
www.elsevier.com/locate/parco

Parallel Computing 30 (2004) 1195–1216
On performance analysis of heterogeneous
parallel algorithms

Alexey Lastovetsky *, Ravi Reddy

Department of Computer Science, University College Dublin (UCD), Belfield, Dublin 4, Ireland

Received 5 March 2003; revised 15 April 2004; accepted 30 July 2004

Available online 15 September 2004
Abstract

The paper presents an approach to performance analysis of heterogeneous parallel algo-

rithms. As a typical heterogeneous parallel algorithm is just a modification of some homo-

geneous one, the idea is to compare the heterogeneous algorithm with its homogeneous

prototype, and to assess the heterogeneous modification rather than analyse the algorithm

as an isolated entity. A criterion of optimality of heterogeneous parallel algorithms is sug-

gested. A parallel algorithm of matrix multiplication on heterogeneous clusters is used to illus-

trate the proposed approach.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Performance analysis; Parallel algorithms; Heterogeneous networks of computers
1. Introduction

Heterogeneous networks of computers are a promising distributed-memory par-

allel architecture. In the most general case, a heterogeneous network includes PCs,

workstations, multiprocessor servers, clusters of workstations, and even supercom-

puters. Unlike traditional homogeneous parallel platforms, the heterogeneous
0167-8191/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2004.07.007

* Corresponding author. Fax: +353 1 269 7262.

E-mail addresses: alexey.lastovetsky@ucd.ie (A. Lastovetsky), ravi.reddy@ucd.ie (R. Reddy).

mailto:alexey.lastovetsky@ucd.ie 
mailto:ravi.reddy@ucd.ie 


1196 A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216
parallel architecture uses processors running at different speeds. Therefore, tradi-

tional parallel algorithms, which distribute computations evenly across parallel proc-

essors, will not balance the load of different-speed processors of the heterogeneous

network. Faster processors will quickly perform their portions of computation

and will wait for slower ones at points of synchronisation.
A natural approach to the problem is to distribute data across processors un-

evenly so that each processor performs the volume of computation proportional

to its speed. Several authors have applied this approach to data parallel algorithms

based on the two-dimensional block-cyclic distribution [1–4].

The methods of the performance analysis of homogeneous parallel algorithms are

well studied. They are based on a number of models of parallel computers, including

the parallel random access machine (PRAM) [5], the bulk-synchronous parallel

model (BSP) [6], and the LogP model [7]. All the models assume a parallel computer
to be a homogeneous multiprocessor. The PRAM is the most simplistic model. It as-

sumes that all processors work synchronously and that interprocessor communica-

tion is free. The BSP allows processors to work asynchronously and models

latency and limited bandwidth. Finally, the LogP is the most realistic model among

them. It characterizes a parallel machine by the number of processors (P), the com-

munication bandwidth (g), the communication delay (L), and the communication

overhead (o). The LogP model has been successfully used for the performance anal-

ysis of parallel algorithms for (homogeneous) supercomputers. The theoretical anal-
ysis of a homogeneous parallel algorithm is normally accompanied by a relatively

small number of experiments on a homogeneous parallel computer system. The pur-

pose of these experiments is to show that the analysis is correct, and the analysed

algorithm is really faster than its counterparts.

Theoretical performance analysis of heterogeneous parallel algorithms is a much

more difficult task than that of homogeneous ones. While some research efforts in

this direction have been made [8,9], there is no adequate and practical model of het-

erogeneous networks of computers yet, which would be able to predict the execution
time of heterogeneous parallel algorithms with satisfactory accuracy. The problem of

optimal heterogeneous data distribution has proved NP-complete even for such a

simple linear algebra kernel as matrix multiplication on heterogeneous networks

[4]. Therefore, most practical heterogeneous parallel algorithms are sub-optimal. A

typical approach to assessment of a heterogeneous parallel algorithm is its experi-

mental comparison with some homogeneous counterpart on one or several heteroge-

neous platforms. Different heterogeneous algorithms are also compared mostly

experimentally. Due to the complex and irregular nature of heterogeneous networks,
such experimental assessment of heterogeneous parallel algorithms is not as convinc-

ing as for homogeneous ones. One can easily argue that the demonstration of the

advantage of one algorithm over other algorithm on one or several heterogeneous

networks does not prove that the situation will not change if you run the algorithms

on other networks of computers, with the different relative speed of processors, and

the different structure and speed of the communication network.

In this paper, we present a new approach to the performance analysis of hetero-

geneous parallel algorithms. As a typical heterogeneous parallel algorithm is just a



A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216 1197
modification of some homogeneous one, the idea is to compare the heterogeneous

algorithm with its homogeneous prototype, and to assess the heterogeneous modifi-

cation rather than analyse the algorithm as an isolated entity. Namely, we propose to

compare the efficiency of the heterogeneous algorithm on a heterogeneous network

with the efficiency of its homogeneous prototype on a homogeneous network having
the same aggregate performance as the heterogeneous one.

This paper is structured as follows. In Section 2, we briefly formulate our

approach to assessment of heterogeneous parallel algorithms. Then we apply this

approach to the assessment of a concrete heterogeneous parallel algorithm. For this

purpose we use an algorithm of matrix multiplication on heterogeneous networks

based on the heterogeneous matrix distribution proposed in [3]. In Section 3, we de-

scribe a block cyclic algorithm of parallel matrix multiplication on homogeneous

platforms. In Section 4, we introduce its heterogeneous modification. In Section 5,
we assess this heterogeneous algorithm by comparing the efficiency of this algorithm

on a heterogeneous network with the efficiency of its homogeneous prototype on a

homogeneous network, which has the same aggregate performance as the heteroge-

neous one. We show that the heterogeneous algorithm is very close to the optimal

one. In Section 6, we present some results of experiments with this application, which

in particular confirm our theoretical analysis.
2. Assessment of heterogeneous algorithms

We propose to assess heterogeneous algorithms as follows. Typically, a heteroge-

neous algorithm is just a modification of some homogeneous one. Therefore, our

proposal is to compare the heterogeneous algorithm with its homogeneous prototype

and assess the heterogeneous modification rather than analyse the algorithm as an

isolated entity.

Our basic postulate is that the heterogeneous algorithm cannot be more efficient
than its homogeneous prototype. It means that the heterogeneous algorithm cannot

be executed on the heterogeneous network faster than its homogeneous prototype on

the equivalent homogeneous network. A homogeneous network of computers is

equivalent to the heterogeneous network if

• Its aggregate communication characteristics are the same as that of the heteroge-

neous network;

• It has the same number of processors;
• The speed of each processor is equal to the average speed of processors of the het-

erogeneous network.

The heterogeneous algorithm is considered optimal if its efficiency is the same as

that of its homogeneous prototype.

This approach is relatively easy to apply if the target architecture of the heteroge-

neous algorithm is a set of heterogeneous processors interconnected via a homo-

geneous communication network. In this case, all we need to do is to find a



1198 A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216
(homogeneous) segment in the instrumental LAN and select two sets of processors in

this segment so that

• Both sets consist of the same number of processors;

• All processors comprising the first set are identical;
• The second set includes processors of different speeds;

• The aggregate performance of the first set of processors is the same as that of the

second one.

The first set of interconnected processors represents a homogeneous network of

computers, which is equivalent to the heterogeneous network of computers repre-

sented by the second set of processors just by design. Indeed, these two networks

of computers share the same homogeneous communication segment and, therefore,
have the same aggregate communication characteristics. More reliable results are

obtained if the intersection of the two sets of processors is not empty. This allows

us to better control the accuracy of experiments by checking that the same processor

has the same speed in the heterogeneous network running the heterogeneous algo-

rithm and in the homogeneous network running its homogeneous prototype. Higher

confidence of the experimental assessment can be achieved by experimenting with

several different pairs of processor sets from different segments.

If the target architecture for the heterogeneous algorithm is a set of heterogeneous
processors interconnected via a heterogeneous communication network, the design

of experiments becomes much more complicated. A comprehensive solution of this

problem is a subject for future research. We just outline how the problem can be ap-

proached in one simple but quite typical case. Let the communication network of the

target heterogeneous architecture consist of a number of relatively fast homogeneous

communication segments interconnected by slower communication links. Let fully

parallel communications between different pairs of processors be enabled within each

of the segments (for example, by using a switch, the number of ports of which is no
less than the number of computers in the segment). Let communication links be-

tween different segments only support serial communication. Further design depends

on the analysed heterogeneous algorithm. Assume that the communication cost of

the algorithm comes mainly from relatively rare point-to-point communications sep-

arated by significant amount of computations, so that it is highly unlikely for two

such communication operations to be performed in parallel. Also assume that each

such a communication operation consists in passing a relatively long message. Those

assumptions allows us to use a very simple linear communication model when time
tA!B(d) of transferring data block of size d from processor A to processor B is cal-

culated as tA!B(d) = sA!B · d, where sA!B is the constant speed of communication

between processors A and B and sA!B = sB!A. Thus, under all these assumptions,

the only aggregate characteristic of the communication network, which has an

impact on the execution time of the algorithm, is the average speed of point-to-point

communications.

To design experiments on the instrumental LAN in this case, we need to select two

sets of processors so that



A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216 1199
• Both sets consist of the same number of processors;

• All processors comprising the first set are identical and belong to the same homo-

geneous communication segment;

• The second set includes processors of different speeds that span several communi-

cation segments;
• The aggregate performance of the first set of processors is the same as that of the

second one;

• The average speed of point-to-point communications between processors of the

second set is the same as the speed of point-to-point communications between

processors of the first set.

The first set of interconnected processors will represent a homogeneous network

of computers, equivalent to the heterogeneous network of computers represented by
the second set.

In mathematical form, this problem can be formulated as follows. Let n be the

number of processors in the first set, m be their speed, and s be the communication

speed of the corresponding segment. Let the second set of processors, P, span m

communication segments S1, S2,. . .,Sm. Let si be the communication speed of

segment Si, ni be the number of processors of set P belonging to Si, mij be the

speed of the jth processor belonging to segment Si(i = 1,. . .,m; j = 1,. . .,ni). Let
sij be the speed of communication link between segments Si and Sj(i,j = 1,. . .,m).
Then,
Pm
i¼1si �

ni�ðni�1Þ
2

þ
Pm

i¼1

Pm
j¼iþ1ni � nj � sij

n�ðn�1Þ
2

¼ s; ð1Þ

Xm
i¼1

ni ¼ n; ð2Þ

Xm
i¼1

Xni
j¼1

mij ¼ n� m: ð3Þ
Eq. (1) states that the average speed of point-to-point communications between

processors of the second set should be equal to the speed of point-to-point commu-

nications between processors of the first set. Eq. (2) states that the total number of

processors in the second set should be equal to the number of processors in the

first set. Eq. (3) states that the aggregate performance of the processors in the sec-

ond set should be equal to the aggregate performance of the processors in the first
set.

In following sections, we illustrate application of this approach in the simplest

case when the target architecture of the analysed heterogeneous algorithm is a set

of heterogeneous processors interconnected via a homogeneous communication

network.



1200 A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216
3. Block cyclic algorithm of parallel matrix multiplication on homogeneous platforms

Consider the following algorithm of parallel multiplication of two dense square

matrices A and B on a p-processor homogeneous distributed-memory multiprocessor

(also known as MPP—massively parallel processor):

• The A,B, and C matrices are identically partitioned into p equal nffiffi
p

p � nffiffi
p

p squares,

so that each row and each column contain
ffiffiffi
p

p
squares (for simplicity, we assume

that p is a square number and n is a multiple of
ffiffiffi
p

p
). There is one-to-one mapping

between these squares and the processors. Each processor is responsible for com-

puting its C square (see Fig. 1).

• Each element in A, B, and C is a square r · r block and the unit of computation is

the updating of one block, i.e., a matrix multiplication of size r. For simplicity, we
assume that

ffiffiffi
p

p
is a multiple of r.

• The algorithm consists of n
r steps. At each step k,

– A column of blocks (the pivot column) of matrix A is communicated (broad-

cast) horizontally (see Fig. 1);

– A row of blocks (the pivot row) of matrix B is communicated (broadcast) ver-

tically (see Fig. 1);

– Each processor updates each block in its C square with one block from the

pivot column and one block from the pivot row, so that each block
cijði; j 2 f1; . . . ; nrgÞ of matrix C will be updated, cij = cij + aik · bik (see Fig. 1).

Thus, after n
r steps of the algorithm, each block cij of matrix C will be

cij ¼
Xn

r

k¼1

aik � bkj;

i.e., C = A · B.
A B Cka•

•kb

kjikijij bacc ×+=

Fig. 1. One step of the algorithm of parallel matrix multiplication based on two-dimensional block

distribution of matrices A,B, and C. First, the pivot column a•k of r · r blocks of matrix A (shown shaded

grey) is broadcast horizontally, and the pivot row bk• of r · r blocks of matrix B (shown shaded grey) is

broadcast vertically. Then, each r · r block cij of matrix C (also shown shaded grey) is updated.

cij = cij + aik · bkj.



A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216 1201
Consider this algorithm from the processor point-of-view. The processors of the

MPP executing the algorithm are arranged into a two-dimensional m · m grid {Pij},

where m ¼ ffiffiffi
p

p
and i,j 2 {1 ,. . .,m}. At each step k of the algorithm,

• The pivot column a•k is owned by the column of processors fP iKgmi¼1 and the pivot
row bk• is owned by the row of processors fPKigmi¼1, where

K ¼ r � k
n
m

� �
:

• Each processor PiK (for all i 2 {1 ,. . .,m}) horizontally broadcasts its part of the

pivot column a•k to processors Pi•.

• Each processor PKj (for all j 2 {1 ,. . .,m}) vertically broadcasts its part of the

pivot row bk• to processors P•j.

• Each processor Pij receives the corresponding part of the pivot column and pivot

row and uses them to update each r · r block of its C square.

Note that at each step k, each processor Pij participates in two collective com-

munication operations: a broadcast involving the row of processors Pi• and a

broadcast involving the column of processors P•j. Processor PiK is the root for

the first broadcast, and processor PKj is the root for the second. As r is usually

much less than m, in most cases at next step k + 1 of the algorithm processor

PiK will be again the root of the broadcast involving the row of processors Pi•,

as well as processor PKj will be the root of the broadcast involving the column

of processors P•j. Therefore, at step k + 1, the broadcast involving the row of proc-
essors Pi• cannot start until processor PiK completes this broadcast at step k. Sim-

ilarly, the broadcast involving the column of processors P•j cannot start until

processor PKj completes that broadcast at step k. The root of the broadcast com-

munication operation completes when its communication buffer can be re-used.

Typically, the completion means that the root has sent out the contents of the com-

munication buffer to all receiving processors.

Thus, there is strong dependence between successive steps of the parallel algo-

rithm, which hinders parallel execution of the steps. If at successive steps of the algo-
rithm the broadcast operations involving the same set of processors had different

roots, they could be executed in parallel. As a result, more communications would

be executed in parallel and more computations and communications would be

overlapped.

In order to break the dependence between successive steps of the algorithm, the

way, in which matrices A, B and C are distributed over the processors, can be mod-

ified. The modified distribution is called a two-dimensional block cyclic distribution

and can be summarized as follows:

• Each element in A,B, and C is a square r · r block.
• The blocks are scattered in a cyclic fashion along both dimensions of the m · m

processor grid, so that for all i; j 2 f1; . . . ; nrg blocks aij, bij, cij will be mapped

to processor PIJ so that I = (i � 1)modm + 1 and J = (j � 1) modm + 1.



1202 A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216
Fig. 2(a) illustrates this distribution from the matrix point-of-view. The matrix is

now partitioned into n2

r2�m2 equal squares, so that each row and each column contain
n

r�m squares. All the squares are identically partitioned into m2 equal r · r blocks, so
that each row and each column contain m blocks. There is one-to-one mapping be-

tween these blocks and the processors. Thus, all the m · m squares of blocks are

identically distributed over the m · m processor grid in a two-dimensional block

fashion.

Fig. 2(b) shows this distribution from the processor point-of-view. Each square

represents the total area of blocks allocated to a single processor.

The algorithm is easily generalized for an arbitrary two-dimensional processor

arrangement.
The two-dimensional block cyclic distribution is a general-purpose basic decom-

position in parallel dense linear algebra libraries for MPPs such as ScaLAPACK

[10]. The block cyclic distribution has been also incorporated in the HPF language

[11].
4. Block cyclic algorithm of parallel matrix multiplication on heterogeneous platforms

In an MPP, all processors are identical. Therefore, the load of the processors will

be perfectly balanced if each processor performs the same amount of work. As all

r · r blocks of the C matrix require the same amount of arithmetic operations, each

processor executes an amount of work, which is proportional to the number of r · r
blocks that are allocated to it, and, hence, proportional to the area of its rectangle

(see Fig. 2(b)). Therefore, to equally load all processors of the MPP, a rectangle

of the same area must be allocated to each processor.

In a heterogeneous cluster, processors perform computations at different speeds.
To balance the load of the processors, each processor should execute an amount of

work that is proportional to its speed. In case of matrix multiplication, it means that

the number of r · r blocks, which are allocated to each processor, should be propor-

tional to its speed. Let us modify the two-dimensional block cyclic distribution to

satisfy the requirement.

Suppose that the relative speed of each processor Pij is characterised by a real

positive number, sij, so that
Pm

i¼1

Pm
j¼1sij ¼ 1. Then, the area of the rectangle

allocated to processor Pij should be sij · n2.
The homogeneous two-dimensional block cyclic distribution partitions the matrix

into generalized blocks of size (r · m) · (r · m), each partitioned into m · m blocks of

the same size r · r, going to separate processors (see Fig. 2(a)). The modified, heter-

ogeneous, distribution also partitions the matrix into generalized blocks of the same

size, (r · l) · (r · l), where m 6 l 6 n
r. The generalized blocks are identically parti-

tioned into m2 rectangles, each being assigned to a different processor. The main dif-

ference is that the generalized blocks are partitioned into unequal rectangles. The
area of each rectangle is proportional to the speed of the processor that stores the

rectangle.



(a)

(b)

Fig. 2. A matrix with 18 · 18 blocks is distributed over a 3 · 3 processor grid. The numbers on the left and

on the top of the matrix represent indices of a row of blocks and a column of blocks, respectively. (a) Block

cyclic distribution over 3 · 3 grid. The labelled squares represent blocks of elements, and the label indicates

at which location in the processor grid the block is stored—all blocks labelled with the same name are

stored in the same processor. Each shaded and unshaded area represents different generalised blocks. (b)

Data distribution from processor point-of-view. Each processor has 6 · 6 blocks.

A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216 1203



P12

P22 P23

P33
P32

P31

P11 P13

P21

1 2 3 4 5 6 1 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

3•P
2•P1•P

(a) (b)

Fig. 3. Example of two-step distribution of a 6 · 6 generalised block over a 3 · 3 processor grid. The

relative speed of processors is given by matrix s ¼
0:11 0:25 0:05
0:17 0:09 0:08
0:05 0:17 0:03

0
@

1
A. (a) Partition between processor

columns. At the first step, the 6 · 6 square is distributed in a one-dimensional block fashion over

processors columns of the 3 · 3 processor grid in proportion 0.33:0.51:0.16 � 2:3:1. (b) Partition inside

each processor column. At the second step, each vertical rectangle is distributed independently in a one-

dimensional block fashion over processors of its column. The first rectangle is distributed in proportion

0.11:0.17:0.05 � 2:3:1. The second one is distributed in proportion 0.25:0.09:0.17 � 3:1:2. The third is

distributed in proportion 0.05:0.08:0.03 � 2:3:1.

1204 A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216
The partitioning of a generalized block can be summarised as follows:

• Each element in the generalized block is a square r · r block of matrix elements.

The generalized block is a l · l square of r · r blocks.
• First, the l · l square is partitioned into m vertical slices, so that the area of the jth

slice is proportional to
Pm

i¼1sij (see Fig. 3(a)). It is supposed that blocks of the jth

slice will be assigned to processors of the jth column in the m · m processor grid.

Thus, at this step, we balance the load between processor columns in the m · m
processor grid, so that each processor column will store a vertical slice whose area

is proportional to the total speed of its processors.

• Then, each vertical slice is partitioned independently into m horizontal slices, so

that the area of the ith horizontal slice in the jth vertical slice is proportional to
sij (see Fig. 3(b)). It is supposed that blocks of the ith horizontal slice in the jth

vertical slice will be assigned to processor Pij. Thus, at this step, we balance the

load of processors within each processor column independently.

Fig. 4(a) illustrates the heterogeneous two-dimensional block cyclic distribution

from the matrix point-of-view.

Fig. 4(b) shows this distribution from the processor point-of-view. Each rectangle

represents the total area of blocks allocated to a single processor.
Fig. 5 depicts one step of the algorithm of parallel matrix–matrix multiplication

on a heterogeneous m · m processor grid. Note that the total volume of communi-

cations during execution of this algorithm is exactly the same as that for a homoge-

neous m · m processor grid. Indeed, at each step k of both algorithms,



(a)

(b)

Fig. 4. A matrix with 18 · 18 blocks is distributed over a 3 · 3 processor grid. The relative speed of

processors is given by matrix s ¼
0:11 0:25 0:05
0:17 0:09 0:08
0:05 0:17 0:03

0
@

1
A. The numbers on the left and on the top of the

matrix represent indices of a row of blocks and a column of blocks, respectively. (a) Heterogeneous block

cyclic distribution over 3 · 3 grid. Each labelled (shaded and unshaded) area represents different rectangles

of blocks, and the label indicates at which location in the processor grid the rectangle is stored—all

rectangles labelled with the same name are stored in the same processor. Each square in a bold frame

represents different generalised blocks. (b) Data distribution from processor point-of-view. Each processor

has the number of blocks approximately proportional to its relative speed,

6 � 6 9 � 9 6 � 3

9 � 6 3 � 9 9 � 3

3 � 6 6 � 9 3 � 3

0
@

1
A �

0:11 0:25 0:05
0:17 0:09 0:08
0:05 0:17 0:03

0
@

1
A.

A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216 1205



Fig. 5. One step of the algorithm of parallel matrix–matrix multiplication based on heterogeneous two-

dimensional block distribution of matrices A,B, and C. First, each r · r block of the pivot column a•k of

matrix A (shown shaded dark grey) is broadcast horizontally, and each r · r block of the pivot row bk• of

matrix B (shown shaded dark grey) is broadcast vertically. Then, each r · r block cij of matrix C is

updated, cij = cij + aik · bkj.

1206 A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216
• Each r · r block aik of the pivot column of matrix A is sent horizontally from the

processor, which stores this block, to m � 1 processors;

• Each r · r block bkj of the pivot row of matrix B is sent vertically from the proc-

essor, which stores this block, to m � 1 processors.

The size l of a generalized block is an additional parameter of the heterogeneous
algorithm. The range of the parameter is ½m; nr�. The parameter controls two conflict-

ing aspects of the algorithm:

• The accuracy of load balancing.

• The level of potential parallelism in execution of successive steps of the algorithm.

The greater is this parameter, the greater is the total number of r · r blocks in a

generalized block, and, hence, the more accurately this number can be partitioned in
a proportion given by positive real numbers. Therefore, the greater is this parameter,

the better the load of processors is balanced. On the other hand, the greater is this

parameter, the stronger the dependence between successive steps of the parallel algo-

rithm is, which hinders parallel execution of the steps.

Consider two extreme cases. If l ¼ n
r, the distribution provides the best possible

balance of the load of processors. At the same time, the distribution turns into a pure

two-dimensional block distribution resulting in the lowest possible level of parallel

execution of successive steps of the algorithm.
If l = m, then the distribution is identical to the homogeneous distribution, which

does not bother about load-balancing at all. At the same time, it provides the highest

possible level of parallel execution of successive steps of the algorithm. Thus, the

optimal value of this parameter lies in between of these two, being a result of



A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216 1207
trade-off between load-balancing and parallel execution of successive steps of the

algorithm.

The algorithm is easily generalized for an arbitrary two-dimensional processor

arrangement.

The heterogeneous algorithm of matrix multiplication presented in this chapter
was proposed in [12]. The core of this algorithm is the partitioning of a generalised

block into uneven rectangles. More general problem of optimal partitioning a square

into rectangles with no restrictions on the shape and arrangement of the rectangles

was studied by Beaumont et al in [4,13] and proved to be NP-complete. They also

proved that the optimal column-based partitioning that minimises the sum of the

perimeters of the rectangles could be achieved in polynomial time. The partitioning

used in this paper is just a version of this optimal column-based partitioning ob-

tained under the additional restriction that the rectangles must be arranged into a
two-dimensional m · m grid. This restriction is inherited from the prototype homo-

geneous algorithm of matrix multiplication. We decided not to relax the restriction

to keep the heterogeneous algorithm closer to its homogeneous prototype.
5. Assessment of the heterogeneous algorithm

Let us compare the heterogeneous algorithm presented in Section 4 with its homo-
geneous prototype presented in Section 3. We assume that parameters n,m and r are

the same. Then, both algorithms consist of n
r successive steps.

At each step, equivalent communication operations are performed by each of the

algorithms, namely:

• Each r · r block of the pivot column of matrix A is sent horizontally from the

processor, which stores this block, to m � 1 processors;

• Each r · r block of the pivot row of matrix B is sent vertically from the processor,
which stores this block, to m � 1 processors.

Thus, the per-step communication cost is the same for both algorithms.

If l is big enough, then at each step each processor of the heterogeneous network

will perform the volume of computation approximately proportional to its speed. In

this case, the per-processor computation cost will be approximately the same for

both algorithms.

Thus, the per-step cost of the heterogeneous algorithm will be approximately the
same as that of the homogeneous one. So the only reason for the heterogeneous algo-

rithm to be less efficient than its homogeneous prototype is the lower level of poten-

tial overlapping of communication operations at successive steps of the algorithm.

Obviously, the bigger is the ratio between the maximal and minimal processor speed,

the lower is this level. Note that if the communication layer serializes data packages

(for example, plain Ethernet), then the heterogeneous algorithm has approximately

the same efficiency as the homogeneous one. Therefore, in that case the presented

heterogeneous algorithm is the optimal modification of its homogeneous prototype.



1208 A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216
In Section 6, we present some experimental results that allow us to estimate the sig-

nificance of the additional dependence between successive steps of the algorithm if

the communication layer allows multiple data packages.
6. Experimental results

This algorithm of parallel matrix multiplication on heterogeneous clusters was

implemented in the mpC language [8].

This section presents some results of experiments with this application. All pre-

sented results are obtained for r = 16 and generalized block size l = 1536, which have

appeared optimal for both homogeneous and heterogeneous block cyclic

distributions.
A small local heterogeneous network of nine different Solaris, FreeBSD and

Linux workstations is used in the experiments presented in Figs. 6 and 7. The relative

speed of the workstations is as follows: 26, 20, 14, 14, 14, 14, 14, 9, and 1. We meas-

ure their relative speed with the core computation of the algorithm (updating of a

matrix). Note that the relative speed does not depend on the size of problem for

the wide range of matrix sizes used in our experiments.

The communication network interconnecting the workstations is based on

100Mbit Ethernet with a switch enabling parallel communications between them.
For experiments presented in Fig. 8, we use the same set of heterogeneous work-

stations and a set of nine identical Linux workstations with the same relative speed,

14. The two sets of workstations belong to the same homogeneous communication

segment of the local network specified above. Five Linux workstations of relative

speed 14 are also shared by these two sets. Note that the aggregate performance
0

5000

10000

15000

20000

25000

30000

35000

0 2000 4000 6000 8000 10000 12000 14000

Problem size

Ex
ec

ut
io

n 
tim

e(
se

c)

Hetero 2D
Homo 2D

Fig. 6. Execution times of the heterogeneous and homogeneous algorithms on the same heterogeneous

network.



0

500

1000

1500

2000

2500

3000

3500

4000

0 2000 4000 6000 8000 10000 12000 14000

Problem size

Ex
ec

ut
io

n 
tim

e(
se

c)

Hetero 2D
Homo 2D

Fig. 8. Execution times of the heterogeneous algorithm on the heterogeneous network and of the

homogeneous one on the homogeneous network. The two networks have approximately the same

aggregate power of processors and share the same (homogeneous) communication network.

0
1
2
3
4
5
6
7
8
9

0 2000 4000 6000 8000 10000 12000 14000

Problem size

Sp
ee

du
p

Fig. 7. The speedup of the heterogeneous algorithm over the homogeneous one. Both algorithms are

performed on the same heterogeneous network.

A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216 1209
of the processors of the heterogeneous network is the same as that of the homoge-

neous one.

Fig. 6 shows the comparison of the execution times of 2 parallel algorithms of
matrix multiplication:

• The algorithm based on 2D heterogeneous block cyclic distribution;

• The algorithm based on 2D homogeneous block cyclic distribution.

One can see that the heterogeneous algorithm is approximately seven times faster

than the homogeneous one.



1210 A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216
Fig. 7 shows the speedup of the heterogeneous algorithm over the homogeneous

one. The speedup is calculated as the execution time of the homogeneous algorithm

divided by the execution time of the heterogeneous algorithm for the same problem

size.

Fig. 8 shows the comparison of the execution times of the heterogeneous algo-
rithm performed on the heterogeneous network and its homogeneous prototype per-

formed on the homogeneous network. One can see that the algorithms show

practically the same speed, but each on its network. As the two networks are prac-

tically of the same power, we can conclude that the heterogeneous algorithm is very

close to the optimal heterogeneous modification of the basic homogeneous algo-

rithm. The experiments show that the additional dependence between successive

steps introduced by the heterogeneous modification has practically no impact on

the efficiency of the algorithm. This may be explained by the following two factors:

• The speedup due to the overlapping of communication operations performed at

successive steps of the algorithm is not very significant;

• The speed of processors in the heterogeneous network does not differ too much.

Actually, the network is moderately heterogeneous. Therefore, for this particular

network, the additional dependence between steps is very weak.

Thus, for networks of computers consisting of reasonably heterogeneous proces-
sors interconnected via a homogeneous communication network, the presented het-

erogeneous algorithm has proved to be very close to the optimal one significantly

accelerating matrix multiplication on such platforms compared to its homogeneous

prototype.

In our experiments with the heterogeneous algorithm of matrix multiplication we

use a fixed 3 · 3 arrangement of processors. At the same time, given a shape of

arrangement and a set of processors, there is still freedom in mapping of the proces-

sors onto the shape. In particular, different mappings of the processors onto the 3 · 3
Table 1

Specifications of 12 heterogeneous computers

Machine name Architecture cpu MHz Main memory

(KB)

Cache

(KB)

Csserver Linux 2.4.20-20.9bigmem Intel(R) Xeon(TM) 2783 7,933,500 512

pg1cluster01 Linux 2.4.18-10smp Intel(R) XEON(TM) 1977 1,030,508 512

pg1cluster02 Linux 2.4.18-10smp Intel(R) XEON(TM) 1977 1,030,508 512

pg1cluster03 Linux 2.4.18-10smp Intel(R) XEON(TM) 1977 1,030,508 512

pg1cluster04 Linux 2.4.18-10smp Intel(R) XEON(TM) 1977 1,030,508 512

pg1cluster05 Linux 2.4.18-10smp Intel(R) XEON(TM) 1977 1,030,508 512

csultra01 SunOS 5.8 sun4u sparc SUNW,Ultra-5_10 440 524,288 2048

csultra02 SunOS 5.8 sun4u sparc SUNW,Ultra-5_10 440 524,288 2048

csultra03 SunOS 5.8 sun4u sparc SUNW,Ultra-5_10 440 524,288 2048

csultra04 SunOS 5.8 sun4u sparc SUNW,Ultra-5_10 440 524,288 2048

csultra05 SunOS 5.8 sun4u sparc SUNW,Ultra-5_10 440 524,288 2048

csultra06 SunOS 5.8 sun4u sparc SUNW,Ultra-5_10 440 524,288 2048



A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216 1211
grid may influence the performance of the heterogeneous algorithm. This issue was

addressed by Beaumont et al. in [14]. They proved that the optimal mapping should

arrange processors in a nonincreasing order of their speed along each row and each

column of the 2D arrangement. The 3 · 3 arrangement used in the experiments is se-

lected to satisfy this criterion.
Another interesting question is how to select the shape of processors arrangement

for our heterogeneous parallel algorithm if we have, say, 12 processors. Should we

use 2 · 6, 3 · 4, 4 · 3, or 6 · 2 ? To answer this question we experimented with a
Matrix-matrix multiplication

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000

Size of the matrix
r=4

R
el

at
iv

e 
sp

ee
d

pg1cluster0x/csultra0x
csserver/csultra0x

Matrix-matrix multiplication

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000

Size of the matrix
r=8

R
el

at
iv

e 
sp

ee
d

pg1cluster0x/csultra0x
csserver/csultra0x

Fig. 9. Relative speeds of computers csserver, pg1cluster0x over the computers csultra0x. The relative

speeds are shown for values of r equal to 4 and 8. For r = 4, the relative speed of pg1cluster0x computers is

approximately 14 times that of the csultra0x computers and the relative speed of csserver computer is

approximately 10 times that of the csultra0x computers. For r = 8, the relative speed of pg1cluster0x

computers is approximately 14 times that of the csultra0x computers and the relative speed of csserver

computer is approximately 10 times that of the csultra0x computers.



1212 A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216
set of 12 different Solaris and Linux workstations, whose specifications are shown in

Table 1, interconnected via a homogeneous communication network based on 100

Mbit Ethernet with a switch enabling parallel communications.

In the experiments, we vary the size of computation unit, r, the size of generalised

block, l, and the shape of arrangement, p · q. We observed that the relative speed of
the processors depends on the size of computation block, r. Fig. 9 shows the relative

speed of some of the processors against the problem size for r = 4 and r = 8. Fig. 10

shows the relative speed of the same processors for r = 16 and r = 32 respectively.
Matrix-matrix multiplication

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000

Size of the matrix
r=16

R
el

at
iv

e 
sp

ee
d

pg1cluster0x/csultra0x
csserver/csultra0x

Matrix-matrix multiplication

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000

Size of the matrix
r=32

R
el

at
iv

e 
sp

ee
d

pg1cluster0x/csultra0x
csserver/csultra0x

Fig. 10. Relative speeds of computers csserver, pg1cluster0x over the computers csultra0x. The relative

speeds are shown for values of r equal to 16 and 32. For r = 16, the relative speed of pg1cluster0x

computers is approximately 13 times that of the csultra0x computers and the relative speed of csserver

computer is approximately 9 times that of the csultra0x computers. For r = 32, the relative speed of

pg1cluster0x computers is approximately 13.5 times that of the csultra0x computers and the relative speed

of csserver computer is approximately 8.5 times that of the csultra0x computers.



A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216 1213
One can see that the relative speed of some pairs of processors differs by approxi-

mately 15% depending on the size of computation block, r. In our experiments,

we always partition a generalised block according to the relative speed of the proc-

essors observed for the corresponding value of r. As in the previous experiments, the

processors are mapped to the 2D arrangement in a nonincreasing order of their rel-
ative speed along each row and each column of the arrangement.

Tables 2–6 show the results of the experiments for r = 4, r = 8, r = 16, r = 32 and

r = 64 respectively. In the tables, N is the size of matrix. Note that the size of gener-

alised block, l, is given in matrix elements not in r · r blocks. One can see that the

shape of arrangement has a visible (sometimes quite significant) impact on the effi-

ciency of the algorithm if values of r and l are far away from the optimal ones, which

are r = 32 and l = 3072. At the same time, it practically does not influence the execu-

tion time of the algorithm if the parameter be optimal.
Table 2

Execution times of the heterogeneous parallel matrix multiplication for r = 4 (in seconds)

(l,l) (384,384) (768,768) (1536,1536) (3072,3072)

N 9216 12,288 9216 12,888 9216 12,888 9216 12,888

p = 3, q = 4 3456 11,533 3419 10,197 3371 8820 3840 8581

p = 4, q = 3 3401 10,790 3369 10,150 3352 8658 3316 9056

p = 2, q = 6 6000 9111 5849 8693 3280 8287 3261 8720

p = 6, q = 2 3525 8788 3518 8816 3446 8846 3530 10,578

Table 3

Execution times of the heterogeneous parallel matrix multiplication for r = 8 (in seconds)

(l,l) (384, 384) (768,768) (1536,1536) (3072,3072) (4608,4608)

N 9216 12,288 9216 12,888 9216 12,888 9216 12,888 9216

p = 3, q = 4 2668 6967 2678 7229 2717 6695 3957 6751 4328

p = 4, q = 3 3830 7164 2570 6692 2535 6748 2569 7200 2769

p = 2, q = 6 2679 7273 2535 6897 2561 6782 2469 6447 2570

p = 6, q = 2 2627 6816 2629 6728 2640 6798 2612 6573 2812

Table 4

Execution times of the heterogeneous parallel matrix multiplication for r = 16 (in seconds)

(l,l) (384,384) (768,768) (1536,1536) (3072,3072) (4608,4608)

N 9216 12,288 9216 12,888 9216 12,888 9216 12,888 9216

p = 3, q = 4 3890 6837 2370 6218 2350 5980 3417 6127 4128

p = 4, q = 3 2344 6053 2368 6298 2306 6162 2301 5802 2769

p = 2, q = 6 2586 6685 2337 6386 2237 6206 2200 5840 2870

p = 6, q = 2 2591 6718 2388 6412 2381 6350 2360 6280 2910



Table 5

Execution times of the heterogeneous parallel matrix multiplication for r = 32 (in seconds)

(l,l) (384,384) (768,768) (1536,1536) (3072,3072) (4608,4608)

N 9216 12,288 9216 12,888 9216 12,888 9216 12,888 9216

p = 3, q = 4 2616 6580 2286 6142 2212 5855 2187 5702 3128

p = 4, q = 3 2816 7180 2246 6085 2210 5842 2173 5690 2969

p = 2, q = 6 2670 6880 2346 6185 2252 5930 2184 5890 3170

p = 6, q = 2 2570 6180 2446 6042 2352 5942 2195 5790 3110

Table 6

Execution times of the heterogeneous parallel matrix multiplication for r = 64 (in seconds)

(l,l) (768,768) (1536,1536) (3072,3072) (4608,4608) (9216, 9216)

N 9216 9216 9216 9216 9216

p = 3, q = 4 4456 3322 2722 2514 3812

p = 4, q = 3 4401 3401 2801 2601 4610

p = 2, q = 6 5000 4678 2878 2569 3588

p = 6, q = 2 5525 4323 2723 2312 4377

1214 A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216
7. Related work

Design of heterogeneous parallel algorithms is typically reduced to the problem of

optimal data partitioning of one or other mathematical object such as a set, a matrix,

etc. As soon as the corresponding mathematical optimisation problem is formulated,

the quality of its solution is assessed rather than the quality of solution of the orig-

inal problem. As the optimisation problem is typically NP-hard, some sub-optimal

solutions are proposed and analysed. The analysis is typically statistical: the sub-
optimal solutions for a big number of generated inputs are compared to each other

and the optimal one. This approach is used in many papers, in particular, in

[1,2,4,9,13]. This approach estimates heterogeneous parallel algorithms indirectly

and additional experiments are still needed to assess their efficiency in real heteroge-

neous environments.

Another approach is just to experimentally compare the execution time of the het-

erogeneous algorithm with that of its homogeneous prototype or a heterogeneous

competitor. Some particular heterogeneous network is used for such experiments.
In particularly, this approach is used in [3,15,16]. This approach directly estimates

the efficiency of heterogeneous parallel algorithms in some real heterogeneous envi-

ronment but still leaves an open question about their efficiency in other particular

heterogeneous environments.

The approach presented in this paper is to carefully design a relatively small num-

ber of experiments in a real heterogeneous environment in order to experimentally

compare the efficiency of the heterogeneous parallel algorithm with some experimen-

tally obtained ideal efficiency (namely, the efficiency of its homogeneous prototype in
an equally powerful homogeneous environment). This approach directly estimates



A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216 1215
the efficiency of heterogeneous parallel algorithms providing relatively high confi-

dence in the results of such an experimental estimation.

An ideal approach would be to use a comprehensive performance model of het-

erogeneous networks of computers for analysis of the performance of heterogeneous

parallel algorithms in order to predict their efficiency without real execution of the
algorithms in heterogeneous environments. Some research efforts have been done

in this direction [8,9,17,18], but the problem is still far away from its comprehensive

solution.

Several authors consider scalability more important property of heterogeneous

parallel algorithms than efficiency. They propose some approaches to analysis of sca-

lability of heterogeneous parallel algorithms [19,20].

Many authors studied parallel algorithms of matrix multiplication on heterogene-

ous platforms [3,4,13,15,16].
8. Conclusion and future work

In this paper, we have presented a new approach to performance analysis of het-

erogeneous parallel algorithms, which is to compare the efficiency of the heterogene-

ous algorithm on the heterogeneous network with the efficiency of its homogeneous

prototype on the homogeneous network having the same aggregate performance as
the heterogeneous one.

We have also illustrated how to apply this approach to assessment of a concrete

heterogeneous parallel algorithm, which implements matrix multiplication on heter-

ogeneous networks of a particular type.

Our future research on this approach will focus on its application to heterogene-

ous parallel algorithms aimed at networks of computers with essentially heterogene-

ous communication layers.
References

[1] P. Crandall, M. Quinn, Block data decomposition for data-parallel programming on a heterogeneous

workstation network, in: Proceedings of the Second International Symposium on High Performance

Distributed Computing, pp. 42–49, 1993.

[2] M. Kaddoura, S. Ranka, A. Wang, Array decomposition for nonuniform computational environ-

ments, Journal of Parallel and Distributed Computing 36 (2) (1996) 91–105.

[3] A. Kalinov, A. Lastovetsky, Heterogeneous distribution of computations solving linear algebra

problems on networks of heterogeneous computers, Journal of Parallel and Distributed Computing

61 (4) (2001) 520–535.

[4] O. Beaumont, V. Boudet, F. Rastello, Y. Robert, Matrix multiplication on heterogeneous platforms,

IEEE Transactions on Parallel and Distributed Systems 12 (10) (2001) 1033–1051.

[5] S. Fortune, J. Wyllie, Parallelism in random access machines, in: Proceedings of the 10th Annual

Symposium on Theory of Computing, pp. 114–118, 1978.

[6] L.G. Valiant, A bridging model for parallel computation, Communications of the Association for

Computing Machinery 33 (8) (1990) 103–111.

[7] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian, T.

von Eicken, Log P: Towards a realistic model of parallel computation, in: Proceedings of the 4th



1216 A. Lastovetsky, R. Reddy / Parallel Computing 30 (2004) 1195–1216
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San Diego, CA,

May 1993.

[8] A. Lastovetsky, Adaptive parallel computing on heterogeneous networks with mpC, Parallel

Computing 28 (10) (2002) 1369–1407.

[9] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert, Bandwidth-centric allocation of

independent tasks on heterogeneous platforms, in: Proceedings of 16th International Parallel and

Distributed Processing Symposium (IPDPS�2002), IEEE Computer Society, CD-ROM, 2002.

[10] L. Blackford, J. Choi, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A.

Petitet, K. Stanley, D. Walker, R. Whaley, ScaLAPACK: a portable linear algebra library for

distributed memory computers—design issues and performance, Proceedings of Supercomputing�96,
1996.

[11] High Performance Fortran Forum, High Performance Fortran Language Specification, version 2.0,

1997.

[12] A. Kalinov, A. Lastovetsky, Heterogeneous distribution of computations while solving linear algebra

problems on networks of heterogeneous computers, in: Proceedings of the 7th International

Conference on High Performance Computing and Networking Europe (HPCN Europe�99), Lecture
Notes in Computer Science 1593 (1999) 191–200.

[13] O. Beaumont, V. Boudet, F. Rastello, Y. Robert, Heterogeneous matrix–matrix multiplication or

partitioning a square into rectangles: NP-completeness and approximation algorithms, in: Proceed-

ings of the 9th Euromicro Workshop on Parallel and Distributed Processing, pp. 298–302, IEEE

Computer Society Press, 2001.

[14] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, Y. Robert, A proposal for a heterogeneous cluster

ScaLAPACK (Dense linear solvers), IEEE Transactions on Computers 50 (10) (2001) 1052–1070.

[15] E. Dovolnov, A. Kalinov, S. Klimov, Natural block data decomposition for Heterogeneous Clusters,

in: Proceedings of 17th International Parallel and Distributed Processing Symposium (IPDPS�2004),
IEEE Computer Society, CD-ROM, 2003.

[16] Y. Ohtaki, D. Takahashi, T. Boku, M. Sato, Parallel implementation of Srassen�s Matrix

multiplication algorithm for heterogeneous clusters, Proceedings of 18th International Parallel and

Distributed Processing Symposium (IPDPS�2004), IEEE Computer Society, CD-ROM, 2004.

[17] Y. Yan, X. Zhang, Y. Song, An effective and practical performance prediction model for parallel

computing on nondedicated heterogeneous NOW, Journal of Parallel and Distributed Computing 38

(1) (1996) 63–80.

[18] A. Clematis, A. Corana, Modeling performance of heterogeneous parallel computing systems,

Parallel Computing 25 (9) (1999) 1131–1145.

[19] X.-H. Sun, Scalability versus execution time in scalable systems, Journal of Parallel and Distributed

Computing 62 (2) (2002) 173–192.

[20] A.Kalinov, Scalability analysis of matrix–matrix multiplication on heterogeneous clusters, in:

Proceedings of ISPDC�2004/HeteroPar�04, IEEE Computer Society, 2004.


	On performance analysis of heterogeneous parallel algorithms
	Introduction
	Assessment of heterogeneous algorithms
	Block cyclic algorithm of parallel matrix multiplication on homogeneous platforms
	Block cyclic algorithm of parallel matrix multiplication on heterogeneous platforms
	Assessment of the heterogeneous algorithm
	Experimental results
	Related work
	Conclusion and future work
	References


