Xiignt t0
b. Thisisillustrated in Figure 4.10(b).

It should be noted that the time taken to obtain the cuts at problem sizes {a, 2a,
3a,...,(kt1)xa} isrelatively small (usually milliseconds to seconds) compared to that for
larger problem sizes (usually minutes to hours).

3. We bisect this interval [Xet,Xrignt] iNto sub-intervals [Xies,Xo,] and [Xo,Xright] Of equal
length. We obtain experimentally the cut Cxy, at problem size x,. We also calculate the
cut of intersection of the line x=x,, with the current approximation of the speed band

connecting the cuts Cx,, and Cx . .. The cut of intersection is given by Cxy,.

right”

a If Ix,,nIxy,#3, we replace the current approximation of the speed band with two
connected bands, the first one connecting the cuts Cx,, and Cx,, and the second
one connecting the cuts Cxy, and eright' Thisis illustrated in Figure 4.10(c). We
stop building the approximation of the speed band in the interval [Xieit,X,] and
recursively apply step 3 for the interval [Xp, Xright] . WWe Set Xieft tO Xp, .

b. If IX,NIX, =@ and IX. . NIX, 73, we replace the current approximation of the

right

speed band with two connected bands, the first one connecting the cuts Cx ,, and

Cxp, and the second one connecting the cuts Cxp, and Cx,, ot Thisisillustrated in
Figure 4.10(d). We stop building the approximation of the speed band in the

interval [Xo,,Xright] and recursively apply step 3 for the interval [Xies,Xo,]. We set
Xright to Xbl-

c. If X, o[ X6, =2 and Ix NIX, =2 and X6, N1"X0, 7, then we have two scenarios

right

illustrated in Figures 4.10(e) and 4.10(f) where experimental point at the first
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Figure 4.11: (a) to (f) Illustration of the procedure to obtain the piecewise linear function approximation of the
speed band for a processor. Circular points are experimentally obtained points. Square points are points of
intersection that are calculated but not experimentally obtained. White circular points are experimentally obtained

and that fall in the current approximation of the speed band.

207



The Heterogeneous Data Partitioning Interface (HDPI)

point of bisection fals in the current approximation of the speed band just by
accident.

Consider the interval [Xxiet,X,]. This interval is bisected at the point x,,. We
obtain experimentally the cut Cxy, at problem size x,,. We also calculate the cut of
intersection C'xp, of the line x=x,, with the current approximation of the speed
band. If 1xp,N1%,73, we stop building the approximation of the speed function in
the interval [Xieit,X,] and we replace the current approximation of the trapezoidal
speed band in the interval [XenXp,] With two connected bands, the first one
connecting the cuts Cx,, and Cx,, and the second one connecting the points Cxy,
and Cxy,. Since we have obtained the cut at problem size x,, experimentaly, we

use it in our approximation. This is chosen as our final piece of our piece-wise

linear function approximation in the interval [X|eft,Xbl]. If X0, 1"Xp, =, the
intervals [Xiert,X,] and [%o,,Xp,] are recursively bisected using step 3. Figure
4.11(a) illustrates the procedure.

Consider the interval [%,,Xrigh] - This interval is recursively bisected using step
3. We set xieit t0 X5, . Figure 4.11(b) illustrates the procedure.

If 1X,,NIX, =@ and IX, . NIX, =3 and Ixy,<I%, and Ixp,N1'%p, =@, we replace the

right
current approximation of the speed band with two connected bands, the first one

connecting the cuts Cx,, and Cx,, and the second one connecting the cuts Cxp,
and erigm. This is illustrated in Figure 4.11(c). The intervals [Xiet,Xp,] and
[Xo,Xright] are recursively bisected using step 3. Figure 4.11(d) illustrates the

procedure.

208



The Heterogeneous Data Partitioning Interface (HDPI)

1 Reallife
P C—— 1 Realife

size of the problem b a size of the problem
@) (b)

Figure 4.12: (a) The final piecewise linear function approximation of the speed band of a processor for an

application that utilizes memory hierarchy efficiently. (b) The final piecewise linear function approximation of the

speed band of a processor for an application that utilizes memory hierarchy inefficiently.

e If IX 4 NIX,=a and IX. . NIX, =3 and 1'%, <I%, and Ixy,N1'%, =@, we replace the

right
current approximation of the speed band with two connected bands, the first one

connecting the cuts Cx,, and Cx,, and the second one connecting the cuts Cxy,
and erigm. This is illustrated in Figure 4.11(e). The interval [Xiet,X,] and
[Xo,Xright] are recursively bisected using step 3. Figure 4.11(f) illustrates the

procedure.
4. The stopping criterion of the procedure is satisfied when we don’t have any sub-interval
to divide. Figures 4.12(a) and 4.12(b) show the final piecewise linear function
approximation of the speed band of the processor for an application that uses memory

hierarchy efficiently and an application that uses memory hierarchy inefficiently.
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Processor Architecture cpu Total Main Available Cache Matrix-matrix Cholesky
MHz Memory Main (kBytes) multiplication Factorization
(kBytes) Memory (dgemm) (dpotrf)
(kBytes) &
I nefficient
Matrix-matrix
multiplication
Size of Size of Size of Size of
matrix | matrix matrix matrix
(ny) (ny) (na) (nw)
Linux
X1 2'?%1('%15‘“" 1977 1033008 | 460368 512 100 | 13000 | 100 | 19500
XEON(TM)
SunOS 5.9
X2 UltraSPARC-ii 440 524288 401408 2048 100 7000 100 13000

Table 4.2: Specifications of two heterogeneous processors used to demonstrate the efficiency of the GBBP

procedure.

Pr ocessor

Matrix-matrix
multiplication
(ATLAS)

Cholesky Factorization
(ATLAYS)

Inefficient M atrix-matrix
multiplication

Speedup (Number of points
taken to build using GBBP)

Speedup (Number of points
taken to build using GBBP)

Speedup (Number of points
taken to build using GBBP)

X1

8.5(7)

6.5(19)

5.9(5)

X2

5.7(10)

15(8)

5.7(5)

Table 4.3: Speedup of GBBP procedure over naive procedure.

4.1.1.6 Experimental Results

We consider a Linux workstation and a Solaris workstation, which are integrated into local
departmental network in the experiments. The specifications of the computer are shown in Table
4.2. The amount of memory, which is the difference between the total main memory and
available main memory shown in the tables, is used by the operating system processes and few
other user application processes that perform routine computations and communications such as
email clients, browsers, text editors, audio applications etc. These processes use a constant
percentage of CPU.

There are three applications used to demonstrate the efficiency of our procedure to build the
piecewise linear function approximation of the speed band of a processor. The first application is
Cholesky Factorization of a dense square matrix employing the LAPACK [ABB+92] routine

dpotrf. The second application is matrix-matrix multiplication of two dense matrices using
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Figure 4.13: Piecewise linear approximation of the speed band against the real-life speed function. Circular points
are experimentally obtained points. Square points are calculated but not experimentally obtained. (@) Cholesky
Factorization using ATLAS on X1. (b) Cholesky Factorization using ATLAS on X2. (c) Matrix-matrix
multiplication using memory hierarchy inefficiently on X1. (d) Matrix-matrix multiplication using memory
hierarchy inefficiently on X2. (e€) Matrix-matrix multiplication using ATLAS on X1. (f) Matrix-matrix

multiplication using ATLAS on X2.
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memory hierarchy inefficiently. The third application is based on matrix-matrix multiplication of
two dense matrices employing the level-3 BLAS routine dgemm [DCD+90] supplied by
Automatically Tuned Linear Algebra Software (ATLAS) [WPDOQQ].

Figures 4.13(a) to (f) show the real-life speed function and the piecewise linear function
approximation of the speed band of the processors X1 and X2 for the matrix multiplication and
Cholesky Factorization applications. The real-life speed function for a processor is built using a
set of experimentally obtained points (x,s) . To obtain an experimental point for a problem size x,
we execute the application for the problem size at that point. The absolute speed of the processor
s for this problem size is obtained by dividing the total volume of computations by the real
execution time (and not the ideal execution time).

Table 4.3 shows the speedup of Geometric Bisection Building Procedure (GBBP) over a
naive procedure. The naive procedure divides the interval [a,b] of problem sizes equally into n
points. The application is executed for each of the problem sizes {(a),(a+(b-a)/n),(a+2x(b-
a/n),...,(b)} to obtain the experimental points to build the piecewise linear function
approximation of the speed band. In our experiments, we have used 20 points. The speedup
calculated is equa to the ratio of the experimental time taken to build the piecewise linear
function approximation of the speed band using the naive procedure over the experimental time
taken to build the piecewise linear function approximation of the speed band.

We measured the accuracy of the load average functions |nax(t) and lmin(t) by counting how
often a future load was found to be within the bounds of the curves and by measuring the area
between the curves. A very wide band will encompass amost al future loads but the prediction
of maximum and minimum load will be poor. We fixed w, the window size, and varied h to

examine how the hit ratio and area of the band changed. X1, a machine operating as a desktop
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Figure 4.14: (a) Load functions for X1. (b) Load functions for X2. (c) Load functions for a departmental server

running loads at all times. (d) Load functions generated with average periods beyond one hour.

with constant minor fluctuations in load, shows that a 60 minute window size gives good
accuracy with 4 hours of historical data. X2 is used for running intensive jobs with relative
infrequency. Figures 4.14(a) and 4.14(b) shows a sample of the load functions for processors X 1-
X2. Figure 4.14(c) shows a load function for a departmental server with loads running at all

times.
4.1.1.7 Discussion and Future Work

Most real-life speed bands shown by applications running on variety of operating systems satisfy
the requirements of the GBBP procedure. However for some operating systems, the shape of the

real-life speed band has a plateau in the region of paging as shown in Figure 4.13(f), which fails
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the requirement (c) of the GBBP procedure. This figure shows the real-life speed function and
the piecewise linear function approximation of the speed band of an UltraSparc processor X2 for
a matrix multiplication application using ATLAS. In this case, due to just one plateau in the
region of paging, GBBP procedure manages to build piecewise linear function approximation.
However it is inefficient since it takes two additional experimental points at problem sizes 5000
and 6500 in the region 4000-7000. In general, GBBP procedure fails to build an efficient
piecewise linear function approximation for such shapes. We aim to extend our procedure to
build piecewise linear function approximation efficiently for such shapes.

During the building of the piecewise linear function approximation using the GBBP
procedure, we consider the cut of the real-life speed band experimentally obtained for a problem
Size is accurate enough if there is a non-empty intersectional area with cut of the current
approximation of the speed band. That is if IxNly#® where Iy and Iy represent the intervals
(Smin(X),Smax(X)) and (Smin(Y),Smax(Y)) of reflections of cuts Cx and C, on y-axis respectively. The
procedure thus uses implicitly the notion of distance between the intervals to represent accuracy
of the building procedure. This notion of distance between the intervals can be included in the
parameter list to the GBBP procedure without any modifications to the procedure.

Further consideration should be put into choosing the maximum and minimum loads to
represent a particular n minute load average. The averages have a distribution that fits a normal
curve and the limits of the load functions could be set to encompass a certain percentage of this
curve. This would result in a narrower pair of load curves and could give a more accurate
representation of the band.

The general shape of Imax(t) and Inin(t) showed that for problems executing for very long time

frames, beyond one hour to one day (shown in Figure 4.14(d)), the predicted deviation in
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performance is less than 1.6%. Variation in load average is very small at these time scales on all
our machines, despite their differing roles. This would indicate that the importance of the band
lies in scheduling jobs that run for lesser periods of time. The window size, w, could be
dynamically assigned so that the final pair of maximum and minimum load averages represents a
variation in performance of some user-defined percentage, and after this point the band could be
considered a constant function.

We understand the importance of the problem of efficient maintenance of the speed function
approximation of the speed band. This problem is the subject of our current research.

We aim to design efficient algorithms of data partitioning on heterogeneous networks of
computers where the speed of a processor is represented by a speed band, the width of the band

characterizing fluctuations in speed due to changes in load over time.

4.2 Classification of Partitioning Problems

The core of scientific, engineering or business applications is the processing of some
mathematical objects that are used in modeling corresponding real-life problems. In particular,
partitioning of such mathematical objectsis a core of any data parallel algorithm. Our analysis of
various scientific, engineering and business domains resulted in the following short list of
mathematical objects commonly used in parallel and distributed algorithms: sets (ordered and
non-ordered), dense matrices (and multidimensional arrangements) and sparse matrices,
graphs, and trees.

These mathematical structures give us the second dimension for our classification of

partitioning problems. In the next section, we present our approach to classification of
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partitioning problems using sets as mathematical objects. We also suggest an APl based on the

classification.

4.3 Partitioning Problems for Sets and Ordered Sets

A set isawell-defined collection of objects considered as awhole. The objects of a set are called
elements or members. We consider the elements of the set to represent independent chunks of
computations, each of equal size (i.e., each requiring the same amount of work), which can be
computed without reference to each other i.e., without communication.
There are two main criteria used for partitioning a set:
1) The number of elementsin each partition should be proportional to the speed of the
processor owning that partition.
2) The sum of weights of the elements in each partition should be proportional to the speed
of the processor owning that partition.
Additional restrictions that may be imposed on partitioning of an ordered set are:
» The elements in the set are well ordered and should be distributed into digoint contiguous
chunks of elements.
The most general problem of partitioning a set can be formulated as follows:
* Given: (1) A set of n elements with weightsw (i =0,...,n-1), and (2) A well-ordered set of
p processors whose speeds are functions of the size of the problem x, s;=f ; (x), with an
upper bound b; on the number of elements stored by each processor (i =0,...,p-1),
» Partition the set into p digoint partitions such that: (1) The sum of weights in each partition

is proportional to the speed of the processor owning that partition, and (2) The number of
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elements assigned to each processor does not exceed the upper bound on the number of
elements stored by it.

The most general partitioning problem for an ordered set can be formulated as follows:

* Given: (1) A well-ordered set of n elements with weightsw (i =0,...,n-1), and (2) A well-
ordered set of p processors whose speeds are functions of the size of the problem X,
s; =f i (x), with an upper bound b; on the number of elements stored by each processor
(i =0,...,p-1),

» Partition the set into p digoint contiguous chunks such that: (1) The sum of weights of the
elements in each partition is proportiona to the speed of the processor owning that
partition, and (2) The number of elements assigned to each processor does not exceed the
upper bound on the number of elements stored by it.

The most general partitioning problems for a set and an ordered set are very difficult and
open for research. At the same time, there are a number of important special cases of these
problems with known efficient solutions. The special cases are obtained by applying one or more
of the following simplifying assumptions:

* All elements in the set have the same weight. This assumption eliminates n additional

parameters of the problem.

» The speed of each processor is a constant function of the problem size.

* There are no limits on the maximal number of elements assigned to a processor.

One example of a special partitioning problem for aset is:

e Given: (1) A set of n elements, (2) A well-ordered set of p processors whose speeds are
represented by single constant numbers, s,S1,...,S-1, and (3) There are no limits on the

maximal number of elements assigned to a processor,
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Model of Parallel Computation Weights of elements Weights of
arethe same elementsare
different
Speeds are functions of problem size & alimit Complexity No known results

exists on number of elements stored by each
processor.

O(p°xlog,n)

Speeds are functions of problem size & no
limits on number of elements stored by each
processor.

Complexity

O(p°xlog,n)

No known results

Speeds are single constant numbers and a limit Complexity NP-hard?
exists on number of elements stored by each o

processor.

Speeds are single constant numbers & no limits Complexity NP-hard?
on number of elements that each processor can O(pxlog,p)

hold.

Speeds are al the same (homogeneous case) & Complexity NP-hard?
alimit exists on number of elements that each o(p)

processor can hold.

Speeds are al the same (homogeneous case) & Complexity NP-hard?
alimit exists on number of elements that each

processor can hold. The sum of thelimitsis O(p)

egual to the number of elements of the set.

Speeds are al the same (homogeneous case) & Complexity NP-hard?
no limits on number of elements that each O(p)

processor can hold.

Table 4.4: Specia cases of partitioning of a set.

» Partition the set into p digoint partitions such that the number of elements in each partition
is proportional to the speed of the processor owning that partition.

The algorithm used to perform the partitioning is quite straightforward, of complexity O(p?)

[BBP+01]. The agorithm uses a naive implementation. The complexity can be reduced down to

O(pxlog,p) using ad hoc data structures [BBP+01].

Another example of a special partitioning problem for aset is:
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Model of Parallel Computation Weights of Weights of elementsare
elementsarethe different
same Rearrangement of processors
Allowed Not allowed
Speeds are functions of problem size Complexity No known No known
& alimit exists on number of elements O(p°xlog.n) results results
stored by each processor. 2
Speeds are functions of the problem Complexity No known No known
size & no limits on number of 5 results results
elements stored by each processor. O (p™log,n)
Speeds are single constant numbers & Complexity No known No known
an upper bound exists on number of o(p? results results
elements that each processor can hold. ()
Speeds are single constant numbers & Complexity No known No known
no limits on number of elements results results
stored by each processor. O(pxIog,p)
Speeds are al the same (homogeneous Complexity No known No known
case) & alimit exists on number of results results
elements that each processor can hold. O(p)

Table 4.5: Special cases of partitioning of an ordered set.

* Given: (1) A set of n elements, (2) A well-ordered set of p processors whose speeds are
represented by single constant numbers, ,Si,...,S-1, and (3) There is an upper bound b;
on the number of elements stored by each processor (i =0,...,p-1),

» Partition the set into p digoint partitions such that: (1) The number of elements in each
partition is proportional to the speed of the processor owning that partition, and (2) The
number of elements assigned to each processor does not exceed the upper bound on the

number of elements stored by it

We present an algorithm to solve this problem of partitioning of complexity st) in Section
4.7.2.
The special partitioning problems for a set when the speed of the processor is represented by a

function of the size of the problem are:
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e Given: (1) A set of n elements, (2) A well-ordered set of p processors whose speeds are
functions of the size of the problem x, s; =f ; (x) (i =0,...,p-1), and (3) There are no limits
on the maximal number of elements assigned to a processor,

» Partition the set into p digoint partitions such that the number of elements in each partition
is proportional to the speed of the processor owning that partition.

We present an algorithm of the complexity O(p2><Iogzn) solving this problem is given in Section
4.7.1.

* Given: (1) A set of n elements, (2) A well-ordered set of p processors whose speeds are
functions of the size of the problem x, s;=f; (x) (i =0,...,p-1), and (3) There is an upper
bound on the maximal number of elements assigned to a processor,

» Partition the set into p digoint partitions such that: (1) The number of elements in each
partition is proportional to the speed of the processor owning that partition, and (2) The
number of elements assigned to each processor does not exceed the upper bound on the
number of elements stored by it

We present an algorithm of the complexity Qp3XIogzn) solving this problem is given in Section

4.7.2.
Table 4.4 and Table 4.5 summarize specific partitioning problems for a set and an ordered set
respectively and their current state to the best knowledge of the authors.
Based on this classification, we suggest the following API to application programmers for
partitioning a set and an or der ed set respectively into p digoint partitions:
t ypedef double (*User _defined netric)(
int p, const double *speeds, const int *actual,

const int *ideal)

int Partition_unordered set (
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int p, int pn, const double *speeds, const int *psizes,
const int *mimts, int n, const int *w,
int type_of _netric, User_defined_netric unf
double *netric, int *np)
int Partition_ordered set (
int p, int pn, const double *speeds, const int *psizes,
const int *mimts, int n, const int *w,
int processor_reordering, int type of netric,
User defined netric unf, double *netric, int *np)

Parameter p is the number of partitions of the set. Parameters speeds and psi zes specify
speeds of processors for pn different problem sizes. These parameters are 1D arrays of size
pxpn logicaly representing 2D arrays of shape [ p] [ pn] . The speed of thei -th processor for
j -th problem size is given by the [i ][] ] -th element of speeds with the problem size itself
givenbythe[i][]]-th element of psi zes. Parameter ml i m t s gives the maximum number
of elements that each processor can hold.

Parameter n is the number of elements in the set, and parameter w is the weights of its
elements. If wis NULL, then the set is partitioned into p digoint partitions such that criterion (a)
is satisfied. If parameters w, speeds, and psi zes are al set to NULL, then the set is
partitioned into p digoint partitions such that the number of elements in each partition is the
same. If wis not NULL and speeds and psi zes are set to NULL, then the set is partitioned
into p equally weighted digoint partitions. If wisnot NULL and speeds and psi zes are not
set to NULL, then the set is partitioned into p digoint partitions such that criterion (b) is satisfied.

Parameter t ype_of _met ri ¢ specifies which metric should be used to determine the quality
of the partitioning. If t ype_of netric is USER _SPECI FI ED, then the user provides a
metric function unf, which is used to calculate the quality of the partitioning. If

type_of _netricisSYSTEM DEFI NED, the system-defined metric is used.
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The output parameter net ri ¢ gives the quality of the partitioning, which is the deviation of
the partitioning achieved from the ideal partitioning satisfying the partitioning criteria. If the
output parameter met ri ¢ isset to NULL, then the calculation of metric is ignored.

If wis NULL and the set is not ordered, the output parameter np is an array of size p, where
np[i] givesthe number of elements assigned to thei -th partition. If the set iswell ordered, the
output parameter np is an array of size p+1 where processor i gets the contiguous chunk of
elements with indexesfromnp[ i ] upto andincludingnp[i +1] - 1.

If wis not NULL and the set is well ordered, then the user needs to specify if the
implementations of this operation may reorder the processors before partitioning (Boolean
parameter pr ocessor _reorderi ng isused to do it). One typica reordering is to order the
processors in the decreasing order of their speeds.

If wis not NULL, the set is well ordered and the processors cannot be reordered, then the
output parameter np is an array of size p+1, where processor i gets the contiguous chunk of
elements with indexesfromnp[ i ] upto andincludingnp[i +1] - 1.

If wisnot NULL, the set is well ordered and the processors may be reordered, then np is an
array of size 2xp, wherenp[i] givesindex of aprocessor and np[ i +1] givesthe size of the
contiguous chunk assigned to processor given by theindex np[i ] .

If wisnot NULL and the set is not ordered, then np is an array of size n, containing the
partitions to which the elements in the set belong. Specifically, np[i] contains the partition
number in which element i belongs to.

HMPI provides additional helper functions. For an ordered set, application programmers can
use the operation, whose interface is shown below, for obtaining the coordinate of the processor

owning the set element at index i .
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int Get_set _processor (
int i, int n, int p, int processor_reordering,
const int *np)
For an unordered set, application programmers can use the operation, whose interface is

shown below, to obtain the number of elements allocated to processor i .

int Get_ny_partition (
int i, int p, const double *speeds, int n)

Some of the typical examples where the partitioning interfaces for sets can be used are striped
partitioning of a matrix and simple partitioning of a graph. In striped partitioning of a matrix, a
matrix is divided into groups of complete rows or complete columns, the number of rows or
columns being proportional to speeds of the processors. In simple partitioning of an unweighted
graph, the set of vertices are partitioned into digoint partitions such that the criterion (a) is
satisfied. In simple partitioning of a weighted graph, the set of vertices are partitioned into

digioint partitions such that criterion (b) is satisfied.
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Figure 4.15: (a8) Homogeneous two-dimensional block-cyclic distribution of a matrix with 18 x18 elements over a

3% 3 processor grid; (b) Heterogeneous two-dimensional block-cyclic distribution of a matrix of size 18x18

elements with 6 X 6 generalized blocks distributed over a 3% 3 processor grid. Each labeled (shaded and unshaded)

area represents different rectangles of blocks, and the label indicates at which location in the processor grid the

rectangle is stored — all rectangles labeled with the same name are stored in the same processor. Each square in a

bold frame represents different generalised blocks.
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4.4 Partitioning Problems for Dense Matrices

A matrix of sizer xc is a rectangular array of numbers arranged in r horizontal rows and ¢
vertical columns.

The typical partitioning of a matrix distributes a matrix into one-dimensional or two-
dimensional distributions of numbers. Actually, a matrix is a special case of a multidimensional
arrangement of numbers. In general, a multidimensional distribution of numbers arranged in nd
dimensions is partitioned into distributions of numbers arranged in lor 2 ... or nd-1
dimensions.

The typical partitioning of a matrix uses block-cyclic distribution of matrices on either a one-
dimensional or atwo-dimensional grid of processors. The advantages of block-cyclic distribution
are easily understood. Blocked versions of the parallel algorithms for matrix multiplication and
linear system solvers are used in ScaLAPACK [CDD+96] to squeeze the most out of state-of-
the-art processors with pipelined arithmetic units and multilevel memory hierarchy. The block-
cyclic data layout has been selected for the dense agorithms implemented in ScaLAPACK
principaly because of its scalability [DVW94], load balance, and communication [HW94]
properties. The block cyclic distribution has also been incorporated in the HPF language
[HPF94, HPF97]. Suppose we have a set of processes considered as a logical process grid with
p rows and q columns and a block-partitioned matrix with block size nxn. The generalized
homogeneous two-dimensional block cyclic distribution partitions the matrix into generalized
blocks of size (Mmxp)x(nxq), each partitioned into (pxq) blocks of the same size (Mxn), going to
separate process. In the case of generalized heterogeneous block-cyclic distribution, the blocks

are not of the same size, but their sizes (m; xn; ;) depend on the performance of the processors.

The generalized blocks are identically partitioned into pxg unequa rectangles, each being
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assigned to a different process. The area of each rectangle should be proportional to the speed of
the processor that stores the rectangle. Figure 4.15(a) shows homogeneous block-cyclic
distribution of a matrix of sizel8x18 over a 3x3 processor grid and Figure 4.15(b) shows
heterogeneous two-dimensional block cyclic distribution of a matrix of size 18x18 elements
with 6x6 generalized blocks over a 3x 3 process grid. Note that the elements of the matrix are
usually small rectangular blocks and most commonly square blocks of size sxs, where optimal
values of s depend on the memory hierarchy and on the communication-to-computation ratio of
the target computer. The interfaces provided in this section for partitioning a matrix are
applicable even if an element of the matrix is arectangular block of numbers or just a number.

In the figures presented in this section, the types of distributions should not be read as 1D data
distributions and 2D data distributions. Instead they should be read as data distributions on a
linear array of processors (1D processor arrangements) and data distributions on 2D processor
grid arrangements.

The types of distribution of a matrix over alinear processor array are:

1) Horizontal or Vertical slices (shown in Figures 4.16(a) and 4.16(b) respectively),
2) Naive row or column contiguous placement of sub-blocks (shown in Figure 4.16(c)), and
3) General rectangular distribution where the partition assigned to each processor is a
rectangle (shown in Figures 4.16(e) to 4.16(f)).
For distributions (1) and (2), partitioning interfaces of sets can be used.
The general rectangular distribution is characterized by
* Optimization of some additional parameter such as minimization of the sum of half-
perimeters of rectangles etc.

* Restrictions on the shape.
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0 Row-based.

0 Column-based.
Figures 4.16(d) and 4.16(e) show generalized row-based and column-based rectangular
distributions of a generalized block over alinear array of eight processors. Figure 4.16(f) shows

ageneral rectangular distribution of a generalized block over alinear array of eight processors.
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Figure 4.16: Types of distribution of a matrix over a linear processor array. (a) Horizontal siced distribution of a
generalized block over a linear array of 3 processors, (b) Vertical diced distribution of a generalized block over a
linear array of 3 processors, (c) Row-contiguous distribution of the elements of a generalized block over a linear
array of 3 processors, (d) Generalized row-based distribution of a generalized block over a linear array of 8
processors, (e) Generalized column-based distribution of a generalized block over alinear array of 8 processors, and

(f) General rectangular distribution of a generalized block over 9 processors.
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Figure 4.17: Types of distribution of a matrix over a two-dimensional grid of processors. (a) Cartesian distribution
of ageneralized block over a 3% 3 processor grid, (b) Row-based distribution of a generalized block over a 3X 3

processor grid, and (c) Column-based distribution of a generalized block over a 3% 3 processor grid.

The row-based and column-based distributions over a linear processor array as shown in
Figures 4.16(d) and 4.16(e) respectively are based on [BBR+01]. They present a column-based
partitioning scheme where rectangles are tiled (the area of the rectangle assigned to a processor
is proportiona to the speed of the processor) in columns. The partitioning algorithm tries to
minimize the communication volume, which is defined as the sum of the half-perimeters of the
rectangles. The general rectangular distribution shown in Figure 4.16(f) is based on [CQ93,
KRW96]. [CQ93] use an orthogona recursive bisection to perform the matrix decomposition.
[KRW96] devise four matrix partitioning algorithms over alinear array of processors that try to
minimize the communication volume while simultaneously balancing the computational load
among the processors.

The data distributions over a linear array of processors presented here solve an optimization
problem, which is to minimize the communication volume while simultaneously load-balancing
the computations. Hence they have wide applicability. They could be used, for example, in an

application employing a finite-difference scheme where the heterogeneous processors
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Model of Linear array of processors 2D processor grid

Parallel General Row based/Column General Cartesian Row
Computation based Rectangular based/Column
Rectangular based

Speeds are
functions of the
size of the
problem and no
limits exist on No known results No known results No known No known results
number of results
elements that
each processor
can hold.
Speeds are
single constant
numbers and
an upper bound
existson No known results No known results No known No known results
number of results
elements that
each processor
can hold.
Speeds are Complexity Complexity Complexity Complexity
single constant
numbers and F|: ) . F= malx
imi i Polynomial. NP-complete.
gg lr:lTr;:t? e?xcl)? [BByR +01] [BBL +Og] NP-compl ete. Approximate O(2). [KLO1]
elements that [BBR+00] OQ).

each processor
can hold.

2. = Communications between the processors cannot be performed in parallel
max = Communications between the processors performed in parallel

Table 4.6: Special cases of partitioning of a dense matrix.

communicate boundary elements at each step. The communication scheme in such an application
could be anything instead of just top-bottom, left-right, top-bottom-left-right, or nearest
neighbor. These distributions solve exactly the same optimization problem that is associated with
such communication schemes.

The most general problem of partitioning a matrix over a linear processor array can be
formulated as follows: Given a matrix of size r xc with restrictions on the shape of partitions

and a functional F computing some numerical characteristic of each partition and given an
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ordered set of p processors whose speeds are functions of the size of the problem
S = fo(X¥), s, = f,(X),-., 8,4 =, (X), with an upper bound b; (i =01,---, p—1) on the number
of elements stored by each processor, partition the matrix into p digoint rectangles such that

» Theareaof each rectangleis proportional to the speed of the processor owning it.

* The number of elements of the matrix assigned to each processor does not exceed the

upper bound on the number of elements that can be stored by it.

* The partition minimizes (maximizes) the functiona F.

* The partition satisfies the shape restrictions.
Thisis an open problem for research. Table 4.6 lists the specific cases of this problem.

The shape restrictions for data distributions over a linear processor array are: for row-based
distribution as shown in Figure 4.16(d), in each row, the number of left neighbors and the
number of right neighbors for each processor must be the same. For column-based distribution as
shown in Figure 4.16(¢€), in each column, the number of top neighbors and the number of bottom
neighbors for each processor must be the same.

The types of distribution of a matrix over atwo-dimensional grid of processors are:

1) Cartesian,
2) Column-based, and
3) Row-based.

Figure 4.17(a) shows the Cartesian distribution of a generalized block over a 3x3 processor

grid. Figure 4.17(b) shows the row-based distribution of a generalized block over a 3x3

processor grid. Figure 4.17(c) shows the column-based distribution of a generalized block over a

3% 3 processor grid.
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The most general problem of partitioning a matrix over a 2D processor grid is the same as the

most general problem of partitioning a matrix over alinear processor array except that the matrix

is partitioned into pxq rectangles where p is the number of processors along the row of the grid

and q is the number of processes along the column of the grid.

Thisis an open problem for research. Table 4.6 lists the specific cases of this problem.

The shape restrictions for data distributions on 2D processor arrangements are

If there is apxq grid of processors where p is the number of processors along the row of
the grid and q is the number of processes along the column of the grid, the number of
rectangles in each row must be p and in each column must be gq. For example if p=3, q=3,
the number of rectangles in the each row is 3 and the number of rectangles in each column
is 3. Also the processors are arranged in a row-major order with their row and column
coordinates as follows: (0,0), (0,1), (0,2) in first row, (1,0), (1,1), (1,2) in second row, and
(2,0), (2,2), (2,2) in third row. If p=3, q =4, the number of rectangles in the each row is 4
and the number of rectangles in each column is 3. The processors are arranged in a row-
major order with their row and column coordinates as follows: (0,0), (0,1), (0,2), (0,3) in
first row, (1,0), (1,1), (1,2), (1,3) in second row, (2,0), (2,1), (2,2), (2,3) in third row, and
(3,0), (3,1), (3,2), (3,3) in fourth row.

For Cartesian distribution as shown in Figure 4.17(a), in each row, the number of left
neighbors and the number of right neighbors for each processor must be the same and in
each column, the number of top neighbors and the number of bottom neighbors for each
processor must be the same. For row-based distribution as shown in Figure 4.17(b), in each
row, the number of left neighbors and the number of right neighbors for each processor

must be the same. For column-based distribution as shown in Figure 4.17(c), in each
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column, the number of top neighbors and the number of bottom neighbors for each
processor must be the same.
Based on this classification, we suggest an API that allows the application programmers to
partition a generalized block into p digoint rectangles in the case of 1D processor arrangements
and pxq digoint rectangles in the case of 2D processor grid arrangements. The first operation,

whose interface is shown below, is used for 2D processor grid arrangements.

int Partition_matrix_2d (
int p, int g, int pn, const double *speeds,
const int *psizes, const int *mimts, int m int n,
int type_of _distribution, int *w, int *h,
int *trow, int *tcol, int *ci, int *cj )

The parameter p is the number of processors along the row of the processor grid. The
parameter g isthe number of processors along the column of the processor grid.

Parameters speeds and psi zes specify speeds of processors for pn different problem sizes.
These parameters are 1D arrays of size pxqgxpn logically representing arrays of shape
[pl[q]l[pn]. The speed of the (i, ) -th processor for k-th problem size is given by the
[1][]]][K]-th element of speeds with the problem size itself given by the[1 ][ ] [ K] -th
element of psi zes. Parameter nl i m t s gives the maximum number of elements that each
processor can hold.

The parameters mand n are the sizes of the generalized block along the row and the column.

The input parameter type_of distribution specifies if the distribution is
CARTESI AN, ROW BASED, and COLUWMN- BASED.

Output parameter w gives the widths of the rectangles of the generalized block assigned to

different processors. This parameter is an array of size pxq.
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Figure 4.18: Different combinations of rectangles in a generalized block. (a) No sxs block of rectangle Rs; is a
horizontal neighbor of rectangle R,3; therefore, h[3][1][2][3] = 0. (b) All sxs blocks of rectangle Rs; are horizontal
neighbors of rectangle Ras; h[3][1][3][3] = 3. (c) Neighbors of rectangle Ry, in rectangle Ry make up a 3X 6
rectangle area (shaded dark grey); h[2][1][2][2] = 3. (d) Neighbors of rectangle Ras; in rectangle Ry, make up the last

row of thisrectangle (shaded dark grey); h[2][1][3][3] = 1.
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Output parameter h gives the heights of rectangles of the generalized block assigned to
different processors. This parameter is an array of size pxgxpxq logicaly representing array of
shape [ p] [q] [ p] [ q] . Parameter h specifies the heights of rectangle areas of a generalized
block of matrix A, which are horizontally communicated between different pairs of abstract
processors. Let Ry and Rg. be the rectangles of a generalized block of matrix A assigned to
processors P,y and Pk, respectively. Then, h[ 1 ][ J] [ K] [ L] gives the height of the rectangle
area of R;3, which is required by processor Py, to perform its computations. All heights are
measured in sxs blocks. Figure 4.18 illustrates possible combinations of rectangles R; and Rq«.
in ageneralised block. Let us call an sxs block of R; ahorizontal neighbour of Ry, if the row of
sxs blocks that contains this sxs block will aso contain an sxs block of Rk.. Then, the
rectangle area of R;, which is required by processor Pk, to perform its computations, comprises
al horizontal neighbours of R¢.. The macro H(p, q, I, J, K, L) gives the height
h{1TTITTKI[L].

Figure 4.18(a) shows the situation when rectangles R; and Rx,. have no horizontal neighbours.
Correspondingly, h[ 1] [ J] [ K] [ L] will be zero. Figure 4.18(b) shows the situation when all
sxs blocks of R; are horizontal neighbours of Ry, . Inthat case, bothh[ I ][ J] [ K] [ L] will be
equal to the height of Ry;. Figures 4.18(c) and 4.18(d) shows the situation when only some of
sxs blocks of R are horizontal neighbours of Rg.. Inthiscase, h[1][J][ K] [ L] will be
equal to the height of the rectangle subarea of R; comprising the horizontal neighbours of Rk,.

Note that h[ 1][J] [ K] [L] specifies the height of Ry, and h[ 1 ][ J] [ K] [ L] will be dways

equal toh[ 1 T[J][KI[L].
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Output parameter t r ow gives the top leftmost point of the rectangles of the generalized block
assigned to different processors from the first row of the generalized block. This parameter is an
array of size pxq.

Output parameter t col gives the top leftmost point of the rectangles of the generalized block
assigned to different processors from the first column of the generalized block. This parameter is
an array of size pxq.

Output parameters ci, and cj are each an array of size nkn. The coordinates of the
processor in its processor grid to which the matrix element at row i and column j of the
generalized block isassigned isgivenby ci [ i xn+j ] ,and cj [i xn+j ] respectively. If these
parameters are set to NULL, then they are not evaluated.

The second set of operations, whose interfaces are shown below, is used for distribution of a
matrix over a 1D processor grid. These set of operations allow the application programmers to

formulate heuristic solutions for their optimization problems.

t ypedef double (*Get | ower bound) (
int p, const double *speeds, int m int n);
t ypedef double (*DP_function)(
int rowsorcolums, int rectangles, int p,
const doubl e *speeds, const double **previ ous_val ues,
int *r);
t ypedef double (*Iterative_function)(
int p, const int *w, const int *h,
const int *trow, const int *tcol);
t ypedef double (*Refining_function)(
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int m int n,
int *w, int *h, int *trow, int *tcol);
int Partition_matrix_1d_dp(
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int m int n,
Get _| ower _bound | b, DP_function dpf,
int type_of _distribution,
int *w, int *h, int *trow, int *tcol, int *c)
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int Partition_matrix_1d iterative(
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int m int n,
CGet | ower _bound I b, Iterative function cf,
int *w, int *h, int *trow, int *tcol, int *c)
int Partition_matrix_1d_refining(
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int m int n,
Get _| ower _bound I b, Refining_function inpf,
int *w, int *h, int *trow, int *tcol, int *c)

The parameter p is the number of number of digjoint rectangles the matrix is partitioned into.
Parameters speeds and psi zes specify speeds of processors for pn different problem sizes.
These parameters are 1D arrays of size pxpn logicaly representing 2D arrays of shape
[ p] [ pn] . The speed of the i -th processor for j -th problem sizeisgiven by the[i ][] ] -th
element of speeds with the problem size itself given by the[i ][ ] -th element of psi zes.
Parameter m i m t s gives the maximum number of elements that each processor can hold.

The parameters mand n are the sizes of the generalized block along the row and the column.

Output parameter w gives the widths of the rectangles of the generalized block assigned to
different processors. This parameter is an array of size p. Output parameter h gives the heights
of rectangles of the generalized block assigned to different processors. This parameter is an array
of size pxp. Output parameter t r ow gives the top leftmost point of the rectangles of the
generalized block assigned to different processors from the first row of the generalized block.
This parameter is an array of size p. Output parameter t col gives the top leftmost point of the
rectangles of the generalized block assigned to different processors from the first column of the

generalized block. This parameter is an array of sizep.
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Figure 4.19: The parameter w gives the width of the rectangle of the generalized block assigned to different
processors. The parameter h gives the height of rectangle of the generalized block assigned to different processors.
The parameter t r ow gives the top leftmost point of the rectangle of the generalized block assigned to different
processors from the first row of the generalized block. The parameter t col gives the top leftmost point of the

rectangle of the generalized block assigned to different processors from the first column of the generalized block.

Output parameter ¢ is an array of size mxn. The coordinates of the processor in its processor
array to which the matrix element at row i and column j of the generalized block is assigned is
givenby c[i xn+j ] . If thisparameter is set to NULL, then the parameter is ignored.

The meaning of these parametersis shown in the Figure 4.19.

For general rectangular distribution over alinear array of processors, there may be a number of
optimization problems used to partition a matrix some of which are:

» Given p processors with different speeds, how to alocate data so that the length of the
largest communication is optimized. In terms of tiling, how to tile the unit square into

nonoverlapping rectangles of prescribed area s,,s,,---,S,., whose sum is 1 so that the

p-1

largest perimeter is minimized.
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* Given an array nxn of nonnegative numbers and a positive integer p, find a partition of
the array into p nonoverlapping rectangular arrays such that the maximum weight of any
rectangle in the partition is minimized (the weight of the rectangle is the sum of its
elements).

For the  operation Partition_matrix_1d_dp, the  input parameter
type_of distribution specifiesif the distribution is RO BASED or COLUVN- BASED.
This operation alows the application programmers to formulate their optimization problem
based on the dynamic programming paradigm. Dynamic programming views a problem as a set
of interdependent subproblems. It solves subproblems and uses the results to solve larger
subproblems until the entire problem is solved. The solution to the subproblem is expressed as a
function of solutions to one or more subproblems at preceding levels. Application programmers
provide a composition function dpf , whose nature depends on the problem. The function dpf is
iteratively built by incrementing the value of parameters r owsor col utmms from 0 to p and
rectangl es from 0 to p. The aim is to find the optima number of rows or columns and
fitting O to p rectangular areas in each of these rows or columns such that the objective of the
optimization problem is satisfied. Consider a step of the iteration where number of columnsis 2
and the number of rectangles to fit is 3, then the following arrangements are tried: one rectangle
in the first column, two rectangles in the second column and two rectangles in the first column,
one rectangle in the second column. The arrangement that results in the minimum value of dpf
is returned in the output parameter r. The value of this parameter gives the total number of
rectangles in preceding columns, that is, the solution to the subproblem at preceding level. This
option is mainly used for generalized row-based and column-based partitioning of a matrix

shown in Figure 4.16(d) and Figure 4.16(e) respectively. One of the examples where this option
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can be used for obtaining an optimal column-based partitioning of the matrix is the column-
based heuristic approach proposed by Beaumont et al [BBRO1].

The operations Partition matrix 1d iterative and
Partition_matrix_1d_refini ng must be used when the type of distribution is general
rectangular as shown in Figure 4.16(f).

In the case of operation Partition matrix _1d iterative, the application
programmers are allowed to provide a cost function cf that tests the optimality of a partition
from afinite set of partitions. The initial partition in this finite set of partitions is obtained using
a problem-specific strategy. The cost function cf is called iteratively for each of the partitionsin
the subset of partitions. The return value of this function gives an optimality value. At each step
of the iteration, the optimality value is compared to the lower bound of the optimal solution to
the optimization problem. Application programmers specify a function | b, which is used to
calculate the lower bound of their optimization problem. The iteration stops when the function
returns an optimality value less than or equal to the lower bound or a negative return value
indicating that the partitioning cannot be improved and that the current partition is optimal.

In the case of operation Partition_matrix_1d refining, the application
programmers are allowed to provide a refinement function r f that refines an old partition giving
a new better partition. A negative return value of this function suggests that the old partition
cannot be refined further. This function is iteratively called. The partition for the first call of this
refining function is obtained using a problem-specific strategy. Application programmers specify
a function | b, which is used to calculate the lower bound of their optimization problem. The
iteration stops when the refinement function r f returns an optimality value less than or equal to

the lower bound indicating that the current partition is optimal.
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Application programmers can use a mix of these operations to obtain an optimal partitioning

of

the matrix. For example, application programmers can cal the operation

Partition_matrix_1d dp to obtain an initial partition, which can be input to the

operationPartition_matrix_1d_refi ni ng for further refinement.

HMPI provides additional helper functions.

Get _matri x_processor to obtain the coordinates (i,j) of the processor owning the
meatrix element at row r and column c.

Get _ny_wi dth to obtan the width of the rectangle owned by the processor with
coordinates (i} ).

CGet _ny_hei ght to obtain the height of the rectangle owned by the processor with

coordinates (i} ).

The following helper functions are useful for dense matrix factorizations on HNOCs such as

LU factorization, QR decomposition, and Cholesky factorization.

CGet _di agonal to obtain the number of the diagonal elements owned by the processor
with coordinates (i,j).

Get _ny_el enents to obtain the number of elements owned by the processor with
coordinates (i,j) in the upper or lower half of the matrix including the diagonal elements.
CGet _ny_kk el enent s to obtain the number of elements owned by the processor with
coordinates (i,j) in the upper or lower half of the matrix starting from (k,k) including the

diagonal elements.

HMPI also provides interfaces for partitioning multidimensional arrangements of numbers.
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4.5 Partitioning Problemsfor Graphs

A graph denoted G = (V, E), consists of a nonempty set V of vertices (or nodes) and a set E of

edges (or arcs) such that each edge corresponds to a unique ordered pair of distinct vertices {u,

v} and no more than one edge correspondsto { u, v}. The sets V and E are assumed to be finite.
There are five main criteria used for partitioning a graph:

a) The number of vertices in each partition should be proportional to the speed of the
processor owning that partition.

b) The sum of weights of the verticesin each partition should be proportional to the speed of
the processor owning that partition.

c) Set of digoint partitions satisfying criterion (a) and the edgecut should be minimal.
Edgecut is defined as the total weight of the edges in the graph whose incident vertices
belong to different partition.

d) Set of digoint partitions satisfying criterion (b) and the edgecut should be minimal.

The partitioning operations on sets can be used to partition a graph such that either of criterion
(@) or (b) issatisfied.

The most general problem of partitioning a graph can be formulated as follows: Given a graph
G consisting of n vertices {0---,n—-1 with weights v; (i=01---,n—-1) and m edges
{03,---,m-1 with weights e; (i =0,1,---,m—1)and given a linear array of p processors whose

speeds are functions of the size of the problem s; = f,(x),s, = f,(X),...,s,, = f,;(X) and there

is an upper bound b; (i =01,---, p—1) on the number of vertices that each processor can hold,
partition the graph into p digoint partitions such that
* The sum of weights of the vertices in each partition is proportiona to the speed of the

processor owning that partition.
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* The number of elements assigned to each processor does not exceed the upper bound on
the number of elements stored by it.
* Theedgecut isminimal.
This is an open problem for research. At the same time, there are a number of important specia
cases of these problems with known efficient solutions. The special cases are obtained by
applying one or more of the following simplifying assumptions:
* All vertices in the graph have the same weight. This assumption eliminates n additional
parameters of the problem.
* All edges in the graph have the same weight. This assumption eliminates m additional
parameters of the problem.
» The speed of each processor is a constant function of the problem size.
* There are no limits on the maximal number of vertices assigned to a processor.
One example of a special partitioning problem for agraph is:
* Given: (1) A graph G of n vertices and m edges {0J,:--,m-1} with weights e;
(i=0---,m-1), and (2) A well-ordered set of p processors whose speeds are represented

by single constant numbers, s;,s,,...,S,,

* Partition the graph into p digoint partitions such that: (1) The number of vertices in each
partition is proportional to the speed of the processor owning that partition, and (2) The
edgecut is minimal.

This is an open problem for research. Kumar, Das and Biswas [KDB02] employ a multilevel
heterogeneous partitioner, called MiniMax, developed for distributed heterogeneous systems that
differs from existing partitioners in that it alows full heterogeneity in both the system and

workload characteristics. In their model, the heterogeneous system consists of processors with
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Model of Parallel Edgecut should be minimal Edgecut should be minimal
Computation

Weightsof edges| Weights of Weights of the | Weights of the
arethe same edgesare verticesarethe | verticesare
different same different

Speeds are
functions of the
size of the problem
and no limitsexist | No known results No known No known No known
on number of results results results
elements that each
processor can hold.
Speeds are single
constant numbers
and an upper
bound exists on No known results No known No known No known
number of results results results
elements that each
processor can hold.
Speeds are single
constant numbers
and no limits exist
on number of No known results No known No known No known
elements that each results results results
processor can hold.

Table 4.7: Special cases of partitioning of a Graph.

varying processing power and an underlying non-uniform communication network. Their
partitioning algorithm generates and maps partitions onto a heterogeneous agorithm with the
objective of minimizing the maximum execution time of the parallel application.

Table 4.7 summarizes specific partitioning problems for a graph and its current state to the
best knowledge of the authors.

The basic approach to dealing with graph partitioning is to construct an initia partition of the
vertices according to some problem-specific strategy such as given by criterion (a) or (b) and

such that avertex and as far as possible all its neighbors belong to a same partition. Then the
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Figure 4.20: (a) A sample graph, and (b) The adjacency structure of the graph shown in (a). Adjacency structure for
vertex O starts at 0 and the number of adjacent vertices are 2 given by xadj[1] — xadj[0]. The adjacent vertices of
vertex 0 are 1 and 2 given by adjacency[0] and adjacency[1]. Similarly adjacency structure for vertex 1 starts at 2
and the number of adjacent vertices are 2 given by xadj[2] — xadj[1]. The adjacent vertices are 0 and 3 given by

adjacency[2] and adjacency[3].

vertices are swept one by one. A vertex is retained in the same partition if more of its neighbors
given by its adjacency list are in the same partition. Otherwise the vertex is migrated to other
partitions such that the edgecut is decreased. It is recommended that adjacency structure of a
graph should have a specific structure, that is, the first adjacency list should correspond to vertex
0, the second adjacency list should correspond to the first neighbor of vertex 0 and so on. Also it
is recommended that the numbering of vertices should follow a specific order. That is supposing
the starting vertex u has a neighboring vertex v and vertex v has two neighbors, which are
vertices wi and w,. Then vertex u should be numbered O followed by 1 for its first and only
neighbor v. The neighbors of v, w; and w,, get the numbers 2 and 3 respectively. This is
illustrated in Figure 4.20(b) showing the adjacency structure for a sample graph shown in Figure
4.20(a).

Based on this classification, we suggest an API that the application programmers can use to

partition agraph into p digoint partitions.
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int Partition_graph (
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int n, int m
const int *vwgt, const int *xadj,
const int *adjacency, const int *adjwgt,
int nopts, const int *options,
int *vp, int *edgecut)

Parameter p is the number of partitions of the graph. Parameters speeds and psi zes
specify speeds of processors for pn different problem sizes. These parameters are 1D arrays of
size pxpn logically representing 2D arrays of shape|[ p] [ pn] . The speed of thei -th processor
for j -th problem size is given by the [i ][] ] -th element of speeds with the problem size
itself given by the[i ][] ] -th element of psi zes. Parameter m i m t s gives the maximum
number of elements that each processor can hold.

The parameters n and m are the number of vertices and edges in the graph. The parameters
vwgt and adj wgt are the weights of vertices and edges of the graph. In the case in which the
graph is unweighted (i.e., al vertices and/or edges have the same weight), then either or both of
the arrays vwgt and adj wgt can be set to NULL. The parameters vwgt is of size n. The
parameter adj wgt isof size 2mbecause every edgeis listed twice (i.e., as (v, u) and (u, v)).

The parameters xadj and adj acency specify the adjacency structure of the graph
represented by the compressed storage format (CSR). The adjacency structure of the graph is
stored as follows. The adjacency list of vertex i is stored in adj acency starting at index
xadj [i] andending at but not including xadj [ i +1] . The adjacency lists for each vertex are
stored consecutively in the array adj acency. Figure 4.20(b) shows the adjacency structure for
asample graph shown in Figure 4.20(a).

If the parameter vwgt isset to NULL and the processor speeds speeds are set to NULL, then

the graph is partitioned into p digoint partitions such that criterion (e) is satisfied. If the
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Figure 4.21: (a) A sample bipartite graph showing dependencies between black nodes and white nodes, and (b) The

adjacency structure of the graph shown in (a).

parameter vwgt is set to NULL and the processor speeds speeds are not set to NULL, then the
graph is partitioned into p digoint partitions such that criterion (c) is satisfied. If the parameter
vwgt isnot set to NULL and the processor speeds speeds are not set to NULL, then the graph
is partitioned into p digoint partitions such that criterion (d) is satisfied.

The parameter opt i ons is an array of size nopt s containing the options for the various
phases of the partitioning algorithms employed in partitioning the graph. These options alow
integration of third party implementations, which provide their own partitioning schemes. For
example, the partitioning schemes such as METIS [KK95], and Chaco [HL94] employ multilevel
strategies consisting of various phases and heuristics are employed for every phase.

The parameter vp is an array of size n containing the partitions to which the vertices are
assigned. Specificaly, vp[i] contains the partition number in which vertex i belongs to. The

parameter edgecut contains the number of edges that are cut by the partitioning.
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There are other types of graphs, whose partitionings are popularly used to solve paradlel

problems in scientific and engineering domains such as the bipartite graph [HKO0O0] and

hypergraph [CA96, PCA+96].

A bipartite graph G = (R, C, E) is a special type of graph in which the vertices are divided

into two digoint subsets, R and C and E [0 R x C. So, no edge connects vertices in the same

subset; instead al the edges cross between R and C.

The main criteria used for partitioning a bipartite graph are outlined below:

a)

b)

d)

f)

The number of vertices in each partition should be proportional to the speed of the
processor owning that partition.

Each digoint subset is partitioned such that the number of vertices in each partition
should be proportional to the speed of the processor owning that partition.

The sum of weights of the vertices in each partition should be proportional to the speed of
the processor owning that partition.

Each digoint subset is partitioned such that the sum of weights of the vertices in each
partition should be proportional to the speed of the processor owning that partition.

Set of digoint partitions satisfying criterion (&) and the edgecut should be minimal.
Edgecut is defined as the total number of edges in the graph whose incident vertices
belong to different partition.

Set of digoint partitions satisfying criterion (b) and the edgecut should be minimal.
Edgecut is defined as the total number of edges in the graph whose incident vertices

belong to different partition.
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g) Set of digoint partitions satisfying criterion (c) and the edgecut should be minimal.
Edgecut is defined as the total weight of the edges in the graph whose incident vertices
belong to different partition.

h) Set of digoint partitions satisfying criterion (d) and the edgecut should be minimal.
Edgecut is defined as the total weight of the edges in the graph whose incident vertices
belong to different partition.

The partitioning operations on sets can be used to partition a bipartite graph such that either of
criterion (a), (b), (c) and (d) is satisfied.
Application programmers can use the operation, whose interface is shown below, to partition a
bipartite graph into p digoint partitions.
int Partition_bipartite_graph (
int p, int pn, const double *speeds,
const int *psizes, const int *mimts,
int n, int m const int *vtype, const int *vwgt,
const int *xadj, const int *adjacency,
const int *adjwgt, int type_of _partitioning,
int nopts, const int *options,
int *vp, int *edgecut)
The meaning of the parameters p, pn, speeds, psi zes, M i m ts, n, mvwgt, adj wgt

xadj, adjacency is identicd to meaning of the corresponding parameters of
Partition_graph.
The parameter vt ype specifies the type of vertex. The only values allowed are 0 and 1

representing the two digoint subsets the bipartite graph is composed of. Figure 4.21(b) shows the

adjacency structure for a sample bipartite graph shown in Figure 4.21(a).
The parameter t ype_of _parti ti oni ng specifies whether the partitioning of subsets is

done separately or not. If the partitioning of subsets is to be done separately, then each subset is
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partitioned such that one of the criteria (a) or (b) is satisfied and edgecut is minimal. It can take
only one of the values PARTI TI ON_SUBSET and PARTI TI ON_OTHER.

The parameter opt i ons is an array of size nopt s containing the options for the various
phases of the partitioning algorithms employed in partitioning the graph. These options alow
integration of third party implementations, which provide their own partitioning schemes.

The parameter vp is an array of size of size n containing the partitions to which the vertices
are assigned. Specifically, vp[ i ] contains the partition number in which vertex i belongs to.
The parameter edgecut contains the number of edges that are cut by the partitioning.

A hypergraph, H = (V, N), consists of a set of vertices, V, and a set of hyperedges, N. Each
hyperedge comprises a subset of vertices. Let ¢; denote the cost of hyperedge n;. In a partition []
of hypergraph H, a hyperedge that has atleast one vertex in that partition is said to connect that
partition. Connectivity set A; of a hyperedge n; is defined as the set of partitions connected by n.
Connectivity A; = |A;| of a hyperedge n; denotes the number of partitions connected by n;. A
hyperedge n; is said to cut if it connects more than one partition, and uncut otherwise. The cut
and uncut partitions are referred to as external nets and internal nets, respectively. The set of

external nets of a partition [ is denoted as Ng. Two relevant cutsize definitions are:
@XM =2 & and  E) XM= oy 64D

The main criteria to partition the hypergraph H into P disjoint partitions include the main
criteria used to partition a normal graph except that instead of satisfying the criterion that the
edgecut should be minimal, the criterion that cutsize should be minimized is satisfied during the

partitioning.
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Figure4.22: Thehpt r and hi nd arraysthat are used to describe the hyperedges of the hypergraph.

Application programmers can use the operation, whose interface is shown below, to partition a
hypergraph into p digoint partitions.
int Partition_hypergraph (
int p, int pn, const double *speeds,
const int *psizes, const int *mimts,
int nv, int nedges, const int *vwgt, const int *hptr,
const int *hind, const int *hwgt,
int nopts, const int *options,
int *vp, int *edgecut)
The meaning of the parameters p, pn, speeds, psi zes, and M i m ts is identical to
meaning of the corresponding parametersof Parti ti on_gr aph.
The parameters nv and nedges are the number of vertices and number of hyperedges in the
hypergraph.
The parameters vwgt isan array of size nv that stores the weights of the vertices and hwgt is
an array of size nedges that stores the weights of hyperedges of the graph. If the verticesin the
hypergraph are unweighted, then vwgt can be NULL. If the hyperedges in the hypergraph are

unweighted, then hwgt can be NULL.

250



The Heterogeneous Data Partitioning Interface (HDPI)

The parameter hpt r isan array of size nedges+1 and is an index into hi nd that stores the
actual hyperedges. Each hyperedge stores the sequence of the vertices that it spans, in
consecutive locations in hi nd. Specifically, i -th hyperedge is stored starting at location
hind[ hptr[i]] wup to but not including hi nd[ hptr[i +1]]. Figure 4.22 illustrates the
format for a simple hypergraph.

The parameter opt i ons is an array of size nopt s containing the options for the various
phases of the partitioning algorithms employed in partitioning the graph. These options alow
integration of third party implementations, which provide their own partitioning schemes. For
example, the partitioning schemes such as hMETIS ([KAK+97], [KK98b]) employ multilevel
strategies consisting of various phases and heuristics are employed for every phase.

The parameter vp is an array of size of size n containing the partitions to which the vertices
are assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to.

The parameter edgecut contains the number of hyperedges that are cut by the partitioning.

4.6 Partitioning Problemsfor Trees

A treeisagraph such that there is a unique simple path between each pair of vertices. There are
five main criteriain partitioning atree into a set of digoint subtrees:
a) The number of elements in each subtree should be proportional to the speed of the
processor owning that subtree.
b) The sum of weights of elementsin each subtree should be proportional to the speed of the

processor owning that subtree.
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c) Set of digoint partitions satisfying criterion (a) and the edgecut should be minimal.
Edgecut is defined as the total weight of the edges in the tree whose incident vertices
belong to different subtrees.

d) Set of digoint partitions satisfying criterion (b) and the edgecut should be minimal.

€) The edgecut should be minimal.

The implicit restriction is that the tree should be partitioned into digoint subtrees such that one
of the above criteria is satisfied. The partitioning operations on graphs can be used to partition a
tree into digoint partitions when there is no restriction that all the digoint partitions have to be
subtrees. Additional restrictions that may be imposed are that the number of vertices in each
partition must be less than the maximum number of elements a processor can hold.

The partitioning operations on sets can be used to partition atreeinto p digoint partitions such
that either of criteria () or (b) is satisfied.

Application programmers can use the operation, whose interface is shown below, to partition a
tree into p digoint partitions.

int Partition_ tree (

int p, int pn, const double *speeds,

const int *psizes, const int *mimts,

int n, int nedges, const int *nwgt, const int *xadj,
const int *adjacency, const int *adjwgt,

int *vp, int *edgecut)

The meaning of the parameters p, pn, speeds, psi zes, and m i m ts is identical to
meaning of the corresponding parametersof Parti ti on_gr aph.

The parameters n and nedges are the number of vertices and edges in the tree. The

parameters nwgt is an array of size n that stores the weights of the vertices and adj wgt isan

array of size nedges that stores the weights of edges of the tree. If the vertices in the tree are
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unweighted, then nwgt can be NULL. If the edges in the tree are unweighted, then adj wgt can
be NULL.

The parametersxadj and adj acency specify the adjacency structure of the tree.

The parameter vp is an array of size of size n containing the partitions to which the vertices
are assigned. Specifically, vp[ i ] contains the partition number in which nodei belongsto. The
parameter edgecut contains the number of edges that are cut by the partitioning.

HMPI provides an additional operation, which allows the application programmer to formulate

the heuristic solutions for their optimization problems used to partition atree.
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4.7 Algorithms of Partitioning Sets

In this section, we present the algorithms of partitioning sets. In the figures we present for
illustration, we use the notion of problem size. Kumar et al. [KGG+94] define the problem size
as the number of basic computations in the best sequential algorithm to solve the problem on a
single processor. Because it is defined in terms of sequential time complexity, the problem sizeis
a function of the size of the input. For example, the problem size is O(n®) for nxn matrix
multiplication and for irregular applications such as EM3D [YWC+95, CDG+93] and N-body
simulation [BN97], the problem size is O(n), where n is the number of nodes in a bipartite graph
representing the dependencies between the nodes and number of bodies respectively.

However we do not use this computational complexity definition for problem size because it
does not influence the speed of the processor. We define the size of the problem to be the amount
of data stored and processed by the sequential agorithm. For example for matrix-matrix
multiplication of two dense nxn matrices, the size of the problem is equal to 3xn%

To demonstrate the efficiency of our data partitioning algorithms using the functional model,
we perform experiments using naive paralel agorithmsfor linear algebra kernel, namely, matrix
multiplication and LU factorization using striped partitioning of matrices on a local network of
heterogeneous computers. Our main am is not to show how matrices can be efficiently
multiplied or efficiently factorized but to explain in ssmple terms how the data partitioning
algorithms using the functional model can be used to optimally schedule arbitrary tasks on
networks of heterogeneous computers before moving on to solve the most advanced problem.
We aso view these algorithms as good representatives of a large class of data parallel
computational problems and a good testing platform before experimenting with more

challenging computational problems.
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4.7.1 Algorithmsfor Partitioning Setswithout Processor M emory Bounds
In this section, we solve the following problem of partitioning a set, which can be formulated as:

Given: (1) A set of n elements, and (2) A well-ordered set of p heterogeneous processors
whose speeds are functions of the size of the problem, s=fi(x), and (3) There is no upper bound
on the largest problem size that can be solved on each processor;

Partition the set into p digoint partitions such that:

*  XotXit...#Xp1=n, wWhere Xo,X1,....Xp-1 are the number of elements in partitions 0,1,...,p-1

respectively;
: X
e oK SAo =T yhere X0,X1,....Xp-1 @€ the number of elements assigned to the
S S S Sp1

processors 0,1,...,p-1 respectively and so,S;,...,Sp-1 are the speeds of the processors.

We provide an optimal solution to this problem of complexity O(pxlogzn).

One of the criteria to partitioning a set of n elements over p heterogeneous processors is that
the number of elements in each partition should be proportional to the speed of the processor
owning that partition. When the speed of the processor is represented by a single number, the
agorithm used to perform the partitioning is quite straightforward, of complexity O(p?)
[BBP+01]. The algorithm uses a naive implementation. The complexity can be reduced down to
O(pxlog,p) using ad hoc data structures [BBP+01].

This problem of partitioning a set becomes non-trivial when the speeds of the processors are
given as a function of the size of the problem. Consider a small network of two processors,
whose speeds as functions of problem size during the execution of the matrix-matrix
multiplication are shown in Figure 4.23. If we use the single number model, we have to choose a

point and use the absolute speeds of the processors at that point to partition the elements of the
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Figure 4.23: A small network of two processors whose speeds are shown against the size of the problem. The

Matrix-Matrix Multiplication used here uses a poor solver that does not use memory hierarchy efficiently.

set such that the number of elements is proportional to the speed of the processor. If we choose

the speeds(s,,.s,,) a points (x,s,) and(x,s,) to partition the elements of the set, the
distribution obtained will be unacceptable for the size of the problem at points (y, sm)
and(y, 511) where processors demonstrate different relative speeds compared to the relative
speeds at points (x,s,) and (x,s,,). If we choose the speeds (s,,s,) a points (y,s,)
and(y,s, ) to partition the elements of the set, the distribution obtained will be unacceptable for
the size of the problem at points (x,s,,) and (x,s,) where processors demonstrate different
relative speeds compared to the relative speeds at points (y,s,,) and(y,s, ). In some such cases,

the partitioning of the set obtained could be the worst possible distribution where the number of
elements per processor obtained could be inversely proportional to the speed of the processor. In
such cases, it is better to use an even distribution of equal number of elements per processor than

the distribution based on using such wrong points.
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Figure 4.24: Optimal solution showing the geometric proportionality of the number of elements to the speed of the
processor. s(x), S(X), $(x), and s4(x) are speeds of processors 1, 2, 3, and 4 respectively, which are functions of the

size of the problem.

The agorithms we propose are based on the following observation: If a distribution of the
elements of the set amongst the processors is obtained such that the number of elements is
proportional to the speed of the processor, then the points, whose coordinates are number of
elements and speed, lie on a straight line passing through the origin of the coordinate system and
intersecting the graphs of the processors with speed versus the size of the problem in terms of the
number of elements. Thisis shown by the geometric proportionality in Figure 4.24.

Our general approach to finding the optimal straight line can be summarized as follows:

1. We assume that the speed of each processor is represented by a continuous function of the

size of the problem. The shape of the graph should be such that there is only one intersection
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Figure 4.25: Typical shapes of the graphs representing the speed functions of the processors observed
experimentally. The graph represented by s,(X) is strictly a decreasing function of the size of the problem. The graph
represented by s,(x) isinitially an increasing function of the size of the problem followed by a decreasing function
of the size of the problem. The graph represented by s;(x) is strictly an increasing function of the size of the

problem.

point of the graph with any straight line passing through the origin. These assumptions on the
shapes of the graph are representative of the most genera shape of graphs observed for
applications experimentally. The experiments conducted by Lastovetsky and Twamley [LTO04]
justify these assumptions. Applications that utilize memory hierarchy efficiently and applications
that reference memory randomly deriving no benefits from caching produce speed functions that
are an increasing function of problem size before a maximum followed by a decreasing function
of problem size whereas applications that use inefficient memory reference patterns produce
speed functions that are strictly decreasing functions of problem size. Some of the sample shapes

of the graphs are shown in Figure 4.25.
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2. At each step, we have two lines both passing through the origin. The sum of the number of
elements at the intersection points of the first line with the graphs is less than the size of the
problem, and the sum of the number of elements at the intersection points of second line with the
graphsis greater than the size of the problem.

3. The region between these two lines is divided by a line passing through the origin into two
smaller regions, the upper region and the lower region. If the sum of the number of elements at
the intersection points of this line with the graphs is less than the size of the problem, the optimal
line lies in the lower region. If this sum is greater than the size of the problem, the optimal line
liesin the upper region.

4. In general, the exact optimal line intersects the graphs in points with non-integer sizes of
the problem. This line is only used to obtain an approximate integer-valued solution. Therefore,
the finding of any other straight line, which is close enough to the exact optimal one to lead to
the same approximate integer-valued solution, will be an equally satisfactory output of the
searching procedure. A simple stopping criterion for this iterative procedure can be the absence
of points of the graphs with integer sizes of the problem within the current region. Once the
stopping region is reached, the two lines limiting this region are input to the fine tuning
procedure, which determines the optimal line.

Note that it is the continuity and the shape of the graphs representing the speed of the
processors that make each step of this procedure possible. The continuity guarantees that any
straight line passing through the origin will have at least one intersection point with each of the
graphs, and the shape of the graph guarantees no more than one such an intersection point.

We now prove the uniqueness of the solution using mathematical induction starting by

illustrating with an example for p=3. We safely assume that for each processor, for al x>y,
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Figure 4.26: Uniqueness of the solution. The dashed line represents the optimal solution whereas the dotted line

represents a non-optimal solution.

where x and y are problem sizes, the execution times t, and t, to execute problems of sizes x and
y respectively are related by t; = t,. We also assume that the volume of computations involved in
the execution of a problem size is equal to the problem size. Consider a small network of three
processors, whose speeds as functions of problem size are shown in Figure 4.26. The graph
represented by si(x) is strictly a decreasing function of the size of the problem. The graph
represented by sy(x) isinitially an increasing function of the size of the problem followed by a
decreasing function of the size of the problem. The graph represented by s3(x) is strictly an
increasing function of the size of the problem. We show two solutions for a problem size n. The
non-optimal solution is given by (X11,X21,X31) such that X;;+X21+x31=n and the optimal solution is
given by (X1,0pt,X2,0pt:X3,0pt) SUCH that X1 optX2,0pttX3,0p=N. The time of execution for the optimal
solution topt is (X1,0pt/S1,0pt) or (X2,0pt/S2,0pt) or (X3,0pt/S3,0pt) because

(X1,0pt/S1,0pt) =(X2,00t/ S2,00t) =(X3,00t/S3,0pt). The time of execution of the non-optimal solution is
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mi’;\x Sy . Since X21>Xz,0pt, We can conclude that time of execution tx0f the problem size x»

= Sy
equal to X21/Sy is always greater than the time of execution given by the optimal solution toy i.€.,
t1>top. Thus it can be inferred that the time of execution of the application obtained using the
non-optimal solution is always greater than or equal to the time of execution of the application
using the optimal solution. We can easily prove the same for different shapes of the speed
functions.

Assuming this to be true for p=k processors, we have to prove the optimality for p=k+1
processors. For a given problem size n, let us assume the distribution given by our algorithm to
be  (X10pt:X2,0pts- - Xk+1,00t)  SUCh  that  (Xq,0pt/S1,0pt) =(X2,0pt/S2,0pt) = - - =(Xkc+1,0pt/Sk+1,0pt) =topt ~ @Nd
X1,0pttX2,0ptt .. FXk+1,00t=N Where toy is the time of execution of the algorithm by the optimal
solution. Now consider a distribution (X';,X2,..,X'k+1) such that X'1+X'o+...+X'k+1=n and X' # Xi opt
for al i=1,2,... k+1. If (X'1/S1)=(X'2/S2)=...=(X'k+1/Sk+1)=t'e, then it can be inferred that if t'e=top,
then X'i>Xiopt OF X'i<Xj ot for all i=1,2,...,k+1 in which case the equality X'1+X'>+...+X'k+1=n is
broken. If the proportionality (X'1/S1)=(X'2/S2)=...=(X'k+1/Sk+1) iS ignored but the equality
X'1tX'>+...+X'k+1=n is satisfied, then it can be easily seen that for atleast one processor |
(i=1,2,...,k+1), X'i>Xiopt, thus giving an execution time t;, which is greater than the execution
time given by our algorithm tqy. It is easy to extend this proof for cases where the volume of
computations performed by the processor is proportional to the problem size assigned to it.

Without loss of generality, in the figures we show the application of the algorithm only in the
regions where absol ute speed is a decreasing function of the size of the problem.

Let us estimate the cost of one step of this procedure. At each step we need to find the points of

intersection of p graphs y=s;(x), y=s(X), ..., Y=Sp(X), representing the absol ute speeds of the
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Figure 4.27: Determination of the slope of the line equal to half of the slopes of the initial and final lines.

processors, and the straight line y=cxx passing through the origin. In other words, at each step
we need to solve p eguations of the form cxx =s;(x), cxX =S(X), ..., CXX =S,(X). As we need the
same constant number of operations to solve each equation, the complexity of this part of one
step will be O(p). According to our stopping criterion, a test for convergence can be reduced to
testing p inequalities of the form I - u; <1, where |; and u; are the size coordinates of the
intersection points of the i-th graph with the lower and upper lines limiting the region
respectively (i=1,2,...,p). This testing is also of the complexity O(p). Therefore, the total
complexity of one step including the convergence test will still be O(p).

The ssimplest particular algorithm based on this approach bisects the region between the lines
by a line passing through the origin at a slope equal to half of the sum of the slopes of the two
lines as shown in Figure 4.27. These slopes are angles and not the tangent of the angles.
However in practical implementations of the algorithm, slopes that are tangents can be used
instead of angles for efficiency from computational point of view.

The use of bisection is shown in Figure 4.28. The first two lines drawn during step 1 are

linelandline2.Thenl i ne3 isdrawnwhose slopeis half of the opes of thelines!| i nel
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Figure 4.28: Use of bisection of the range to narrow down to the optimal solution satisfying the criterion that the

number of elements should be proportional to the speed of the processor. n is the size of the problem.

and | i ne2. Since the sum of the number of elements at the intersection points of this line with
the graphs is less than the size of the problem, bisect the lower half of the region by drawing
I i ned4 whose slope is half of the slopes of thelines| i ne3 and | i ne2. Since the sum of the
number of elements at the intersection points of this line with the graphs is greater than the size
of the problem, bisect the upper half of the region by drawing a line whose slope is half of the
slopes of thelines| i ne3 and | i ne4. Thisline turns out to be the optimally sloped line.

In most real-life situations, this algorithm will demonstrate a very good efficiency.
Obvioudy, the slope of the optimal line is a decreasing function of the size of the problem,

Bopt= BOopt(N). If eopt(n):O(n'k), where k=const, then the maximal number of stepsto arrive at the
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Figure 4.29: Fine tuning procedure chooses the final p points of intersection from the p integer points closest to the
non-integer points on line | and p integer points closest to the non-integer points on line u. There are no integers
between the lines| and u. The integers closest to the non-integer points on lines| and u are indicated by crossed dots

whereas integer pointslying on lines| and u are indicated by dark dots.

stopping criterion will be O(kxlog,n). Correspondingly, the complexity of the agorithm up till
this point will be O(pxlog,n).

Once we have reached the stopping criterion indicated by the absence of points of the graphs
with integer sizes of the problem within the region bounded by lines | and u, we perform
additional fine tuning to find the p integer points on the curves representing the speed functions
of the processors thus giving us a solution closest to the optimal non-integer solution. This is
illustrated in Figure 4.29. As can be seen from the figure, there are 2xp points, p integer points
(X1,1,X1.2,-..,X1,p), Some of which could be closest to the non-integer points on line | whereas the

rest of them lying on line | and similarly p integer points (Xy1,Xu,2,--..,Xu,p) Pertaining to line u.
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We have to choose an optimal set of p points from these 2xp points. The fine tuning procedure
consists of the following steps:

1. Wefind out the times of execution x;/s of the problem sizes at these 2xp points where X;
is the problem size assigned to the processor i and s is its speed exhibited at this problem
size. This step is of complexity O(p).

2. Wethen sort these 2xp execution times using Quicksort algorithm and choose the p best
execution times. The complexity of the Quicksort agorithm is O(2xpxlog,(2xp)) =
O(pxlog,p).

The total complexity of the fine tuning process is O(p)+O(pxlog,p) = O(pxlog,p). So the total
complexity of our partitioning algorithm is given by O(pxlog,n)+O(pxlog,p) = O(pxlog,(nxp)).
If n»p, the total complexity of our partitioning algorithm is given by O(pxlog,n).

At the same time, in some situations this algorithm may be quite expensive. For example, if
Bopt(N)=0O(e™), then the number of steps to arrive at the optima line will be O(n).
Correspondingly, the complexity of the agorithm will be O(pxn). After fine tuning, the
complexity of the algorithm will be O(pxn)+O(pxlog,p) = O(pxn).

We modify this algorithm to achieve reasonable performance in all cases, independent on
how the slope of the optimal line depends on the size of the problem. To introduce the modified
algorithm, let us re-formulate the problem of finding the optimal straight line as follows:

1. The space of solutions consists of al straight lines drawn through the origin and

intersecting the graphs of the processors so that the size coordinate of at least one intersection
point isinteger.

2. Wesearch for astraight line from this space closest to the optimal solution.
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Figure 4.30: Bisection of the space of solutionsin the modified algorithm.
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Figure 4.31: Modification of the algorithm shown in Figure 4.28 where the bisection results in efficient solution.

isthe size of the problem.
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At each step of the basic bisection algorithm, it is the region between two lines that is
reduced, not the space of solutions. Our modified algorithm tries to reduce the space of solutions
rather than the region where the solution lies as illustrated in Figure 4.30 and Figure 4.31. At
each step of the algorithm, we find a processor, whose graph s(x) is intersected by the maximal
number of lines from the current region of the space of solutions limited by the lower and upper
lines. Then we detect a line, which divides the region into two smaller regions such that each
region contains the same number of lines from the space of solutions intersecting this graph. To
do it, we just need to draw a line passing through the origin and the point ((v-w)/2, s((v-w)/2)),
where v and w are the size coordinates of the intersection points of this graph with the lower and
upper lines limiting the current region of the space of solutions.

This algorithm guarantees that after p such bisections the number of solutions in the region is
reduced at least by 50%. This means we need no more than pxlog,n steps to arrive at the sought
line. Correspondingly, the complexity of this algorithm will be O(pZXIogzn). After fine tuning,
the complexity of the algorithm will be O(p®xlog,n)+O(pxlog,p) = O(p*xlog,n). A schematic
proof of the algorithm is shown in Figure 4.32.

One can see that the modified bisection algorithm is not sensitive to the shape of the graphs of
the processors, dways demonstrating the same efficiency. The basic bisection algorithm is
sensitive to their shape. It demonstrates higher efficiency than the modified one in better cases
but much lower efficiency in worse cases.

An ideal bisection algorithm would be of the complexity O(pxlog,n) reducing at each step the
space of solutions by 50% and being insensitive to the shape of the graphs of the processors. The

design of such an algorithm is still a challenge.
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Figure 4.32: Schematic proof of the complexity of the modified algorithm. The total number of bisections is

pxlog,n. At each step of bisection, p intersection points are obtained giving atotal complexity of O(p?xlog,n).

In cases where the magnitude of the size of the problem is of order millions, it might be worth
relaxing the stopping criterion and not using the fine-tuning procedure. However it should be
noted that the complexity of the algorithm will remain the same as fine-tuning procedure does
not add to the overall complexity although the cost in practice is minimized by relaxing the
stopping criterion. If al the sub-optimal solutions are close to each other as to be
indistinguishable as in this case, we can provide an approximate solution that is sufficiently

accurate and at the same time economical in terms of practical cost. We intend to investigate this
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Figure 4.33: For most real-life situations, the optimal solution lies in the region with polynomia slopes. The

optimal solution lies between linel and line2 and they enclose aregion with all polynomial slopes.
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Figure 4.34; Using piecewise linear approximation to build speed functions for 3 processors. The circular points are
experimentally obtained whereas the square points are calculated using heuristics but not experimentally obtained.
The speed function for processor s;(x) is built from 3 experimentally obtained points (application run on this
processor uses memory hierarchy inefficiently) whereas the speed functions s,(X) and s;(x) (application run on these

processors use memory hierarchy efficiently) are built from 4 experimentally obtained points.

further in future research to provide an approximate solution that maintains a balance between

accuracy and economy.
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For alarge range of problem sizes, it is very likely that the optimal solutions lie in the region
with polynomia slopes as shown in Figure 4.33. In these cases, the ssimplest algorithm gives the
optimal solution with best efficiency. However for very large problem sizes where the shapes of
the speed functions tend to be horizontal, the modified algorithm gives the optimal solution with
best efficiency. However both the simplest and the modified algorithm can be combined to solve
data partitioning problemsin real-life applications efficiently.

One approach consists of the following steps:

1. Speed functions are built for the processors involved in the execution of the paralel
application using a set of few experimentally obtained points. One of the ways to build a
speed function for a processor is to use piecewise linear function approximation as shown
in Figure 4.34. Such approximation of the speed function is compliant with the
requirements of the functional model. Also such an approximation of the speed function
should give the speed of the processor for a problem size within acceptable limits of
deviation from the speed given by an ideal speed function or the speed functions built with
sets with more number of points. A practical procedure to build this piecewise linear
function approximation of speed function is explained in detail in Section 4.1.1.

2. Having built the speed functions for the processors, we use the simplest algorithm to bisect
the region between the lower and upper lines as shown in Figure 4.35. If the solution lies
in the upper half and the line bisecting the region between the lower and the upper lines
intersects the graphs of the processors at polynomial slopes, we use the simplest algorithm
to obtain the optimal solution. This is because we know that the speed functions have
polynomial slopes in the upper region and in such a case the simplest algorithm gives an

optimal solution with ideal complexity. In other cases such as when the solution liesin the
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Figure 4.35: Using a combination of simplest and modified algorithm to efficiently solve problems for real-life

applications.

upper half and if the line bisecting the region between the lower and the upper lines
intersects one or more graphs at horizontal slope or when the solution lies in the lower
half, we use modified algorithm to obtain the optimal solution. This is because in such a
case, we know that the modified algorithm is proven to demonstrate better efficiency than
the simplest algorithm.

In case of large problem sizes where the application slows down to a considerable extent due
to severe paging, it is advisable to use out-of-core algorithms [Tol99].These algorithms are
designed to achieve high performance when their data structures are stored on disks. When an
algorithm is to be executed out-of-core, the ordering of independent operations must be chosen
so as to minimize 1/0. In addition, the layout of data structures on disks must be chosen so that
I/0O is performed in large blocks, and so that all or most of the data that is read in one block-1/0

operation is used before it is evicted from main memory. Our data partitioning algorithms using
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Figure 4.36: Illustration of the regions where our data partitioning algorithms are better compared to out-of-core
algorithms and vice versa. C is the crossover point at which out-of-core algorithms start performing better than our

data partitioning algorithms.

the functional model of networks of heterogeneous computers gives better results when applied
to regions left of the crossover point C as shown in Figure 4.36. Out-of-core agorithms perform
better than our data partitioning algorithms in regions to the right of crossover point C. We aim

to research further to find this crossover point C with minimal experimental time.

4.7.1.1 Experimental Results

The experimental results are divided into two sections. The first section is devoted to building
the functiona model. We present the parallel applications and the network of heterogeneous

computers on which the applications are tested. For each application, we explain how to estimate
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M achine
Name

Architecture

cpu
MHz

Total
Main
Memory
(kBytes)

Available
Main
Memory
(kBytes)

Cache
(kBytes)

Paging
(MM)

Paging
(LU)

X1

Linux 2.4.20-
20.9 i686 Intel
Pentium I11

997

513304

363264

256

4500

6000

X2

Linux 2.4.18-3
1686 Intel
Pentium I11

997

254576

65692

256

4000

5000

X3

Linux 2.4.20-
20.9bigmem
Intel(R)
Xeon(TM)

2783

7933500

2221436

512

6400

11000

X4

Linux 2.4.20-
20.9bigmem
Intel(R)
Xeon(TM)

2783

7933500

3073628

512

6400

11000

X5

Linux 2.4.18-
10smp Inte(R)
XEON(TM)

1977

1030508

415904

512

6000

8500

X6

Linux 2.4.18-
10smp Inte(R)
XEON(TM)

1977

1030508

364120

512

6000

8500

X7

Linux 2.4.18-
10smp Inte(R)
XEON(TM)

1977

1030508

215752

512

6000

8000

X8

Linux 2.4.18-
10smp Inte(R)
XEON(TM)

1977

1030508

134400

512

5500

6500

X9

Linux 2.4.18-
10smp Inte(R)
XEON(TM)

1977

1030508

134400

512

5500

6500

X10

SunOS 58
sundu sparc
SUNW,Ultra
5 10

440

524288

409600

2048

4500

5000

X11

SunOS 5.8
sun4u sparc
SUNW,Ultra-
510

440

524288

418816

2048

4500

5000

X12

SunOS 5.8
sundu sparc
SUNW,Ultra-

5 10

440

524288

395264

2048

4500

5000

Table 4.8: Specifications of the twelve heterogeneous processors to demonstrate the efficiency of the functional

performance model. Paging is the size of the matrix beyond which point paging started happening.
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the processor speed. The procedure to build the speed functions of the processorsis explained in
section 4.1.1. For each application, we determine the problem sizes beyond which point paging
starts happening and we also give the cost of building the speed function of each processor. We
discuss the cost involved in finding the optimal solution using the partitioning algorithm and find
it negligible compared to the execution time of the applications which varies from minutes to
hours. In the second section, we present the experimental results obtained by running these

applications on the network of heterogeneous computers.

4.7.1.1.1 Applications

A small heterogeneous local network of 12 different Solaris and Linux workstations shown in
Table 4.8 is used in the experiments. The network is based on 100 Mbit Ethernet with a switch
enabling parallel communications between the computers. The amount of memory, which is the
difference between the total main memory and available main memory shown in the tables, is
used by the operating system processes and few other user application processes that perform
routine computations and communications such as email clients, browsers, text editors, audio
applications etc. These processes use a constant percentage of CPU.

There are two applications used to demonstrate the efficiency of our data partitioning
algorithms using the functional model.

M atrix-matrix multiplication

The first application shown in Figure 4.37(a) multiplies matrix A and matrix B, i.e,
implementing matrix operation C=AxB", where A, B, and C are dense square nxn matrices. The
application uses a parallel algorithm of matrix-matrix multiplication of two dense matrices using

horizontal striped partitioning [Las03, p.199], which is based on a heterogeneous 1D clone of the
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C=AxBT

(@)

(b)
Figure 4.37: (a) Matrix operation C=AxB" with matrices A, B, and C. Matrices A, B, and C are horizontally sliced.
The number of elements in each dice is proportional to the speed of the processor. (b) Serial matrix multiplication
A1xB; (B;=B") of two dense non-square matrices of sizes n;xn, and n,xn, respectively to estimate the absolute
speed of processor 1. The parameter n,is fixed during the application of the set partitioning algorithm and is equal to

n.

paralel algorithm used in ScaLAPACK [CDD+96] for matrix multiplication. The matrices A, B,
and C are partitioned into horizontal slices such that the total number of elementsin the dlice is
proportional to the speed of the processor.

For the application implementing matrix operation C=AxB', the absolute speed of a
processor must be obtained based on multiplication of two dense non-square matrices of sizes
nixn, and nyxn; respectively as illustrated in Figure 4.37(b). Even though there are two
parameters n; and n, representing the size of the problem, the parameter n, is fixed and is equal
to n during the application of the set partitioning agorithm. To apply the set partitioning
algorithm to determine the optimal data distribution for such an application, we need to extend it

for problem size represented by two parameters, n; and n. The speed function of a processor is
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geometrically a surface when represented by a function of two parameters s=f(n;,n,). However
since the parameter n; is fixed and is equal to n, the surface is reduced to a line s=f(n1,ny)=
s=f(n1,n). Thus the set partitioning problem for this application reduces to the algorithm that we
have presented in section 4.7.1. However additional computations are involved in obtaining
experimentally the geometric surfaces representing the speed functions of the processors and
then reducing them to lines.

Our agorithm of partitioning of a set can be extended easily to obtain optimal solutions for
problem spaces with two or more parameters representing the problem size. Each such problem
space is reduced to a problem formulated using a geometric approach and tackled by extensions
of our geometric set-partitioning algorithm. Consider for example the case of two parameters
representing the problem size where neither of them is fixed. In this case, the speed functions of
the processors are represented by surfaces. The optimal solution provided by a geometric
algorithm would divide these surfaces to produce a set of rectangular partitions equal in number
to the number of processors such that the number of elements in each partition (the area of the
partition) is proportional to the speed of the processor. We do not present the extensions of our
algorithm here for such multi-dimensional representations of the size of the problem. We think it
would complicate the presentation.

To calculate the absolute speed of the processor, we use a serial version of the pardlél
algorithm of matrix-matrix multiplication. The seria version performs matrix-matrix
multiplication of two dense square matrices. Though the absolute speed must be obtained by
multiplication of two dense non-square matrices, we observed that our seria version gives
amost the same speeds for multiplication of two dense sguare matrices if the number of

elements in a dense non-sgquare matrix is the same as the number of elementsin a dense square
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Size of Absolute Size of Absolute Size of Absolute Size of Absolute
matrix speed matrix speed matrix speed matrix speed
(M Flops) (M Flops) (M Flops) (MFlops)
256x256 67 1024x1024 67 2304x2304 67 4096x4096 59
128x512 68 512x2048 66 1152x4608 67 2048x8192 60
64x1024 67 256x4096 67 576x9216 69 1024x16384 59
32x2048 67 128x8192 67 288x18432 70 512x32768 60

Table 4.9: Results of serial matrix-matrix multiplication to demonstrate the effect of the number of elementsin a

matrix on the absol ute speed of the processor.

matrix. Thisisillustrated in Table 4.9 for one Linux computer X8 whose specification is shown
in Table 4.8. The behavior exhibited is the same for other computers. Thus speed functions of the
processors built using dense square matrices will be the same as those built using dense non-
square matrices.

L U Factorization

The second application is based on the parallel algorithm of LU factorization of a dense square
nxn matrix A, one step of which is shown in Figure 4.38(a). On a homogeneous p-processor
linear array, a CY CLIC(b) distribution of columns is used to distribute the matrix A where b is
the block size [CDO+96, BBP+01]. A cyclic distribution would assign block numbers
0,1,2,...,n-1 to processor 0,1,2,...,p-1,0,1,2...,p-1,0,..., respectively, for a p-processor linear
array (n»p), until al n blocks are assigned. At each step of the algorithm, the processor that
owns the pivot block factors it and broadcasts it to al the processors, which update their
remaining blocks. At the next step, the next block of b columns becomes the pivot panel, and the
computation progresses. Figure 4.38(a) shows how the column panel, L1; and Ly, and the row
panel, U;; and Uj,, are computed and how the trailing submatrix Ay, is updated. Because the
largest fraction of the work takes place in the update of Ay, therefore, to obtain maximum

parallelism all processors should participate in the updating. Since Ay, reducesin size asthe
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Figure 4.38: (a) One step of the LU factorization algorithm of a dense square matrix A of size nxn. (b) The matrix A is
partitioned using Variable Group Block distribution. This figure illustrates the distribution for n=576,b=32,p=3. The
distribution inside groups G,, G,, and G; are{2,1,1,0,0,0}, {2,1,0,0,0}, and { 2,2,1,1,0,0,0} . (b) Serial LU factorization of a
dense non-sgquare matrix is used to estimate the absolute speed of a processor. Since the Variable Group Block distribution
uses the functional model where absolute speed of the processor is represented by a function of a size of the problem, the
distribution uses absolute speeds at each step of the LU decomposition that are based on the size of the problem solved at
that step. As seen in thisfigure, at each of the steps for processor 0, the functional dependence of the absolute speed on the
problem size gives the speeds based on solving the problem size at that step, which is equa to the number of elementsin

matrices An,nl, An,nz, and An,n3 respectively. That is at each of the steps for processor 0, the absolute speeds are based on

serial LU decomposition of matrices An,nl, An,nz, and An,ns.
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computation progresses, a cyclic distribution is used to ensure that at any stage Ax is evenly
distributed over all processors, thus obtaining a balanced load.

Two load baancing algorithms, namely, Group Block algorithm [BTPOO, BMP0O4] and
Dynamic Programming agorithm [BBP+01] have been proposed to obtain optimal static
distribution over p heterogeneous processors arranged in a linear array. The Group Block
distribution partitions the matrix into groups, all of which have the same number of blocks. The
number of blocks per group (size of the group) and the distribution of the blocks in the group
amongst the processors are fixed and are determined based on speeds of the processors, which
are represented by a single constant number. Same is the case with Dynamic Programming
distribution except that the distribution of the blocks in the group amongst the processors is
determined based on dynamic programming algorithm.

We propose a Variable Group Block distribution, which is a modification of the Group Block
algorithm. It uses the functional model where absolute speed of the processor is represented by a
function of a size of the problem. Since the Variable Group Block distribution uses the functional
model where absolute speed of the processor is represented by a function of a size of the
problem, the distribution uses absolute speeds at each step of the LU decomposition that are
based on the size of the problem solved at that step. That is at each step, the number of blocks
per group and the distribution of the blocks in the group amongst the processors are determined
based on absolute speeds of the processors given by the functional model, which are based on
solving the problem size at that step. Thusit aso takes into account the effects of paging.

Figures 4.38(b) and 4.38(c) illustrate the Variable Group Block agorithm of a dense square
nxn matrix A over p heterogeneous processors. Given a dense nxn square matrix A and a block

size of b, the Variable Group Block distribution is a static data distribution that vertically
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partitions the matrix into m groups of blocks whose column sizes are g;,0z,...,0m & shown in
Figure 4.38(b). The groups are non-square matrices of sizes nx(g;xb),nx(gzxb),...,nx(gmxb)
respectively. The steps involved in the distribution are:
1). To calculate the size g; of the first group G; of blocks, we adopt the following procedure:
» Using the data partitioning algorithm, we obtain an optimal distribution of matrix A
such that the number of elements assigned to each processor is proportional to the

speed of the processor. The optimal distribution derived is given by (x;, s) (0<i<p-1),
where x; is the size of the subproblem such that Zip:;lxi =n? and s is the absolute

speed of the processor used to compute the subproblem x; for processor i. Calculate the

load index | = 72"_15« (O<i<p-1).
k=0

« The size of the group g; is egua to [U/min(,)| (O<i<p-1). If g@i/p<2,
theng, =| 2/min(,) |. This condition is imposed to ensure there is sufficient number of
blocks in the group.

» Thisgroup G; is now partitioned such that the number of blocks g, is proportiona to
the speeds of the processors s where Zipi)glyi =g, (0<i<p-1).

2). To calculate the size g of the second group, we repeat step 1 for the number of elements
equal to (n-g;)? in matrix A. This is represented by the sub-matrix An-g; n-g; ShOWN in Figure

4.38(b). We recursively apply this procedure until we have fully vertically partitioned the matrix
A

3). For agorithms such as LU Factorization, only blocks below the pivot are updated. The
global load balancing is guaranteed by the distribution in groups; however, for the group that

holds the pivot it is not possible to balance the workload due to the lack of data. Therefore it is
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possible to reduce the processing time if the last blocks in each group are assigned to fastest
processors, that is when there is not enough data to balance the workload then it should be the
fastest processors doing the work. That is in each group, processors are reordered to start from
the slowest processors to the fastest processors for load balance purposes.

In LU Factorization, the size of the matrix shrinks as the computation goes on. This means
that the size of the problem to be solved shrinks with each step. Consider the first step. After the
factorization of the first block of b columns, there remain n-b columns to be updated. At the
second step, the number of columns to update is only n-2xb. Thus the speeds of the processors to
be used at each step should be based on the size of the problem solved at each step, which means
that for the first step, the absolute speed of the processors calculated should be based on the
update of n-b columns and for the second step, the absolute speed of the processors calculated
should be based on the update of n-2xb columns. Since the Variable Group Block distribution
uses the functional model where absolute speed of the processor is represented by a function of a
size of the problem, the distribution uses absol ute speeds at each step that are cal culated based on
the size of the problem solved at that step.

For the application implementing LU factorization, the absolute speed of a processor must be
obtained based on LU factorization of a dense non-square matrix of size m;xm; as shown in
Figure 4.38(c). Even though there are two parameters m; and m; representing the size of the
problem, the parameter m; isfixed and is equal to n during the application of the set partitioning
algorithm. To apply the set partitioning algorithm to determine the optimal data distribution for
such an application, we need to extend it for problem size represented by two parameters, n and
m,. The speed function of a processor is geometrically a surface when represented by a function

of two parameters s=f(m;,m,). However since the parameter m; isfixed and is equal to n, the
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Size of Absolute Size of Absolute Size of Absolute Sizeof | Absolute
matrix speed matrix speed matrix speed matrix | speed(M
(MFlops) (MFlops) (MFlops) Flops)
1024x1024 115 2304%2304 129 4096x4096 131 6400x6400 132
512x2048 115 1152x4608 130 2048x8192 132 3200%12800 131
256x4096 116 576x9216 129 1024x16384 132 1600%25600 132
128x8192 117 288x18432 129 512x32768 131 800%x51200 131

Table 4.10: Results of serial LU factorization to demonstrate the effect of the number of elements in a matrix on the
absol ute speed of the processor.

surface is reduced to a line s=f(m1,my)= s=f(n,my). Thus the set partitioning problem for this
application reduces to the algorithm that we have presented in section 4.7.1. However additional
computations are involved in obtaining experimentally the geometric surfaces representing the
speed functions of the processors and then reducing them to lines.

The set partitioning algorithm can also be extended here easily as explained for matrix
multiplication. To calculate the absolute speed of the processor, we use a serial version of the
parallel agorithm of LU factorization. The serial version performs LU factorization of a dense
sguare matrix. Though the absolute speed must be obtained by using LU factorization of a dense
non-sguare matrix, we observed that our seria version gives amost the same speeds for LU
factorization of a dense square matrix if the number of elements in a dense non-square matrix is
the same as the number of elementsin a dense square matrix. Thisisillustrated in Table 4.10 for
computer X8 whose specification is shown in Table 4.8. The behavior exhibited is the same for
other computers.

The absolute speed of the processor in number of floating point operations per second is
calculated using the formula

volumeof computations =  MFxnxnxn
timeof execution timeof execution

Absolutespeed =

where n isthe size of the matrix. MF is 2 for Matrix Multiplication and 2/3 for LU factorization.
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Figure 4.39: Detection of theinitial two lines between which the solution lies.

The two lines linel and line2, between which the solution lies, are aso inputs to the
partitioning algorithms. We detect these lines as shown in Figure 4.39. Suppose the problem size
is n and the number of processors involved in the execution of the problem size is p. Obtain the
speeds of the processors with each processor executing a problem size of (n/p). The first line
linel is drawn passing through the origin and a point, the coordinates of which are (n/p) and the
highest speed. The second line line2 is drawn passing through the origin and a point, the
coordinates of which are (n/p) and the lowest speed.

For matrix-matrix multiplication, the computer X5 exhibited the fastest speed of 250 MFlops

for multiplying two dense 4500x4500 matrices whereas the computer X 10 exhibited the lowest
speed of 31 MFlops at that problem size. The ratio % = 8.0 suggests that the processor set is

reasonably heterogeneous. It should be noted that paging has not started happening at this
problem size for both the computers. Similarly for LU factorization, the computer X6 exhibited
the fastest speed of 130 MFlops for factorizing a dense 85008500 matrix whereas the computer

X1 exhibited the lowest speed of 19 MFlops for factorizing a dense 4500x4500 matrix. The ratio
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Figure 4.40: The cost of finding the optimal solution using the partitioning algorithm. p is the number of processors.

% = 6.8 suggests that the processor set is reasonably heterogeneous and it should also be noted

that paging has not started happening at this problem size for both the computers.

Figure 4.40 displays the cost in seconds of finding the optimal solution using the partitioning
algorithm for varying number of processors for large problem sizes. The speed function for each
processor is built using the above procedure (5 experimenta points appeared enough to build the
functions). It can be inferred that this cost is negligible compared to the execution time of the

applications which varies from minutes to hours.

4.7.1.1.2 Numerical Results

In this section, we present the experimental results comparing the data partitioning algorithms
using the functional model over the data partitioning agorithms using the single number model.
In the figures, for each problem size, the speedup calculated is the ratio of the execution time of
the application using the single number model over the execution time of the application using

the functional moded!.
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Figure 4.41: Results obtained using the network of heterogeneous computers shown in Table 4.8. The speedup

calculated is the ratio of the execution time of the application using the single number model over the execution time

of the application using the functional model. (a) Comparison of speedups of matrix-matrix multiplication. For the

single number model, the speeds are obtained using serial matrix-matrix multiplication of two dense square

matrices. For the solid lined curve, the matrices used are of size 500x500. For the dashed curve, the matrices used

are of size 4000x4000. (b) Comparison of speedups of LU factorization. For the single number model, the speeds

are obtained using serial LU factorization of a dense square matrix. For the solid lined curve, the matrix used is of

size 2000x2000. For the dashed curve, the matrix used is of size 5000x5000.
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For each processor, the piecewise linear function approximation of the rea-life speed
function and not speed band is built. The piecewise linear function approximation of the real-life
speed function for a processor is built using a set of experimentally obtained points (x,s) . To
obtain an experimental point for a problem size x, we execute the application for the problem
Size at that point. The absolute speed of the processor s for this problem size is obtained by
dividing the total volume of computations by the real execution time (and not the ideal execution
time).

The experimental results show that the paralle applications using the functional model
demonstrate good speedup over paralel applications using the single number model. At a first
glance, it may look strange that there is no problem size where the single number model
demonstrates the same speed as the functional model. Actually in heterogeneous environment,
the distribution given by the single number model cannot in principle be better than the
distribution given by the functional model. This is because the speeds used in the single number
model are obtained based on the fact that all the processors get the same number of elements and
hence solve problems of the same size as in a homogeneous environment. Consider for example
an application employing a seria matrix-matrix multiplication algorithm, the absolute speeds of
the processors for this application to be used in the single number model are calculated based on
a particular size of matrix, that is, the same number of elements. So whatever problem size is
used, it will give wrong estimation of distribution for at |east one processor.

Figure 4.41(a) shows the speedup of the matrix-matrix multiplication executed on this network
using the functional model over the matrix-matrix multiplication using the single number model.
There are two curves, the solid lined curve corresponds to the single number speed of the

processor obtained based on the multiplication of two dense 500x500 matrices and the dashed
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curve corresponds to the single number speed of the processor obtained based on the
multiplication of two dense 4000x4000 matrices.

Figure 4.41(b) shows the speedup of the matrix factorization executed on this network using
the functional model over the matrix factorization using the single number model. There are two
curves, the solid curve corresponds to the single number speed of the processor obtained based
on the matrix factorization of a dense 20002000 matrix and the dashed curve corresponds to the
single number speed of the processor obtained based on the matrix factorization of a dense
5000x5000 matrix.

As can be seen from the figures, the functional model performs better than the single number
model for a network of heterogeneous computers when one or more tasks do not fit into the main
memory of the processors and when relative speeds cannot be accurately approximated by
constant functions of problem size and our data partitioning algorithms using this model deliver

efficient solutions.
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4.7.2 Algorithmsfor Partitioning Setswith Processor Memory Bounds

In previous section, we addressed the problem of optimal distribution of computational tasks on
a network of heterogeneous computers when one or more tasks do not fit into the main memory
of the processors and when relative speeds cannot be accurately approximated by constant
functions of problem size. We designed efficient algorithms of data partitioning using arealistic
performance model of network of heterogeneous computers. This model integrates many
essential features of a network of heterogeneous computers having a major impact on its
performance such as the processor heterogeneity, the heterogeneity of memory structure, and the
effects of paging. Under this model, the speed of each processor is represented by a continuous
and relatively smooth function of the size of the problem whereas standard models use single
numbers to represent the speeds of the processors.

We then formulated a problem of partitioning of an n-element set over p heterogeneous
processors using this model and designed efficient algorithms for its solution whose worst-case
complexity is O(pZXIogzn) but the best-case complexity is O(pxlog,n). The optimal solution is
the solution where the size of the problem assigned to each processor is proportional to the speed
of the processor. The agorithms are based on the following observation: If a distribution of the
elements of the set amongst the processors is obtained such that the number of elements is
proportional to the speed of the processor, then the points, whose coordinates are number of
elements and speed, lie on a straight line passing through the origin of the coordinate system and
intersecting the graphs of the processors with speed versus the size of the problem in terms of the
number of elements. The algorithms use the observation that the optimal solution obtained by

these algorithmsis a straight line passing through the origin of the coordinate system and
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Total
Machine Architecture cpu Main Cache
Name MHz Memory | (kBytes)
(kBytes)
Linux 2.4.20-20.9bigmem
Compl Intel(R) Xeon(TM) 2783 7933500 512
SunOS 5.8 sundu sparc
Comp2 SUNW,Ultra:5_10 440 524288 2048
Comp3 Windows XP 3000 1030388 512
Comp4 Linux 2.4.7-10 1686 730 254524 256

Table 4.11: Specifications of the four heterogeneous computers, on which applications are run to determine the

effect of caching and paging in reducing their execution speed.
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Figure 4.42. The effect of caching and paging in reducing the execution speed of each of the four applications run

on network of heterogeneous computers shown in Table 4.11. (a) ArrayOpsF, (b) TreeTraverse, (c)

(©

(d)

MatrixMUultATLAS, and (d) MatrixMult. P is the point where paging starts occurring.
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intersecting the graphs of the processors with speed versus the size of the problem in terms of the
number of elements. The algorithms take at most p*xlogn steps to find the optimal solution.

However this model fails to provide optimal solutions when the network consists of computers
that are configured to avoid paging. Consider the experiments shown in Figure 4.42. The
experiments show that Conpl and Conp2 do not permit paging. This is typical of computers
used as a main server. For applications designed to efficiently use cache memory, such
computers show a constant speed function, up to a point where the process crashes, probably
because it tries to invoke a paging procedure, not allowed due to its configuration. So if we have
such computers, the real speed function of the size of the problem is not continuous any more but
discontinuous at the point where paging happens, that is, there is a break in the continuity of the
function at the point where paging happens.

Consider a small network of three processors, whose speeds as functions of problem size are
shown in Figure 4.43. The processor represented by the speed function s;(x) is configured to
permit paging. The processors represented by speed functions s;(x) and s3(x) are configured to
avoid paging. The bold curves represent the experimentally obtained parts of the speed functions.
Now assume that we want to obtain optimal distributions for problem sizes whose optimal
solution lines lie beyond the bold curves. In this case we naturally extrapolate the curves in a
continuous manner using some reasonable approximations. The extrapolations are shown by
dotted curves. However it can be seen that sometimes the extrapolations are not accurate
representations of the real shape of the speed functions as shown for the speed functions s;(x)
and sy(x). The real speed functions are shown by dashed curves. Consider two data distributions
obtained by the functional model and which are shown by dotted lines passing through the

origin. Although the first data distribution (X11,X12,X13) iS not the optimal solution just because the
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Figure 4.43; A small network of three processors whose speeds are shown against the size of the problem. The
dotted lines passing through the origin represent solutions provided by the functional model. The bold curves
represent the experimentally obtained speed functions. The dotted curves represent reasonabl e approximations of the
speed functions in a continuous manner. The dashed curves represent the real behavior of the speed functions. The
first dotted line giving the data distribution (x11,X12,X13) iS @ non-optimal solution. The second dotted line giving the

data distribution (Xo1,X22,X23) iS not a solution at al.

extrapolated speed functions s;(x) and sy(X) are not accurate representations of the real speed
functions, it still give a reasonable sub-optimal solution of the problem. At the same time, the
second data distribution (X21,X22,X23) iS not a solution at al. Thisis because at the points X2, and
Xo3 the paging starts occurring for computers with speed functions s;(x) and s3(x) and since these
computers are configured to avoid paging, they crash. Therefore in order to obtain optimal and
working solutions for such networks, we need to extend the functional model.

We naturally extend the functional model by including an additional parameter of maximum

problem size. The maximum problem size represents the upper bound on the size of the problem
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that each processor can solve. For computers that are configured to avoid paging, it represents
the point where the computer crashes due to the occurrence of paging and where the speed
function of the size of the problem becomes discontinuous.

In the next section, we present the modified functional model. This is followed by a
formulation of a general set-partitioning problem, which is the problem of partitioning of an n-
element set over p heterogeneous processors using this modified functional model. Then we give
its efficient solution of the complexity O(pxlog,n). This problem is a simple variant of the most
advanced problem of partitioning a set with weighted elements formulated in Section 4.3. We
use the simple variant to explain how complex the problem of scheduling tasks amongst
processors is when: (a) the processors have significantly different memory structure, and (b)
there are memory limitations on the size of task that can be solved by each processor. We aso
use this variant to explain in simple terms how the modified functional model can be used to
achieve better data partitioning on networks of heterogeneous computers before moving on to
solve the most advanced problem.

To demonstrate the efficiency of the modified functional model, we perform experiments
using naive paralel agorithms for linear agebra kernel, namely, matrix multiplication and LU
factorization using striped partitioning of matrices on a local network of heterogeneous
computers. Our main aim is not to show how matrices can be efficiently multiplied or efficiently
factorized but to explain in ssmple terms how the modified functional model can be used to
optimally schedule tasks on networks of heterogeneous computers taking into account the
processor and memory heterogeneity. We also view these algorithms as good representatives of a
large class of data parallel computational problems and a good testing platform before

experimenting more challenging computational problems.
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We end the discussion with a survey of related literature.

4.7.2.1 The Extended Performance Model of Networ ks of Heter ogeneous
Computers

The modified functional model of networks of heterogeneous computers has the following
parameters:

* Anupper bound on the size of the task that can be solved by each computer, and

* The speed of the processor is represented by a continuous and smooth function of the

problem size until the upper bound. Beyond the upper bound, the speed of the processor is
assumed to be zero.

The modél retains the restrictions imposed by the functiona model on the shape of the graph
representing the speed function. The shape of the graph should be such that there is only one
intersection point of the graph with any straight line passing through the origin. That is the
speeds of the processors must either be increasing or decreasing functions of problem size for the
problem sizes for which the solutions are sought. These assumptions on the shapes of the graph
are representative of the most general shape of graphs observed for applications experimentally
as shown in Figure 4.42.

The upper bound could signify one of the following cases:

» Allocation of atask whose size is beyond this bound could result in processor failure.

* Allocation of the task whose size is beyond this bound could result in unacceptable

execution time to accomplish the task due to severe paging.
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4.7.2.2 Algorithm for Partitioning a Set with Processor Memory Bounds
Using the maodified functional model, we solve the following problem of partitioning a set, which
can be formulated as:
Definition 1. Heterogeneous Memory Partitioning HMP(n, s, b):

Given: (1) A set of n elements, and (2) A well-ordered set of p heterogeneous processors
whose speeds are functions of the size of the problem x, s=fi(x), and (3) There is a upper bound
on the largest problem size that can be solved on each processor, that is, there is an upper bound
b; on the number of elements stored by each processor (i=0,...,p-1);

Partition the set into p digoint partitions such that:

*  XotXit...+Xp.1=n, Where Xo,X1,...,.Xp-1 are the number of elements in partitions 0,1,...,p-1

respectively,

o Xi<b for dl (i=0,...,p-1),
p1ox

* the maximum m%x(ﬁ) of the execution times of the processors is minimized. That is
=S

solve the following min-max problem:

min{rr’;;x(ﬁ)}
i=0 ' §

where X; is the number of elements in partition i. We assume that the volume of computations
involved in the execution of a problem size is proportional to the problem size.

We provide an optimal solution to this problem of complexity O(p*xlogsn).

When there is an upper bound b; on the number of elements stored by each processor
(i=0,...,p-1), the agorithm used to solve the partitioning problem is of complexity O(p®). This

algorithm can be summarized as follows:
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1. Partition the set such that the number of elements in each partition is proportiona to the
speed of the processor and assuming no upper bound exists on the number of elements that
can be stored by each processor. If the number of elements assigned to each processor is
less than or equal to the upper bound on the number of elements that can be stored by each
processor, we have the optimal distribution.

2. For each processor i (i=0,...,p-1), we check if the number of elements assigned to it is
greater than the upper bound on the number of elements that it can store. For al the
processors whose upper bounds are exceeded, we assign them the number of elements
equal to their upper bounds. Now we solve the partitioning problem of a set with
remaining elements over the remaining processors. We recursively apply this procedure
until all the elements have been assigned.

The proof of optimality of the solution provided by this algorithm is given in [WS04]. Thisis
indeed a specia case of the problem variant we are going to solve in this section.

When the speed of the processor is represented by a function of the size of the problem, s=f(x),
and when there is no upper bound on the number of elements stored by each processor, efficient
algorithms of complexity O(p*xlogzn) have been presented in the previous section.

When the speed of the processor is represented by a function of the size of the problem, s=f(x),
and when there is an upper bound on the number of elements stored by each processor, the
problem of partitioning a set is non-trivial. Before presenting the algorithm to solve this problem,
we formulate the formal mathematical problem of the optimization problem HMP of partitioning
of the set. Given: (1) A set of n elements, and (2) A well-ordered set of p functions, s=f;(x), and
(3) There is a upper bound b; on the number of elements that can be stored in each partition

(i=0,...,p-1), find a partition of the set into p digoint partitions such that:
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*  XotXit...+Xp.1=n where Xo,Xy,...,.Xp-1 are the number of elements in partitions 0,1,...,p-1
respectively,

o X;<b; foral (i=0,...,p-1),

Pl x
e the maximum of m%x(ﬁ) isminimized. That is solve the following min-max problem:
i= S

S

min{rrgx(ﬁ)}
where X; isthe number of elementsin partition i.

Before we present the algorithm to solve the optimization problem HMP, we apply the
following assumptions:

(1) The speed of each processor is represented by a continuous function of the size of the
problem up till its upper bound on the problem size. The speed of the processor is zero beyond
the upper bound.

(2) The shape of the graph representing the speed function should be such that there is only
one intersection point of the graph with any straight line passing through the origin. That is the
speeds of the processors must either be increasing or decreasing functions of problem size for the
problem sizes for which the solutions are sought and,

(3) For each processor, for all x>y, where x and y are problem sizes, the execution times ty
and t, to execute problems of sizes x and y respectively are related by t; > ty.

Algorithm Heterogeneous Memory Partitioning Algorithm HMPA(n, s, b). The algorithm we
propose to solve this advanced partitioning problem is graphically illustrated in Figure 4.44 and
has the following main points:

1. Partition the set such that the number of elements in each partition is proportional to the

speed of the processor and assuming no upper bound exists on the number of elements that
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Figure 4.44: The partitioning agorithm for the problem size n. The bold curves represent the experimentally
obtained speed functions. The dotted curves represent reasonable approximations of the speed functions in a
continuous manner. For processor represented by speed function s;(x), we assign this processor the number of
elements egual to its upper bound b;. We then partition the set with remaining n-b; elements amongst the processors
represented by speed functions s,(x) and s;(x) respectively. The region between the lines linel and line2 is bisected

to narrow down to the optimal solution.

can be stored by the processor (we can use any continuous extension of the speed function
beyond the maximal problem size, say, a constant equal to the speed for the maximal
problem size). The partitioning algorithm used to perform this task is discussed in the
previous section. If the number of elements in each partition assigned to each processor is
less than the upper bound on the number of elements that can be stored by the processor,
we have an optimal distribution.

2. For each processor i (i=0,...,p-1), we check if the number of elements assigned to it is

greater than the upper bound on the number of elements that it can store. For al the
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processors whose upper bounds are exceeded, we assign them the number of elements
equal to their upper bounds. Now we solve the partitioning problem of a set with
remaining elements over the remaining processors. We recursively apply this procedure
until all the elements have been assigned.
Theorem 1. HMPA(n, s, b) gives the optimal solution to the optimization problem HMP(n, s, b).
Proof. We prove the optimality of the solution using mathematical induction. We use the
maximum time to solve the task assigned to each processor as the performance metric.

The cases for p=1 and p=2 are trivia. For p=3, let us assume the upper bounds of the
processors 1, 2, and 3 on the number of elements that they can store are by, by, and bs
respectively. Suppose the optimal distribution assuming there are no upper bounds on the
number of elementsis (X1, Xz, X3) such that x;+x,+x3=n where n is the size of the problem.

Consider the case where x; > b; and x, > b,. Let us assign the number of elements equal to by
for processor 1. The remaining distribution has to satisfy the equality X, + X, =n—b, where
x,and x,are to be chosen such that the speed of the processor is proportional to the number of

elements assigned to it. If the speeds of the processors 2 and 3 are non-increasing functions of

problem size, it can be proved that x, >x,and X, >X,. This gives us the inequality
X, > X, >b,. Therefore we have to necessarily assign b, number of elements to processor 2. If
the speeds of the processors 2 and 3 are non-decreasing functions of problem size, there are three
possibilities, (X, > X,, X, > X;), (X, < X,,X; > X;) and (X, > X,, X; < X;). The first and the third
possibility give us the inequality x, > X, >b, . For the second possibility, any allocation x,such
that x,< b, would result in an allocation of x, number of elements to processor 3 such that

X;> X, thus resulting in a larger execution time. Therefore we have to necessarily assign by
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number of elementsto processor 2. If the speed of the processor 2 is a non-decreasing function of
problem size and speed of processor 3 is anon-increasing function of problem size, there are two
possihilities, (X, < X,,X; > X;) and (X, > X,, X; < X;). In the first possibility, any allocation X,
such that x;, < b, would result in an alocation of x; number of elements to processor 3 such that

X,> X, thus resulting in a larger execution time. The second possibility gives us the inequality
X, > X, > b, . Therefore we have to necessarily assign b, number of elements to processor 2.
Consider the case of optimal distribution where x; > b, is true. For processor 1, we assign the
number of elements equal to b;. The remaining elements are allocated such that x, +x, =n—b,
where x,and x,are to be chosen such that the speed of the processor is proportional to the
number of elements assigned to it. Any other allocation x, such that x, < b; would result in an
alocation where one of the inequalities (x,>X,), (X;>X;) is satisfied thus resulting in a larger

execution time. It can be proved similarly for the case when x, > bs.

Assuming this to be true for p=k processors, we have to prove the optimality for p=k+1
processors. For a given problem size n, let us assume the distribution given by our algorithm to
be x,,b,,b,,---,b,,, X s+, X, SUCh that x, +b, +---+ X, =n, where without loss of generality

processors 1,...,m are allocated their upper bounds. It can be inferred that the execution times for

the rest of the processors O,m+1,...,k satisfy the equality t, =t ,, =---=t,. It can aso be

inferred that (t,,t,.,,---,t,) =t for al i=1,...,m. The execution time for the problem size is
k - . . - - - -

equal to t,, = m_%x(ti) =(ty,t,q, - t,) - Consider an alternative solution with the distribution

X, X, X where x, +x +---+X =n and x, <b,---,x_ <b_. It can be easily seen that for

atleast one processor i (i=0,m+1,... k), x >x, thus giving an execution time t;, which is
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greater than the execution time given by our agorithm t, ..

Theorem 2. The complexity of the algorithm HMPA(n, s, b) is O(p*xlog,n).
Proof. There are p major steps in the agorithm. At each such major step i, we solve the problem
of partitioning of a set amongst p-i processors such that the number of elements in each partition
is proportional to the speed of the processor and assuming no upper bound exists on the number
of elements that can be stored by the processor. The complexity of this step is O(p®xlogn) as
discussed in the previous section. Since there are p such steps, the overall worst-case complexity
is O(p3xlog,n). Mathematically, the worst-case complexity is the summation of p terms:
C=p”xlog, n+(p-1)° xlog,(n-by) +(p-2)° xlog,(n~by, =) +---+1
Op? x(log, n+log, (n-by) +log, (n—h, b)) +--)
0p? x(log, (nx (n—hy) x (n—h, ~b) x-))

Op®x(log, n)
Op®xlog,n

4.7.2.3 Applicationsof the Model
So far we have formulated a redlistic performance model of a network of heterogeneous
computers and designed efficient algorithms of data partitioning with this model. Now we
present alist of practical applications of this model:

» Data partitioning on networks of heterogeneous computers, which only include computers
that are configured to avoid paging. Such computers crash when problem sizes are
allocated that requires paging. The largest problem size on such computers is the problem
Size where paging starts happening.

» Data partitioning on networks of heterogeneous computers, which only include computers
that permit paging. However allocation of large problem sizes can cause severe paging on

such computers as a result causing severe performance degradation and sometimes stalling
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of the entire application. The largest problem size on such computers is not the problem
Size where paging starts happening but the problem size which causes severe performance
degradation of the application.

» Datapartitioning on networks of heterogeneous computers, which include computers some

of which permit paging and some of which are configured to avoid paging.

4724 Experimental Results
The experimental results are divided into three sections. The first two sections are devoted to
building the modified functional model. In the first section, we suggest ways to determine the
upper bound on the size of the problem that each processor can solve. Then we present the
parallel applications and the network of heterogeneous computers on which the applications are
tested. For each application, we explain how to estimate the processor speed. Thisisfollowed by
presentation of the procedure to build the speed functions of the processors. Finally we present
the experimental results obtained by running these applications on the network of heterogeneous

computers.

4.7.2.4.1 Determination of Largest Problem Size
In this section, we highlight different approaches to determine the largest problem size of an
application that can be solved efficiently on a given computer. We do not define the notion of
largest problem size as this depends on the nature of the applications run on the network of
heterogeneous computers and the level of integration of the computersin this network.
One of the ways is to determine the user-available memory on the computer and the memory
requirement of the application. If the memory requirement of the application is less than the user-

available memory then the application will not suffer from memory limitations. We can
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shel 1'$ cat /proc/menminfo
Menirot al : 1033908 kB
Mentr ee: 389568 kB

shel 1$ top
Mem 1033908k total, 644340k used, 389568k free, 512680k buffers
Swap: 2040212k total, 7924k used, 2032288k free, 36916k cached

Figure 4.45: Operating system tools to determine the user-available memory for an application. The user-available

memory is highlighted in bold.

determine the largest problem size we can run, by caculating when the tota memory
requirement of an application would exceed the user-available memory capacity on a given
computer. The total user-available memory of a computer can be obtained from the operating
system utilities like ‘cat / proc/ mem nf o’ and ‘t op’ as shown in Figure 4.45. There are
aso system calls that can be called from the application code to obtain the user-available
memory of a given computer.

Cierniak et al. [CLZ97] show that the total memory requirement is generally not a good
criterion for judging the largest problem size that can be run efficiently. The reason is that the
total memory requirement is a very conservative measure, and generally overestimates the
memory requirement of an application. They introduce a new notion, the resident memory size
(RMYS) for a given program segment, defined as the minimum number of pages of physical
memory required to ensure that all fault misses are cold misses (i.e. due to the first reference) for
that segment, using a particular page replacement algorithm. If the resident memory size is less
than the user-available memory then the application will not suffer from the effects of memory
limitations. If, on the other hand, the program’s RMS is larger than the available memory then
some of the pages required will not be in memory, and a page fault occurs. Asthe input data size

increases, the RMS increases, ultimately exceeding the available memory. A compile-time
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algorithm is provided to approximate the RMS. The notion of RMS value should work well in
practice for regular problems, but it may not be a good approximation for irregular problems.

As shown in Figure 4.42, the notion of the largest problem size depends on the nature of the
application and on the level of the integration of the computers used in the experiments. For
computers that do not permit paging, the largest problem size is the point where paging starts
happening. This is shown to be the point P for computers Conpl and Conp2 in Figure 4.42 for
al the applications. For computers configured to permit paging, the largest problem size is not
the point where paging starts happening but the point where the absolute speed of the processor
fallsdrastically. Thisis shown to be the point P for computers Conp3 and Conp4 in Figure 4.42
for al the applications.

The problem size at point P shown in Figure 4.42 is probably less than the largest problem size
but it is a good approximation. Speed functions built with large number of points with a wider
range of problem sizes can give a better approximation of largest problem size that can be solved
on a processor. However in this case it depends on a number of conditions such as how much
time the application programmers are willing to spend to build the speed functions of the
processors and their level of efficiency. This approach of determining the largest problem size
should work well in practice for regular aswell asirregular problems.

We aim to perform more future work to determine accurately the problem size at which paging
starts happening for both regular as well as irregular problems. We aim to do this determination

with minimal experimental time.
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Machine Architecture cpu Total Largest size L argest Cache
Name MHz | Main of task sizeof task | (kBytes)
Memory (MM) (L)
(kBytes)
X1 Linux 2.4.20- 2783 7933500 116640000 262440000 512
20.9bigmem Intel(R)
Xeon(TM)
X2 Linux 2.4.18-10smp 1977 1030508 36000000 81000000 512
Intel(R)
XEON(TM)
X3 Linux 2.4.18-10smp 1977 1030508 36000000 81000000 512
Intel(R)
XEON(TM)
X4 Linux 2.4.18-10smp 1977 1030508 36000000 81000000 512
Intel(R)
XEON(TM)
X5 Linux 2.4.18-10smp 1977 1030508 36000000 81000000 512
Intel(R)
XEON(TM)
X6 SunOS 5.8 sundu 440 524288 31360000 64000000 2048
sparc SUNW,Ultra-
5 10
X7 SunOS 5.8 sundu 440 524288 30250000 59290000 2048
sparc SUNW,Ultra-
5 10
X8 SunOS 5.8 sundu 440 524288 30250000 64000000 2048
sparc SUNW,Ultra-
5 10
X9 SunOS 5.8 sundu 440 524288 30250000 59290000 2048
sparc SUNW,Ultra-
5 10
X10 Linux 2.4.18-3 1686 997 254576 24502500 30250000 256
Intel Pentium 111
X11 SunOS 5.5 Sundm 110 65536 6000000 6250000 512
sparc
SUNW,SPARCstation-
5

Table 4.12: Specifications of the eleven heterogeneous processors to demonstrate the efficiency of the modified

functional model.

4.7.2.4.2 Applications
A small heterogeneous local network of 11 different Solaris and Linux workstations shown in
Table 4.12 is used in the experiments. The network is based on 100 Mbit Ethernet with a switch

enabling parallel communications between the computers.
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Absolute speed

Size of the problem

Figure 4.46: Using piece-wise linear approximation to build speed functions for 3 processors. The circular points
are experimentally obtained whereas the square points represent the upper bounds. The speed function for processor
si(x) is built from 3 experimentally obtained points (application run on this processor uses memory hierarchy
inefficiently) whereas the speed functions s,(x) and s3(x) (application run on these processors use memory hierarchy
efficiently) are built from 4 experimentally obtained points. Speeds of the processors are assumed to be zero for

problem sizes beyond their upper bounds.

The two applications used to demonstrate the efficiency of the modified functional model over
the functional and the single number models are described in detail in Section 4.7.1.1.1. The
procedure to build the piece-wise linear function approximation is also described in detail. We
use piece-wise linear function approximation illustrated in Figure 4.46 to build the speed
function. Such approximation of the speed function is compliant with the requirements of the
model, which are the shape requirements of the graph representing the speed function and that
the speeds be continuous and smooth functions of problem size up till its upper bound on the

problem size and zero beyond.
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4.7.2.4.3 Numerical Results
In this section, we present the experimental results demonstrating the efficiency of our modified
functional model over the functional and the single number models.

In the figures, the speedup calculated is the ratio of the execution time of the application using
asingle number model over the execution time of the application using a functional model. A set
of as few as 5 points is used to build the speed functions of the processors for the functional
models.

The solid lined and dashed curves with normal thickness represent the speedup obtained using
the functional model over the single number model [BBP+01]. Both these models do not take
into account the upper bounds on the problem size that a processor can solve. The solid lined and
dashed curves with bold thickness represent the speedup obtained using the modified functional
model over the single number model [WS04]. Both these models take into account the upper
bounds on the problem size that a processor can solve.

Figure 4.47(a) shows the speedup of the matrix-matrix multiplication executed on this network
using the functional models over the matrix-matrix multiplication using the single number
model. There are two curves, the solid lined curve corresponds to the single number speed of the
processor obtained based on the multiplication of two dense 500x500 matrices and the dashed
curve corresponds to the single number speed of the processor obtained based on the
multiplication of two dense 4000x4000 matrices. It can be seen from the figure that problem
sizes beyond 24000 cannot be solved by using the functional and the single number models. This
is because both these models do not take into account the memory limitations of the computers
involved in the execution of the application. The modified functional model is used to obtain

solutions for problem sizes beyond 24000. It should also be noted that the modified functional
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Matrix-Matrix Multiplication
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1.2 | Modified functional model provides working solutions.
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Figure 4.47: Results obtained using the network of heterogeneous computers shown in Table 4.12. The speedup

calculated is the ratio of the execution time of the application using a single number model over the execution time
of the application using a functional model. () Comparison of speedups of matrix-matrix multiplication. For the
single number models, the speeds are obtained using serial matrix-matrix multiplication of two dense square
matrices. For the solid lined curves, the matrices used are of size 4000x4000. For the dashed curves, the matrices
used are of size 500x500. (b) Comparison of speedups of LU factorization. For the single number models, the
speeds are obtained using serial LU factorization of a dense square matrix. For the solid lined curves, the matrix

used is of size 5000x5000. For the dashed curves, the matrix used is of size 2000x2000.
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model and the functional model provide the same solutions for problem sizes less than 24000.
This is because the data distributions for problem sizes less than 24000 do not exceed the upper
bound for any processor. Thus it can be seen that larger problem sizes are solved using modified
functional model and the execution performance obtained is good.

Figure 4.47(b) shows the speedup of the matrix factorization executed on this network using
the functional models over the matrix factorization using the single number model. There are two
curves, the solid lined curve corresponds to the single number speed of the processor obtained
based on the matrix factorization of a dense 2000x2000 matrix and the dashed curve corresponds
to the single number speed of the processor obtained based on the matrix factorization of a dense
5000x5000 matrix. It can be seen from the figure that problem sizes beyond 19000 cannot be
solved by using the functional model and single number models. This is because both these
models do not take into account the memory limitations of the computers involved in the
execution of the application. The modified functional model is used to obtain solutions for
problem sizes beyond 19000. It should also be noted that the modified functional model and the
functional model obtain the same solutions for problem sizes less than 19000. Thisis because the
data distributions for problem sizes less than 19000 do not exceed the upper bound for any
processor. Thus it can be seen that larger problem sizes are solved using the modified functional
model and the execution performance obtained is good.

As can be seen from the figures, the modified functional model performs better than the

currently existing models for a network of heterogeneous computers.

4.7.2.5 Related Work

We survey related work in this section. They fal into two categories: papers dealing with task
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partition and scheduling with memory constraints on dedicated environments and papers dealing
with task scheduling with memory constraints on non-dedicated computing environments like
the Heterogeneous Networks of Computers (HNOCSs) and computing grids.

Li, Bharadwg, and Ko [LVKOQ] investigate the problem of scheduling a divisible load onto a
set of processors with finite-size buffers in heterogeneous single-level tree networks. They
propose a fast algorithm called Incremental Balancing Strategy (IBS) to achieve the optimal
processing time. In each increment, distribution of the load is found for processors with available
memory according to the standard divisible load theory methods [BGM+96] without taking the
memory constraints into account. Then, the distribution of the load is scaled proportionately such
that a least one buffer is filled completely. The remaining available buffer capacities are
memory sizes in the next increment. This process is continued until distributing the entire load.
Drozdowski and Wolniewicz [DWO03a] propose a linear programming method of finding
solutions with guaranteed optimality for the problem of scheduling divisible loads in networks of
processors with limited memory and communication startup times. The complexity of the linear
programming solutions that they use to solve their problem is O(p*°xL), where p is the number
of processors involved in the execution of the algorithm and L is the length of the string
encoding al the parameters of linear program.

The works discussed take into account the processor heterogeneity in terms of speeds, memory
heterogeneity in terms of memory limitation at each processor, and network heterogeneity in
terms of the communication cost between a pair of processors. However, these works assume
distributed systems with a flat memory model and are not applicable to systems with memory
hierarchy. The dependence of the speed of the processor on the size of the problem is assumed to

be linear as is usually observed on dedicated distributed multiprocessor computer systems. The
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largest problem size that can be solved at each processor is assumed to be the core memory at
that processor. This is a safe assumption on dedicated distributed multiprocessor computer
systems. However on networks of heterogeneous computers, due to the nature of applications run
and the level of integration of the computers involved in execution of these applications, the core
memory at each processor is just an upper bound on the largest problem size that can be solved
but is not a good approximation of the actual largest problem size that can be solved.

The modified functional model that we propose integrates the essential features underlying
applications run on a network of heterogeneous computers, mainly, the processor heterogeneity,
the heterogeneity of memory structure, and the memory limitations at each level of memory
hierarchy. We aso present efficient algorithms of data partitioning with this model with
relatively low complexity of O(p°xlogn). However we do not consider the cost of
communications in our modified functional model.

While resource management and task scheduling are identified challenges of Grid computing,
current Grid scheduling systems mainly focus on CPU and network availability. Many heuristic
scheduling agorithms [BWC+03, SW03] have been proposed for traditiona high performance
computing. However these scheduling systems are for dedicated multiprocessor computer
systems and also ignore the impact of memory resource availability on the scheduling decision-
making.

Several studies have been reported on task allocation for load balance considering memory
resource constraints. An opportunity cost approach proposed in [AAB+00] converts the usage of
resources including CPU and memory to a single homogeneous cost. Based on the cost, task is
assigned or reassigned to each node for load balance. Load sharing policies with the

consideration of effective usage of globa memory were studied in [ XCZ02]. They consider two
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types of application workload, known memory demands and unknown memory demands.
However their mgjor concern is how to reduce the average slowdown of al individua jobsin the
system, instead of how to schedule a parallel application to achieve its best performance. Wu and
Sun [WS04] consider how to partition a Grid application and schedule it on a cluster of
distributed heterogeneous resources to obtain a minimum application execution time with the
consideration of both CPU resource availability and memory resource availability. Three task
partition policies, namely, CPU-based, memory-based, and CPU-memory combined partition are
studied. They show that the CPU-memory combined approach shows good performance gains
over the other approaches. A heuristic CPU-memory algorithm for task scheduling of a meta-task
is also proposed. The effect of local jobs on a grid application execution in the situation of
resource sharing is evaluated using distribution functions. Currently our modified functional
model and the algorithms using this model are not applicable for task scheduling of a meta-task.
The accurate modeling of the electronic structure of atoms and molecules involves
computationaly intensive tensor contractions involving large multidimensional arrays. The
efficient computation of complex tensor contractions usually requires the generation of
temporary intermediate arrays. These intermediates could be extremely large, but they can often
be generated and used in batches through appropriate loop fusion transformations. To optimize
the performance of such computations on parallel computers, Cociorva et al. [CBL+02] present a
framework to address the optimization problem: given a set of computations expressed as a
sequence of tensor contractions, an empirically derived measure of the communication cost for a
given target computer, and a specified limit on the amount of available memory on each
processor, re-structure the computation so as to minimize the total execution time while staying

within the available memory. The framework considers only the heterogeneity in terms of the
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memory limitations of each computer and is not applicable for programming applications on
networks of heterogeneous computers, which exhibits processor heterogeneity in terms of speeds
and memory heterogeneity in terms of memory hierarchy and memory limitations of each

computer.

4.8 Summary

We have presented a classification of partitioning problems on networks of heterogeneous
computers. Our approach to classification of partitioning problemsis based on two corner stones:

» A redistic performance model of networks of heterogeneous computers,

* A natural classification of mathematical objects most commonly used in scientific,
engineering and business domains for parallel (and distributed) solving problems on networks
of heterogeneous computers.

We have proposed a realistic performance model of a network of heterogeneous computers
and designed efficient algorithms of data partitioning with this model. This model integrates
many essential features of a network of heterogeneous computers having a mgor impact on its
performance such as the processor heterogeneity, the heterogeneity of memory structure, and the
effects of paging. Under this model, the speed of each processor is represented by a continuous
and relatively smooth function of the size of the problem whereas standard models use single
numbers to represent the speeds of the processors.

We designed efficient algorithms of data partitioning using this functional model of network
of heterogeneous computers. We particularly addressed the problem of optimal distribution of

computational tasks on a network of heterogeneous computers when one or more tasks do not fit
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into the main memory of the processors and when relative speeds cannot be accurately
approximated by constant functions of problem size.

We then proposed a modified functional model of a network of heterogeneous computers that
takes into account the processor heterogeneity, the heterogeneity of memory structure, and the
memory limitations at each level of memory hierarchy of a processor. We then designed efficient
algorithms of data partitioning with this model thus addressing the problem of optimal
distribution of computations over heterogeneous computers taking into account the processor
heterogeneity, the heterogeneity of memory structure, and the memory limitations at each level
of memory hierarchy of a processor.

The modified functional model proposed can be used to design efficient algorithms of data
partitioning for mathematical structures other than sets such as matrices, graphs, and trees. This
model can be used to design efficient algorithms for the most general partitioning problem,
which can be formulated as:

* Given: (1) An application of problem size n to be solved, and (2) A well-ordered set of p
processors whose speeds are functions of the size of the problem, s=f;(x), and (3) Thereis
alimit |; on the largest problem size that can be solved on each processor,

» Partition the problem into p digoint sub-problems x; (i=0,...,p-1) such that (1) The size of
the sub-problem x; is proportional to the speed of the processor i, and (2) The size of the
sub-problem x; is less than or equal to the limit |; on the largest problem size that can be
solved on each processor (x; < ;).

In the presented research we do not take account of communication cost. Although we well

understand the importance of itsincorporation in our performance model, thisisjust out of scope
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of this research. We aso understand the importance of the problems of efficient building and
maintaining of our model. These two problems are subjects of our current research.

Based on a natural classification of mathematical objects most commonly used in scientific,
engineering and business domains for paralel (and distributed) solving problems on networks of
heterogeneous computers, we suggest an API for partitioning these mathematical objects. These
interfaces alow the application programmers to specify simple and basic partitioning criteriain
the form of parameters and functions to partition their mathematical objects. These partitioning
interfaces are designed to be used aong with various programming tools for parallel and
distributed computing on heterogeneous networks.

Currently we have implemented only the set and dense matrix partitioning APl of HDPI. In
the next chapter, we present HMPI application programming that demonstrates how to write real-
life HMPI applications using the extensions to MPI and the HDPI API and how to execute these

applications.
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CHAPTER 5

HMPI Application Programming

5.1 Exampleof irreqular HMPI application

To explain how an application programmer can use HMPI to write a real-life irregular
application, consider the EM3D application simulating the interaction of electric and magnetic
fields on a three-dimensional object [YWC+95, CDG+93]. The system consists of a few large
subbodies resulting from a decomposition of the three-dimensional object. The subbodies contain
varying number of E nodes where eectric field values are caculated and H nodes where
magnetic fields are calculated. The changes in the electric field of an E node are calculated as a
linear function of the magnetic field values of its neighboring H nodes and vice versa. Thus, the
dependencies between E and H nodes form a bipartite graph. In a bipartite graph, the nodes are
decomposed into two digoint sets such that no two nodes within the same set are adjacent. Here
the two digoint sets are the set of E nodes and the set of H nodes. The subbodies are so
decomposed from the three-dimensional object that the nodes in each subbody have few
dependencies on the nodes residing in other subbodies thereby reducing the communications
between a pair of subbodies. A sample decomposition of a three dimensional object into three
subbodies is shown in Figure 5.1(a). A simple example of bipartite graph is shown in Figure

5.1(b).

The parallel agorithm of this application consists of a few parallel processes, each of which
updates data characterizing a single sub-body. The heterogeneous algorithm can be summarized

asfollows:

» At each step of the algorithm,
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@) (b)
Figure 5.1: (a) A sample three dimensional object consists of three subbodies. In each subbody, the electric field
value is represented as a white dot, an E node, and the magnetic field value represented by a black dot, an H node.

(b) A bipartite graph showing the dependencies between E and H nodes.

0 For each of the E nodes in its sub-body, if any of the neighboring H nodes reside
remotely, each process receives the values of these nodes from the process
owning them;

0 Each processin paralel computes the new value of the electric field of each of the
E nodesin its sub-body;

o For each of the H nodes in its sub-body, if any of the neighboring E nodes reside
remotely, each process receives the values of these nodes from the process
owning them,

o Each processin paralel computes the new value of the magnetic field of each of

the H nodes in its sub-body.
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int main(int argc, char **argv) {

MPI _Comm enBdconm

int i, ne, is_executing_algo = MPI _UNDEFINED, E = 0, H = 1;
int p, niter; /* Inputs to the program */
struct EMBD body t* bodies; /* Inputs to the program */

MPI I nit(&argc, &argv);
MPI _Comm r ank( MPI _COVWM WORLD, &ne);

if (me > 0 & ne < p) is_executing algo = 1;
MPI _Comm split(MPI _COW WORLD, is_executing algo, 1, &enBdconm;
if (is_executing algo) {
Initialize systenm(p, bodies);
MPI _Comm r ank( &nBdconm &ne) ;
for (i =0; i <niter; i++) {
Gat her _renote_H boundary_val ues(me, H, p, bodies, &enB8dcomm;
Conpute_E val ues(ne, E, p, bodies);
Gat her _renote_E boundary_val ues(me, E, p, bodies, &enBdcomm;

Conpute_H val ues(ne, H, p, bodies);

}
MPlI _Comm free( & nBdcomm) ;

}
MPI _Finalize();

Figure 5.2: The most relevant fragments of code of the MPI program implementing the EM3D algorithm.

algorithmEnmBd(int p, int k, int d[p], int dep[p]l[p]) {
coord | =p;
node {1>=0: bench*(d[1]/k);};
link (L=p) {

[>=0 && I!=L && (dep[I][L] > 0) :
| engt h*(dep[I][L]*si zeof (double)) [L]->[1];

|
parent[O0];
schene {
int current, owner,
par (owner 0; owner < p; owner ++)
par (renote 0; renote < p; renote++)
if ((owner !'=remte) && (dep[owner][renpte] > 0))
100984 r enot e] - >[ owner];
(current 0; current < p; current++) 100%4current];

renot e;

par
b
}

Figure 5.3: Specification of the performance model of the EM3D algorithm in the HMPI’ s performance definition

language.
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The most interesting fragments of the MPI version of this paralel application are shown in
Figure 5.2.

As shown in the MPI program above, the participating parallel processes in the group
associated with the MPI communicator enBdconmare explicitly chosen from an ordered set of
processes specified by the group associated with the MPI communicator MPI _ COVMM WORLD. If
the MPI application runs on a homogeneous distributed-memory computer system, this group
will execute the parallel agorithm with the same execution time as any other MPI group of
processes, just because all processors run at the same speed, and all communication links transfer
data at the same speed. However, if the MPI program runs on a HNOC, this group will execute
the paralel agorithm sometimes slower and sometimes faster than other groups of processes.
This is because different processors of the HNOC will execute the same computations at
different speeds, and different pair of processors will communicate at different speeds. MPI does
not facilitate creation of a group of processes where the processes are optimally selected taking
into account the speeds of the processes, and the latencies and the bandwidths of the
communication links between them. It is only a pure chance if the MPI group of processes
executes the parallel algorithm faster than any other MPI group of processes on the HNOC.

If there is more than one process per processor, the first p processes are used to execute the
MPI application. However, the HMPI application will select an optima set of processes
consisting of p processes dropping the rest of the processes from the computation when their
participation can degrade performance. The MPI communicator enBdconmm represents this
optimal set of processes in the HMPI application whereas it consists of first p processes from the
pre-defined MPI communication universe MPI _COVM WORLD in the corresponding MPI

application.
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The HMPI version of this parallel application involves first describing the performance model
of the parallel algorithm. The definition of EnBd shown in Figure 5.3 describes the performance
model of the heterogeneous algorithm of this parallel application.

The model describing the algorithm has 4 parameters.

o Parameter p specifies the number of abstract processors executing the algorithm;

o Parameter k specifies the number of nodes in a single subbody, whose data is computed
in the benchmark code that is truly representative of the underlying application;

* It issupposed that i -th element of the vector parameter d gives the number of nodesin
the subbody computed by the i -th abstract processor participating in the execution of the
algorithm;

* Parameter dep specifies the number of nodal values communicated between different
pairs of subbodies: dep[ 1] [ J] givesthe number of nodal values in the subbody J that
subbody | needsto compute its nodal values.

The coor d declaration introduces one coordinate variable | ranging from O to p- 1.

The node declaration associates the abstract processors with this coordinate system to form a
linear processor arrangement. It also describes the absolute volume of computation to be
performed by each of the processors. As a unit of measurement, the volume of computation
performed by some benchmark code is used. In this particular case, it is assumed that the
benchmark code computes the nodal values of k nodes in a single subbody. At each step of the
algorithm, abstract processor P, updates d[ I ] nodes. As computations during the updating of
one single subbody mainly falls into the calculation of nodal values, the volume of computations
performed by the abstract processor P, will be approximately d[ 1]/ k times larger than the

volume of computations performed by the benchmark code.
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The | i nk declaration specifies the volumes of data to be transferred between the abstract
processors at each step of the algorithm. Abstract processor P, owning subbody | receives
dep[1][L] remote boundary values from the subbody L owned by processor P,. Thus, the
tota volume of data to be transferred from P, to P, will be equa to

dep[I][L] *si zeof (doubl e) .

int main(int argc, char **argv) {
MPI _Comm enBdconm
int i, nme, k, E=0, H= 1,
HWPI _Group gi d;
voi d* nodel parans;
int p, niter; /* Inputs to the program */
struct EMBD body _t* bodies; /* Inputs to the program */
HWI Init(argc, argv);
if (HWPI_ls_menmber (HWPI _PROC WORLD GROUP) ) {
i nt output_p;
Body recon_body;
/1 Construct recon paraneters that are
/1 representative of the application

HI\/PI _Recon(&Serial _enBd, & econ_body, 1, &output_p);

if (HWI _Is_host()) {
HWPI _Pack_nodel _paraneters(p, k, d, dep, nodel _parans);
HWPI _Group_create(&gid, &HWPI Model EnBd, nodel parans);

if (HWI Is free())
HWPI _Group_create(&gid, &HWPI _Model EnBd, NULL);
if (HWPI _Is_nmenmber(&gid)) {
enBdconm = *(MPI _Conmt) HVPI _Get _com{ &gi d) ;
Initialize systen(p, bodies);
MPI _Comm r ank( &nBdconm &ne);
for (i = 0; i <niter; i++) {
Gat her _renote_H boundary_val ues(me, H, p, bodies, &enBdcomm;
Conpute_E val ues(ne, E, p, bodies);
Gat her _renote_E boundary_val ues(nme, E, p, bodies, &enB8dcomm;
Conpute_H val ues(ne, H, p, bodies);
}

}
if (HWPI _|Is nmenber(&gid)) HWI_ G oup_free(&gid);
HVPI _Fi nal i ze(0);

Figure 5.4: The most relevant code fragments of the HMPI program implementing the algorithm of EM3D.

320



HMPI Application Programming

The schene declaration describes how the abstract processors interact during the execution
of an iteration of the algorithm:

» Each processor Pouner first receives the remote values required for the calculation of the
nodal values in its subbody. During this communication operation, 100% of data that
should be sent from each processor Premote t0 Processor Powner @t this step will be sent. The
second nested par statement in the main f or loop of the schene declaration just
specifiesit. The par algorithmic patterns are used to specify that during the execution of
this communication, data transfer between different pairs of processors is carried out in
parallel.

» Each processor then computes the new values for each of the nodes in its subbody. The
processor will perform 100% of computations it should perform during this iteration. The
par agorithmic patterns are used here to specify that all abstract processors perform
their computationsin paralel.

Note that the above performance model describes only one iteration of the algorithm. This
approximation is accurate enough because at any iteration each processor performs the same
volume of computations, and the same volume of data is transferred between each pair of
Processors.

The most interesting code fragments of the HMPI parallel application are shown in Figure 5.4.
The HMPI runtime system is initialized using operation HVPI | ni t. Then, operation
HVPI _Recon updates the estimation of performances of processors using the serial EM3D
program computing nodal values for a single subbody. The computations performed by each

processor mainly fall into the execution of callsto function Ser i al _en8d.
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This is followed by the creation of a group of processes using operation
HWPlI _G oup_creat e. The members of this group then perform the computations and
communications of the heterogeneous parallel agorithm using standard MPI means. This is
followed by freeing the group using operation HVPI _G oup_f ree, and by finalizing the
HMPI runtime system using operation HMPI _Fi nal i ze.

On HNOC:s, the running time of the HMPI program shown above will normally be less than
the running time of the corresponding MPI program. This is because an HMPI group of
processes is created to execute the parallel algorithm faster than any other group of processes
including the groups of processes created using MPI means. The processes participating in the
HMPI group are chosen to minimize the execution time of the algorithm taking into account all
its main features, which have an impact on the application execution performance. The
application programmer describes al the main features of the paralel algorithm using the
performance model Em3d, which are:

» Thetota number of participating processes p;

» Thetotal volume of computations to be performed by each of the processes as specified
in node declaration. The volume of computations is mainly the computation of field
values of nodes in a sub-body thus depending on the number of nodes within a sub-body;

» Thetotal volume of datato be transferred between each pair of processes as specified by
the link declaration. The volume of data transferred equals the number of bytes of remote
boundary values communicated between the sub-bodies;

* How exactly the processes interact during the execution of the algorithm as specified by
the scheme declaration. Informally this looks like the description of the algorithm

describing the interaction between the processes during the execution of the algorithm.
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(a) Partition between processor columns. (b) Partition inside each processor column.

Figure 5.5: Example of two-step distribution of a 6 X 6 generalized block over a 3% 3 processor grid. The relative

0.11 025 0.05
speed of processors is given by matrix S=|0.17 0.09 0.08|. (a) At the first step, the 6X6 square is
0.05 0.17 0.03

distributed in a one-dimensional block fashion over processor columns of the 3X 3 processor grid in proportion
0.33:0.51:0.16 = 2:3:1. (b) At the second step, each vertical rectangle is distributed independently in a

one-dimensional block fashion over the processors of its column. The first rectangle is distributed in proportion

0.11:0.17:0.05 = 2:3:1. The second one is distributed in proportion 0.25:0.09:0.17 = 3:1: 2.

The third is distributed in proportion 0.05:0.08:0.03 = 2:3:1.

During the creation of the group of processes, the HMPI runtime system uses the information
from the performance model to solve the problem of selection of the optimal set of processes
running on different computers of a heterogeneous network.

It can also be seen from the MPI and HMPI programs described in this section that there is

essentially no change in code of the paralel agorithm executed by the members of the group of

323



HMPI Application Programming

Figure 5.6: One step of the algorithm of parallel matrix-matrix multiplication based on heterogeneous two-

dimensional block distribution of matrices A, B, and C. First, each r xr block of the pivot column a,, of matrix A

(shown shaded dark grey) is broadcast horizontally, and each r xr block of the pivot row bk of matrix B (shown

shaded dark grey) is broadcast verticaly.

processes participating in the parallel program. The main difference lies only in the creation of a

group of processes.

5.2 Examples of reqular HMPI application

An irregular problem is characterized by some inherent coarse-grained or large-grained structure
implying quite deterministic decomposition of the whole program into a set of processes running
in paralel and interacting via message passing. As a rule, there are essentia differences in
volumes of computations and communications to perform by different processes. The EM3D

problem is an example of an irregular problem.
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Unlike an irregular problem, for a regular problem the decomposition of the whole program
into a large set of small equivalent programs, running in parallel and interacting via message
passing, is the most natural one. Multiplication of dense matrices is an example of a regular
problem. The main idea of efficiently solving a regular problem is to reduce it to such an
irregular problem, the structure of which is determined by the irregularity of underlying
hardware rather than the irregularity of the problem itself. So, the whole program is decomposed
into a set of programs, each made from a number of the small equivalent programs stuck together

and running on a separate processor of the underlying hardware.

Matrix Multiplication

Consider the problem of parallel matrix multiplication (MM) on HNOCs. The algorithm for the
matrix operation C=AxB on a HNOC is obtained by modification of the ScaLAPACK
[CDD+96] 2D block-cyclic MM agorithm. The modification is that the heterogeneous 2D
block-cyclic data distribution of [KLO1] is used instead of the standard homogeneous data
distribution. Thus, the heterogeneous algorithm of multiplication of two dense sguare
(nxr )x(nxr) matrices A and B on an nkmgrid of heterogeneous processors can be summarised
asfollows:
 Each element in A, B, and C is a sguare r xr block and the unit of computation is the
updating of one block, i.e.,, a matrix multiplication of size r . Each matrix is partitioned
into generalized blocks of the same size (I xr )x(l xr), where m<| <n. The generalized
blocks are identically partitioned into p? rectangles, each being assigned to a different
processor. The area of each rectangle is proportional to the speed of the processor that

stores the rectangle. The partitioning of a generalized block is performed as follows:
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0 Each element in the generalized block is a square r xr block of matrix elements.
The generalized block isan | x| sguare of r xr blocks.

o First, thel x|l squareis partitioned into mvertical slices, so that the area of the |-

th dlice is proportiona to ZSJ. (see Figure 5.5(a)). It is supposed that blocks of
i=1

the j-th dlice will be assigned to processors of the j-th column in the mxm
processor grid. Thus, at this step, we balance the load between processor columns
in the mxmprocessor grid, so that each processor column will store avertical slice
whose area is proportional to the total speed of its processors.
o Then, each vertical dice is partitioned independently into mhorizontal dices, so
that the area of the i-th horizontal dlice in the j-th vertical dlice is proportional to
Sj (see Figure 5.5(b)). It is supposed that blocks of the i-th horizontal slice in the
j-th vertical slice will be assigned to processor P;j. Thus, at this step, we balance
the load of processors within each processor column independently.
* Ateachstepk,
o Eachr xr block ay of the pivot column of matrix A is sent horizontally from the
processor, which stores this block, to m1 processors (see Figure 5.6);
o Each rxr block by of the pivot row of matrix B is sent verticaly from the
processor, which stores this block, to m1 processors (see Figure 5.6);
« Each processor updates its rectangle in the C matrix with one block from the pivot row

and one block from the pivot column.
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typedef struct {int I; int J;} Processor;
algorithmParallel AXB(int m int r, int n, int I, int wWn,
{ int h[m{[n[n[n])
coord I=m J=m
node {I>=0 && J>=0: bench*(W J]1*(h[I1[JII[I]1[I])*(n/1)*(n/l)*n);};
link (K=m L=nm)
1>=0 && J>=0 && |! =K :
length*( W J]*(h[IT[II[IT[I])*(n/1)*(n/1)*(r*r)*sizeof (doubl e))
[Iv ‘J] '>[Kv ‘J]v
1>=0 && J>=0 && J'=L && ((h[I]1[JI[K][L])>0) :
length*(W JI]*(h[I][JII[KI[L])*(n/1)*(n/l)*(r*r)*sizeof (doubl e))
[Iv ‘J] '>[Kv L],
s
parent[0, 0] ;
schene
{
int k, *w, *h, *trow, *tcol;
Get_trow tcol(m w h, trow, tcol);
Processor Root, Receiver, Current;
for(k = 0; k < n; k++)
{
int Acolum = k%, Arow,
int Brow = k%, Bcol um,;
par (Arow = 0; Arow <I|; )
{ Get _matri x_processor (Arow, Acolumm, p, g, w, h, trow, tcol, &Root);
par (Receiver.l = 0; Receiver.l < m Receiver.|++)
par (Receiver.J = 0; Receiver.J < m Receiver.J++)
if((Root.l !'= Receiver.l || Root.J != Receiver.J) &&
Root.J != Receiver.J)
if((h[Root.l][Root.J][Receiver.|][Receiver.J]) > 0)
(100. 00/ (W Root . J] *(n/1))) %%
[Root.l, Root.J] -> [Receiver.l, Receiver.J];
Arow += h[Root.|][Root.J][Root. ][ Root.J];
par (Bcolum = 0; Bcolum < I|; )
{
Get _matri x_processor (Brow, Bcolumm, p, g, w, h, trow, tcol, &Root);
par (Receiver.l = 0; Receiver.l < m Receiver.|++)
if(Root.l != Receiver.l)
(100. 00/ ((h[Root. ][ Root.J][Root.I][Root.J])*(n/l))) %W
[Root.l, Root.J] -> [Receiver.l, Root.J];
Bcol uim += w Root . J];
par(Current.l = 0; Current.l < m Current.|++)
par(Current.J = 0; Current.J < m Current.J++)
(100.00/n) %o [Current.l, Current.J];
}
s
s

Figure 5.7: Specification of the performance model of the algorithm of parallel matrix multiplication based on
heterogeneous two-dimensional block-cyclic distribution of matrices in the HMPI's performance definition

language.

327



HMPI Application Programming

The definition of Par al | el AxB given in Figure 5.7 describes the performance model of this
heterogeneous algorithm.

The performance model Par al | el AxB describing the algorithm has 6 parameters. Parameter
m specifies the number of abstract processors along the rows and along the columns of the
processor grid executing the algorithm. Parameter r specifies the size of a square block of matrix
elements, the updating of which is the unit of computation of the algorithm. Parameter n is the
size of sguare matrices A, B, and C measured in r xr blocks. Parameter | is the size of a
generalised block also measured inr xr block.

Vector parameter w specifies the widths of the rectangles of a generalised block assigned to
different abstract processors of the nkmgrid. The width of the rectangle assigned to processor P;
is given by element W J] of the parameter (see Figure 5.5). All widths are measured in r xr
blocks.

Parameter h specifies the heights of rectangle areas of a generalised block of matrix A, which
are horizontally communicated between different pairs of abstract processors. Let R; and Ry,
be the rectangles of a generalised block of matrix A assigned to processors P;; and Py,
respectively. Then, h[ 1 ][ J] [ K] [ L] gives the height of the rectangle area of R;, which is
required by processor Pk, to perform its computations. All heights are measured in r xr blocks.

Figure 4.18 illustrates possible combinations of rectangles R; and R« in a generalised block.
Let us call an r xr block of R; a horizontal neighbour of Rk if the row of r xr blocks that
contains thisr xr block will also contain an r xr block of Rx.. Then, the rectangle area of R;,
which is required by processor Pk to perform its computations, comprises of al horizonta

neighbours of Ry, .
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Figure 4.18(a) shows the situation when rectangles R;; and Rx. have no horizontal neighbours.
Correspondingly, h[ ][ J] [ K] [ L] will be zero.

Figure 4.18(b) shows the situation when all r xr blocks of R; are horizontal neighbours of
R«L. Inthat case, bothh[ 1 ][ J] [ K] [ L] will be equal to the height of Ry;.

Figures 4.18(c) and 4.18(d) show the situation when only some of the r xr blocks of R; are
horizontal neighbours of Rx.. Inthiscase, h[ 1 ][ J] [ K] [ L] will be equal to the height of the
rectangle subarea of R; comprising the horizontal neighbours of Rg,.

Notethat h[1][J][1]][J] specifiesthe height of Ry, and h[ ][ J][K][L] will aways
beequa toh[ K] [L][I]1[J].

The coor d declaration introduces 2 coordinate variables, | and J, both ranging from O to m

The node declaration associates the abstract processors with this coordinate system to form
an mxmgrid. It also describes the absolute volume of computation to be performed by each of the
processors. As a unit of measure, the volume of computation performed by the code multiplying

two r xr matrices is used. At each step of the algorithm, abstract processor P;; updates

(w; Xh;)xn, rxr blocks, where w;,h; are the width and height of the rectangle of a
generalised block assigned to processor Py;, and n, isthe total number of generaised blocks. As

computations during the updating of one r xr block mainly fal into the multiplication of two
r xr blocks, the volume of computations performed by the processor P; at each step of the

agorithm will be approximately (w,; xh,;)xn, times larger than the volume of computations
performed to multiply two rxr matrices. w,; is given by wJ], h, is given by

h[11[3]I[1][J], n, isgiven by (n/1)*(n/1), and the total number of steps of the
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algorithm is given by n. Therefore the total volume of computation performed by abstract
processor Py will be W J]*h[I][J][1][Jd]*(n/1)*(n/1)*n times bigger than the
volume of computation performed by the code multiplying two r xr matrices.

The | i nk declaration specifies the volumes of data to be transferred between the abstract
processors during the execution of the algorithm. The first statement in this declaration describes
communications related to matrix A. Obviously, abstract processors from the same column of the
processor grid do not send each other elements of matrix A. Abstract processor P;; will send
elements of matrix A to processor Px. only if its rectangle R; in a generalised block has
horizontal neighbours of the rectangle Ry, assigned to processor Py, . In that case, processor Py;

will send @l such neighbours to processor Px.. Thus, in tota processor Py will send N, xn,

r xr blocks of matrix A to processor P, where N, isthe number of horizontal neighbours of
rectangle Rq«_ in rectangle R, and n; is the total number generalised blocks. N, is given by
W JII* h[I][II[KI[L], n,isgivenby (n/l)*(n/l),andthevolume of datainoner xr
block is given by (r*r) *si zeof (doubl e) . Therefore the total volume of data transferred
from processor P to processor PxL will be given by
WJII*h[I][I][KI[LI*(n/1)*(n/1)*(r*r)*si zeof (doubl e) .

The second statement in the | i nk declaration describes communications related to matrix B.
Obvioudly, only abstract processors from the same column of the processor grid send each other
elements of matrix B. In particular, processor P; will send all itsr xr blocks of matrix B to all
other processors from column J of the processor grid. The total number of r xr blocks of matrix
B assigned to processor Pyjisgivenbyw J] *h[ ] [J][1][Jd]*(n/1)*(n/l).

The schene declaration describes n successive steps of the algorithm. At each step k,
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A row of r xr blocks of matrix B is communicated vertically. For each pair of abstract
processors P,; and Px; involved in this communication, Py; sends a part of this row to Pg.
The number of r xr blocks transferred from P; to Pxy will be w, x\/nTI, where \/E is

the number of generalised blocks along the row of r xr blocks. The total number of r xr

blocks of matrix B, which processor Pj; sends to processor Py, is (W, xh;)xn,.

\NIJ X \ ng _ 1 .
Therefore, ——————x100 = —————x100percent of all data that should be in
(W|J x hIJ) x ng hIJ x \ ng

total sent from processor P,; to processor Pxj will be sent at the step. The first nested par
statement in the main f or loop of the schene declaration just specifies this fact. The
par agorithmic patterns are used to specify that during the execution of this
communication, data transfer between different pairs of processors is carried out in
parallel.

A column of r xr blocks of matrix A is communicated horizontaly. If processors P; and

PxL are involved in this communication so that P;; sends a part of this column to Pk,

then the number of r xr blocks transferred from Py; to Pk, will be H,; x\/E , Where
H . isthe height of the rectangle area in a generalised block, which is communicated
from Py; to Py, and \/n7 is the number of generalised blocks along the column of r xr

g

blocks. The total number of r xr blocks of matrix A, which processor P;; sends to

processor PkL, is Ny XNy Therefore,
H,, x./n H 5 X4/N 1

L‘/T’xlOO = B x100 = — = x100 percent of al data
NIJKLXng (HIJKLX\NIJ)Xng Wi, x\/rTg

that should be in total sent from processor P,; to processor Py, will be sent at the step.
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The second nested par statement in the main f or loop of the schene declaration
specifies this fact. Again, we use the par agorithmic patterns in this specification to
stress that during the execution of this communication, data transfer between different
pairs of processorsis carried out in parallel.

« Each abstract processor updates each of itsr xr block of matrix C with one block from

the pivot column and one block from the pivot row, so that each block c; (i, j 0{1...,n})
of matrix C will be updated to have the values ¢; =c; +a, xb,;. The processor performs

the same volume of computation at each step of the algorithm. Therefore, at each of n
. : 100

steps of the algorithm the processor will perform —— percent of the volume of
n

computations it performs during the execution of the algorithm. The third nested par
statement in the main f or loop of the schemne declaration just specifies this fact. The
par algorithmic patterns are used here to specify that all abstract processors perform

their computationsin paraldl.

The function Get _matri x_processor used in the schene declaration is a matrix
partitioning API, which is part of the Heterogeneous Data Partitioning Interface (HDPI)
discussed in Chapter 4. It is used to iterate over abstract processors that store the pivot row and
the pivot column of r xr blocks. It returns in its last parameter the grid coordinates of the
abstract processor storing the r xr block, whose coordinates in a generalised block of a matrix

are specified by itsfirst two parameters.

The performance model Par al | el AxB shown in the Figure 5.7 is applicable to the

heterogeneous algorithm with COLUMN_BASED data distribution. However this model can be

332



HMPI Application Programming

int m |, r, n;
int main(int argc, char** argv) {
int optimal _generalised_bl ock_size;
int *w, *h; //Matrix partitioning paraneters
t ypedef struct {double *a; double *b; double *c; int r;}
Recon_par ans;
HWPI _Group gid;
voi d *nodel _par ans;
doubl e *a, *b, *c;

HWPl I nit(argc, argv);
if (HWPI_ls_menber ( HWPI _PROC WORLD GROUP)) ({
i nt output_p;
Recon_par ans recon_par ans;
Initialize(a, b, ¢, r, & econ_parans);
HWPI _Recon( & MkM &recon_parans, 1, &output_p);

}
if (HWI _Is_host()) {
int bsize;
doubl e tinme, mn_tine=DBL_MAX;
for (bsize = m bsize < n; bsize++) {
Partition_matrix_2d(
p, g, 1, speeds, NULL, NULL, bsize, bsize, COLUMN_BASED,
w, h, NULL, NULL, NULL, NULL);
HWPI _Pack_nodel _paraneters(p, g, n, bsize, r, w, h, nodel _parans);
time = HWPI _Ti meof (&HVPI _Mbdel _Paral | el AxB, nopdel _par ans);
if (tine <mn_tinme) {
opti mal _general i sed_bl ock_si ze = bsi ze;
mn_tine = tine;

}

| = optimal _generalised_bl ock_size;

if (HWI _ls_host()) {
HWPI _Pack_nodel _paranmeters(p, gq, n, |, r, w, h, nodel _parans);
HWPI _Group_create(&gid, &HWPI _Model _Paral | el AxB, nodel _parans);

}
if (HWI _Is free())

HWPI _Group_create(&gid, &HWPI _Model Paral | el AxB, NULL);
if (HWI _Is_menber(&gid)) {

I\}I'DI _Commt grid_conm = (MPI _Comm¥) HWPI _Get _com( &gi d) ;
/1 comput ations and conmuni cati ons are performed here

/1 using standard MPI routines.
I

}
if (HWI _I's_nmenber(&gid)) HWI_G oup_free(&gid);
HWPI _Fi nal i ze(0);

Figure 5.8: The core of the HMPI program implementing the algorithm of parallel matrix multiplication based on

heterogeneous two-dimensional block-cyclic distribution of matrices.

333



HMPI Application Programming

typedef struct {int |; int J;} Processor;
aIgorithmParaIIeIChoIesky(int m int r, int n, int |, int wWni,
int h[m[m[ni[n) {
coord I=m J=m

node {I>=0 && J>=0: bench*(Get_ny_elenments(l, J, m m w, h,
NULL, NULL, COLUWMN_BASED, ‘L')*n);};
link (KEm L=m) {
1>=0 && J>=0 && |!=K && J==L:
I ength*(Get_diagonal (I, J, m m w h, NULL, NULL, COLUWN_BASED)
*(n/l-1)*r*r*sizeof (double)) [I, J] ->[K LJ];
1>=0 && J>=0 && | <K && J==L:
I ength*(Get _diagonal (I, J, m m w, h,
NULL, NULL, COLUWN_BASED)*r*r*sijzeof(double)) [I, J] -> [K L];
1>=0 && J>=0 && J!=L:
length*(Get_ny_elements(l, J, m m w, h,
NULL, NULL, COLUWN BASED, ‘L’)*r*r*sizeof(double)) [I, J] -> [K LJ;

b
parent[ 0, 0];
scheme {
int i, k, *w, *h, *trow, *tcol; Processor Root, Roots, Receiver, Current;
CGet _trow tcol(m w, h, trow, tcol);
for(k = 0; k <n; k++) {
Get _matrix_processor(k%, k%, m m w h, trow, tcol, &Root);
(100. 00/ (Get _ny_el enments(Root. 1, Root.J, m m w, h,
NULL, NULL, COLUWN BASED, ‘L’)*n)) %6t [Root.l, Root.J];
if ((k+1) == n) break;
par (Receiver.l = 0; Receiver.l < n Receiver.|++)
par (Receiver.J = 0; Receiver.J < m Receiver.J++)
if (Root.J == Receiver.J)
if (((k <(n-1)) & (Root.l != Receiver.l))
Il ((k >=(n-1)) & (Root.| < Receiver.l)))
(100. 00/ (Get _di agonal (Root. I, Root.J, m m w, h, NULL, NULL, COLUVN_BASED)
*(n/l))) Wo[(Root.1), (Root.J)] -> [(Receiver.l), (Receiver.J)];
par (Current.l = 0; Current.l < m Current.|++)
par (Current.J = 0; CQurrent.J < m Current.J++)
if (Current.J == Root.J) {
int e = Get_ny_elenents(Current.l, Current.J, m m w h, NULL, NULL,
COLUMN_BASED, ‘L’)*n*r;
if ((k <(n-1)) || (Current.l > Root.l))
(100.00*(1 + log(r))/e) Wo[Current.l, Current.J];

}
par (j = k+1; j < n; j++) {
Get _natrix_processor(j%, k%, m m w, h, trow, tcol, &Roots);
(100.00*(r*r + r*r)/(CGet_my_el enents(Roots.l, Roots.J, m m w h, NULL, NULL,
COLUWN_BASED, ‘L’)*n*r*r*r)) 9% |[(Roots.l), (Roots.J)];
}
par (j = k+1; j < n; j++) {
Get _nmatrix_processor (k%, k%, m m w h, trow, tcol, &Roots);
par (Receiver.l = 0; Receiver.l < m Receiver.|++)
par (Receiver.J = 0; Receiver.J < m Receiver.J++)
if (Roots.J != Receiver.J)
(100. 00/ (Get _ny_el enents(Roots. 1, Roots.J, m m w, h, NULL, NULL,
COLUWN_BASED, ‘L’)) %% [Roots.l, Roots.J] -> [Receiver.|l, Receiver.J];

par (Qurrent.l = 0; Current.l < m Current.|++)
par (Current.J = 0; Current.J < m Current.J++)
((2100. 00*Get _nmy_kk_el ements(k, Current.l, Current.J, m m w, h, NULL, NULL,
COLUWN_BASED, ‘L’))
/
(Get_ny_elements(Current.l, Current.J, m m w, h,
NULL, NULL, COLUMN BASED, ‘L’')*n)) %t [Current.l, Current.J];

Figure 5.9: Specification of the performance model of the algorithm of parallel Cholesky factorization based on
heterogeneous two-dimensional block-cyclic distribution of matrices in the HMPI's performance definition

language.
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made generic and applicable for any type of data distribution by adding an extra parameter to its
parameter list (the type of distribution) and using data partitioning APl of HDPI in the body of
the performance model. This extra parameter is the type of data distribution such as

COLUMN_BASED or ROW BASED or CARTESI AN or RECURSI VE.

algorithm Parallel AXxB(int m int r, int n, int |,
int type_ of distribution, int speeds[nfm)

The most interesting fragments of the rest code of the HMPI parallel application are shown in
Figure 5.8. The HMPI runtime system is initialised using operation HVPI _I ni t. Then,
operation HVPl _Recon updates the estimation of performances of processors using the serial
multiplication of test matrices of size r xr . The computations performed by each processor

mainly fall into the execution of callsto function r Mk M

The next block of code, executed by the host-processor, uses operation HVPI _Ti neof to
predict the total time of execution of the parallel algorithm. This operation is used to calculate
the optimal generalized block size, one of the parameters of the heterogeneous paralel

algorithm.

This is followed by the creation of a group of processes using operation
HWPI G oup_creat e. The members of this group then perform the computations and
communications of the heterogeneous paralel algorithm using standard MPI means. This is
followed by freeing the group using operation HVPI _G oup_f r ee and the finaization of

HMPI runtime system using operation HVPI _Fi nal i ze.

Cholesky Factorization

Consider the problem of parallel Cholesky factorization on HNOCs.
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Cholesky Factorization factors a symmetric, positive definite matrix A into a product of a
lower triangular matrix L and its tranpose; i.e., A= L - L'. One can partition the matrices A, L, and
L' and write the system as

{An Aél} — {Ln 0 } [ Lt11 Lt21 — L11|—t11 L11|—t21
Ay Ay Ly Ly 0 L, Lol Luby + Lyl

If L1, the lower triangle Cholesky factor of Aq; is known, then the block equations can be

arranged as
Ly = All)™,
A, « A,-LyL, =L,L.,.

The factorization can be done recursively applying the steps outlined above to the updated
matrix As.

The agorithm of execution of the factorization on a HNOC is obtained by modification of the
ScaLAPACK [CDD+96] 2D block-cyclic Cholesky algorithm. The modification is that the
heterogeneous 2D block-cyclic data distribution of [KLO1] is used instead of the standard
homogeneous data distribution. The heterogeneous algorithm of factorisation of a (nxr )x(nxr)
matrix A on an mxmgrid of heterogeneous processors can be summarised as follows:

1. Each element in A is a square r xr block. Each matrix is partitioned into generalized
blocks of the same size (I xr )x(l xr), where m<| <n. The generalized blocks are
identically partitioned into p? rectangles, each being assigned to a different processor.
The partitioning of a generalized block is shown in Figure 5.5(a) and 5.5(b);

2. Thelargest Aj; belonging to one processis selected and this process computes Ls;

3. L is broadcast to other processes of the grid column and the grid column processes

compute Lys;
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4. Ly isbroadcast to processes of the other grid columns,
5. Ly istransposed using the broadcast values of the Ly, on the grid columns;
6. All processes update Az.
The definition of Par al | el Chol esky givenin Figure 5.9 describes the performance model
of this heterogeneous algorithm.
The performance model Par al | el Chol esky describing the agorithm has 6 parameters.
These parameters hold the same meaning as those used in the performance model for matrix-
matrix multiplication presented previously.

The coor d declaration introduces 2 coordinate variables, | and J, both ranging from O to m

The node declaration associates the abstract processors with this coordinate system to form a
mxmgrid. It aso describes the absolute volume of computation to be performed by each of the
processors. As a unit of measure, the volume of computation performed by the code factorizing
an  rxr matrix  is  used. Each  abstract  processor  performs  totally
Cet _ny_elenents(.)*n*r*r*r number of computations where the function
Get _ny_el enents (part of the matrix partitioning APl of HDPI) returns the number of
elements owned by the processor in the lower triangular half of the factorized matrix including
the diagona elements. The purpose of this function is illustrated in Figure 5.10(b). Since the
benchmark code factorizing an r xr matrix performs r xr xr computations, the total volume of
computation performed by abstract processor P will be

Get _my_ eements(...)xnxr xrxr
rXrxr

=Get _my_elements(...)xn times bigger than the volume

of computation performed by the code factorizing anr xr matrix.
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Figure 5.10. The matrix A consists of 4 generalized blocks of size 16x16. (a) The total number of r xr blocks along
the diagonal owned by processors Ry;, Ry, and Rs; given by function Get_diagonal() are 7, 5, and 4 respectively.
(b) The total number of r xr blocks given by the function Get_my_elements() belonging to processor owning the
rectangle Ry; are 42x3=126. The total number of r xr blocks belonging to processor owning the rectangle R;, are
30+2x15=60. (c) At step k, the total number of Ay r xr blocks given by the function Get_my_ kk_elements()
belonging to processor owning the rectangle R;; are 42+2x18=78. The total number of r xr blocks belonging to

processor owning the rectangle R;, are 30+2x15=60.
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The | i nk declaration specifies the volumes of data to be transferred between the abstract
processors during the execution of the algorithm. The first statement in this declaration describes
communications related to broadcast of L1;. At each step k of the algorithm where k < (n-1),
the abstract processor P;; owning L1 broadcasts it to abstract processors Px; from the same
column of the processor grid, i.e., abstract processors Px; where {I K=1--ml # K}. The
number of elements broadcast by each abstract processor Py; is equal to the number of elements
owned by it on the diagonal of the matrix A. The number of r xr blocks owned by abstract
processor P,; on the diagonal in a generalized block is given by function Get _di agonal (part
of the matrix partitioning APl of HDPI), which is illustrated in Figure 5.10(a). Since there are
(n/1-1) generalized blocks (excluding the last generalized block), the total number of r xr
blocks broadcast by abstract processor Py; is Get _di agonal (..)*(n/ | -1) . The volume of
data in one r xr block is given by (r*r) *si zeof (doubl e), so the tota volume of data
transferred from processor P,; to processor Px; will be given by Get _di agonal (..)*(n/ | -
) *(r*r)*sizeof (doubl e).

The second statement in the | i nk declaration describes communications of Li; where
k=>(n-1), i.e, communications in the last generalized block. At each step k of the algorithm
where k = (n-1), the abstract processor P;; owning L1 broadcasts it to abstract processors Pk,
from the same column of the processor grid with coordinate K greater than the coordinate | of
abstract processor Py, i.e., abstract processors Py; where {I,K =1.--m,1 <K} . The number of
elements broadcast by each abstract processor Py, is equal to the number of elements owned by
it on the diagonal of the factorized matrix. Since there is one generalized block, the total number
of r xr blocks broadcast by abstract processor P; is Get _di agonal (..) and since the volume

of data in one r xr block is given by (r*r) *si zeof (doubl e), the total volume of data
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transferred  from  processor P;; to processor Pyxy; will  be given by
Get _diagonal (..)*(r*r)*si zeof (doubl e) .

The third statement in the | i nk declaration describes broadcast of L,;. At each step k of the
algorithm, the abstract processor P; owning the elements of panel L, broadcasts its elements to
abstract processors Pk, from the other columns of the processor grid, i.e., abstract processors Py,
where {I,J,K,L=1---m,J # L} . The number of elements broadcast by each abstract processor
Pxy is equa to the number of elements owned by it in the lower triangular half of the matrix A.
The number of r xr blocks owned by abstract processor P, in the lower triangular half of the
factorized matrix is given by function Get _ny_el enment s, which is illustrated in Figure
5.10(b). Since the volume of data in one r xr block is given by (r*r) *si zeof (doubl e) ,
the total volume of data transferred from processor P,; to processor Pk will be given by
Get _ny_elenents(..)*(r*r)*sizeof (doubl e).

The schene declaration describes n successive steps of the agorithm. At each step k,

* Thelower triangle Cholesky factor Li; of A1 is computed by the processor Root owning
the r xr block A;;. The total number of computations performed by each processor
during the execution of the algorithm isequal to Get _ny_el enent s(..) *n*r*r*r,
S0 a each such step, the processor will perform

100xr xr xr _ 100
Get _my_eements(...)xnxrxrxr Get _my_eements(...)xn

percent of the volume

of computations it performs during the execution of the algorithm.
* The lower triangle Cholesky factor L1 of Az is broadcast by processor Py, to processors
Pxs belonging to the same column of the processor grid where {I yK=1--ml £ K} At

this step, processor P; sends a volume of data equivaent to
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(r*r)*si zeof (doubl e) to Pxa. Therefore

100xr xr x sizeof (double) _ 100 percent of all

Get _diagonal (...) % (T) xr xr x sizeof (double) Get _diagonal (...) (:‘)

data that should be sent from Py; to Px;is sent at this step. We use the par algorithmic
patterns in this specification to stress that during the execution of this communication,
datatransfer between different pairs of processorsis carried out in parallel.

Each abstract processor then computes the inverse of the Lj; that it received in the
previous step followed by the transpose of the result. The transpose of an r xr block
takesr xr number of computations and the inverse of an r xr block takesr xr x| og(r)
number of computations. Since the total number of computations performed by each
processor during the execution of the agorithm is equal to
CGet _ny_elenents(.)*n*r*r*r, a each such step, the processor will perform

100x (r xr +r xr xlogr) _ 100x (1+logr)

= percent of the
Get_my_eements(..)xnxrxrxr Get_my_elements(...)xnxr

volume of computations it performs during the execution of the algorithm.

Each abstract processor multipliesitsr xr blocks of Az by (L‘ll)_lthat it computed in the

previous step to get L. This step consists of n- ( k+1) sub-steps. At each such sub-step,

theresulting r xr blocks of L, from the multiplication of Ay by (Ltll)_laretransposed. At
each such sub-step, the total number of computations involved in the multiplication is
r xr and the total number of computations involved in atranspose isr xr . Since the total
number of computations performed by each processor is equa to

Get _ny_elenents(..)*n*r*r*r, a each such sub-step, the processor will perform
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100 (r xr +r xr) _ 100 2
Get_my_ eements(..)xnxrxrxr Get_my_ elements(..)xnxr

percent of the

volume of computations it performs during the execution of the algorithm.

Each abstract processor Py; then broadcasts its r xr blocks in panel L,; to abstract
processors Py, from the other columns of the processor grid, i.e., abstract processors Py,
where {I,J,K,L =1--m,J # L} . This step consists of n- ( k+1) sub-steps. At each such
sub-step, the abstract processor Py; broadcasts a volume of data equivalent to
(r*r)*si zeof (doubl e) to Px.. Since the total volume of data transferred from
processor P to processor PxL is

Cet _ny_elenents(..)*(r*r)*sizeof (doubl e), therefore

100xr xr x sizeof (double) _ 100
Get _my_eements(...)xr xr xsizeof (double) Get_my _elements(...)

percent of all

data that should be sent from Py; to Py is sent at this step.

Each abstract processor updates each itsr xr block of matrix Ay. At each such step, the
number of r xr blocks updated by each abstract processor in Ay, is given by the function
CGet _ny_kk el enents, which is illustrated in Figure 5.10(c). Therefore, each
abstract processor will perform

100xGet _my _kk _elements(...)xr xr xr :100><Get_my_kk_elements(...)

percent of
Get _my_eements(...)xnxr xrxr Get _my_elements(...)xn

the volume of computations it performs during the execution of the algorithm. The par
algorithmic patterns are used here to specify that all abstract processors perform their

computationsin paraldl.
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The performance model Par al | el Chol esky shown in the Figure 5.9 is applicable to the
heterogeneous algorithm with COLUMN_BASED data distribution. However this model can be
made generic and applicable to any type of data distribution by adding an extra parameter to its
parameter list (the type of distribution) and using data partitioning APl of HDPI in the body of
the performance model. This extra parameter is the type of data distribution such as

COLUMN_BASED or ROW BASED or CARTESI AN.

al gorithm Paral |l el Chol esky(int m int r, int n, int |,
int Wm, int h[mM[mM[nm[n, int type_of _distribution))

The most interesting fragments of the rest code of the HMPI parallel application are similar

to those shown for HMPI application performing matrix-matrix multiplication in Figure 5.8.

5.3 Experimentswith HM PI

This section presents some results of experiments with the HMPI applications presented in
Chapters 5.1 and 5.2. Before we present the results, we describe the steps to build and run an

HMPI application using Virtual Parallel Machine commands.

5.3.1 Building and Running an HM PI Application

Outlined below are steps to build and run an HMPI application. More details can be obtained
from the HMPI Programmer’ s guide and installation guide presented in Appendix B.

1). The first step is to describe your Virtual Parallel Machine (VPM). This consists of all the
machines being used in your HMPI application. VPM is opened after successful execution of the
command npccr eat e. Consider for example the VPM file describing the heterogeneous
network shown in Table 5.1:

# Machi nes and the nunber of processes to run on each nachi ne
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# Nunber in square brackets indicate the nunber of processors
pglcluster0l 2 [2]
pglcl uster02 2 [2]
pglcl uster03 2 [ 2]
pglcl uster04 2 [2]
zaphod 1 [1]
csparlx02 1 [1]
csserver 1 [1]
csultra0l 1 [1]
csultra02 1 [1]
csultra03 1 [1]
csultra04 1 [1]
cssparc01 1 [1]

2). Compile the performance model files.

shel I $ hnpi cc Parall el AxB. npc

Thisfileistrandated intoaC file“Par al | el AxB. c”.

3). Broadcast the source files to all the machinesin the virtual parallel machine.
shel I $ hnpi bcast mxm ¢ Parall el AxB. c

4). Create the target program.

shel 1'$ hnpiload —o mxm nxm c Paral | el AXB. ¢

5). Run the target program.

shel | $ hnpirun mxm

Probl em si ze(n)=1000, tine(sec)=13

5.3.2 Numerical Results

Note that the figures showing the performances of the computersin the tables in this section give
the average speeds measured at runtime during the experiments. The computers used in the
experiments are connected to a communication network, which is based on 100 Mbit Ethernet

with
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Machine Total . .
. Relative | Relative
Name . cpu Main Cache
Architecture Speed Speed
(Number of MHz | Memory | (kBytes)
(mxm) | (cholesky)
Pr ocessor s) (mBytes)
Linux 2.4.18-10smp
pglcluster0l (2) | |- (R) XEON(TM) 1977 1024 512 269 341
Linux 2.4.18-10smp
pglcluster02 (2) | |- (R) XEON(TM) 1977 1024 512 269 341
Linux 2.4.18-10smp
pylcluster03(2) | |~ (R) XEON(TM) 1977 1024 512 269 341
Linux 2.4.18-10smp
pglcluster04 (2) Intel(R) XEON(TM) 1977 1024 512 269 341
zaphod (1) Linux 2.4.18-14 497 128 512 170 215
csparlx02 (1) Linux 2.4.18-14 497 256 256 121 170
csserver (1) Linux 2.4.18-10smp 498 1024 512 105 175
SunOS 5.8 sundu sparc
csultra01 (1) SUNW, Ultra-5_10 440 512 2048 46 100
SunOS 5.8 sun4u sparc
csultra02 (1) SUNW.Ultra5 10 440 512 2048 46 100
SunOS 5.8 sun4u sparc
csultra03 (1) SUNW,Ultra5. 10 440 512 2048 46 100
SunOS 5.8 sundu sparc
csultrad4 (1) SUNW,Ultra5 10 440 512 2048 46 100
SunOS 5.5 Sun4dm
arcOl (1) sparc 110 64 512 7 16
P SUNW,SPARCstation-
5

Table 5.1: Specifications of the sixteen heterogeneous processors to demonstrate the efficiency of HMPI over MPI.

a switch enabling parallel communications between the computers. The experimental results are
obtained by averaging the execution times over a number of experiments.

A heterogeneous local network of 16 different Solaris, and Linux workstations shown in Table
5.1 is used in the experiments presented in Figures 5.11, 5.12, and 5.13. The initia static
structure of the executing model of this network of computers is automatically obtained by the
HMPI environment and saved in the form of an ASCII file as shown below:

paral l el (0.49, 0.97) c62377 c967039 c801049
#pglcl usterO1

s2 p6667 n2 serial c2285064 c107326590 c99523787
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#pglcl ust er 02

s2 p5556 n2 serial

#pglcl ust er 03

s2 p5556 n2 seri al

#pglcl ust er 04

s2 p6905 n2 seri al

#zaphod

sl p2632 nl serial

#cspar | x02

sl p2440 nl serial

#csserver

sl p2223 nl serial

#csul trall
sl p736 nl
#csul tral2
sl p715 nl
#csul tra03
sl p720 nl
#csul tra04
sl p720 nl
#cssparcO1

sl p136 nl

seri al

seri al

seri al

seri al

seri al

HMPI Application Programming

€c1312665 c80473880 c98430419

€c1956722 c78885862 c99667528

€c2540606 c104561354 c100463519

€c37569267 ¢145325990 ¢292140157

€c17844657 c192059962 c245767189

€c15790320 ¢142923824 c213840112

55266123 c197956951 c349384270

c44081312 c201423430 c186310535

€c67108864 c201423430 c295753493

c44081312 c201831658 ¢185115801

€c6871230 c39752890 c18018695
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Figure5.11: Results obtained using the heterogeneous network of computers shown in Table 5.1. (a) Comparison of
execution times of the EM3D algorithm between HMPI and MPI. (b) The speedup of EM3D algorithm obtained

using HMPI over MPI.

Here, each computer is characterized by 7 parameters. The first parameter, s, determines the
number of processors. As can be seen, the computers pglcl ust er 01, pglcl uster02,
pglcl uster03, and pglcl uster04 are dua processor computers and the rest are
uniprocessor computers. The second parameter, p, is the performance of the computer as
determined by the execution of serial test code. In this case the cluster of computers
pglcl uster01, pglcl uster02, pglcluster03, and pglcl uster04 arethe most
powerful and the computer csspar c01 istheleast powerful.

Note that at runtime HVPlI _Recon updates this performance value of the parameter for each
participating computer. We measure the relative speeds with the core computation of the
algorithm (updating of a matrix). Note that the relative speed does not depend on the size of
problem for the wide range of matrix sizes used in our experiments. The relative speeds

measured for this network are shown in Table 5.1. In the case of matrix-matrix multiplication,
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the fastest computer pglcl uster 01 is amost 40 times faster than the slowest computer
csspar c01. In the case of Cholesky factorization, the fastest computer pglcl ust er 01 is20
times faster than the slowest computer csspar cO1.

The third parameter, n, determines the total number of parallel processes to run on the
computer. In this case one processis run per processor.

The fourth parameter determines the scalability of the communication layer provided by the
computer. In this case, all computers provide serial communication layers.

Finally, the last three parameters determine the speed of point-to-point data transfer between
processes running on the same computer as a function of size of the transferred data block size.
The first of them specifies the speed of transfer of a data block of 64 bytes (measured in bytes
per second), and the second and third are for blocks of 642 and 64° bytes respectively.

The homogeneous communication space of higher level is also characterized by those three
parameters. Besides, the layer is detected as a parallel communication layer with factors 0.49 and
0.97 characterizing the level of parallelism of broadcast and gather correspondingly.

Figure 5.11(a) shows a comparison of the execution times of the HMPI application and the
standard MPI application executing the EM3D agorithm. Figure 5.11(b) demonstrates the
speedup of the HMPI program over the MPI one. The HMPI application is amost 2 times faster
than the standard MPI one.

Figure 5.12(a) shows a comparison of the execution times of the MM algorithm between the
HMPI application and the standard MPI application using homogeneous 2D block-cyclic data
distribution. Figure 5.12(b) demonstrates the speedup of the HMPI program over the MPI one.
The results are obtained for the value of r equal to 8 and the optima vaue of the size of

generalized block | , which is shown to be 96 in Figure 5.12(c). It is observed that the execution
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Figure 5.12: Results obtained using the heterogeneous network of computers shown in Table 5.1. (a) A comparison
of the execution times for MM agorithms using HMPI and MPI. (b) The speedup of the MM algorithm obtained
using HMPI over MPI. (c) Execution times of the MM algorithm obtained using HMPI for increasing values of

generalized block size l. The optimal generalized block size is 96.
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Figure 5.13: Results obtained using the heterogeneous network of computers shown in Table 5.1. (a) A comparison
of execution times for the Factorization algorithm using HMPI and MPI. (b) The speedup of the Factorization

algorithm obtained using HMPI over MPI.

times of the standard MPI application using homogeneous 2D block-cyclic application are the
same no matter what size of generalized block is used, that is, the results are independent of the
size of generalized block. Under these circumstances the HMPI application is 18 times faster
than the standard MPI one.

Figure 5.13(a) shows a comparison of the execution times of the factorization algorithm
between the HMPI application and the standard MPI application using homogeneous 2D block-
cyclic data distribution. Figure 5.13(b) demonstrates the speedup of the HMPI program over the
MPI one. The results are obtained for the value of r equal to 8 and the optimal value of the size
of generalized block | equal to 72. The HMPI application is more than 2 times faster than the

standard MPI one.
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The next set of experimental results presented in Figures 5.14, 5.15, and 5.16 uses a small
heterogeneous local network of 9 different FreeBSD, Solaris, and Linux workstations shown in
Table5.2.

The initial static structure of the executing model of this network of computers is
automatically obtained by the HMPI environment and saved in the form of ASCII file as shown
below:

paral | el (0.49, 0.97) c209824 c3133982 c10859499
#af f | at us

sl p32001 nl serial ¢32311675 c946416696 c299734975
#ari es2

sl p32001 nl serial c29252581 c423396943 c200739505
#pglcl usterO1

s2 p22501 n2 serial c1063941 c58484865 c99137032
#pglcl ust er 02

s2 p20001 n2 serial ¢c1046987 ¢c59559488 ¢c99244562
#pglcl ust er 03

sl pl1l6667 nl serial ¢31480669 c613075737 c406484386
#l i nserver

sl pl6667 nl serial c19707121 c557314526 ¢346182102
#csul tra0l

sl p4348 nl serial c54681296 c456174810 c426112471

Note that at runtime HVPI _Recon updates the value of the parameter for each participating
computer. We measure the relative speeds with the core computation of the algorithm (updating

of amatrix). Note that the relative speed does not depend on the size of problem for the wide
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Machine Total _ _

Name Architecture cpu Main Cache Relzg(\j/e Relzg(\j/e
(Number of MHz | Memory | (kBytes) > P

processor s) (MBytes) (mxm) | (cholesky)

FreeBSD 52.1-
RELEASE 386
afflatus(1) Intel® Pentium® 4 2867 2048 1024 499 527

Processor supporting
HT" technology
FreeBSD 5.2.1-

aries2(1) RELEASE 386 2457 | 512 1024 384 446
Intel® Pentium® 4

Processor
Linux 2.4.18-10smp

pglcluster01(2) Intel(R) XEON(TM) 1977 1024 512 269 239
Linux 2.4.18-10smp

pglcluster02(2) Intel (R) XEON(TM) 1977 1024 512 269 239
Linux 2.4.18-10smp

pglcluster03(1) Intel (R) XEON(TM) 1977 1024 512 269 239
Linux 2.4.20-

linserver(1) 20.9bigmem 2783 7748 512 172 351
Intel(R) Xeon(TM)
SunOS 5.8 sundu

csultra01(1) sparc  SUNW,Ultra- 440 512 2048 46 100

5 10

Table 5.2: Specifications of the nine heterogeneous processors to demonstrate the efficiency of HMPI over MPI.

range of matrix sizes used in our experiments. The relative speeds measured for this network are
shown in Table 5.2. One can see that in the case of matrix-matrix multiplication, the fastest
computer af f | at us isamost 10 times faster than the slowest computer csul t r a0l. In the
case of Cholesky factorization, the fastest computer af f | at us is5 times faster than the slowest
computer csul t ra0l. So this network is moderately heterogeneous compared to the highly
heterogeneous network used in the previous set of experiments. Therefore it is natural to expect
the speedup of the heterogeneous HMPI application over the homogeneous MPI application will
not be that high.

Figure 5.14(a) shows the comparison of the execution times of the HMPI application and the

standard MPI application executing the EM3D agorithm. Figure 5.14(b) demonstrates the
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speedup of the HMPI program over the MPI one. In this case the HMPI application is almost 1.7
times faster than the standard MPI one.

Figure 5.15(a) shows the comparison of the execution times of the MM agorithm between the
HMPI application and the standard MPI application using a homogeneous 2D block-cyclic data
distribution. Figure 5.15(b) demonstrates the speedup of the HMPI program over MPI. The
results are obtained for the value of r equal to 16 and the optimal value of the size of generalized

block I , which is equa to 96. Using HMPI the application is almost 8 times faster than using

standard MPI.
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Figure 5.14: Results obtained using the heterogeneous network of computers shown in Table 5.2. (a) A comparison
of execution times of the EM3D algorithm between HMPI and MPI. (b) The speedup of EM3D algorithm obtained

using HMPI over MPI.
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Figure 5.15: Results obtained using the heterogeneous network of computers shown in Table 5.2. (a) A comparison
of execution times of the MM algorithm using HMPI and MPI. (b) The speedup of the MM agorithm obtained

using HMPI over MPI.
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Figure 5.16: Results obtained using the heterogeneous network of computers shown in Table 5.2. (a) A comparison
of the execution times of the Factorization algorithm using HMPI and MPI. (b) The speedup of the Factorization

algorithm obtained using HMPI over MPI.
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Figure5.17: Execution times of the HMPI application on the heterogeneous network and the MPI application on the
homogeneous network. The two networks have approximately the same aggregate power of processors and share the

same (homogeneous) communication network.

Figure 5.16(a) shows a comparison of the execution times of the factorization algorithm
between the HMPI application and the standard MPI application using a homogeneous 2D block-
cyclic data distribution. Figure 5.16(b) demonstrates the speedup of the HMPI program over the
MPI one. The HMPI application isamost 1.5 times faster than the standard MPI one.

Experiments shown in Figure 5.17 compare the efficiency of the HMPI application executing
the MM algorithm on a network of nine heterogeneous workstations to the efficiency of the MPI
application using homogeneous 2D block-cyclic data distribution executed on a network of 9
identical workstations. The relative speeds of the workstations in the heterogeneous network are
26, 20, 14, 14, 14, 14, 14, 9, and 1. The workstations in the homogeneous network have a same
relative speed of 14. The two sets share 5 workstations (of the speed 14) and belong to the same
homogeneous communication segment of the local network. The sets were selected so that the

aggregate performance of the processors of the heterogeneous network is practically the same as
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that of the homogeneous one. Thus we compare the efficiency demonstrated by the
heterogeneous agorithm on the heterogeneous network with the efficiency demonstrated by its
homogeneous prototype on the homogeneous network having the same aggregate performance as
the heterogeneous one. From the figure, it can be seen that the applications demonstrate
practically the same speed, but each on its network. As the two networks are practically of the
same power, we can conclude that the HMPI application cannot perform better and its efficiency
is close to optimal on such a heterogeneous network of computers. This approach to analysis of

the performance of heterogeneous algorithms is presented in more detail in [ARO3, AR0O4].

5.4 Summary

The experimental results demonstrate that carefully designed HMPI applications can show very
good improvements in execution performance on HNOCs. As can be seen, the applications are
not fine-tuned for any specific environment. Instead, the performance gains are aresult of careful
design of applications, which includes:

» Designing an accurate performance model. The performance model definition language
of HMPI alows the programmer to describe quite sophisticated heterogeneous paralel
algorithms accurately by means of wide use of parameters, localy declared variables,
functions, expressions and statements.

* Accurate estimation of performances of the processors using HVPI _Recon. The
accuracy of HVPl _Recon depends upon how accurately the benchmark code provided
by the application programmers reflects the core computations of each phase of their
parallel applications. If the benchmark code provided is an accurate measurement of the

core computations in each phase, HVPl _Recon gives an accurate measure of the speeds.
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* The accuracy of HVPI _Ti neof in finding the optimal values of the parameters of the
paralle agorithm. This in turn depends on the accuracy of the performance model
designed, the quality of the heuristics designed for the set of parameters provided to the
performance model, and the accuracy of the model of the executing network of
computers.

From the performance models presented in this chapter, it can be seen that a performance
model can be written that is generic enough to be used for any type of data distribution. The
generality of the performance model is achieved through using generic parameters in its
parameter list and using data partitioning APl of HDPI in the body of the performance model.
Such performance models are only written once and used for different types of data distribution.

HMPI applications once developed and that follow each of the steps outlined below will run
efficiently on any HNOCs without any changes to its source code (we call the property efficient

portability):

Initialization of the HMPI runtime system with HVMPI I ni t ;
» Estimation of the speeds of processors with HVPI _Recon;

* Finding the optimal values of the parameters of the parallel agorithm with

HVPI _Ti neof ;

* Creation of a group of processes, which will perform the parallel agorithm, by using

HWPI G oup_createorusngHVPI G oup_auto_create.

» Execution of the computations and communications of the heterogeneous paradlel
algorithm by the members of the group using standard MPI means. At this step,

application programmers use the MPI communicator with communication group of MPI
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processes given by the handle to HMPI group of processes to call the standard MPI

communication routines.

* Freeing the HMPI groupswith HVPI _Fi nal i ze;

* Finalization of the HMPI runtime system with HVPI _I ni t;

On the whole, the experiments demonstrate that the HMPI provides al the features to guide

the user to write portable and efficient applications on HNOCs.
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CHAPTER 6

Conclusions
HMPI offers a unifying framework designed specialy for programming high-performance
computations on HNOCs. HMPI provides all the features to the user to write portable and
efficient parallel applications on HNOCs. These features automate all the essential steps
involved in application development on HNOCs:

1). Determination of the characterization parameters relevant to the computational
requirements of the applications and the machine capabilities of the heterogeneous system. These
parameters are determined before the application execution and form the model of executing
network of computers. The representation of the model of the executing network of computersis
implementation-dependent. In our research implementation of HMPI, during the creation of a
virtual parallel machine, a static structure that represents the model is generated and saved in the
form of an ASCII file. HMPI provides interfaces to update the parameters of the model at
runtime taking into account the fluctuations of the network load.

2). Decomposition of the whole problem into a set of sub-problems that can be solved in
parallel by interacting processes. This step of heterogeneous decomposition is parameterized by
the characterization parameters determined in the first step, mainly, the speeds of processors and
the latencies and bandwidths of the communication links between them, and the user-available
memory capacity of the machine. The Heterogeneous Data Partitioning Interface (HDPI) is
developed to automate this step of heterogeneous decomposition. HDPI provides API that alows
the application programmers to specify simple and basic partitioning criteria in the form of

parameters and functions to partition the mathematical objects used in their parallel applications.
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3). Selection of the optimal set of processes running on different computers of the

heterogeneous network by taking into account the speeds of the processors, and the latencies and
the bandwidths of the communications links between them. HMPI provides a small set of
extensions to MPI, which automate the process of selection of such a group of processes that
executes the heterogeneous algorithm faster than any other group. During the creation of this set
of optimal processes, HMPI runtime system solves the problem of selection of the optimal set of
processes running on different computers of the heterogeneous network using an advanced
mapping algorithm. The mapping algorithm is based on the performance model of the paralel
algorithm in the form of the set of functions generated by the compiler from the description of
the performance model, and the performance model of the executing network of computers,
which reflects the state of this network just before the execution of the parallel agorithm.

4). Application program execution on the HNOCs. The command line user interface of
HMPI developed consists of a number of shell commands supporting the creation of a virtual
paralel machine and the execution of the HMPI application programs on the virtual parallel
machine. The notion of virtual parallel machine enables a collection of heterogeneous computers
to be used as single large parallel computer.

The merits of HMPI were demonstrated through the design, analysis, and implementation of
three applications on HNOCs. They are Matrix-matrix multiplication, Cholesky Factorization,
and EM3D. These applications are representative of many scientific applications. Experimental
results show that carefully designed HMPI applications can show very good improvements in

execution performance on HNOCs.
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Once developed, an HMPI application will run efficiently on any HNOCs without any

changes to its source code (we call the property efficient portability). It can be seen that the
improved performance of the HMPI applications is not due to the fine-tuning of these
applications to a specific environment. By hiding the non-uniformity of the underlying
heterogeneous system from the application programmer, the HMPI offers an environment that

encourages the design of heterogeneous parallel software in an architecture-independent manner.

6.1 Contributions

Below, we present more precisely the contributions of this work.

a) The design of HMPI API, which are extensions to MPI, to automate the process of
selection of such a group of processes that executes the heterogeneous algorithm faster
than any other group. The main goal of the design of the APl in HMPI isto smoothly and
naturally extend the MPI model for heterogeneous networks of computers. This involves
the design of a layer above MPI that does not involve any changes to the existing MPI
API. The HMPI API must be easy-to-use and suitable for most scientific applications.
The HMPI APl must aso facilitate transformation of MPI applications to HMPI
applications that run efficiently on HNOCs.

b) The first research implementation of HMPI.

c) The design and application of HMPI+ScaLAPACK tool to speed up ScaLAPACK

applications on HNOCs.
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d) Design and implementation of Heterogeneous Data Partitioning Interface (HPDI) to

automate the step of heterogeneous decomposition in the solution of parallel problems on
HNOCs.

e) The design of efficient set partitioning algorithms using a reaistic performance model of
networks of heterogeneous computers. These algorithms solve the problem of optimal
distribution of computational tasks on a network of heterogeneous computers when one
or more tasks do not fit into the main memory of the processors and when relative speeds
cannot be accurately approximated by constant functions of problem size.

f) HMPI application programming illustrating the usage of performance models, APl of
HMPI, and the API of HPDI, and experimental results demonstrating efficient, scalable,
and predictable HMPI applications.

HMPI is a small set of extensions to MPI, which facilitate the writing of parallel programs
that distribute computations and communications unevenly, taking into account the speeds of the
processors, and the latencies and bandwidths of communication links. The main goa of the
design of APl in HMPI is to smoothly and naturally extend MPI model for heterogeneous
networks of computers. This involves the design of a layer above MPI that does not involve any
changes to the existing MPI API. The HMPI APl must be easy-to-use and suitable for most
scientific applications.

The main idea of HMPI is to automate the process of selection of such a group of processes
that executes the heterogeneous algorithm faster than any other group. HMPI alows the

application programmers to describe a performance model of their implemented heterogeneous
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algorithm. This model alows for all the main features of the underlying paralel algorithm that

have an essential impact on application execution performance on HNOCs.

HMPI provides a small and dedicated model definition language for specifying this
performance model. A compiler compiles the description of this performance model to generate
a set of functions. The functions make up an algorithm-specific part of the HMPI runtime
system.

Having provided such a description of the performance model, application programmers can
use the HMPI group constructor functions, which try to create a group that would execute the
heterogeneous algorithm faster than any other group of processes. During the creation of this
group of processes, HMPI runtime system solves the problem of selection of the optimal set of
processes running on different computers of the heterogeneous network using an advanced
mapping algorithm. The mapping algorithm is based on the performance model of the paralel
algorithm in the form of the set of functions generated by the compiler from the description of
the performance model, and the performance model of the executing network of computers,
which reflects the state of this network just before the execution of the parallel agorithm.

HMPI also provides interfaces that allow application programmers to write applications
adapting not only to nominal performances of processors but also to redistribute computations
and communications dependent on dynamic changes of workload of separate computers of the
executing network.

The implementation of Heterogeneous Data Partitioning Interface (HPDI) is a C library of
routines that allow the application programmers to specify ssmple and basic partitioning criteria

in the form of parameters and functions to partition the mathematical objects used in their
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parallel applications. The design of HPDI is based on a classification of partitioning problems on

networks of heterogeneous computers. Our approach to classification of partitioning problemsis
based on two corner stones:

» A redlistic performance model of networks of heterogeneous computers,

* A natura classification of mathematical objects most commonly used in scientific,
engineering and business domains for parallel (and distributed) solving problems on networks
of heterogeneous computers.

HPDI is designed to be used aong with various programming tools for paralel and distributed
computing on heterogeneous networks.

To demonstrate the efficiency of HPDI, we perform experiments using naive paralel
algorithms for linear algebra kernel, namely, matrix multiplication and Cholesky factorization
using striped partitioning of matrices on a local network of heterogeneous computers. Our main
aim is not to show how matrices can be efficiently multiplied or efficiently factorized but to
explain in simple terms the usage of this APl. We aso view these algorithms as good
representatives of a large class of data parallel computational problems and a good testing
platform before experimenting more challenging computational problems. The results show good
improvement in performance on networks of heterogeneous computers.

To investigate the merits of HMPI, we designed, analyzed, and implemented three
applications on HNOCs, namely, Matrix-matrix multiplication, Cholesky Factorization, and
EM3D. These applications are representative of many scientific applications. Experimental
results show that carefully designed HMPI applications can show very good improvements in

execution performance on HNOCs. These applications follow each of the steps outlined below:
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* Initialization of the HMPI runtime system with HVPI I ni t ;

» Estimation of the speeds of processors with HVPI _Recon;

* Finding the optimal values of the parameters of the parallel agorithm with

HWPI _Ti nmeof ;

* Creation of a group of processes, which will perform the parallel agorithm, by using

HWPI G oup_createorusngHVPI G oup_auto_create.

* Execution of the computations and communications of the heterogeneous parallel
agorithm by the members of the group using standard MPI means. At this step,
application programmers use the MPI communicator with communication group of MPI
processes given by the handle to HMPI group of processes to call the standard MPI

communication routines.
* Freeing the HMPI groupswith HVPI _Fi nal i ze;
* Finalization of the HMPI runtime system with HVPI _I ni t ;

It can be seen that these applications can run efficiently on any HNOCs without any changes
to its source code. That is, these applications are not fine-tuned for any specific environment.
Instead, the performance gains are aresult of careful design, which includes:

» Designing an accurate performance model.
» Accurate estimation of performances of the processors using HVWPl _Recon.
 Finding the optimal values of the parameters of the parale agorithm using

HVPI _Ti meof . The high accuracy of the estimation by HVPI _Ti neof is ensured
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because for each of these applications, an accurate performance model was designed,

high quality heuristics were designed for the set of parameters provided to the
performance model, and the model of the executing network of computers used was
accurate enough.

From the performance models presented, it can be seen that a performance model can be
written that is generic enough to be used for any type of data distribution. The generality of the
performance model is achieved through using generic parameters in its parameter list and using
data partitioning API of the HDPI in the body of the performance model. Such performance

models are only written once and used for different types of data distribution.
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CHAPTER 7

FutureWork

Based on the lessons learned from the development, implementation, and evaluation of HMPI,

the following research extensions are presented as future efforts:

Develop a fault-tolerant HMPI implementation. Currently, HMPI does not provide any
means for the writing of fault-tolerant parallel applications for HNOCs. The
implementation of FT-HMPI could be based on the following approaches to writing fault-
tolerant programs.

0 Checkpointing. Checkpointing is a common technique that periodically saves the state
of a computation, allowing the computation to be restarted from that point in the
event of failure. Checkpointing is easy to implement but is often considered
expensive. For small probability of failure and relatively small costs of creating and
restoring a checkpoint, the added cost of using checkpoints is quite small. Since
checkpoints must be saved to persistent storage that is not affected by afailure of one
of the computing elements, the checkpoint data are typically saved to a (parallel) file
system. Thus, the practicality of checkpointing is related to the performance of
paralel 1/0. MPI provides excellent facilities for performing 1/0.

There are two types of checkpointing: user-directed and system-directed. In user-
directed checkpointing, the application programmer forms the checkpoint, writing out
any data that will be needed to restart the application. This task is often relatively
easy, particularly with well-structured applications. Unfortunately, system-directed

checkpointing is much harder to implement because so much of the process's state is
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scattered throughout a parallel computer. This state can include messages that are in

flight between processes and data in kernel memory buffers.

For user-directed checkpointing, source code transformation tools based on
compiler technology can be used to identify both what data to checkpoint and what
data need not be saved in a particular checkpoint.

Using intercommunicators. In MPI, communicators are distributed objects that are
used for collective and point-to-point operations. Because of collective operations, the
failure of any one process in a communicator affects al processes in the
communicator, even those that are not in direct communication with the failed
process. In contrast, in non-MPI client-server programs, the failure of the client has
no effect on the server. This structure is robust because al communication takes place
in a two-party context, in which one party can recognise that other party has failed
and cease communicating with it. MPI programs can be structured to have this same
type of survivability by using “intercommunicators’, which consists of two groups of
processes, and all communication occurs between processes in one group and
processes in the other group.

Modifying MPI semantics. This approach to fault tolerance modifies the semantics of
certain MPI objects and functions. FT-MPI [FBDO1] is a research implementation of
MPI that allows the semantics and associated modes of failures to be explicitly
controlled by an application via a modified MPI API. FT-MPI provides application
programmers with different methods of dealing with failures within MPI application

than just checkpoint and restart. It alows the application to continue using a
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communicator with a failed rank while explicitly excluding communication with the

failed rank, or to shrink the communicator by excluding the failed rank, or to spawn a
new process to take the place of afailed process.

o0 Extending MPI. Rather than modifying existing MPI semantics, extensions to MPI
can be defined that have semantics that support the writing of fault-tolerant programs
but are al consistent with al existing MPI semantics. The key idea here is to
encapsulate the capabilities using intercommunicators, where instead of using
MPI _COVM WORLD, communication is based on a local array of two-party
connections. To add new capabilities for expressing fault-tolerant constructs in an
MPI context, new MPI objects and methods need be designed.

* Develop HMPI for High Performance Grid Computing. HMPI must be extended to
provide means to facilitate writing of high performance grid computing applications. The
main tasks involve:

o0 Development of an advanced performance model of the Grid as a heterogeneous
environment of distributed computational resources,

o0 Design and implementation of a system component that will discover and
maintain the parameters of the performance Grid model;

o0 Design and implementation of algorithms of the optimal mapping of the Grid
application to available computational resources;

0 Design and implementation of the compiler trandlating the specification of the
Grid application into a program component that dynamically maps the application

to the available global computing resources,
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Currently HMPI provides utilities automating all the above steps but these are geared

towards HNOCs. They must be extended to work for computing grids.

Design of a Heterogeneous Linear Algebra Package (HLAPACK). The HLAPACK

library will include a subset of LAPACK routines redesigned for HNOCs. Like

LAPACK, the HLAPACK routines will be based on block-partitioned algorithms in order

to minimize the frequency of data movement between different levels of memory

hierarchy. The fundamental building blocks of the HetLAPACK library will be
distributed-memory versions of the Level 1, Level 2, and Level 3 BLAS, called the

Parallel BLAS or PBLAS, and a set of Basic Linear Algebra Communication

Subprograms (BLACS) for communication tasks that arise frequently in parallel linear

algebra computations. The design of HLAPACK will include:

0 Design of performance models for each of the level-1, level-2, and level-3 BLAS
routines.

0 Designof API for level-1, level-2, and level-3 BLAS routines. The interface will look
similar to LAPACK. Each of these routines will create a group of processes with an
optimal number of processes. Thisis followed by the execution of the heterogeneous
algorithm associated with these routines by the members of the group.

Improvements to the Heterogeneous Data Partitioning Interface (HPDI). We presented

the Heterogeneous Data Partitioning Interface (HPDI), which provides API for

partitioning mathematical objects commonly used in scientific and engineering domains
for solving problems on networks of heterogeneous computers. However, more work

needs to be done to further improve this library, which includes:
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o0 Mathematical analysis of functions representing the absolute speed of a processor

followed by the classification of the shapes of the speed function. Thisis followed by
development of procedures for building speed functions, algorithms of calculation of
shape of speed functions, and software for calculation of shapes of speed functions.
Classification of data partitioning problems for dense matrices involved in O(n?)
algorithms, O(n®) algorithms, and O(n") algorithms where r>3. This is followed by
design and collection of data partitioning algorithms for dense matrices involved in
O(n?) agorithms, O(n®) algorithms, and O(n") agorithms where r>3. Then API would
have to be designed for the algorithms for dense matrices involved in O(n%)
algorithms, O(n®) algorithms, and O(n") algorithms where r>3.

Classification of data partitioning problems for multidimensiona arrangements. This
is followed by design and collection of data partitioning agorithms for
multidimensional arrangements and design of APl to the agorithms for
multidimensional arrangements.

Classification of data partitioning problems for graphs and trees. This is followed by
design and collection of data partitioning algorithms and design of API to the

algorithms for graphs and trees.

Extension of set partitioning algorithms. Representation of the dependence of the speed
on the problem size by a single curve is reasonable for computers with moderate
fluctuations in workload because in this case the width of the performance band is quite
narrow. On networks with significant workload fluctuations, the speed function of the

problem size should be characterized by a band of curves rather than by a single curve.
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We aim to design efficient algorithms of data partitioning on heterogeneous networks of

computers where the speed of a processor is represented by a speed band, the width of the
band characterizing fluctuations in speed due to changesin load over time.

The set partitioning agorithms presented in this work assume that the volume of
computations involved in the execution of the problem size assigned to a processor is
proportional to the problem size. That is the volume of computations is proportional to
the number of elements in the partition assigned to the processor. We aim to extend the
set partitioning algorithms for applications where the volume of computations involved in
the execution of a problem size is not proportional to the problem size. In some such
cases, the functional performance model where the speed of the processor is represented
by a smooth continuous function of problem size can be creatively modified and our set
partitioning algorithms can be applied.

Incorporation of communication cost into the functional performance model of HNOC:s.
We have proposed an functional model of a network of heterogeneous computers and
designed efficient algorithms of data partitioning with this model. Under this model, the
speed of each processor is represented by a continuous and relatively smooth function of
the problem size. This model integrates the effects of paging. However, the other
essential features underlying applications run on networks of heterogeneous computers
such as the latency and the bandwidth of the communication links between the processors
are not considered. These parameters should be incorporated into the model to make it
more comprehensive and efficient data partitioning algorithms need to be developed

using this model.
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I mprovements to the communication model of executing network of computers. In HMPI,

the model of executing networks of computers treats any set of parallel communications

asif they all take place at the same communication layer in the hierarchy, namely, at the

lowest communication layer covering all involved processors. In reality, some of the
communications may use different communication layers. Incorporation of multi-layer

parallel communications in this algorithm without significant loss of its efficiency is a

very difficult problem, which needs to be addressed.

The model of executing network of computers in HMPI uses three parameters that
determine the speed of point-to-point data transfer between processes running on the
same computer as function of size of the transferred data block. The speed of the transfer
of adata block of an arbitrary size is calculated by interpolation of the measured speeds.
This model is efficient but not very accurate. The model needs to be improved with
inclusion of parameters, which model point-to-point and collective communications
accurately and efficiently:

0 The time taken for a point-to-point communication involving processes running on
the same computer can be represented by linear dependence on the message size.
Parameters must be designed to represent the fixed and the variable components.

0 The cost of a point-to-point message transfer involving processes running on different
computers usually consists of three components, namely, the send overhead,
transmission cost, and the receive overhead. Suitable parameters must be designed to

accurately estimate these fixed and variable components.

373



Future Work
o Collective communications such as broadcast, gather, and scatter can involve

processes running on the same or different computers. In case of collective
communications involving processes running on the same compulter, it is observed
that the time taken for the collective communication can be approximated by a
constant linear function of the number of nodes involved in the collective
communications. Thus the parameter that needs to be included for these types of
communications represents the constant in the linear function. For collective
communications involving processes running on different computers, the cost model
used to estimate the time taken for the collective communication must take into
account the collective communication agorithm used. On HNOCs, collective
communication operations can be implemented by using different algorithms, which
use different types of trees. The collective communication algorithm must take into
account the communication capabilities of the participating nodes. This algorithm
must ensure that slow computers are involved in less number of communications than
the fast computers. This can be ensured by making the slow computers occupy the
leaf nodes of the tree and faster computers occupy the intermediate nodes to
broadcast the message faster. Thus parameters must be determined to incorporate the
different types of schemes used by application programmers for their collective
communication algorithms.
The issue of determination of the parameters to accurately and efficiently model these
different types of communications is difficult, which needs to be addressed. The model of

executing network of computers must also take into account the contention that may be
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(a) Binomial Tree (b) Hierarchical Tree (c) Sequential tree
Figure 7.1: Three different trees for implementing broadcast in a Heterogeneous network of computers with eight

nodes (F=fast, S=slow).

caused in the network. Already models such as LoGPC [MF98, FB96] exist that account
for the impact of network contention effects on the performance of message-passing
programs.

* Improvements to the communication pattern specification in the scheme declaration of
the performance model definition language. The rule for estimation of the execution time
of the parallel algorithmic pattern in the performance model definition language is the
core of the entire mapping algorithm determining its accuracy and efficiency. Most
disadvantages of the rule are just the backside of its simplicity and the necessity to keep it
effective. Except some common collective communication operations, it is not sensitive
to different collective communication patterns such as ring data shifting, tree reduction,
etc., treating all of them as a set of independent point-to-point communications. The main
problem is that recognition of such patterns is very expensive. A possible solution is
introduction in the performance model definition language some explicit constructs for

communication pattern specification as a part of the scheme description.
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Design of collective communication routines for HNOCs. On HNOCSs, collective

communication routines can be implemented by using different algorithms, which use
different types of trees as shown in Figure 7.1. The most commonly used collective
communication routines are broadcast, gather, scatter, and barrier synchronization. It is
observed that on HNOCs, the collective communication algorithm used must take into
account the communication capabilities of the participating nodes. This algorithm must
ensure that slow computers are involved in less number of communications than the fast
computers. This can be ensured by making the slow computers occupy the leaf nodes of
the tree and faster computers occupy the intermediate nodes to broadcast the message
faster. Therefore, collective communication routines must be provided to the application
programmers that efficiently perform the collective communications. Each of the routines
must use the communication cost model to compare the performance of different schemes
in order to find the best scheme for a given collective operation.

Design of interfaces that update the communication parameters at runtime to be used by
the performance measurement models of HMPI runtime system. The main idea of HMPI
is to automate the process of selection of a group of processes, which would execute the
heterogeneous algorithm faster than any other group. One of the features that affect the
efficiency of the process of selection is the accuracy of the model of the executing
network of computers. This depends on the accuracy of the measurements of the
processor speeds given by HVPI _Recon and the communication model of the executing

network of computers. Currently the communication model used in HMPI runtime
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system is static. The issue of efficiently updating the parameters of communication model

at runtime needs to be addressed.

Tool for converting MPI programs to HMPI programs. A tool needs to be devel oped that
would automatically make some straightforward transformations to convert an MPI
program to a HMPI program. The tool could be as simple as a script or a preprocessor
that generates a basic working version of an HMPI program from an input MPI program.
All that the application programmer will have to do is to design a performance model and
input this performance model and MPI programs to the compiler or preprocessor. Hooks
can be provided that allow the application programmers to specify the different stages of
an MPI program that would aid the transformation process. These are the following:

o MPIinitialization,

o Datadistribution,

0 Execution of the algorithm by the processes of MPI _COvM WORLD, and

o MPI finaization.

Based on this information, a basic working version of aHMPI program can be generated
from the performance model provided by the application programmer and the static
program analysis of the MPI program. The basic working version would contain the
following:

o HMPI initialization replacing the MPI initialization,

o Data distribution using the speeds of the processors. This step uses the API of the

Heterogeneous Data Partitioning Interface (HDPI). The application programmer must
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dynamically update the processor speeds at runtime using HMPlI _Recon before

distributing the data.

o Creation of a HMPI group of processes using HMPI group constructor functions
(HWPI _Group_create or HWI _G oup_auto_create). The handle to the
performance model in the group creation function is generated by compiling the
performance model provided as input by the application programmer. The application
programmer will have to fill in the model parameters using the function
HWPI _Pack _nodel paraneters.

0 Execution of the algorithm by the processes of MPI communicator associated with
the HMPI group of processes. This piece of code is similar to the MPI code except
that the MPI communicator MPI _COVM WORLD is replaced by the MPI
communicator associated with the HMPI group of processes.

0 Destruction of the HMPI group of processes. The call to the group destruction
function HWPI _Gr oup_f r ee isinserted, and

o HMPI finalization replacing the MPI finalization.

Design additional HMPI applications. HMPI needs to be experimented on a wide variety

of real-life scientific applications and on wide variety of HNOCs to improve the

specification of the performance model definition language and the model of executing
network of computers. Such experiments will aso help investigate and strengthen the
property of efficient portability of HMPI applications. That is, once developed, an HMPI

application will run efficiently on any HNOCs without any changesto its source code.
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Bindings of HMPI to C++, FORTRAN, and Java. HMPI API has currently bindings to

ANSI C. Convenient bindings to C++, FORTRAN, and Java must be devel oped to attract
programmers who use one or more of these languages to write message-passing programs

on HNOCs.
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/* This file was generated by npC compil er
Fromfile "Nbody. npc"*/

static char* MPC fil e_nanme="Nbody. mpc";

#i ncl ude <mpC. h>

#i ncl ude <topo. h>

#i ncl ude <npc_nmcro. h>

static MPC Basic MPC int={{kMPC Basic, "const int ",3,sizeof (const int
), 1, MPC_DTN}, 7};

/*" Nbody. npc" */
typedef double Triplet [3];
typedef struct {
Triplet p;
Triplet v;
doubl e m
} Body ;

/* Net type Nbody declaration */
i nt MPC_Net Type_Nbody_ node(i nt pnum const int *ppar
i nt ppower,int **pnodes,int **plinks);

i nt MPC_Net Type_Nbody_link(int pnumdl,int pnun,
const int *ppar,int ppower,int **pnodes,
int **plinks);

i nt MPC_Net Type_Nbody_parent (const int *ppar
i nt ppower,int **pnodes,int **plinks);

i nt MPC_Net Type_ Nbody power (const int *ppar,int ppower,
i nt **pnodes,int **plinks);

voi d MPC_Net Type_Nbody_nunber 2coord(i nt pnum
const int *ppar,int *pcoord,int ppower,
i nt **pnodes,int **plinks);

i nt MPC_Net Type_Nbody_coord2number (const int *pcoord,
const int *ppar,int ppower,int **pnodes,
int **plinks);

doubl e MPC Net Type_Nbody_ nappi ng(
MPC _Topo_graph **root, const int *ppar,int ppower,
i nt **pnodes,int **plinks);

i nt MPC_Net Type_ Nbody_ node(i nt pnum const int *ppar
i nt ppower,int **pnodes,int **plinks) {
static MPC_Pointer MPC pointer_7={{kMPC _Poi nter,
"void *",7,sizeof (void* ), 1, MPC DTN}, 1, NoMPC Type};
i nt coordinate[1];
MPC_Net Type_Nbody_ nunber 2coor d( pnum ppar, coor di nat e,
ppower , pnodes, pl i nks);
if ( * coordinate >= 0)

{
return (int )(MPC FI XPO NT_SCALE * (( * ((ppar + 2) + *
coordinate) / * (ppar + 1)) * ( * ((ppar + 2) + * coordinate) / *
(ppar + 1))));
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}

return O;

}

i nt MPC Net Type_Nbody |ink(int pnuml,int pnun2,const int *ppar
i nt ppower,int **pnodes,int **plinks) {
i nt coordinate[1];
int cl[1], n1;
int c2[1], n2;
void *calloc();
if (ppower == MPC_ I NI T_PONER)

ppower = MPC_Net Type_Nbody_power ( ppar, ppower, pnodes, pl i nks);
}

if (! (* plinks))

* plinks = (int *)calloc(ppower * ppower, sizeof(int ));

for (coordinate[0] = 0; coordinate[0] < *ppar; coordinate[0] ++) {
if ( * coordinate > 0) {
cl[0] = * coordinate
c2[0] = O;

nl = MPC_Net Type_Nbody_coord2nunber (cl, ppar, ppower,
pnodes, pl i nks);
n2 = MPC _Net Type_Nbody coord2nunber (c2, ppar, ppower,
pnodes, pl i nks);
( * plinks)[nl * ppower + n2] = ( * ((ppar + 2) +
* coordinate) * sizeof(Body ));
}
}
}
}
return ( * plinks)[pnuml * ppower + pnun?];

}

i nt MPC _Net Type_ Nbody parent(const int *ppar,int ppower,
int **pnodes,int **plinks) {
i nt coordi nate[1];
coordi nate[0] = O;
return MPC _Net Type Nbody coord2nunber (coordi nat e, ppar
ppower , pnodes, pl i nks);

}

i nt MPC_Net Type_Nbody_power (const int *ppar,int ppower,
int **pnodes,int **plinks) {
return * ppar,;

}

voi d MPC_Net Type_Nbody_numnber 2coord(i nt pnum const int *ppar
int *pcoord,int ppower,int **pnodes,int **plinks) {
* pcoord = pnum

}

i nt MPC_Net Type_Nbody_coord2number (const int *pcoord,
const int *ppar,int ppower,int **pnodes,int **plinks) {
return * pcoord,;

}
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doubl e MPC _Net Type_Nbody_ nappi ng( MPC Topo_graph **root,
const int *ppar,int ppower,int **pnodes,int **plinks) {
const int p= * ppar,k=* (ppar + 1),*n=(ppar + 2);
doubl e MPC esti mati on1=0. O;

r
int i;
{
doubl e *MPC estimati on2, MPC_Max_esti mati on2=0. O;
int MPC actions2=0,*MPC sorted_acti ons;
char **MPC i nvol ved_VPs2;
MPC esti mati on2=(doubl e *)call oc
(ppower * ( ppower +1) , si zeof (doubl e) ) ;
MPC i nvol ved_VPs2=(char **)cal | oc(ppower*( ppower +1),
si zeof (char *));
for (i =0;i <p;ji ++) {
MPC i nvol ved_VPs2[ MPC acti ons2] =(char *)
cal | oc( ppower, si zeof (char));
{
int MPC coord[1], MPC rank;
MPC coord[0] = i;
MPC_r ank=MPC_Net Type_Nbody_coor d2nunber ( MPC_coor d, ppar,
ppower , pnodes, pl i nks);
MPC _esti mati on2[ MPC_acti ons2] +=MPC Part _conp_est
((doubl €) (100), root [ MPC rank]);
MPC i nvol ved_VPs2[ MPC acti ons2] [ MPC _rank] =1;
}
MPC _acti ons2++;
}
MPC esti mati on1+=MPC Par esti mati on( ppower, MPC acti ons2,
MPC esti mati on2, MPC i nvol ved_VPs2, NULL) ;
}
{

doubl e *MPC estimati on2, MPC_Max_esti mati on2=0. 0;
int MPC actions2=0,*MPC sorted_acti ons;
char **MPC i nvol ved_VPs2;
MPC esti mati on2=(doubl e *)call oc
(ppower * ( ppower +1) , si zeof (doubl e) ) ;
MPC i nvol ved_VPs2=(char **)cal | oc(ppower*( ppower +1),
si zeof (char *));
for (i =0;i <p;ji ++) {
MPC i nvol ved_VPs2[ MPC acti ons2] =(char *)call oc
(ppower, si zeof (char));
{

int MPC coord[1], MPC rank_from MPC rank_t o;

MPC coord[0] = i;

MPC _rank_fromMPC_Net Type_ Nbody_coor d2nunber ( MPC_coord,
ppar, ppower, pnodes, pl i nks);

MPC coord[ 0] = O;

MPC _rank_t o=MPC_Net Type_Nbody_coor d2nunber (MPC coord,
ppar, ppower, pnodes, pl i nks);

MPC esti mati on2[ MPC _acti ons2] +=MPC Part _comm est (
(doubl €) (100), root [ MPC_rank_froni,root[ MPC rank_to]);
}

MPC _acti ons2++;

}

MPC esti mati on1+=MPC _Par esti mati on( ppower,
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MPC actions2, MPC esti mati on2, MPC i nvol ved_VPs2, NULL) ;

}
}

return MPC estinationl;

}

MPC _Net Type MPC Net Type_Nbody={1,
MPC_Net Type_Nbody_node,
MPC_Net Type_Nbody_| i nk,
MPC_Net Type_Nbody_parent,
MPC _Net Type_Nbody_ power,
MPC_Net Type_Nbody_ numnber 2coord,
MPC_Net Type_Nbody_coor d2nunber,
MPC_Net Type_Nbody_nappi ng};

#defi ne HWPI _Mbdel Nbody MPC Net Type_ Nbody
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1 Introduction

The tools designed for programming high-performance computations on HNOCs must provide
mechanisms to automate the tedious and error-prone tasks:

* Parameter determination characterizing the computational requirements of the parallel

application and the capabilities of the machines,

» Data partitioning,

* Matching and Scheduling, and

» Task execution.

Ideally a tool must supply mechanisms to the programmer so that he or she can provide
information to it that can assist in finding the most efficient implementation on HNOCs.
Combining the system’s detailed analysis with the programmer’s high-level knowledge of the
application is essentia in finding more efficient mappings than either one aone is capable of
achieving. The performance models used by the tools must take into account all the essential
features underlying applications run on HNOCs, mainly, the speeds of the processors, the effects
of paging and the speed and the bandwidth of the communication links between the processors.
The model of the executing network of computers must take into consideration the essential set
of machine characteristics such as computing bandwidth, communication latency,
communication overhead, communication bandwidth, network contention effects and the
memory hierarchy. Such a model must have enough parameters for it to be effective and
accurate.

HMPI is such a tool, which is an extension of MPI for programming high-performance
computations on heterogeneous networks of computers. The main idea of HMPI is to automate
the process of selection of a group of processes, which would execute the heterogeneous
algorithm faster than any other group. HMPI provides features that alow the user to carefully
design their parallel applications that can run efficiently on HNOCs.

The rest of the manual is organized as follows. Section 2 describes HMPI. Section 3 presents
the HMPI API, which are extensions to MPI. Section 4 presents the library of data partitioning
functions. Section 5 provides the HMPI command-line user’s interface. This is followed by
installation instructions for HMPI for UNIX in section 6.

2 What isHMPI

Heterogeneous MPI (HMPI) is an extension of MPI for programming high-performance
computations on heterogeneous networks of computers. It alows the application programmer to
describe the performance model of the implemented algorithm in a generic form. This model
allows for al the main features of the underlying parale algorithm, which have an impact on its
execution performance, such as the total number of parallel processes, the total volume of
computations to be performed by each process, the total volume of datato be transferred between
each pair of the processes, and how exactly the processes interact during the execution of the
algorithm. Given the description of the performance model, HMPI tries to create a group of
processes that executes the algorithm faster than any other group of processes.

HMPI provides al the features to the user to write portable and efficient parallel applications
on HNOCs. These features automate all the essential steps involved in application development
on HNOCs:
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1). Determination of the characterization parameters relevant to the computational
requirements of the applications and the machine capabilities of the heterogeneous system. The
machine capabilities are determined before the application execution and supplied to the model
of executing network of computers. The model of the executing network of computers is
implementation-dependent. We use a static structure automatically obtained by HMPI
environment and saved in the form of an ASCII file. However, the parameters of the model can
be updated at runtime taking into account the changing network loads.

2). Decomposition of the whole problem into a set of sub-problems that can be solved in
parallel by interacting processes. This step of heterogeneous decomposition is parameterized by
the number and speeds of processors and the speeds and bandwidths of the communication links
between them. The Heterogeneous Data Partitioning Interface (HDPI) is developed to automate
this step of heterogeneous decomposition. HDPI provides API that allows the application
programmers to specify simple and basic partitioning criteria in the form of parameters and
functions to partition the mathematical objects used in their parallel applications.

3). Selection of the optimal set of processes running on different computers of the
heterogeneous network by taking into account the speeds of the processors, and the speeds and
the bandwidths of the communications links between them. During the creation of this set of
optimal processes, HMPI runtime system solves the problem of selection of the optimal set of
processes running on different computers of the heterogeneous network using an advanced
mapping algorithm. The mapping algorithm is based on the performance model of the paralel
algorithm in the form of the set of functions generated by the compiler from the description of
the performance model, and the performance model of the executing network of computers,
which reflects the state of this network just before the execution of the parallel agorithm.

4). Application program execution on the HNOCs. The command line user interface of
HMPI developed consists of a number of shell commands supporting the creation of a virtual
paralel machine and the execution of the HMPI application programs on the virtual parallel
machine. The notion of virtual parallel machine enables a collection of heterogeneous computers
to be used as single large parallel computer.

3 HMPI'sLibrary Interface

In this section, we describe the interfaces to the routines provided by HMPI as extensionsto MPI
and the interfaces to the routines in the heterogeneous data partitioning interface (HPDI).

3.1 HMPI runtimeinitialization and finalization

HWI Init
Initializes HMPI runtime system

Synopsis:

i nt
HVPI | nit
(

int argc,
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char** argv

)

Parameters:
ar gc --- Number of arguments supplied to mai n
ar gv --- Vaues of arguments supplied to mai n

Description: All processes must call thisroutine to initialize HMPI runtime system. This routine
must be called before any other HMPI routine. It must be called at most once; subsequent calls
are erroneous.

Usage:

int main(int argc, char** argv)

{
int rc = HWI _Init(
ar gc,
ar gv
)i
if (rc !'= HWI _SUCCESS)
{
//Error has occurred
}
}

Return values: HMPI _ SUCCESS on success and an error in case of failure.

HWPI _Finalize
Finalizes HMPI runtime system

Synopsis.
i nt
HWPI _Finalize
(

)

Parameters:

i nt exitcode

exi t code --- code to be returned to the command shell
Description: This routine cleans up all HMPI state. All processes must call this routine at the

end of processing tasks. Once this routine is called, no HMPI routine (even HVPI _I ni t ) may
be called.
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Usage:

int main(int argc, char** argv)

{
int rc = HWI _Init(
argc,
ar gv
)
if (rc !'= HWPlI _SUCCESS)
{
//Error has occurred
}
rc = HWI _Finalize(0);
if (rc !'= HWI _SUCCESS)
{
//Error has occurred
}
}

Return values. HVPI _ SUCCESS on success and an error in case of failure.
3.2 HMPI Group Management Functions

HVWPI G oup_rank

Returns rank of the calling process

Synopsis.
i nt
HWPI _G oup_r ank
(
const HWPI _Group* gid
)
Parameters:

gi d --- handle to the HMPI group of processes

Description: This routine returns the rank of the process calling it. Only processes that are

members of the group represented by the handle gi d can call this routine.
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Usage:

/1 HWPI _HOST _GROUP is a predefined group handl e
/1 containing the host process.
HWI G oup* gid = HWI _HOST_ GROUP;

if (HWPI _I's nmenber(gid))

{
int rank = HWI _G oup_rank(

gid
);

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HWPI _Rank
Returns rank of the process with the coordinates specified

Synopsis.

i nt

HVPl _Rank

(
const HWPI _Group* gid,
const int* coordinates

)
Parameters:
gid --- handle to the HMPI group of processes
coor di nat es --- coordinates representing a process in the group represented by

the handle gi d

Description: This routine returns the rank of the process in the group represented by the handle
gi d and the coordinates of the process being coor di nat es. Only processes that are members
of the group represented by the handle gi d can call thisroutine.

Usage:
/1 HWVPI target program
HWI _G oup gid;

int coordinates = 3;
if (HWPI _Is_nenber(&gid))
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{
int rank = HWPI _Rank(
&gi d,
&coor di nat es
);
}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HWPI _G oup_coor dof
Returns the coordinates of the process

Synopsis:
i nt
HWPI _G oup_coor dof

(
const HWPI _Group* gid,

int* nuntc,
i nt** coordi nat es

)

Parameters:

gi d --- Handleto the HMPI group of processes. Thisis an input parameter.
nunt --- Output parameter giving the number of coordinates representing the
calling processin the group represented by the handle gi d.
coor di nat es --- Thevalues of the coordinates of the calling processin the
group represented by the handle gi d.

Description: If the process calling this routine is a member of the group given by the handle
gi d, then its coordinates are returned in coor di nat es, the initial element of which points to
an integer array containing the coordinates with size * nunt. Only processes that are members of
the group represented by the handle gi d can call this routine.

Usage:

HWI G oup gid;

if (HWPI _I's nmenber (&gid))
{

i nt nunt;
int** coordinates = (int**)mall oc(
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si zeof (i nt*)

)

int rc = HWI_Goup_coordof (
&gi d,
&nunrc,
coordi nat es

)

if (rc !'= HWPl _SUCCESS)

{

[/l Failure
}

free(coordi nates[0]);
free(coordi nates);

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d. HVPI _ SUCCESS is returned on success.

HWPI _Coor dof

Returns the coordinates of the process with a specified rank.

Synopsis:
i nt
HWPI _Coor dof
(
const HWPI _Group* gid,
int rank,
i nt* nunc,
int** coordi nat es
)
Parameters:

gi d --- Handle to the HMPI group of processes. Thisis an input parameter.
r ank --- The rank of the process whose coordinates are returned.

Thisisan input parameter.

nunct --- Output parameter giving the number of coordinates of the process

whose rank isr ank in the group represented by the handle gi d.

coor di nat es --- Thevalues of the coordinates of the process whose rank is

r ank in the group represented by the handle gi d.
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Description: The coordinates of the process whose rank isr ank in the group represented by the
handle gi d are returned in coor di nat es, the initial element of which points to an integer
array containing the coordinates with size * nunt. Only processes that are members of the group
represented by the handle gi d can call thisroutine.

Usage:
HWI G oup gid;

if (HVPI _Is_nenber(gid))
{
int rank = O;
i nt nunc;
int** coordinates = (int**)mall oc(
si zeof (int*)
);

int rc = HWI _Coor dof (
&gi d,
rank,
&nunt,
coor di nat es

)
if (rc !'= HVPl _SUCCESS)

[/ Failure

}

free(coordinates[0]);
free(coordi nat es);

}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d. HVPI _SUCCESS is returned on success.

HWPI _G oup_t opo_si ze

Returns the number of coordinates that can specify a processin a group

Synopsis.
i nt
HWPI _G oup_t opo_si ze
(
const HWPI _Group* gid
)
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Parameters:
gi d --- handle to the HMPI group of processes

Description: This routine returns the number of coordinates used to specify a process, which isa
member of the group represented by the handle gi d. Only processes that are members of the
group represented by the handle gi d can call thisroutine.

Usage:

HWI G oup gi d;

if (HWPI _I's nmenber(gid))
{

int nunt = HWI_G oup_topo_size(
&gi d
);
}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HVWPI _G oup_t opol ogy
Returns the number of processesin the group in each dimension of the topology of the group.

Synopsis.

i nt
HVWPI G oup_t opol ogy

(
const HWPI G oup* gid,

i nt* nunc,
int** coordi nat es

)
Parameters:

gi d --- handle to the HMPI group of processes.
nunct --- Output parameter giving the number of dimensions of the topology
specifying the arrangement of the processes, which are members of the
group represented by the handle gi d.
coor di nat es --- Output parameter giving the number of processes in each
dimension of the topology specifying the arrangement of
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the processes, which are members of the group represented by
the handle gi d.

Description: This routine returns the number of dimensions of the topology and the number of
processes in each dimension of the topology representing the arrangement of the processes,
which are members of the group represented by the handle gi d. The number of processes in
each dimension are returned in coor di nat es, theinitial element of which points to an integer
array with number * nunt of elements containing the number of dimensions. Only processes that
are members of the group represented by the handle gi d can call thisroutine.

Usage:

HWI _G oup gi d;

if (HWPI _Is_nmenber(&gid))

{
i nt nunt;
int** coordinates = (int**)mall oc(
si zeof (i nt*)
)
int rc = HWI_Goup_topol ogy(
&gi d,
&nunt,
coor di nat es
);
if (rc !'= HVPl _SUCCESS)
{
[l Failure
}
free(coordi nates[0]);
free(coordi nat es);
}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d. HVPI _ SUCCESS is returned on success.

HVPlI _G oup_par ent

Returns the rank of the parent of a group

Synopsis.

i nt

414



HMPI Programmers Reference and Installation Manual

HVPlI _G oup_par ent

(
const HWPI G oup* gid
)
Parameters:

gi d --- handle to the HMPI group of processes.
Description: This routine returns the rank of the parent of the group represented by the handle
gi d. Only processes that are members of the group represented by the handle gi d can call this
routine.

Usage:

HWPI _G oup* gid;

i nt rank;
if (HWPI _I's nmenber(gid))
{
rank = HWPI _Goup_parent(gid);
}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HWPI G oup_si ze
Returns the number of processesin the group

Synopsis.
i nt
HWPI G oup_si ze
(
const HWPI G oup* gid
)
Parameters:

gi d --- handle to the HMPI group of processes
Description: This routine returns the number of processes in the group represented by the handle

gi d. Only processes that are members of the group represented by the handle gi d can call this
routine.

415



HMPI Programmers Reference and Installation Manual

Usage:

HWPI _G oup* gid;
int size;

if (HWPI _Is_nmenber(gid))
{

}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

size = HWI _G oup_si ze(gid);

HWPI |'s host
Isthe calling process the host?

Synopsis:

unsi gned char
HWI |s_host ()

Description: This routine returns t r ue if the process calling this function is the host process
otherwisef al se. Any process can call thisfunction.

Usage:

if (HWI Is host())

{
printf(“l”mthe host\n”);
}
el se
{
printf(“l”mnot the host\n”);
}

Return values: Value of 1isreturned if the processisthe member of the group. O otherwise.

HVWPI _|s_parent
Is the calling process the parent process of the group?

Synopsis:

unsi gned char
HVWPI _|'s_parent

(
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const HWI _Group* gid
)

Parameters:

gi d --- handle to the HMPI group of processes.

Description: This routine returns t r ue if the process calling this routine is the parent of the
group represented by the handle gi d otherwise f al se. Only processes that are members of the
group represented by the handle gi d can call thisroutine.

Usage:

HWPI G oup* gid;

if (HWI _Is _parent(gid))

{
printf(“l"mthe parent of the group gid\n”);
}
el se
{
printf(“l"”mnot the parent of the group gid\n”);
}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HWPI | s_menber
Am | amember of the group?

Synopsis:

unsi gned char
HWPI | s_menber

(
)

Parameters:

const HWI _Group* gid

gi d --- handle to the HMPI group of processes.

Description: This function returnst r ue if the process calling this routine is the member of the
group represented by the handle gi d otherwise f al se. Only processes that are members of the
group represented by the handle gi d can call thisroutine.
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Usage:
HWPI _G oup* gid;

if (HWPI _Is_nmenber(gid))

{
printf(“l’ma nmenber of the group gid\n”);
}
el se
{
printf(“l”mnot a nenber of the group gid\n”);
}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group represented by the handle gi d.

HWI |s free
Am | amember of the predefined group HMPI _ FREE _GROUP?

Synopsis:

unsi gned char
HWI |s free()

Description: This routine returns t r ue if the process is free and is member of the predefined
group HVPI _ FREE_GROUP and f al se otherwise. Any process can call this function.

Usage:

if (HWI _Is free())

{
printf(“l"ma free process and nenber of”
“ HWPI _FREE GROUP \n”);
}
el se
{
printf(“l"mnot a free process and not a nenber of”
“ HWPI _FREE GROUP \n”);
}

Return values: Vaue of 1 isreturned if the processis not the member of any other group other
than HVPlI _FREE_CGROUP. 0 otherwise.

HWPI _Get _comm
Returns an MPI communicator with communication group of MPI processes
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Synopsis:

const MPI _Comnt
HWPlI _Get _comm

(
const HWPI _Group* gid
)
Parameters:

gi d --- handle to the HMPI group of processes.

Description: This routine returns an MPlI communicator with communication group of MPI
processes defined by gi d. Thisis alocal operation not requiring inter-process communication.
Application programmers can use this communicator to call the standard MPI communication
routines during the execution of the parallel agorithm. This communicator can safely be used in
other MPI routines.

Usage:

HWPI G oup* gid;
MPI _Comm* conm

if (HWPI _I's nmenber(gid))

{
comm = HWPI _Get _com{gi d);
if (comm == NULL)
{
[lerror
}
}

Return values: This call returns NULL if the process is hot a member of the group represented
by the handle gi d.

HVWPlI _G oup_create

Create an HMPI group of processes

Synopsis:

i nt
HVPlI _G oup_create

(
HWPI _G oup* gid,
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const HWPI Mbdel * nodel
voi d* nodel paraneters,
i nt parant

)

Parameters:

gi d --- handle to the HMPI group of processes. Thisis an output parameter.

nodel --- handle that encapsulates all the features of the performance model in the
form of aset of functions generated by the compiler from the description
of the performance model (input parameter)

nodel _par anet er s --- parameters of the performance model (input parameter)

par ant --- number of parameters of the performance model (input parameter)

Description: Thisroutine tries to create a group that would execute the heterogeneous algorithm
faster than any other group of processes. In HMPI, groups are not absolutely independent on
each other. Every newly created group has exactly one process shared with already existing
groups. That process is called a parent of this newly created group, and is the connecting link,
through which results of computations are passed if the group ceases to exist.
HVPI _G oup_cr eat e is a collective operation and must be called by the parent and all the
processes, which are not members of any HMPI group.

Usage:
HWI G oup gidl, gid2, gid3;
int nodel p[1] = {5};

unsi gned char is_parent_of _nid2
unsi gned char is_parent_of nid3

0;
0;

/1l The parent used in the creation of abstract network
/1 gidl is the host
if (HVPI _Is_nmenber ( HWPI _HOST_GROUP) )

{
HVWPI _G oup_cr eat ¢(
&gi di,
&HVPI _Model _si npl e,
nodel p,
1
);
}
if (HWI Is free())
{

HVPI _Group_creat g(
&gi d1,
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&HVPI _Model _si npl e,
NULL,
0

The parent used in the creation of group gid2 is the
menber of group gi dl whose coordinates are given

{2}

(HWPI _I's_nenber (&gi dl))

i nt nunc;
int** coordinates = (int**)mall oc(
si zeof (i nt*)

)i

int rc = HWI _G oup_coor dof (
&gi di,
&nunrc,
coor di nat es,

)i

if ((*coordinates)[0] == 2)

{

is_parent_of _nid2 = 1;
}

free(coordi nates[0]);
free(coordi nates);

(1 s_parent _of _nid2
|| HWPI _Is free()

HWPI _G oup_cr eat ¢(
&ni d2,
&HWPI _Model _si npl e,
nodel p,
1

);

The parent used in the creation of the group gid3 is
t he menber of abstract network ni d2 whose

coordi nates are given by {3}

(HWPI _I's_nenber (&ni d2))

i nt nuntc;
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int** coordinates = (int**)mall oc(
si zeof (int*)
);

int result = HWI _G oup_coordof (
&gi d2,
&nunc,
coor di nat es,

),

if ((*coordinates)[0] == 3)
{

}

free(coordi nates[0]);
free(coordi nates);

is_parent_of gid3 = 1;

if (is_parent_of nid3
|| HWPI _Is free()

)
{
HVPI G oup_creat g(
&gi d3,
&HVPI _Model _si npl e,
nodel p,
1
);
}

Return values. HVPl _ SUCCESS on success and an error in case of failure.

HVPI _G oup_auto_create

Create an HMPI group of processes with optimal number of processes

Synopsis:

i nt

HVWPlI _G oup_auto_create

(
HWPI G oup* gid,
const HWPI _Mbdel * nodel
voi d** nodel paraneters,
i nt paranc
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Parameters:

gi d --- handle to the HMPI group of processes. Thisis an output parameter.

nodel --- handle that encapsulates all the features of the performance model in the
form of a set of functions generated by the compiler from the description
of the performance model (input parameter)

nodel _par anet er s --- parameters of the performance model (input parameter)

par ant --- number of parameters of the performance model (input parameter)

Description: This routine alows application programmers not to bother about finding the
optimal number of processes that can execute the parallel application. They can specify only the
rest of the parameters thus leaving the detection of the optimal number of processes to the HMPI
runtime system. HVPI _Gr oup_aut o_cr eat e is acollective operation and must be called by
the parent and all the processes, which are not members of any HMPI group.

The parameters nodel paraneters and param count are input as well as return
parameters. User fills only the input-specific part of the parameter nodel _par anet er s and
ignores the return parameters specifying the number of processes to be involved in executing the
algorithm and their performances. The parameter par am count passed to the cal of the
function HVPI _Group_aut o_cr eat e represents the number of parameters in the input-
specific part of the parameter nodel _par anet er s and on return, it contains the number of
parameters in the input-specific part of the parameter nodel _par anet er s plus the number of
parameters containing the number of processes to be involved in executing the algorithm and
their performances.

Return values: HMPI _ SUCCESS on success and an error in case of failure.

HWI G oup_heuristic_auto _create

Uses user-supplied heuristics to create an HMPI group of processes with optimal number of
processes

Synopsis:

typedef int (*HWPI _Heuristic_function)(
int np, int *dp, void *nodel p, int parant);

i nt

HWPI G oup_heuristic_auto create

(
HWPI _G oup* gid,
const HWPI _Nbdel * nodel
HVWPI Heuristic _function hfunc,
voi d** nodel paraneters,
i nt paranc

)

Parameters:
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gi d --- handle to the HMPI group of processes. Thisis an output parameter.

nodel --- handle that encapsulates all the features of the performance model in the
form of a set of functions generated by the compiler from the description
of the performance model (input parameter)

hf unc --- User-supplied heuristic function (input parameter)

nodel _par anet er s --- parameters of the performance model (input parameter)

par ant --- number of parameters of the performance model (input parameter)

Description: This routine has the same functionality as HVPl _ G- oup_aut o_cr eat e except
that it allows application programmers to supply heuristics that minimize the number of process
arrangements eval uated.

Application programmers provide the heuristic function hf unc. The input parameter np is the
number of dimensions in the process arrangement. The input parameter dp is an integer array of
sizenp containing the number of processes in each dimension of the process arrangement. The
input parameters nodel p and par ant are the parameters supplied to the performance model.
The function HVPI _Group_heuri sti c_auto_creat e evaluates a process arrangement
only if the heuristic function hf unc returnstrue.

A simple heuristic function is shown below, which returns a value true only if the process
arrangement is asquare grid.

int Square_grid_only(
int np, int *dp, void *nodelp, int parant){
if ((np == 2) && (dp[0] == dp[1]))
return true;
return fal se;

}

The function evaluates process arrangements that are square grids only if this heuristic function
is provided as an input.

Return values: HMPI _ SUCCESS on success and an error in case of failure.

HWI G oup_free

Free an HMPI group of processes

Synopsis.

i nt
HWI G oup_free
(

)

const HWPI G oup* gid
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Parameters:

gi d --- handle to the HMPI group of processes

Description: This routine deallocates the resources associated with a group object gi d.
HWPI _G oup_f r ee isacollective operation and must be called by all the processes, which are
members of the HMPI group gi d.

Usage:
HWI _G oup gi d;
if (HWPI _Is_nmenber(&gid))
{

}

Return values. HVPl _ SUCCESS on success and an error in case of failure.

HVPI G oup_free(&gid);

3.3 HMPI Runtime updation Functions

HVPI _Recon
Updates the estimation of processor performances dynamically

Synopsis.

t ypedef void (*HMPI _Benchmark_function) (
const void*, int, void*);

i nt
HVPl _Recon
(

HVPI _Benchmar k_function func,
const voi d* input_p,

i nt num of _paraneters,

voi d* output _p

)

Parameters:

f unc --- Benchmark user function executed by all the physical processors.
I nput _p --- Input parameters to the user function.
num of _par amet er s --- Number of input parameters to the user function.
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out put _p --- Return parameter on the execution of the user function.

Description: All the processors execute the benchmark function f unc in paralel, and the time
elapsed by each of the processors to execute the code is used to refresh the estimation of its
speed. This is a collective operation and must be called by al the processors in the group
associated with the predefined communication universe HMPI_PROC_WORLD of HMPI.

This routine alows updating the estimation of processor performances dynamically, at
runtime, just before using the estimation by the programming system. It is especialy important if
computers, executing the HMPI program, are used for other computations as well. In that case,
the real performance of processors can dynamically change dependent on the externd
computations. The use of this routine alows writing parallel programs sensitive to such dynamic
variation of the workload of the underlying computer system.

Usage:
doubl e Perf _func (
double I, double w, double h, double delta)
double mx,y, z;
for (m=0.0, x =0.0; x <1I; x += delta)
for (y =0.; vy <w y +=delta)
for (z =0.; z <h; z += delta)

m += XYZ_func(x,vy, z);
return m* delta * delta * delta;

}
voi d Benchmar k_functi on
(
const voi d* input_p,
int numof _p,
voi d* output _p
)
{
doubl e* parans = (doubl e*)i nput _p;
double result = Perf _func(
parans|[ 0] ,
parans[ 1],
par ans|[ 2] ,
par ans| 3]
);
*(doubl e*) (output _p) = result;
return;
}

/1 Al menbers of group HWI _PROC WORLD GROUP nust call
/1 this function
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if (HVPl_I's_menber (HVPI _PROC_WORLD GROUP))

{
doubl e out put _p;
int rc = HWI _Recon(
Benchmar k_functi on,
i nput _p,
4,
&out put _p
);
if (rc !'= HWPI _SUCCESS)
{
/1 An error has occurred
}
}

Return values. HVPl _ SUCCESS on success and an error in case of failure.

3.4 HMPI Estimation Functions

HVPI _Ti meof
Predict the total time of execution of the algorithm on the underlying hardware without its rea
execution

Synopsis.

doubl e
HVPl _Ti meof

(
const HWPI Mbdel * nodel

voi d* nodel paraneters,
i nt parant

)

Parameters:

nodel --- handle that encapsulates al the features of the performance model in
the form of a set of functions generated by the compiler from the
description of the performance model (input parameter)

nodel _par amet er s --- parameters of the performance model (input parameter)

par ant --- number of parameters of the performance model (input parameter)

Description: This routine alows application programmers to predict the total time of execution
of the algorithm on the underlying hardware without its real execution. This function allows the
application programmers to write such a parallel application that can follow different paralel
algorithms to solve the same problem, making choice at runtime depending on the particular
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executing network and its actual performance. Thisis alocal operation that can be called by any
process, which is a member of the group associated with the predefined communication universe
HWPI _COVM_WORLD of HMPI.

HVPI _Ti meof can thus be used to estimate the execution time on HNOCs for each possible
set of model parameters nodel _par anet er s. Application programmers can use this function
creatively to design best possible heuristics for the set of parameters. Depending on the time
estimated for each set, the optimal values of the parameters are determined. These values are
then passed to the performance model during the actual creation of the group of processes using
the function HVPI _Group_creat e.

Usage:

algorithmbcast(int p, int n, int ITER int rooot) {

coord | =p;
node {
| >=0: bench*1;
1
[ink {
| >=0&&I ! =rooot : | engt h*(n*n*| TER*si zeof (doubl e))
[rooot]->[1];
3
parent[O0];
schene {
int i, Kk;
for (k = 0; k <ITER k++)
for (i =0; I < p; i++)
if (i !'= rooot)
(100/ I TER) %84 rooot ] ->[i];
3
3
int main() {

int p;
HWI _G oup gid;

p = HWI G oup_si ze( HWPI _COVM WORLD GROUP)
if (HWI Is _host()) {
i nt param count = 4;
i nt nodel parans[4] = {
p,
N
| TER,
r oot
}
doubl e tinme;
time = HWPI _Ti meof (
&HVPI Model bcast,
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&nodel par ans,
par am count
);
ti = (doubl e)ti ne/ (doubl e) | TER;
printf("Nunmber of bytes broadcast = %,
time=%.9f\n", NN8, tine);

}

3.5 HMPI Processor I nformation Functions

HWPI _Get _nunber _of _processors
Returns the number of physical processors of the underlying distributed memory machine

Synopsis.

i nt
HWPI _Get _nunber _of processors()

Description: This routine returns the number of physical processors of the underlying distributed
memory machine. This is a collective operation and must be called by al the processes in the
group associated with the predefined communication universe HMPI_COMM_WORLD of
HMPI.

Return values: Error code HVPlI _UNDEFI NED is returned if the process is not the member of
the group HVPI _COVM WORLD GROUP. HMPI _SUCCESS is returned on success.

HWPI _Get _processors_info

Returns the relative performances of the physical processors of the underlying distributed
memory machine

Synopsis:

i nt
HWPlI _Get processors_info

doubl e* rel ati ve_perfornmances

)

Parameters:
Rel ati ve_perfor mances --- Output parameter containing the relative

performances of the physical processors of the
underlying distributed memory machine
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Description: This routine returns the relative performances of the physical processors of the
underlying distributed memory machine. This is a collective operation and must be called by all
the processes in the group associated with the predefined communication universe
HMPI_COMM_WORLD of HMPI.

Usage:

int p = HWI _Get _nunber _of processors();
doubl e speeds = (doubl e*) mal | oc(
si zeof (doubl e)

*

p
);
int rc = HWI _Get _processors_i nf o
speeds

);
if (rc !'= HWI _SUCCESS)
{

/1 An error has occurred
}

Return values: Error code HVPlI _UNDEFI NED is returned if the process is not the member of
the group HMPI _COVM WORLD GROUP. HMPI _ SUCCESS is returned on success.

HWPI _CGet _processes_info

Returns the relative performances of the processes running on the physical processors of the
underlying distributed memory machine

Synopsis:

i nt
HWPI _Get _processes_info

doubl e* rel ati ve_perfornmances

)

Parameters:

Rel ati ve_performances --- Output parameter containing the relative
performances of the processes running on the
physical processors of the underlying distributed

memory machine

430



HMPI Programmers Reference and Installation Manual

Description: This routine returns the relative performances of the processes running on the
physical processors of the underlying distributed memory machine. Thisis a collective operation
and must be called by al the processes in the group associated with the predefined
communication universe HMPI_COMM_WORLD of HMPI.

Usage:

int p = HWI _Goup_size(HWI COVW WORLD GROUP)
doubl e speeds = (doubl e*) mal | oc(
si zeof (doubl e)

*

p

int rc = HWI _Get _processes_i nfo(

speeds
)
if (rc !'= HWI _SUCCESS)
{
// An error has occurred
}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group HVPI _COVM WORLD GROUP. HMPI _SUCCESS is returned on success.

HWPI _G oup_per f or mances
Returns the relative performances of the processes in a group

Synopsis.

i nt
HWPI _G oup_per f or mances

(
const HWPI _Group* gid,

doubl e* rel ati ve_perfornmances

)

Parameters:

gi d --- handle to the HMPI group of processes

Rel ati ve_perfor mances --- Output parameter containing the relative
performances of the processes in the group
represented by the handle gi d
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Description: This routine returns the relative performances of the processes in the group
represented by the handle gi d. This is a collective operation and must be called by all the
processes in the group given by the handle gi d.

Usage:
HWI _G oup gid;

if (HWPI _I's nmenber(gid))

{
int p = HWI_Goup_size(&gid);
doubl e speeds = (doubl e*) mal | oc(
si zeof (doubl e)
p
);
int rc = HWI _G oup_performances(
gi d,
speeds
);
if (rc !'= HWPI _SUCCESS)
{
/1l An error has occurred
}
}

Return values: Error code HVPI _UNDEFI NED is returned if the process is not the member of
the group given by the handle gi d. HVPI _ SUCCESS is returned on success.

3.6 HMPI Synchronization Functions

HVPI _Barri er
Barrier for the members of the group

Synopsis.

int HWI _Barrier

( const HWI _Group* gid
)

Parameters:

gi d --- handle to the HMPI group of processes
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Description: Has same functionality as MPI _Bar ri er . Thisis a collective operation and must
be called by all the processes in the group given by the handle gi d.

Usage:
HWI G oup gid;

if (HWPl _I's nmenber (&gid))
{

}

Return values: HMPI _ SUCCESS on success and an error in case of failure.

HVPI _Barri er (&gid);

HWI Notify free_ processes

Notify free processes to leave the waiting point
Synopsis:
int HWI Notify free_processes()

Description: This must be called by only the host-process. It sends a command to the dispatcher
to signal the free processes to leave the waiting point.

Usage:
HWI G oup gid;

if (HWI Is host())
{

}

Return values. HVPl _ SUCCESS on success and an error in case of failure.

HWI Notify free_processes();

HWI Wait free_ processes

Waiting point for free processes waiting for commands for group destruction
Synopsis:
int HWI Wit _free_processes()

Description: This must be called by all the free processes. All the free processes wait in this call
for commands from dispatcher on group destruction.
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Usage:
if (HWI _Is free())
{
HWPI Wit free processes();
}

Return values. HVPl _ SUCCESS on success and an error in case of failure.

HVPI Host rendezvous
Allows rendezvous with the host-process

Synopsis:

int HWPI _Host rendezvous(int count)

Description: This function allows rendezvous with the host-process. Any process, which is the
member of the group HMPI _COVM WORLD GROUP, and the host-process must call this
function.

Parameters:
count --- Number of processes rendezvous with the host-process
Usage:
HWI _G oup gid;
/'l A parent of a group can rendezvous with the host
if (HWI Is parent(&gid) || HWPI _Is _host())
{

}

/1 A whole group can rendezvous with the host
if (HWI _Is_nenber(&gid) || HWPI _Is_host())
{

}

Return values: HMPI _ SUCCESS on success and an error in case of failure.

HWPlI Host rendezvous(1);

HWPI Host rendezvous(HWPI _G oup_si ze(&gid));

3.7 HMPI Debugging and Version Functions

HWI Printf
Print formatted strings to the host processor.
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Synopsis:
int HWI Printf
(

const char* format,
)
Parameters:
f or mat --- Format string in printf-fashion.

Description: Prints formatted strings to standard output on the virtual host processor from any
virtual processor of the computing space. Any process can call this function.

Usage:
HWI G oup gid;

if (HWPI _I's nmenber (&gid))

HWPI _Printf(
"Hell o, My node rank is %, My @ obal rank *
“is %\n ",

HWPI _G oup_rank(&ni d),
HWPI _G oup_r ank( HWPI _COVM WORLD GROUP)

),
}

Return values. HVPl _ SUCCESS on success and an error in case of failure.

HWPI _Strerror

Return a string associated with error code.

Synopsis:

i nt
HWPI _Strerror
(

int errnum
char* nessage

)

Parameters:

er r num--- Error code from any HMPI routine call.
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nessage --- Output parameter. Error message associated with the error code.
The message must represent storage that is at least
HVPI _MAX ERRCR_STRI NG characterslong.

Description: An error message string corresponding to the error number er r numis returned in
message. Any process can cal this function.

Usage:
char nessage[ HVWPI _MAX ERROR STRI NG ;

int rc = HWI _Init(
argc,
ar gv

);

if (rc !'= HWPI _SUCCESS)
{
HWPI _Strerror(
rc,
nessage

),

HWPI _Printf(
"Error during HWI initialization. Reason is %\n",
nessage

);
}

Return values. HVPl _ SUCCESS on success and error on failure.

HVPI _Debug

Turn the diagnostics on/off.

Synopsis:

i nt

HVPI _Debug
(

)

Parameters:

int yesno

yesno --- yes (1) or no (0)
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Description: Produces detailed diagnostics. Any process can call this function. This is the only
function apart from HVPI _Get _ver si on that can be caled before HVPI | nit or after
HVWPI _Fi nal i ze.

HWPI _CGet _version
Returns the version of the HMPI in the format x.y

Synopsis.

i nt

HWPI _CGet _version
(

int *version,
int *sub_version

)

Parameters:

ver si on --- Mgor version
sub_ver si on --- Minor version

Description: Returns the version of HMPI. Any process can call this function. Thisis one of the
few functions that can be called before HVPI | ni t or after HVPI _Fi nal i ze.

Usage:

int version, sub version;
HWPI _CGet version(&version, &sub_version);

4 Heterogeneous Data Partitioning Interface (HDPI)

The core of scientific, engineering or business applications is the processing of some
mathematical objects that are used in modeling corresponding real-life problems. In particular,
partitioning of such mathematical objectsis a core of any data parallel algorithm. Our analysis of
various scientific, engineering and business domains resulted in the following short list of
mathematical objects commonly used in parallel and distributed algorithms: sets (ordered and
non-ordered), dense matrices (and multidimensional arrangements), graphs, and trees.

Based on this classification, we suggest an API for partitioning mathematical objects commonly
used in scientific and engineering domains for solving problems on networks of heterogeneous
computers. These interfaces allow the application programmers to specify ssimple and basic
partitioning criteria in the form of parameters and functions to partition their mathematical
objects. These partitioning interfaces are designed to be used along with various programming
toolsfor paralel and distributed computing on heterogeneous networks.
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41 Sets

Partition_unordered_set
Partition a non-ordered set

Synopsis:

typedef double (*User _defined netric)(
int p, const double *speeds, const int *actual,
const int *ideal)

int Partition_unordered set (
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int n,
const int *w, int type_of _netric,
User _defined netric unf, double *netric, int *np)

Description: Thisroutine partitions a set into p digoint partitions.
Return values: 0 on successand - 1 in case of failure.

Partition_ordered set
Partition awell-ordered set

Synopsis.

int Partition_ordered _set (
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int n,
const int *w, int processor_reordering,
int type of _nmetric, User_defined netric unf
double *netric, int *np)

Description: Thisroutine partitions awell-ordered set into p digoint contiguous partitions.
Parameters:

Parameter p is the number of partitions of the set. Parameters speeds and psi zes specify
speeds of processors for pn different problem sizes. These parameters are 1D arrays of size
pxpn logicaly representing 2D arrays of shape [ p] [ pn] . The speed of the i -th processor for
j -th problem size is given by the [i ][] ] -th element of speeds with the problem size itself
givenbythe[i][]j]-th element of psi zes. Parameter m i mi t s gives the maximum number
of elements that each processor can hold.

Parameter n isthe number of elementsin the set, and parameter wis the weights of its el ements.
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Parameter t ype_of _netri ¢ specifies which metric should be used to determine the quality
of the partitioning. If t ype_of netric is USER_SPECI FI ED, then the user provides a
metric function unf, which is used to calculate the quality of the partitioning. If
type_of _netricisSYSTEM DEFI NED, the system-defined metric is used.

The output parameter met r i ¢ gives the quality of the partitioning, which is the deviation of the
partitioning achieved from the ideal partitioning satisfying the partitioning criteria. If the output
parameter met r i ¢ isset to NULL, then the calculation of metric isignored.

If wisnot NULL and the set is well ordered, then the user needs to specify if the implementations
of this operation may reorder the processors before partitioning (Boolean parameter
processor _reordering isused to do it). One typical reordering is to order the processors
in the decreasing order of their speeds.

Return values: 0 on successand - 1 in case of failure.

CGet _set _processor
For an ordered set, returns the processor owning the set element at index i

Synopsis.

int Get_set processor (
int i, int n, int p, int processor_reordering,
const int *np)

Return values; - 1 in case of failure.

Get _ny_partition
For a set, returns the number of elements allocated to processor i

Synopsis.

int Get_ny_partition (
int i, int p, const double *speeds, int n)

Return values; - 1 in case of failure.

4.2 DenseMatrices

Partition matrix_2d
Partition a matrix amongst processors arranged in a 2D grid

Synopsis.

int Partition matrix_2d (
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int p, int q,

int pn, const double *speeds, const int *psizes,
const int *mimts, int m int n,

int type of distribution, int *w, int *h, int *trow,
int *tcol, int *ci, int *cj )

Parameters:

The parameter p is the number of processors along the row of the processor grid. The parameter
g isthe number of processors along the column of the processor grid.

Parameters speeds and psi zes specify speeds of processors for pn different problem sizes.
These parameters are 1D arrays of size pxgxpn logicaly representing arrays of shape
[p][q]l[pn]. The speed of the (i, ) -th processor for k-th problem size is given by the
[1][]]][K]-th element of speeds with the problem size itself given by the[1 ][ ] [ K] -th
element of psi zes. Parameter m i m t s gives the maximum number of elements that each
processor can hold.

The parameters mand n are the sizes of the generalized block aong the row and the column.

The input parameter t ype_of _di stri buti on specifiesif the distribution is CARTESI AN,
ROW BASED, and COLUWVN- BASED.

Output parameter w gives the widths of the rectangles of the generalized block assigned to
different processors. This parameter is an array of size pxq.

Output parameter h gives the heights of rectangles of the generalized block assigned to different
processors. This parameter is an array of size pxqxpxq logically representing array of shape

[pIlallp][al.

Output parameter t r ow gives the top leftmost point of the rectangles of the generalized block
assigned to different processors from the first row of the generalized block. This parameter is an
array of size pxq.

Output parameter t col gives the top leftmost point of the rectangles of the generalized block
assigned to different processors from the first column of the generalized block. This parameter is
an array of size pxq.

Output parametersci , and cj are each an array of size nxn. The coordinates of the processor
in its processor grid to which the matrix element at row i and column j of the generalized block
is assigned is given by ci[ixn+j], and cj[i xn+]] respectively. If the application
programmer sets these parameters to NUL L, then these parameters are ignored.

Description: This routine partitions a matrix into p digoint partitions amongst processors
arranged in a 2D grid.
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Return values; 0 on successand - 1 in case of failure.

Partition_matrix_1d_dp

Partition a matrix amongst processors arranged in alinear array

Synopsis.

int Partition matrix_1d dp(
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int m int n,
Get _| ower _bound | b, DP_function dpf,
int type_of distribution,
int *w, int *h, int *trow, int *tcol, int *c)

Parameters:

The parameter p is the number of number of digoint rectangles the matrix is partitioned into.
Parameters speeds and psi zes specify speeds of processors for pn different problem sizes.
These parameters are 1D arrays of size pxpn logicaly representing 2D arrays of shape
[ p] [ pn] . The speed of the i -th processor for j -th problem size isgiven by the[i ][] ] -th
element of speeds with the problem size itself given by the[i ][ ] -th element of psi zes.
Parameter m i m t s gives the maximum number of elements that each processor can hold.

The parameters mand n are the sizes of the generalized block aong the row and the column.

The input parameter t ype_of _di stri buti on specifiesif the distribution is ROV BASED
or COLUVN- BASED.

Output parameter w gives the widths of the rectangles of the generalized block assigned to
different processors. This parameter is an array of size p. Output parameter h gives the heights
of rectangles of the generalized block assigned to different processors. This parameter is an array
of size pxp. Output parameter t r ow gives the top leftmost point of the rectangles of the
generalized block assigned to different processors from the first row of the generalized block.
This parameter is an array of size p. Output parameter t col gives the top leftmost point of the
rectangles of the generalized block assigned to different processors from the first column of the
generalized block. This parameter is an array of sizep.

Output parameter ¢ is an array of size mxn. The coordinates of the processor in its processor
array to which the matrix element at row i and column j of the generalized block is assigned is
given by c[i xn+j]. If the user sets these parameters to NULL, then these parameters are
ignored.

Description: This routine partitions a matrix into p digoint partitions amongst processors
arranged in alinear array.
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Return values; 0 on successand - 1 in case of failure.

Partition_matrix_1d iterative
Partition a matrix amongst processors arranged in alinear array

Synopsis.

int Partition_matrix_1d_ iterative(
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int m int n,
CGet | ower _bound I b, Iterative function cf,
int *w, int *h, int *trow, int *tcol, int *c)

Parameters:

Application programmers provide a cost function cf that tests the optimality of a partition from
a finite set of partitions. The initial partition in this finite set of partitions is obtained using a
problem-specific strategy. The cost function cf is called iteratively for each of the partitionsin
the subset of partitions. The return value of this function gives an optimality value. At each step
of the iteration, the optimality value is compared to the lower bound of the optimal solution to
the optimization problem. Application programmers specify a function | b, which is used to
calculate the lower bound of their optimization problem. The iteration stops when the function
returns an optimality value less than or equal to the lower bound or a negative return value
indicating that the partitioning cannot be improved and that the current partition is optimal.

Description: Partitions amatrix into p digoint partitions amongst processors arranged in alinear
array.

Return values; 0 on successand - 1 in case of failure.

Partition_matrix_1d refining
Partition a matrix amongst processors arranged in alinear array

Synopsis:

int Partition_matrix_1d_refining(
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int m int n,
Get _| ower _bound | b, Refining_function cf,
int *w, int *h, int *trow, int *tcol, int *c)

Parameters:

Application programmers provide a refinement function r f that refines an old partition giving a
new better partition. A negative return value of this function suggests that the old partition
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cannot be refined further. This function isiteratively called. The partition for the first call of this
refining function is obtained using a problem-specific strategy. Application programmers specify
a function | b, which is used to calculate the lower bound of their optimization problem. The
iteration stops when the refinement function r f returns an optimality value less than or equal to
the lower bound indicating that the current partition is optimal.

Description: Partitions amatrix into p digoint partitions amongst processors arranged in alinear
array.

Return values; 0 on successand - 1 in case of failure.

Get _matri x_processor

Returns the coordinates (i,j) of the processor owning the matrix element at row r and column ¢

Synopsis:

typedef struct {int i; int j;} Processor;

int Get_matrix_processor (
int r, int ¢, int p, int q, int *w, int *h, int *trow,
int *tcol, int type_of distribution, Processor *root)

Return values; 0 on successand - 1 in case of failure.

Get_my_width

Returns the width of the rectangle owned by the processor with coordinates (i,j)

Synopsis:
int Get_ny_w dth(
int i, int j, int p, int q, const double *speeds,
int type of _distribution, int m int n)
Description: Currently only applicable to two-dimensional processor arrangements.

Return values: - 1 in case of failure.

Get _ny_hei ght

Returns the height of the rectangle owned by the processor with coordinates (i,j)

Synopsis:

int Get_ny_height(
int i, int j, int p, int q, const double *speeds,
int type of _distribution, int m int n)

Description: Currently only applicable to two-dimensional processor arrangements.
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Return values: - 1 in case of failure.

CGet _di agonal

Obtain the number of elements owned by the processor with coordinates (i,j) on the diagonal of
the matrix

Synopsis:

i nt Get_diagonal (
int i, int j, int p, int q, int *w, int *h, int *trow,
int *tcol)

Description: Currently only applicable to dense square matrices and two-dimensional processor
arrangements.

Return values: - 1 in case of failure.

Cet _ny_el enents

Obtain the number of elements owned by the processor with coordinates (i,j) in the upper or
lower half of the matrix including the diagonal elements

Synopsis:

int Get_ny_el enent s(
int n, int g, int i, int j, int p, int g, int *w, int *h,
int *trow, int *tcol, int type_of _distribution,

char upper_or _| ower)

Description: Currently only applicable to dense square matrices and two-dimensional processor
arrangements.

Return values; - 1 in case of failure.

Get _ny_kk_el enents

Obtain the number of elements owned by the processor with coordinates (i,j) in the upper or
lower half of the matrix starting from (k,k) including the diagonal elements

Synopsis.

int Get_ny_kk_el ement s(
int n, int g, int k, int i, int j, int p, int g, int *w,
int *h, int *trow, int *tcol, int type_of _distribution,

char upper_or _| ower)
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Description: Currently only applicable to dense square matrices and two-dimensional processor
arrangements.

Return values: - 1 in case of failure.

43 Graphs

Partition_graph
Partition a graph

Synopsis.

int Partition_graph (
int p, int pn, const double *speeds,
const int *psizes, const int *mimts, int n, int m
const int *vwgt, const int *xadj,
const int *adjacency, const int *adjwgt,
int nopts, const int *options, int *vp, int *edgecut)

Parameters:

Parameter p is the number of partitions of the graph. Parameters speeds and psi zes specify
speeds of processors for pn different problem sizes. These parameters are 1D arrays of size
pxpn logicaly representing 2D arrays of shape [ p] [ pn] . The speed of thei -th processor for
] -th problem size is given by the [i ][] ] -th element of speeds with the problem size itself
givenbythe[i][]]-th element of psi zes. Parameter ml i m t s gives the maximum number
of elements that each processor can hold.

The parameters n and mare the number of vertices and edges in the graph. The parameters vwgt
and adj wgt are the weights of vertices and edges of the graph. In the case in which the graph is
unweighted (i.e., all vertices and/or edges have the same weight), then either or both of the arrays
vwgt and adj wgt can be set to NULL. The parameters vwgt is of size n. The parameter
adj wgt isof size 2mbecause every edgeis listed twice (i.e., as (v, u) and (u, v)).

The parameters xadj and adj acency specify the adjacency structure of the graph
represented by the compressed storage format (CSR). The adjacency structure of the graph is
stored as follows. The adjacency list of vertex i is stored in adj acency starting at index
xadj [1] andending at but not including xadj [ i +1] . The adjacency lists for each vertex are
stored consecutively in the array adj acency.

The parameter opt i ons isan array of sSize nopt s containing the options for the various phases

of the partitioning algorithms employed in partitioning the graph. These options allow
integration of third party implementations, which provide their own partitioning schemes.
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The parameter vp is an array of size n containing the partitions to which the vertices are
assigned. Specifically, vp[ 1] contains the partition number in which vertex i belongs to. The
parameter edgecut contains the number of edges that are cut by the partitioning.

Description: Thisroutine partitions a graph into p digoint partitions.
Return values: 0 on successand - 1 in case of failure.

Partition_bipartite_graph
Partition a bipartite graph

Synopsis.

int Partition_bipartite_graph (
int p, int pn, const double *speeds,
const int *psizes, const int *mimts,
int n, int m const int *vtype, const int *vwgt,
const int *xadj, const int *adjacency,
const int *adjwgt, int type_of partitioning,
int nopts, const int *options, int *vp, int *edgecut)

Parameters:

The meaning of the parameters p, pn, speeds, psizes,Mimts, n, mvwgt, adj wgt
xadj, adjacency is identicd to meaning of the corresponding parameters of
Partition_graph.

The parameter vt ype specifies the type of vertex. The only values alowed are 0 and 1
representing the two digoint subsets the bipartite graph is composed of .

The parameter t ype_of _parti ti oni ng specifies whether the partitioning of subsetsis done
separately or not. It can take only one of the values PARTI TI ON_SUBSET and
PARTI TI ON_OTHER.

The parameter opt i ons isan array of size nopt s containing the options for the various phases
of the partitioning algorithms employed in partitioning the graph. These options allow
integration of third party implementations, which provide their own partitioning schemes.

The parameter vp is an array of size of size n containing the partitions to which the vertices are
assigned. Specifically, vp[i] contains the partition number in which vertex i belongs to. The
parameter edgecut contains the number of edges that are cut by the partitioning.

Description: This routine partitions a bipartite graph into p digoint partitions.

Return values; 0 on successand - 1 in case of failure.
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Partition_hypergraph

Partition a hypergraph

Synopsis.

int Partition_hypergraph (
int p, int pn, const double *speeds,
const int *psizes, const int *mimts,
int nv, int nedges, const int *vwgt, const int *hptr,
const int *hind, const int *hwgt, int *vp,
int nopts, const int *options, int *edgecut)

Parameters:

The meaning of the parameters p, pn, speeds, psi zes,andm i m t s isidentical to meaning
of the corresponding parametersof Partiti on_gr aph.

The parametersnv and nedges arethe number of verticesand number of hyperedgesin
the hypergraph.

The parametersvwgt isan array of sizenv that storesthe weights of the vertices and
hwgt isan array of size nedges that storesthe weights of hyperedges of the graph. If
theverticesin the hypergraph are unweighted, then vwgt can be NULL. If the
hyperedgesin the hypergraph are unweighted, then hwgt can be NULL.

The parameter hpt r is an array of size nedges+1 and is an index into hi nd that stores the
actual hyperedges. Each hyperedge stores the sequence of the vertices that it spans, in
consecutive locations in hi nd. Specifically, i -th hyperedge is stored starting at location
hind[ hptr[i]] uptobutnotincludinghi nd[ hptr[i+1]].

The parameter opt i ons isan array of sSize nopt s containing the options for the various phases
of the partitioning algorithms employed in partitioning the graph. These options allow
integration of third party implementations, which provide their own partitioning schemes.

The parameter vp is an array of size of size n containing the partitions to which the vertices are
assigned. Specifically, vp[ 1] contains the partition number in which vertex i belongs to. The
parameter edgecut contains the number of hyperedges that are cut by the partitioning.
Description: This routine partitions a hypergraph into p digoint partitions.

Return values: 0 on successand - 1 in case of failure.

44 Trees
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Partition tree

Partition atree

Synopsis:
int Partition_tree (

int p, int pn, const double *speeds,
const int *psizes, const int *mimts,
int n, int nedges, const int *nwgt, const int *xadj,
const int *adjacency, const int *adjwgt,
int *vp, int *edgecut)

Parameters:

The meaning of the parametersp, pn, speeds, psi zes,andnl i m t s isidentical to meaning
of the corresponding parametersof Partiti on_graph.

The parametersn and nedges arethe number of verticesand edgesin thetree. The
parametersnwgt isan array of size n that storesthe weights of the verticesand adj wgt
isan array of size nedges that storesthe weights of edges of thetree. If the verticesin
thetree are unweighted, then nwgt can be NULL. If the edgesin the tree are unweighted,
then adj wgt can be NULL.

The parametersxadj and adj acency specify the adjacency structure of the tree.

The parameter vp is an array of size of size n containing the partitions to which the vertices are
assigned. Specifically, vp[i] contains the partition number in which node i belongs to. The
parameter edgecut contains the number of edges that are cut by the partitioning.

Description: Thisroutine partitions atree into p disjoint subtrees.

Return values; 0 on successand - 1 in case of failure.

5 HMPI Command-line User’s I nterface

51 HMPI Environment

Currently, the HMPI programming environment includes a compiler, run-time support system
(RTS), alibrary, and a command-line user interface.

The compiler compiles the description of this performance model to generate a set of functions.
The functions make up an algorithm-specific part of the HMPI runtime system.

Thelibrary consists of extensions to MPI and Heterogeneous Data Partitioning Interface (HDPI).
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HMPI command-line user’'s interface consists of a number of utilities supporting parallel
machines manipulation actions and building of HMPI applications.

5.2 Virtual Parallel Machine

Please refer to the mpC command-line user’ s interface guide on how to write a VPM description
file and the VPM manipulation utilities:

* “npccreat e” to create aVPM,;

* “npcopen” tocreateaVPM;

* “npccl ose” tocloseaVPM,;

 “npcdel ” toremoveaVPM;

nettype grid(int p, int q) {
coord I=p, J=q;
1

Figure A.1l: Specification of a simple performance model in the HMPI's performance definition language. The
performance model definitionisinthefile“gri d. npc”.

5.3 Building and Running HMPI Application

Please refer to the mpC command-line user’s interface guide on utilities that are used to run an
mpC/HMPI application on aVPM:

e “hnpi cc” to compile a performance model definition file;

* “hnpi bcast ” to make available all the source filesto build a executable;

* “hnpi | oad” to create a executable;

e “hnpi run” to execute the target application;

A sample performance model and the HMPI application using the performance model are shown
inFiguresA.1and A.2:

Outlined below are stepsto build and run aHMPI application.

1). The first step is to describe your Virtual Parallel Machine (VPM). This consists of all the
machines being used in your HMPI application. Describe your VPM in a file in the
$MPCLOCAL/ t opo directory. VPM is opened after successful execution of the command
npccr eat e. Consider for example:

shel 1 $ cat $MPCLOCAL/t opo/ vpm Sol mach123_Li nuxmach456. vpm

#

# Machi nes and t he nunmber of processes to run on each
# machi ne

# Nunber in square brackets indicate the nunber of

# processors
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#i ncl ude <mat h. h>

#i ncl ude <stdio. h>

#i ncl ude <sys/tine. h>
#i nclude “grid.c”

int main() {
i nt param count,

HWI _G oup gid;

int gsize, p,
param count =

p:q:l;

nodel _par ans[ 2] ;
end;
NULL) ;

struct tineval start,
getti neof day(&start,

HWPI _Init(argc, argv);
if (HWI _Is _host()) {

gsize = HWI _G E)up_si ze( HvVPI _COVM WORLD GROUP) ;
p =q = sqrt(gsize);
if ((p==0) & (q == 0))

nodel _par ans[ 0]
nodel _par ans[ 1]

p
q;

printf("Total nunber of processes avail able for conputation
is %\n", gsize);
printf("Creating a grid (%, %l) of processes\n", p, Qq);

if (HWI _Is _host())
HWI G oup_create (&gid, &WPC Net Type grid,
nodel _parans, param count)
if (HWI _Is free())
HWI G oup_create (&gid, &WPC Net Type grid,
NULL, 0)
/1 Distribute conputations using the optinal speeds of processes
if (HWPI _|I's nenber(&gid)){
/1 computations and conmuni cati ons are perforned here

}

if (HWPI _Is_nenber(&gid)) HWI_Goup_free(&gid);

get ti neof day(&end, NULL);

if (HWI _Is_host()) {
double tstart = start.tv_sec + (start.tv_usec/pow10, 6));
double tend = end.tv_sec + (end.tv_usec/pow 10, 6));
printf(“Time taken for group creation(sec)=%\n",

tend-tstart);

}
HWPI _Fi nal i ze(0);

Figure A.2: A sasmple HMPI program. The HMPI program iswritteninthefile“Test _group_create. c”.

sol machl 2 [ 2]
sol mach2 2 [ 2]
sol mach3 2 [ 2]
i nuxmach4 4 [ 4]
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[ i nuxmach5 2 [ 2]
i nuxmach6 1 [1]

shel | $ npccreate vpm Sol mach123_Li nuxnmach456

2). Compile the performance modd file.

shel I'$ hnpicc grid. npc

Thisfileistrandated intoaC file“gri d. c”.

3). Broadcast the files to al the machinesin the virtual paralel machine.

shel | $ hnpi bcast Test group _create.c grid.c

4). Create the executable.

shel I'$ hnpil oad —0 Test _group _create Test _group _create.c

5). Run the target program.

shel I'$ hnpirun Test group_create

Total nunber of processes available for conputation is 9
Creating a grid (3, 3) of processes

Time taken for group creation(sec)=0.262353

6 HMPI Installation Guide for UNI X

This section provides information for programmers and/or system administrators who want to
install HMPI for UNIX.

6.1 System Requirements

The following table describes system requirements for HMPI for UNIX.

Component Requirement

Operating System Linux, Solaris, FreeBSD

HMPI issuccessfully tested on the
following operating systems:

Linux 2.6.5-1.358smp (gcc version 3.3.3
20040412 (Red Hat Linux 3.3.3-7))

Linux 2.6.8-1.521smp (gcc version 3.3.3
20040412 (Red Hat Linux 3.3.3-7))
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Linux 2.6.5-1.358 (gcc version 3.3.3
20040412 (Red Hat Linux 3.3.3-7))

Linux 2.4.18-3 ((gcc version 2.96
20000731 (Red Hat Linux 7.3 2.96-110))

Sun Solaris 5.9 (gcc version 3.4.1)

FreeBSD 5.2.1-REL EASE (gcc version
3.3.3 [FreeBSD] 20031106)

C compiler Any ANSI C compiler
MPI LAM MPI 6.3.2 or higher
MPICH MPI 1.2.0 or higher with chp4
device
mpC Version 3.0.0 or higher

LAM MPI can be obtained from http://www.lam-mpi.org/
MPICH MPI can be obtained from http://www-unix.mcs.anl.gov/mpi/mpich/
mpC package can be obtained from http://www.ispras.ru/~mpc/

6.2 Contentsof HMPI for UNIX Distribution

HMPI for Unix distribution contains the following:

Directory Contents

README Copyright information, Contact
information

INSTALL Installation instructions

Makefile Installation and test of the compiler and the
environment

docs HMPI manual for programmers

man Manual pages for HMPI API

src Source code for HMPI

include Header files

tests Tests for testing HMPI library

Third Party Software

Third party software for graphs

tools

HMPI tools to build executables, clean up
HMPI repositories

6.3 Beforelnstallation

6.3.1 Installing MPI
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You should have MPI installed on your system. Please make sure that npi cc and npi run
scripts are in your PATH environment variable.

.S.hel | $ export MPIDIR=<...MPl install directory...>
shel | $ export PATH=$MPI DI R/ bi n: $PATH

6.3.2 Installing mpC

Y ou should have mpC installed on your system. Please refer to the mpC installation guide on the
variables to export in the shell startup files.

'slhel | $ export MPCHOVE=<...npC install directory...>
shel | $ export PATH=$MPCHOVE/ bi n: $PATH

6.3.3 Making rsh/ssh working

If you using r sh, please make sure that you reach every machine from every other machine with
r sh command by executingr sh —n true host nane. Thiscommand should not hang up.

If you are using ssh, please follow the instructions below:

Normally, when you use ssh to connect to a remote host, it will prompt you for your password.
However, in order for MPI commands to work properly, you need to be able to execute jobs on
remote nodes without typing in a password. In order to do this, you will need to set up RSA (ssh
1.x and 2.x) or DSA (ssh 2.x) authentication.

This text will briefly show you the steps involved in doing this, but the ssh documentation is
authoritative on these matters should be consulted for more information. The first thing that you
need to do is generate an DSA key pair to use with ssh- keygen:

shel | $ ssh-keygen -t dsa

Accept the default value for the file in which to store the key (JHOVE/ . ssh/id_dsa) and
enter a passphrase for your keypair. You may choose to not enter a passphrase and therefore
obviate the need for using the ssh- agent . However, this weakens the authentication that is
possible, because your secret key is [potentially] vulnerable to compromise because it is
unencrypted. See the ssh documentation.

Next, copy the $HOVE/.ssh/id _dsa.pub file generated by ssh-keygen to
$HOVE/ . ssh/ aut hori zed_keys:
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shel | $ cd $HOWVE/ . ssh
shel1'$ cp id_dsa. pub authorized_keys

In order for DSA authentication to work, you need to have the $HOVE/ . ssh directory in your
home directory on al the machines you are running MPI on. If your home directory is on a
common filesystem, thisis already taken care of. If not, you will need to copy the $HOVE/ . ssh
directory to your home directory on al MPI nodes (be sure to do this in a secure manner --
perhaps using the scp command), particularly if your secret key is not encrypted).

ssh is very particular about file permissions. Ensure that your home directory on all your
machines is set to mode 755, your $HOVE/ . ssh directory is also set to mode 755, and that the
following filesinside $HOVE/ . ssh have the following permissions:

-rwr--r-- authorized keys
STW--- - id dsa
-rwr--r-- id_dsa.pub
-rwr--r-- known_hosts

You are now set up to use DSA authentication. However, when you ssh to a remote host, you
will still be asked for your DSA passphrase (as opposed to your norma password). This is
where the ssh- agent program comesin. It alows you to type in your DSA passphrase once,
and then have al successive invocations of ssh automatically authenticate you against the
remote host. To start up the ssh- agent , type:

shel | $ eval “ssh-agent’

You will probably want to start the ssh- agent before you start X windows, so that all your
windows will inherit the environment variables set by this command. Note that some sites invoke
ssh-agent for each user upon login automaticaly; be sure to check and see if there is an
ssh-agent running for you already. Once the ssh- agent is running, you can tell it your
passphrase by running the ssh- add command:

shel | $ ssh-add $HOWE . ssh/id_dsa

At this point, if you ssh to a remote host that has the same $HOME/ . ssh directory as your
local one, you should not be prompted for a password. If you are, a common problem is that the
permissionsin your $HOVE/ . ssh directory are not as they should be.

Note that this text has covered the ssh commands in very little detail. Please consult the ssh
documentation for more information.

6.4 Beginning I nstallation

Unpack the HMPI distribution, which comes as atar in the form hmpi-x.y.tar.gz.
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To uncompress thefile tree use:

shel | $ gzip -dhmpi-x.y.z.tar.gz
shel 1 $ tar -xvf hmpi-x.y.ztar

where x.y.z stands for the installed version of the HMPI library (say 1.2.1, 2.0.0, or 3.1.1).
The directory 'hmpi-x.y.z' will be created; execute
shel | $ cd hmpi-x.y.z

The Makefile at the global level (hmpi-x.y.z/Makefile) controls the compilation and installation
of the HMPI software. It activates subdirectory specific Makefiles.

Export the variable HMPI _HOVE to point to the installation directory (directory where binaries
of HMPI will be installed)

shel | $ export HWPI _HOVE=<...ingtall directory...>
To compile all the programs execute:

shell$ ./install _hnpi

To clean up:

shel I $ make cl ean

to remove object files and executables from source directories.

6.5 Finishing Installation
On successful installation of HMPI, the following message is displayed:

HHHHHHHHH R R AR R R TR R R R R R R R R R R R R R RS
Installation of HWI SUCCESSFUL
export the variable

export HWPI _HOVE=/ home/ cs/ manr edd/ npC3. x. x/ npcc-

3. x. x/ apps/ HWPI / dev/ HWPI _Li nux_2. 6. 8-1. 521snp
Set the val ue bel ow i n PATH environnent vari abl e

/ home/ cs/ manr edd/ npC3. x. x/ npcc-

3. X. x/ apps/ HWPI / dev/ HVPI _Li nux_2. 6. 8-1. 521snp/ bi n

HUHHBH PR HH AR R A AR R R A R R R A R R i 7

Y ou should update your shell startup files with the following variables:
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shel | $ export HWPI _HOMVE=<...install directory...>
shel | $ export PATH=$HWPI _HOVWE/ bi n: $PATH

6.6 Contentsof HMPI Installation

HMPI installation contains the following:

Directory Contents

bin Binaries hmpicc, hmpibcast, hmpiload,
hmpirun,...

docs This manual

include Header files

man Manual pages for HMPI API

lib Archived HMPI library libhmpi.a

tests Tests for testing HMPI library

6.7 Testingyour Installation
After you have successfully installed HMPI, to test the installation, you can test each individual

test in the directory “$HWVPI _HOME/ t est s”. Diagnostics are produced showing success or
failure of each individual test. Before you test, avirtual parallel machine must be opened.
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