
 

 

An Approach to Assessment of Heterogeneous Parallel 
Algorithms 

Alexey Lastovetsky, Ravi Reddy 

Department of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland 
{Alexey.Lastovetsky, manumachu.reddy}@ucd.ie 

Abstract. The paper presents an approach to the performance analysis of 
heterogeneous parallel algorithms. As a typical heterogeneous parallel 
algorithm is just a modification of some homogeneous one, the idea is to 
compare the heterogeneous algorithm with its homogeneous prototype, and to 
assess the heterogeneous modification rather than to analyse the algorithm as an 
isolated entity. A criterion of optimality of heterogeneous parallel algorithms is 
suggested. A parallel algorithm of matrix multiplication on heterogeneous 
clusters is used to demonstrate the proposed approach. 

1 Introduction 

Heterogeneous networks of computers are a promising distributed-memory parallel 
architecture. In the most general case, a heterogeneous network includes PCs, 
workstations, multiprocessor servers, clusters of workstations, and even 
supercomputers. Unlike traditional homogeneous parallel platforms, the 
heterogeneous parallel architecture uses processors running at different speeds. 
Therefore, traditional parallel algorithms, which distribute computations evenly across 
parallel processors, will not balance the load of different-speed processors of the 
heterogeneous network. Faster processors will quickly perform their portions of 
computation and will wait for slower ones at points of synchronisation.  

A natural approach to the problem is to distribute data across processors unevenly 
so that each processor performs the volume of computation proportional to its speed. 
Several authors have applied this approach to data parallel algorithms based on the 
two-dimensional block-cyclic distribution [1-4].  

The methods of the performance analysis of homogeneous parallel algorithms are 
well studied. They are based on a number of models of parallel computers, including 
the parallel random access machine (PRAM) [5], the bulk-synchronous parallel model 
(BSP) [6], and the LogP model [7]. All the models assume a parallel computer to be a 
homogeneous multiprocessor. The PRAM is the most simplistic model. It assumes 
that all processors work synchronously and that interprocessor communication is free. 
The BSP allows processors to work asynchronously and models latency and limited 
bandwidth. Finally, the LogP is the most realistic model among them. It characterizes 
a parallel machine by the number of processors (P), the communication bandwidth 
(g), the communication delay (L), and the communication overhead (o). The LogP 



 

 

model has been successfully used for the performance analysis of parallel algorithms 
for (homogeneous) supercomputers. The theoretical analysis of a homogeneous 
parallel algorithm is normally accompanied by a relatively small number of 
experiments on a homogeneous parallel computer system. The purpose of these 
experiments is to demonstrate that the analysis is correct, and the analysed algorithm 
is really faster than its counterparts.  

Theoretical performance analysis of heterogeneous parallel algorithms is much 
more difficult task than that of homogeneous ones. While some research efforts have 
been made in this direction [8-9], there is no adequate and practical model of 
heterogeneous networks of computers yet, which would be able to predict the 
execution time of heterogeneous parallel algorithms with satisfactory accuracy. The 
problem of optimal heterogeneous data distribution has proved NP-complete even for 
such a simple linear algebra kernel as matrix multiplication on heterogeneous 
networks [4]. Therefore, most practical heterogeneous parallel algorithms are sub-
optimal. A typical approach to assessment of a heterogeneous parallel algorithm is its 
experimental comparison with some homogeneous counterpart on one or several 
heterogeneous platforms. Different heterogeneous algorithms are also compared 
mostly experimentally. Due to the complex and irregular nature of heterogeneous 
networks, such experimental assessment of heterogeneous parallel algorithms is not as 
convincing as for homogeneous ones. One can easily argue that the demonstration of 
the advantage of one algorithm over other algorithm on one or several heterogeneous 
networks does not prove that the situation will not change if you run the algorithms on 
other networks of computers, with the different relative speed of processors, and the 
different structure and speed of the communication network.  

In this paper, we present a new approach to the performance analysis of 
heterogeneous parallel algorithms. As a typical heterogeneous parallel algorithm is 
just a modification of some homogeneous one, the idea is to compare the 
heterogeneous algorithm with its homogeneous prototype, and to assess the 
heterogeneous modification rather than analyse the algorithm as an isolated entity. 
Namely, we propose to compare the efficiency demonstrated by the heterogeneous 
algorithm on a heterogeneous network with the efficiency demonstrated by its 
homogeneous prototype on a homogeneous network having the same aggregate 
performance as the heterogeneous one. 

This paper is structured as follows. In Section 2, we briefly formulate our approach 
to assessment of heterogeneous parallel algorithm. Then we demonstrate how to apply 
this approach to the assessment of a concrete heterogeneous parallel algorithm. For 
this purpose we use an algorithm of matrix multiplication on heterogeneous networks 
based on the heterogeneous matrix distribution proposed in [3]. In Section 3, we 
describe a block cyclic algorithm of parallel matrix multiplication on homogeneous 
platforms. In Section 4, we introduce its heterogeneous modification. In Section 5, we 
assess this heterogeneous algorithm by comparing the efficiency demonstrated by this 
algorithm on a heterogeneous network with the efficiency demonstrated by its 
homogeneous prototype on a homogeneous network, which has the same aggregate 
performance as the heterogeneous one. We show that the heterogeneous algorithm is 
very close to the optimal one. In Section 6, we present some results of experiments 
with this application, which in particular confirm our theoretical analysis. 



 

 

A B Cka•

•kb

kjikijij bacc ×+=

 

Fig. 1. One step of the algorithm of parallel matrix multiplication based on two-dimensional 

block distribution of matrices A, B, and C. First, the pivot column ka•  of rr ×  blocks of 

matrix A (shown shaded grey) is broadcast horizontally, and the pivot row •kb  of rr ×  

blocks of matrix B (shown shaded grey) is broadcast vertically. Then, each rr ×  block ijc  of 

matrix C (also shown shaded grey) is updated, kjikijij bacc ×+= . 

2 Assessment of Heterogeneous Algorithms 

We propose to assess heterogeneous algorithms as follows. Typically, a 
heterogeneous algorithm is just a modification of some homogeneous one. Therefore, 
our proposal is to compare the heterogeneous algorithm with its homogeneous 
prototype and assess the heterogeneous modification rather than analyse the algorithm 
as an isolated entity. 

Our basic postulate is that the heterogeneous algorithm cannot be more efficient 
than its homogeneous prototype. It means that the heterogeneous algorithm cannot be 
executed on the heterogeneous network faster than its homogeneous prototype on the 
equivalent homogeneous network. A homogeneous network of computers is 
equivalent to the heterogeneous network if 
• Its communication characteristics are the same; 
• It has the same number of processors; 
• The speed of each processor is equal to the average speed of processors of the 

heterogeneous network. 
The heterogeneous algorithm is considered optimal if its efficiency is the same as 

that of its homogeneous prototype. 



 

 

3 Block Cyclic Algorithm of Parallel Matrix Multiplication 
on Homogeneous Platforms 

Consider the following algorithm of parallel multiplication of two dense square 
nn ×  matrices A and B on a p-processor MPP: 

• The A, B, and C matrices are identically partitioned into p equal 
p

n

p

n ×  

squares, so that each row and each column contain p  squares (for simplicity, 

we assume that p is a square number and n is a multiple of p ). There is one-to-

one mapping between these squares and the processors. Each processor is 
responsible for computing its C square (see Figure 1). 

• Each element in A, B, and C is a square rr ×  block and the unit of computation is 
the updating of one block, i.e., a matrix multiplication of size r. For simplicity, we 

assume that p  is a multiple of r.  

• The algorithm consists of 
r

n
 steps. At each step k, 

o A column of blocks (the pivot column) of matrix A is communicated 
(broadcast) horizontally (see Figure 1); 

o A row of blocks (the pivot row) of matrix B is communicated (broadcast) 
vertically (see Figure 1); 

o Each processor updates each block in its C square with one block from the 

pivot column and one block from the pivot row, so that each block ijc  

( },,1{,
r

n
ji �∈ ) of matrix C will be updated, kjikijij bacc ×+= (see 

Figure 1). 

Thus, after 
r

n
 steps of the algorithm, each block ijc  of matrix C will be 

�
=

×=
r

n

k
kjikij bac

1

, 

i.e., BAC ×= . 
Consider this algorithm from the processor point-of-view. The processors of the 

MPP executing the algorithm are arranged into a two-dimensional mm×  grid {Pij}, 

where pm =  and },,1{, mji �∈ . At each step k of the algorithm, 



 

 

• The pivot column ka•  is owned by the column of processors m
iiKP 1}{ =  and the 

pivot row •kb  is owned by the row of processors m
iKiP 1}{ = , where 

�
�
�
�

�

�

�
�
�
�

�

�
×=

m

n
kr

K . 

• Each processor PiK (for all },,1{ mi �∈ ) horizontally broadcasts its part of the 

pivot column ka•  to processors •iP . 

• Each processor PKj (for all },,1{ mj �∈ ) vertically broadcasts its part of the 

pivot row •kb  to processors jP• . 

• Each processor Pij receives the corresponding part of the pivot column and pivot 
row and uses them to update each rr ×  block of its C square. 
Note that at each step k, each processor Pij participates in two collective 

communication operations: a broadcast involving the row of processors •iP  and a 

broadcast involving the column of processors jP• . Processor PiK is the root for the 

first broadcast, and processor PKj is the root for the second. As r is usually much less 
than m, in most cases at next step k+1 of the algorithm processor PiK will be again the 

root of the broadcast involving the row of processors •iP , as well as processor PKj 

will be the root of the broadcast involving the column of processors jP• . Therefore, 

at step k+1, the broadcast involving the row of processors •iP  cannot start until 

processor PiK completes this broadcast at step k. Similarly, the broadcast involving the 

column of processors jP•  cannot start until processor PKj completes that broadcast at 

step k. The root of the broadcast communication operation completes when its 
communication buffer can be reused. Typically, the completion means that the root 
has sent out the contents of the communication buffer to all receiving processors. 

Thus, there is strong dependence between successive steps of the parallel 
algorithm, which hinders parallel execution of the steps. If at successive steps of the 
algorithm the broadcast operations involving the same set of processors had different 
roots, they could be executed in parallel. As a result, more communications would be 
executed in parallel and more computations and communications would be 
overlapped. 

In order to break the dependence between successive steps of the algorithm, the 
way, in which matrices A, B and C are distributed over the processors, can be 
modified. The modified distribution is called a two-dimensional block cyclic 
distribution and can be summarized as follows: 
• Each element in A, B, and C is a square rr ×  block. 
 



 

 

P12

P22 P23

P33

P32
P31

P11 P13

P21

1 2 3 4 5 6 1 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

3•P2•P1•P

 

(a) Partition between processor columns.                  (b) Partition inside each processor column. 
 
Fig. 2. Example of two-step distribution of a 66 ×  generalized block over a 33×  processor 

grid. The relative speed of processors is given by matrix 

�
�
�

�

�

�
�
�

�

�

=
03.017.005.0

08.009.017.0

05.025.011.0

s . (a) 

At the first step, the 66 ×  square is distributed in a one-dimensional block fashion over 

processors columns of the 33×  processor grid in proportion 

1:3:216.0:51.0:33.0 ≈ . (b) At the second step, each vertical rectangle is 

distributed independently in a one-dimensional block fashion over processors of its column. 

The first rectangle is distributed in proportion 1:3:205.0:17.0:11.0 ≈ . The 

second one is distributed in proportion 2:1:317.0:09.0:25.0 ≈ . The third is 

distributed in proportion 1:3:203.0:08.0:05.0 ≈  

 
• The blocks are scattered in a cyclic fashion along both dimensions of the mm×  

processor grid, so that for all },,1{,
r

n
ji �∈  blocks ijijij cba ,,  will be mapped 

to processor IJP  so that 1mod)1( +−= miI  and 1mod)1( +−= mjJ . 

The algorithm is easily generalized for an arbitrary two-dimensional processor 
arrangement.   

The two-dimensional block cyclic distribution is a general-purpose basic 
decomposition in parallel dense linear algebra libraries for MPPs such as 
ScaLAPACK [10]. The block cyclic distribution has been also incorporated in the 
HPF language [11]. 



 

 

4 Block Cyclic Algorithm of Parallel Matrix Multiplication 
on Heterogeneous Platforms 

In an MPP, all processors are identical. Therefore, the load of the processors will be 
perfectly balanced if each processor performs the same amount of work. As all rr ×  
blocks of the C matrix require the same amount of arithmetic operations, each 
processor executes an amount of work, which is proportional to the number of rr ×  
blocks that are allocated to it, and, hence, proportional to the area of its rectangle. 
Therefore, to equally load all processors of the MPP, a rectangle of the same area 
must be allocated to each processor.  

In a heterogeneous cluster, processors perform computations at different speeds. 
To balance the load of the processors, each processor should execute an amount of 
work that is proportional to its speed. In case of matrix multiplication, it means that 
the number of rr ×  blocks, which are allocated to each processor, should be 
proportional to its speed. Let us modify the two-dimensional block cyclic distribution 
to satisfy the requirement. 

Suppose that the relative speed of each processor Pij is characterised by a real 

positive number, sij, so that ��
= =

=
m

i

m

j
ijs

1 1

1. Then, the area of the rectangle allocated to 

processor Pij should be 2nsij × . 

The homogeneous two-dimensional block cyclic distribution partitions the matrix 
into generalized blocks of size )()( mrmr ××× , each partitioned into mm×  
blocks of the same size rr × , going to separate processors. The modified, 
heterogeneous, distribution also partitions the matrix into generalized blocks of the 

same size, )()( lrlr ××× , where 
r

n
lm ≤≤ . The generalized blocks are 

identically partitioned into m2 rectangles, each being assigned to a different processor. 
The main difference is that the generalized blocks are partitioned into unequal 
rectangles. The area of each rectangle is proportional to the speed of the processor 
that stores the rectangle. 

The partitioning of a generalized block can be summarised as follows: 
• Each element in the generalized block is a square rr ×  block of matrix elements. 

The generalized block is a ll ×  square of rr ×  blocks.  
• First, the ll ×  square is partitioned into m vertical slices, so that the area of the j-th 

slice is proportional to �
=

m

i
ijs

1

(see Figure 2(a)). It is supposed that blocks of the j-

th slice will be assigned to processors of the j-th column in the mm×  processor 
grid. Thus, at this step, we balance the load between processor columns in the 

mm×  processor grid, so that each processor column will store a vertical slice 
whose area is proportional to the total speed of its processors. 



 

 

P11
P12

P13

P22 P23

P33

P32

P21

P31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

P31

P21

P11

P32

P22

P12

P33

P23

P13

P31

P21

P12

P11

P22

P32
P33

P23

P13

P11
P12 P12 P12

P13 P13 P13P11 P11

P21 P21 P21P22 P22 P22P23 P23 P23

P32 P32 P32
P31 P31 P31P33 P33 P33

P11 P11 P11
P12 P12 P12

P13 P13 P13

P21 P21 P21P22 P22 P22P23 P23 P23

P32 P32 P32
P31 P31 P31P33 P33 P33  

(a) Heterogeneous block cyclic distribution over 3x3 grid. 

       

1 2 7 8 13 14 3 4 5 9 10 11 15 16 17 6 12 18

1

2

7

8

13

14

3

4

5

9

10

11

15

16

17

6

12

18

P11 P12

P13

P21 P22 P23

P31

P32 P33

1

2

3

7

8

9

13

14

1

2

7

8

13

14

3

4

5

9

15

4

10

16

10

11

15

16

5

6

11 17

12

17

18

6

12

18  

                        (b) Data distribution from processor point-of-view. 
 

Fig. 3. A matrix with 1818×  blocks is distributed over a 33×  processor grid. The relative 

speed of processors is given by matrix 

�
�
�

�

�

�
�
�

�

�

=
03.017.005.0

08.009.017.0

05.025.011.0

s . The numbers on the 

left and on the top of the matrix represent indices of a row of blocks and a column of blocks, 
respectively. (a) Each labelled (shaded and unshaded) area represents different rectangles of 
blocks, and the label indicates at which location in the processor grid the rectangle is stored – 
all rectangles labelled with the same name are stored in the same processor. Each square in a 
bold frame represents different generalised blocks. (b) Each processor has the number of blocks 
approximately proportional to its relative speed, 

�
�
�

�

�

�
�
�

�

�

≈
�
�
�

�

�

�
�
�

�

�

×××
×××
×××

03.017.005.0

08.009.017.0

05.025.011.0

339663

399369

369966

. 



 

 

A ka•

         

•kb

B

 

 
Fig. 4. One step of the algorithm of parallel matrix-matrix multiplication based on 
heterogeneous two-dimensional block distribution of matrices A, B, and C. First, each rr ×  

block of the pivot column ka•  of matrix A (shown shaded dark grey) is broadcast horizontally, 

and each rr ×  block of the pivot row •kb  of matrix B (shown shaded dark grey) is broadcast 

vertically. Then, each rr ×  block ijc  of matrix C is updated, kjikijij bacc ×+= . 

 
• Then, each vertical slice is partitioned independently into m horizontal slices, so 

that the area of the i-th horizontal slice in the j-th vertical slice is proportional to sij  
(see Figure 2(b)). It is supposed that blocks of the i-th horizontal slice in the j-th 
vertical slice will be assigned to processor Pij. Thus, at this step, we balance the 
load of processors within each processor column independently. 
Figure 3(a) illustrates the heterogeneous two-dimensional block cyclic distribution 

from the matrix point-of-view. 
Figure 3(b) shows this distribution from the processor point-of-view. Each 

rectangle represents the total area of blocks allocated to a single processor.  
Figure 4 depicts one step of the algorithm of parallel matrix-matrix multiplication 

on a heterogeneous mm×  processor grid. Note that the total volume of 
communications during execution of this algorithm is exactly the same as that for a 
homogeneous mm×  processor grid. Indeed, at each step k of both algorithms, 

• Each rr ×  block aik of the pivot column of matrix A is sent horizontally from the 
processor, which stores this block, to m-1 processors; 

• Each rr ×  block bkj of the pivot row of matrix B is sent vertically from the 
processor, which stores this block, to m-1 processors. 
The size l of a generalized block is an additional parameter of the heterogeneous 

algorithm. The range of the parameter is ],[
r

n
m . The parameter controls two 

conflicting aspects of the algorithm: 



 

 

• The accuracy of load balancing. 
• The level of potential parallelism in execution of successive steps of the algorithm. 

The greater is this parameter, the greater is the total number of rr ×  blocks in a 
generalized block, and, hence, the more accurately this number can be partitioned in a 
proportion given by positive real numbers. Therefore, the greater is this parameter, the 
better the load of processors is balanced. On the other hand, the greater is this 
parameter, the stronger the dependence between successive steps of the parallel 
algorithm is, which hinders parallel execution of the steps. 

Consider two extreme cases. If 
r

n
l = , the distribution provides the best possible 

balance of the load of processors. At the same time, the distribution turns into a pure 
two-dimensional block distribution resulting in the lowest possible level of parallel 
execution of successive steps of the algorithm. 

If l=m, then the distribution is identical to the homogeneous distribution, which 
does not bother about load-balancing at all. At the same time, it provides the highest 
possible level of parallel execution of successive steps of the algorithm. Thus, the 
optimal value of this parameter lies in between of these two, being a result of trade-off 
between load-balancing and parallel execution of successive steps of the algorithm. 

The algorithm is easily generalized for an arbitrary two-dimensional processor 
arrangement.  

5 Assessment of the Heterogeneous Algorithm 

Let us compare the heterogeneous algorithm presented in Section 4 with its 
homogeneous prototype presented in Section 3. We assume that parameters n, m and r 

are the same. Then, both algorithms consist of 
r

n
 successive steps. 

At each step, equivalent communication operations are performed by each of the 
algorithms, namely: 

• Each rr ×  block of the pivot column of matrix A is sent horizontally from the 
processor, which stores this block, to m-1 processors; 

• Each rr ×  block of the pivot row of matrix B is sent vertically from the processor, 
which stores this block, to m-1 processors. 
Thus, the per-step communication cost is the same for both algorithms. 
If l is big enough, then at each step each processor of the heterogeneous network 

will perform the volume of computation approximately proportional to its speed. In 
this case, the per-processor computation cost will be approximately the same for both 
algorithms. 

Thus, the per-step cost of the heterogeneous algorithm will be approximately the 
same as that of the homogeneous one. So the only reason for the heterogeneous 
algorithm to be less efficient than its homogeneous prototype is the lower level of 
potential overlapping of communication operations at successive steps of the 
algorithm. Obviously, the bigger is the ratio between the maximal and minimal 



 

 

processor speed, the lower is this level. Note that if the communication layer 
serializes data packages (for example, plain Ethernet), then the heterogeneous 
algorithm has approximately the same efficiency as the homogeneous one. Therefore, 
in that case the presented heterogeneous algorithm is the optimal modification of its 
homogeneous prototype. In section 6, we present some experimental results that allow 
us to estimate the significance of the additional dependence between successive steps 
of the algorithm if the communication layer allows multiple data packages. 

6 Experimental Results 

This algorithm of parallel matrix multiplication on heterogeneous clusters was 
implemented in the mpC language [8].  

This section presents some results of experiments with this application. All 
presented results are obtained for r = 8 and generalized block size l = 9, which have 
appeared optimal for both homogeneous and heterogeneous block cyclic distributions. 
 

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500

Problem size

Homo 2D

Hetero 1D

Hetero 2D

 

Fig. 5. Execution times of the heterogeneous and homogeneous 2D algorithms and the 
heterogeneous 1D algorithm. All algorithms are performed on the same heterogeneous network. 
 



 

 

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000 2500

Problem size

S
p

ee
d

u
p

Hetero 1D
Hetero 2D

 

Fig. 6. The speedup of the heterogeneous 1D and 2D algorithms compared to the homogeneous 
2D block cyclic algorithm. All algorithms are performed on the same heterogeneous network. 

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500

Problem size

Hetero 2D

Homo 2D

 

Fig. 7. Execution times of the 2D heterogeneous block cyclic algorithm on a heterogeneous 
network and of the 2D homogeneous block cyclic algorithm on a homogeneous network. The 
networks have approximately the same aggregate power of processors and share the same 
communication network. 



 

 

A small heterogeneous local network of 9 different Solaris and Linux workstations 
is used in the experiments presented in Figures 5 and 6. The relative speed of the 
workstations is as follows: 46, 46, 46, 46, 46, 46, 46, 84, and 9. We measure their 
relative speed with the core computation of the algorithm (updating of a matrix). The 
network is based on 100 Mbit Ethernet with a switch enabling parallel 
communications between the computers. 

For experiments presented in Figure 7, we use the same heterogeneous network 
and a homogeneous local network of 9 Solaris with the following relative speeds: 46, 
46, 46, 46, 46, 46, 46, 46, 46. The two sets of workstations share the same network 
equipment. Note that the aggregate performance of the processors of the 
heterogeneous network is practically the same as that of the homogeneous one. 

Figure 5 shows the comparison of the execution times of 3 parallel algorithms of 
matrix multiplication: 
• The algorithm based on 2D heterogeneous block cyclic distribution; 
• The algorithm based on 1D heterogeneous block cyclic distribution; 
• The algorithm based on 2D homogeneous block cyclic distribution. 
One can see that the 2D heterogeneous algorithm is almost twice faster than the 1D 
heterogeneous algorithm and almost 3 times faster than the 2D homogeneous one. 

Figure 6 shows the speedup demonstrated by the heterogeneous algorithms 
compared to the homogeneous one. 
 Figure 7 shows the comparison of the execution times of the 2D heterogeneous 
block cyclic algorithm performed on the heterogeneous network and the 2D 
homogeneous block cyclic algorithm performed on the homogeneous network. One 
can see that the algorithms demonstrate practically the same speed, but each on its 
network. As the two networks are practically of the same power, we can conclude that 
the heterogeneous algorithm is very close to the optimal heterogeneous modification 
of the basic homogeneous algorithm. The experiment shows that the additional 
dependence between successive steps introduced by the heterogeneous modification 
has practically no impact on the efficiency of the algorithm. This may be explained by 
the following two factors: 
• The speedup due to the overlapping of communication operations performed at 

successive steps of the algorithm is not very significant; 
• The speed of processors in the heterogeneous network does not differ too much. 

Actually, the network is moderately heterogeneous. Therefore, for this particular 
network, the additional dependence between steps is very weak.  

Thus, for reasonably heterogeneous networks, the presented heterogeneous algorithm 
has proved to be very close to the optimal one significantly accelerating matrix 
multiplication on such platforms compared to its homogeneous prototype. 
 
References 
 
[1] Crandall, P., Quinn, M.: Block Data Decomposition for Data-Parallel Programming on a 

Heterogeneous Workstation Network. In: Proceedings of the Second International 
Symposium on High Performance Distributed Computing. Spokane WA USA (1993) 42-49 

[2] Kaddoura, M., Ranka, S., Wang, A.: Array Decomposition for Nonuniform Computational 
Environments. Journal of Parallel and Distributed Computing 3 (1996) 91-105 



 

 

[3] Kalinov, A., Lastovetsky, A.: Heterogeneous Distribution of Computations Solving Linear 
Algebra Problems on Networks of Heterogeneous Computers. Journal of Parallel and 
Distributed Computing 61 (2001) 520-535 

[4] Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Matrix Multiplication on Heterogeneous 
Platforms. IEEE Transactions on Parallel and Distributed Systems 12 (2001) 1033-1051 

[5] Fortune, S., Wyllie, J.: Parallelism in Random Access Machines. In: Proceedings of the 10th 
Annual Symposium on Theory of Computing. San Diego CA USA (1978) 114-118 

[6] Valiant, L.G.: A Bridging Model for Parallel Computation. Communications of the 
Association for Computing Machinery 33 (1990) 103-111 

[7] Culler, D.E., Karp, R.M., Patterson, D.A., Sahay, A., Schauser, K.E., Santos, E., 
Subramonian, R., von Eicken, T.: LogP: Towards a Realistic Model of Parallel 
Computation. In: Proceedings of the 4th ACM SIGPLAN Symposium on Principles and 
Practice of Parallel Programming. San Diego CA USA (1993) 

[8] Lastovetsky, A.: Adaptive parallel computing on heterogeneous networks with mpC. 
Parallel Computing 28 (2002) 1369-1407 

[9] Beaumont, O., Carter, L., Ferrante, J., Legrand, A., Robert, Y.: Bandwidth-Centric 
Allocation of Independent Tasks on Heterogeneous Platforms. In: Proceedings of 16th 
International Parallel and Distributed Processing Symposium. IEEE Computer Society, CD-
ROM/Abstracts Proceedings, Fort Lauderdale FL USA (2002) 

[10] Blackford, L., Choi, J., Cleary, A., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., 
Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.: ScaLAPACK: A Portable Linear 
Algebra Library for Distributed Memory Computers – Design Issues and Performance. In: 
Proceedings of the 1996 ACM/IEEE Supercomputing Conference. IEEE Computer Society, 
CD-ROM/Abstracts Proceedings, Pittsburgh PA USA (1996) 

[11] High Performance Fortran Language Specification, Version 2.0. High Performance Fortran 
Forum (1997) 

 


